The

Complet
Reference

Page i

C

The Complete Reference

Fourth Edition

Page i

ABOUT THE AUTHOR

Herbert Schildt isthe world's leading programming author. He is an authority on the C and C++
languages, a master Windows programmer, and an expert on Java. His programming books have
sold more that 2.5 million copies worldwide and have been trandated into al major foreign
languages. He is the author of numerous bestsellers, including C++: The Complete Reference,
Teach Yourself C, Teach Yourself C++, C++ fromthe Ground Up, Windows 2000 Programming
from the Ground Up, and Java: The Complete Reference. Schildt holds a master's degreein
computer science from the University of Illinois. He can be reached at his consulting office at (217)

586-4683.

Page i

C

The Complete Reference

Fourth Edition

Herbert Schildt

Osborne /McGraw-Hill

Berkeley MNew York St Louis San Francisco

Auckland Bogota Hamburg London Madrid
Mexico City . Milan Montreal New Delhi Panama City
Paris Sio Paule Singapore Svdney

Fokyo Toronte

Page iv
McGraw-Hill 2

A Division of The MoCraw-Hill Comparics

Copyright © 2000 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United
States of America. Except as permitted under the United States Copyright Act of 1976, no part of
this publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of the publisher.

0-07-213295-7
The material in this eBook also appears in the print version of thistitle: 0-07-212124-6.

All trademarks are trademarks of their respective owners. Rather than put atrademark symbol after
every occurrence of atrademarked name, we use namesin an editorial fashion only, and to the
benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. For more information, please contact George
Hoare, Special Sales, at george _hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

Thisis acopyrighted work and The McGraw-Hill Companies, Inc. ("McGraw-Hill") and its
licensors reserve al rightsin and to the work. Use of thiswork is subject to these terms. Except as
permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it
without McGraw-Hill's prior consent. Y ou may use the work for your own noncommercial and
personal use; any other use of the work is strictly prohibited. Y our right to use the work may be
terminated if you fail to comply with these terms.

THE WORK ISPROVIDED "ASIS'. McCGRAW-HILL AND ITSLICENSORS MAKE NO
GUARANTEES OR WARRANTIESAS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for
the content of any information accessed through the work. Under no circumstances shall McGraw-
Hill and/or itslicensors be liable for any indirect, incidental, special, punitive, consequential or
similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or
cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/C-07-213295-7

Page v

CONTENTS

Preface Xxiil

Part |
Foundational C

1 3
An Overview of C

A Brief History of C 4
~ ClsaMiddle-Level Language S
~ ClsaStructured Language 6
~ ClsaProgrammer's Language 8
~ CompilersVs. Interpreters 9
~ The Form of aC Program 10
" ThelLibrary and Linking 11
"~ Separate Compilation 12
~ Compiling aC Program 13
~ C'sMemory Map 13
- CVs C++ 14

" Review of Terms 15

2
Expressions

~ TheBasic Data Types

" Modifying the Basic Types
~ldentifier Names

~ Variables

Where Variables Are Declared

Local Variables

Formal Parameters

~ Global Variables

~ TheFour C Scopes

~ TypeQuadlifiers

- congt

~ volaile

~ Storage Class Specifiers
extern

T datic Variables

T register Variables

~ Variable Initializations

~ Congtants

Hexadecimal and Octal Constants

String Constants

Backdash Character Constants

Page vi

Operators
~ TheAssignment Operator
~Arithmetic Operators
~ Thelncrement and Decrement Operators
~ Relational and Logical Operators
~ Bitwise Operators
~ The? Operator
~ The& and * Pointer Operators

The Compile-Time Operator sizeof

The Comma Operator

The Dot (.) and Arrow (—>) Operators

The[] and () Operators
Precedence Summary
"~ Expressions

~ Order of Evaluation

Type Conversion in Expressions

Casts

Spacing and Parentheses
3
Statements

~ Trueand Falsein C

|-l>
o

|-l>
(08}

IS

[

&

Page vii

" Selection Statements 64

if 64
T Nestedifs 66
T Theif-else-if Ladder 67
~ The?Alternative 69
"~ TheConditiona Expression 72
~ switch 72
~ Nested switch Statements 75
~Iteration Statements 76
~ Thefor Loop 76
~ for Loop Variations i
~ Thelnfinite Loop 82
~ for Loopswith No Bodies 82
~ Declaring Variables within afor Loop 83
~ ThewhileLoop 83
~ Thedo-while Loop 86
 Jump Statements 87
~ Thereturn Statement 87
~ Thegoto Statement 88
~ Thebreak Statement 89
T Theexit() Function 0

The continue Statement 91

~ Expression Statements 93

~ Block Statements

4
Arrays and Strings

~ Single-Dimension Arrays

~ Generating a Pointer to an Array
~ Passing Single-Dimension Arrays to Functions
T Strings

~ Two-Dimensiona Arrays

~ Arraysof Strings

~ Multidimensional Arrays

" Indexing Pointers

~ Array Initialization

~ Unsized Array Initializations
" Vaiable-Length Arrays

A Tic-Tac-Toe Example

5
Pointers

What Are Pointers?
~ Pointer Variables

~ The Pointer Operators

~ Pointer Expressions

" Pointer Assignments

~ Pointer Conversions

~ Pointer Arithmetic

" Pointer Comparisons

~ Pointersand Arrays

~ Arraysof Pointers

~ Multiple Indirection
~Initidizing Pointers

~ Pointersto Functions

~ C'sDynamic Allocation Functions
~ Dynamically Allocated Arrays
" restrict-Qualified Pointers

~ Problems with Pointers

6
Functions

" The Genera Form of a Function
~ Understanding the Scope of a Function

~ Function Arguments

Call by Vaue, Cal by Reference
Creating a Call by Reference
Calling Functions with Arrays

~argc and argv—Arguments to main()

138

140

142

143

147

148

149

149

150

152

155

Page viii

The return Statement
~ Returning from a Function
~ Returning Values
~ Returning Pointers
~ Functions of Type void
~ What Does main() Return?
" Recursion

~ Function Prototypes

Old-Style Function Declarations

~ Standard Library Function Prototypes

~ Declaring Variable Length Parameter Lists

~ The"Implicit int" Rule

~ Old-Style Vs. Modern Function Parameter Declarations
" Theinline Keyword

;
Structures, Unions, Enumerations, and typedef

~ Structures
Accessing Structure Members

Structure Assignments

158

158

160

162

~ Arraysof Structures
A Mailing List Example
~ Passing Structures to Functions
~ Passing Structure Members to Functions
" Passing Entire Structures to Functions
~ Structure Pointers
~ Declaring a Structure Pointer
Using Structure Pointers
~ Arrays and Structures within Structures
~ Unions
~ Bit-Fidlds
~ Enumerations
~AnImportant Difference between C and C++
~Using sizeof to Ensure Portability
T typedef

8
Console I/C

" Reading and Writing Characters
~ A Problem with getchar()
~ Alternativesto getchar()

~ Reading and Writing Strings

~ Formatted Console 1/0

~ printf()

193

195

198

200

207

208

209

Page ix

Printing Characters
~ Printing Numbers
~ Displaying an Address
~ The%n Specifier
~ Format Modifiers
~ TheMinimum Field Width Specifier
The Precision Specifier
~ Justifying Output
~ Handling Other Data Types
" The* and#Modifiers
~ scanf()
Format Specifiers
~ Inputting Numbers
" Inputting Unsigned Integers

Reading Individual Characters Using scanf
()

Reading Strings

Inputting an Address

The %n Specifier
Using a Scanset

Discarding Unwanted White Space

‘l\)
[y
[e)}

N
[y
[e)]

N
[y
[e)]

N
[y
(0]

N
[y
©

N
[y
©

220

224

225

Non-White-Space Characters in the Control String

Y ou Must Pass scanf() Addresses

Format Modifiers
" Suppressing Input

9
Filel/O

~ Cvs. C++Filel/C
~ Standard C Vs. Unix File /O
~ Streamsand Files
Streams
Files
" File System Basics
" TheFile Pointer
~ Opening aFile
~ Closing aFile
~ Writing a Character

Reading a Character

~ Using fopen(), getc(), putc(), and fclose()

Using feof()

Working with Strings: fputs() and fgets()

“ rewind()
- ferror()

Erasing Files

226

226

227

Page x

Flushing a Stream
~ fread() and fwrite()
~ Using fread() and fwrite()
~ fseek() and Random-Access
~— fprintf() and fscanf()
~ The Standard Streams

The Console |/O Connection

Using freopen() to Redirect the Standard Streams

10
The Preprocessor and Comments

" The Preprocessor

" #define

~ Defining Function-like Macros
" #Herror

" #include

~ Conditional Compilation Directives

#f, #else, #elif, and #endif

#ifdef and #ifndef
~ #undef
~ Using defined

— #Hline

Page xi

~ #Hpragme 272
~ The# and ## Preprocessor Operators 272
" Predefined Macro Names 273
~ Comments 274
~Single-Line Comments 275
Part 11

The C99 Standard

11 279
C99

~ C89Vs. C99: An Overview 280
~ Features Added 280
~ Features Removed 281
" Features Changed 281
~ restrict-Qualified Pointers 282
~inline 282
" New Built-in Data Types 284
~ _Bool 284
~ _Complex and _Imaginary 284
~ Thelonglong Integer Types 285
~ Array Enhancements 285
~ Vaiable-Length Arrays 285
~ Useof Type Qudlifiersin an Array Declaration 286
"~ Single-Line Comments 286

" Interspersed Code and Declarations 286

" Preprocessor Changes
Variable Argument Lists
The Pragma Operator

Built-in Pragmas

Additional Built-in Macros

~ Declaring Variables within afor Loop

~ Compound Literals

" Flexible Array Structure Members

~ Designated Initializers

~Additions to the printf() and scanf() Family of Functions
" New Librariesin C99

"~ The_ _func__ Predefined Identifier

" Increased Trandation Limits

~ Implicit int No Longer Supported

~ Implicit Function Declarations Have Been Removed
" Redtrictions on return

~ Extended Integer Types

~ Changesto the Integer Promotion Rules

294

296

296

297

297

Part |11
The C Standard Library

12
Linking, Libraries, and Headers

~ TheLinker

" Separate Compilation

" Relocatable Vs. Absolute Code
~ Linking with Overlays

~ Linkingwith DLLs

" TheC Standard Library

~ Library FilesVs. Object Files
~ Headers

" Macrosin Headers

~ Redefinition of Library Functions

13
1/O Functions

~ clearear
— fclose
— feof

— ferror
— fflush
— fgetc

~ fgetpos

" foets

303

304

305

(O8]
—
[O¥]

314

W
IS

(O8]
—
o1

(O8]
—
[e)]

Page xii

fopen
— fprintf
~ fputc
— fputs
~ fread
~ freopen
~ fscanf
T fseek
~ fsetpos
T ftell
— fwrite
~ getc
~ getchar
T Qets
" peror
~ printf
~ Format Modifiers for printf(') Added by C99
" putc
" putchar

~ puts

T remove

"~ rename

~ rewind

~ scanf

~ Format Modifiersfor scanf() Added by C99
© setbuf

~ setvbuf

~ snprintf

~ gprintf

~ sscanf

~ tmpfile

~ tmpnam

©ungetc

— vprintf, vfprintf, vsprintf, and vsnprintf
~vscanf, vfscanf, and vsscanf

14
String and Character Functions

~isanum
" isapha
~ishlank
~ isentrl
~idigit

~ isgraph

338

340

340

344

345

345

346

347

347

348

349

356

357

358

Page xiii

islower
~isprint
~ispunct
~isspace
" isupper
T isxdigit
~ memchr
~ memcmp
~ memcpy
~ memmove
~ memset
T dtreat
~ dtrchr
~ stremp
~ streall
T strepy
~ strespn
~ dtrerror
~ drlen
~ drneat

~ strncmp

~strnepy

359

360

375

376

— strpbrk
~ dtrrchr

T strspn

T strxfrm
~ tolower

" toupper

15

Mathematical Functions

T copysign

Strstr

strtok

acos

acosh

asin

asinh

atan

atanh

atan?2

cbrt

call

cos

cosh

erf

(08}
My
~J

&

378

W
0o

(o§]
My
(<o}

(o8]
(o]
(@]

(O8]
Q0
—

(o8]
(o]
—

(o8]
(o]
N

o8]
o]
[0¥]

386

(98]
[0))

108
0
~

108
fs%)
~

(O8]
Q0
[0¢]

(O8]
0
00

(o8]
(0]
(o]

g

(O8]
(]
—

(o8]
O
—

o8]
O
N

392

Page xiv

efc

~ fma

~ fmax

~ fmin

~ fmod

— frexp
" hypot

~ ilogh

~ ldexp
~ lgamme
“lrint

~ llround
~ log

" loglp

~ logl0
~ log2
~ logb
~rint
~ lround

modf

~ nan

" nearbyint
~ nextafter
" nexttoward
T pow

" remainder
" remguo
Torint

~ round

~ scabln

~ scabn
~d€n

sinh

sort

tan

tanh

" tgamme

404

405

405

406

406

406

407

407

408

408

Page xv

T trunc 416
16 417
Time, Date, and Localization Functions

T asctime 418
~ cock 419
~ ctime 420
~difftime 421
~ gmtime 422
" localeconv 423
~ localtime 425
~ mktime 426
" setlocale 427
T dtrftime 428
T time 431
17 433
Dynamic Allocation Functions

" caloc 434
— free 435
~ malloc 436

~ redloc 437

18

Utility Functions

~ abort

~ abs

T assat
T atexit
atof
atoi

atol

~ atoll

" bsearch
— div

T exit

— Exit
~ getenv
~ labs

~ llabs
~ldiv
~lidiv

~ longimp

" mblen

" mbstowcs

" mbtowc

439

13

&

5

5

5

E

5

13

453

453

454

455

Page xvi

gsort
raise
~ rand
T satjmp
~ signd
~ grand

~ dtrtod

© drtof

~ rtol

~ drtold

~ drtall

~ trtoul

~ drtoull

© system

~ va arg, va copy, va start, and va_end
~ wcstombs

~wctomb

19
Wide-Character Functions

Wide-Character Classification Functions
Wide-Character 1/0 Functions

Wide-Character String Functions

456

458

459

464

465

465

466

472

474

4r7

Wide-Character String Conversion Functions
" Wide-Character Array Functions
~ Multibyte/lWide-Character Conversion Functions

20
Library Features Added by C99

- The Complex Library

~ The Floating-Point Environment Library
~ The<stdint.h> Header

" Integer Format Conversion Functions

~— Type-Generic Math Macros

~ The<stdbool.h> Header

Part IV
Algorithms and Applications

21
Sorting and Searching

~ Sorting

~ Classes of Sorting Algorithms
~ Judging Sorting Algorithms
~ TheBubble Sort

~ Sorting by Selection

~ Sorting by Insertion

~ Improved Sorts

The Shell Sort

The Quicksort

488

490

490

493

498

498

499

500

Page xvii

Choosing a Sort 511
~ Sorting Other Data Structures 511
~ Sorting Strings 512
~ Sorting Structures 513
~ Sorting Random-Access Disk Files 515
~ Searching 518
~ Searching Methods 519
~ The Sequential Search 519
~ TheBinary Search 519
22 521
Queues, Stacks, Linked Lists, and Trees
~ Queues 522
~ The Circular Queue 528
- Stacks 531
T Linked Lists 536
~ Singly Linked Lists 536
" Doubly Linked Lists 541
~ A Mailing List Example 546
~ Binary Trees 553

23
Sparse Arrays

~ Understanding the Need for Sparse Arrays

- ThelLinked-List Sparse Array
~Analysisof the Linked-List Approach

~ TheBinary-Tree Approach to Sparse Arrays
~ Anaysisof the Binary-Tree Approach

~ The Pointer-Array Approach to Sparse Arrays
" Anaysisof the Pointer-Array Approach
~ Hashing

~ Anaysisof Hashing

~ Choosing an Approach

24
Expression Parsing and Evaluation

" Expressions

~ Dissecting an Expression

" Expression Parsing

A Simple Expression Parser

~ Adding Variables to the Parser

~ Syntax Checking in a Recursive-Descent Parser

25
Al-Based Problem Solving

" Representation and Terminology

" Combinatorial Explosions

563

[oy
1SN

564

(o
D
[&)]

(o
[®)]
[00]

(o
D
©

(2]
~
—

572

N

575

575

[ox]
(0]
(@]

[ox]
o0
—

595

604

605

Page xviii

Search Techniques
~ Evauating a Search
A Graphic Representation
" The Depth-First Search
~ Analysisof the Depth-First Search
~ The Breadth-First Search
~Anaysisof the Breadth-First Search
~ Adding Heuristics
~ TheHill-Climbing Search
~ Anaysisof Hill Climbing
" TheLeast-Cost Search
~ Analysisof the Least-Cost Search
~ Choosing a Search Technique

~ Finding Multiple Solutions

Path Removal
Node Removal
~ Finding the "Optimal" Solution

~ Back to the Lost Keys

Part V
Softwar e Development Using C

26
Building a Windows 2000 Skeleton

~ Windows 2000 Programming Perspective
~ The Desktop Model
~ TheMouse
~lcons, Bitmaps, and Graphics
Menus, Controls, and Dialog Boxes
~ TheWin32 Application Programming Interface
~ Components of a Window
~ How Windows and Y our Program Interact
~ Some Windows 2000 Application Basics
~ WinMain()
~ TheWindow Procedure
~ Window Classes
~ TheMessage Loop
~ Windows Data Types
~ A Windows 2000 Skeleton
~ Defining the Window Class
" Creating aWindow
" TheMessage Loop
The Window Function

~ Déefinition File No Longer Needed

659

(o]
(o]
o

(on}
(o3}
[y

(on}
o)
=

(o]
(@]
=

(o]
(@]
=

D
(©)]
N

662

663

664

664

664

(on}
N

(o]
(o]
[&)]

(o]
(o]
[&)]

(o]
(o]
[&)]

D
D
(o))

D
D
©

(@}
<
N

674

Page xix

~ Naming Conventions

27
Software Engineering Using C

" Top-Down Design

~ Outlining Y our Program

"~ Choosing a Data Structure

" Bulletproof Functions

~ Using MAKE

~ Using Macrosin MAKE

~ Using an Integrated Devel opment Environment

28
Efficiency, Porting, and Debugging

~ Efficiency

" Thelncrement and Decrement Operators
~ Using Register Variables

~ PointersVs. Array Indexing

Use of Functions

(@}
<
©

680

~ Porting Programs

~ Using #define

~ Operating-System Dependencies
Differencesin Data Sizes

~ Debugging

~ Order-of-Evaluation Errors

" Pointer Problems

" Interpreting Syntax Errors

~ One-Off Errors

" Boundary Errors

~ Function Prototype Omissions

~ Argument Errors

~ Stack Overruns

~ Using a Debugger

~ Debugaing Theory in Genera

Part VI
A C Interpreter

29
A C Interpreter

~ The Practical Importance of Interpreters
~ ThelLittle C Specifications

~ Somelittle C Restrictions

" Interpreting a Structured Language

~ AnInformal Theory of C

~J
—
(O8]

Page xx

C Expressions
Evaluating Expressions
~ The Expression Parser

Reducing the Source Code to Its Components

The Little C Recursive-Descent Parser
~ Thelittle C Interpreter
The Interpreter Prescan
~ Themain() Function
~ Theinterp_block() Function
" Handling Local Variables
~ Cadling User-Defined Functions
~ Assigning Valuesto Variables
" Executing an if Statement
Processing awhile Loop
Processing a do-while Loop
~ Thefor Loop
~ ThelittleC Library Functions

~ Compiling and Linking the Little C Interpreter

745

748

749

775

176

780

Page xxi

~ Demonstrating Little C 780
" Improving Little C 785
~ Expanding Little C 786
~— Adding New C Features 786
~ Adding Ancillary Features 787

I ndex 789

Page xxiii

PREFACE

Thisisthe fourth edition of C: The Complete Reference. In the years since the third edition was
prepared, much has happened in the programming world. The Internet and the World Wide Web
became an integral part of the computing landscape, Java was invented, and C++ was standardized.
At the same time, a new standard for C, called C99, was created. Although C99 did not grab many
headlines, it is still one of the most important computing events of the past five years. In the onrush
of events, it is easy to focus only on the new, overlooking the sturdy foundation upon which the
futureisbuilt. Cis such afoundation. Much of the world's code runs on C. It is the language upon
which C++ was built, and its syntax formed the basis for Java. However, if C were ssmply a starting
point for other languages, it would be an interesting, but dead, language. Fortunately for us
programmers, thisis not the case. C is as vital today as when it wasfirst invented. As you will see,
the C99 standard contains new and innovative constructs that once again put C at the forefront of
language development. Although C's progeny (C++ and Java) are certainly important, C hasa
staying power that no other computer language can claim.

The creation of the C99 standard was driven forward by some of computing's foremost language
experts, including Rex Jaeschke, Jim Thomas, Tom MacDonald, and John Benito. As a member of
the standardization committee, | watched the progress of the emerging standard, following the
debates and arguments surrounding each new

Page 1

PART | —
FOUNDATIONAL C

This book dividesits description of the C language into two parts. Part One discusses those features
of C defined by the original, 1989 ANSI standard for C (commonly referred to as C89), along with
those additions contained in Amendment 1, adopted in 1995. At the time of this writing, thisisthe
version of C that isin widespread use and is the version of C that compilers are currently capable of
compiling. It is also the version of C that forms the foundation upon which C++ was built,

Page 2

which is commonly referred to as the C subset of C++. Part Two describes the features added by the
new C 1999 standard (C99). Part Two also details the few differences between C89 and C99. For the
most part, the new 1999 standard incorporates the entire 1989 standard, adding features but not
fundamentally changing the character of the language. Thus, C89 is both the foundation for C99 and
the basisfor C++.

In abook such as this Complete Reference, dividing the C language into two pieces—the C89
foundation and the C99-specific features—achieves three major benefits:

* The dividing line between the C89 and the C99 versions of C isclearly delineated. When
maintaining legacy code for environments in which C99-compatible compilers are not available, an
understanding of where C89 ends and C99 beginsisimportant. It is a frustrating experience to plan
asolution around afeature, only to find that the feature is not supported by the compiler!

* Readers aready familiar with C89 can easily find the new features added by C99. Many readers—
especially those who have an earlier edition of this book—already know C89. Covering those
features of C99 in their own section makes it easier for the experienced programmer to quickly find
information about C99 without having to "wade through" reams of information that he or she
aready knows. Of course, throughout Part One, any minor incompatibilities between C89 and C99
are noted and new features from C99 are mentioned where appropriate.

* By separately discussing the C89 standard, it is possible to clearly define the version of C that
formsthe C subset of C++. Thisisimportant if you want to be able to write C programs that can be
compiled by C++ compilers. It isalso important if you are planning to move on to C++, or work in
both environments.

In the final analysis, understanding the difference between C89 and C99 is simply part of being a
top-notch professional C programmer.

Part Oneis organized as follows. Chapter 1 provides an overview of C. Chapter 2 examines C's
built-in data types, variables, operators, and expressions. Next, Chapter 3 presents program control
statements. Chapter 4 discusses arrays and strings. Chapter 5 looks at pointers. Chapter 6 deals with
functions, and Chapter 7 discusses structures, unions, and user-defined types. Chapter 8 examines
console 1/0. Chapter 9 coversfile 1/0O, and Chapter 10 discusses the C preprocessor and comments.

Page 3

Chapter 1—
An Overview of C

Page 4

The purpose of this chapter isto present an overview of the C programming language, its origins, its
uses, and its underlying philosophy. This chapter is mainly for newcomersto C.

A Brief History of C

C was invented and first implemented by Dennis Ritchie on a DEC PDP-11 that used the Unix
operating system. C isthe result of a development process that started with an older language called
BCPL. BCPL was developed by Martin Richards, and it influenced alanguage called B, which was
invented by Ken Thompson. B led to the development of C in the 1970s.

For many years, the de facto standard for C was the version supplied with the Unix operating
system. It was first described in The C Programming Language by Brian Kernighan and Dennis
Ritchie (Englewood Cliffs, N.J.: Prentice-Hall, 1978). In the summer of 1983 a committee was
established to create an ANSI (American National Standards Institute) standard that would define
the C language. The standardization process took six years (much longer than anyone reasonably
expected).

The ANSI C standard was finally adopted in December 1989, with the first copies becoming
available in early 1990. The standard was also adopted by 1SO (International Standards
Organization), and the resulting standard was typically referred to as ANSI/ISO Standard C. In
1995, Amendment 1 to the C standard was adopted, which, among other things, added several new
library functions. The 1989 standard for C, along with Amendment 1, became a base document for
Standard C++, defining the C subset of C++. The version of C defined by the 1989 standard is
commonly referred to as C89.

During the 1990s, the devel opment of the C++ standard consumed most programmers' attention.
However, work on C continued quietly along, with a new standard for C being developed. The end
result was the 1999 standard for C, usually referred to as C99. In general, C99 retained nearly al of
the features of C89. Thus, Cis till C! The C99 standardization committee focused on two main
areas: the addition of several numeric libraries and the development of some special -use, but highly
innovative, new features, such as variable-length arrays and the restrict pointer qualifier. These
innovations have once again put C at the forefront of computer language devel opment.

As explained in the part opener, Part One of this book describes the foundation of C, which isthe
version defined by the 1989 standard. Thisisthe version of C in widest use, it is currently accepted
by all C compilers, and it formsthe basis for C++. Thus, if you want to write C code that can be
compiled by alegacy compiler, for example, you will want to restrict that code to the features
described in Part One. Part Two will examine the features added by C99.

Page 5
C lsaMiddle-Level Language

Cisoften caled a middie-level computer language. This does not mean that C isless powerful,
harder to use, or less developed than a high-level language such as BASIC or Pascal, nor does it
imply that C has the cumbersome nature of assembly language (and its associated troubles). Rather,
C isthought of asamiddle-level language because it combines the best elements of high-level
languages with the control and flexibility of assembly language. Table 1-1 shows how C fitsinto the
spectrum of computer languages.

Asamiddlelevel language, C allows the manipulation of bits, bytes, and addresses—the basic
elements with which the computer functions. Despite this fact, C code is also very portable.
Portability meansthat it is easy to adapt software written for one type of computer or operating
system to another type. For example, if you can easily convert a program written for DOS so that it
runs under Windows 2000, that program is portable.

High level Ada
Modula-2
Pascal
COBOL
FORTRAN
BASIC

Middle level Java
C++
C
FORTH
Macro-assembler

Low level Assembler

Tablel-1. C'sPlaceinthe World of Programming Languages

Page 6

All high-level programming languages support the concept of datatypes. A data type defines a set
of values that a variable can store along with a set of operations that can be performed on that
variable. Common data types are integer, character, and floating-point. Although C has several built-
in datatypes, it isnot a strongly typed language, as are Pascal and Ada. C permits almost all type
conversions. For example, you may freely intermix character and integer typesin an expression.

Unlike most high-level languages, C specifies almost no run-time error checking. For example, no
check is performed to ensure that array boundaries are not overrun. These types of checks are the
responsibility of the programmer.

In the same vein, C does not demand strict type compatibility between a parameter and an argument.
Asyou may know from your other programming experience, a high-level computer language will
typicaly require that the type of an argument be (more or less) exactly the same type as the
parameter that will receive the argument. Such is not the case for C. Instead, C allows an argument
to be of any type so long as it can be reasonably converted into the type of the parameter. Further, C
provides all of the automatic conversions to accomplish this.

Cisspecid in that it allows the direct manipulation of bits, bytes, words, and pointers. This makesiit
well suited for system-level programming, where these operations are common.

Another important aspect of C isthat it has only asmall number of keywords, which are the
commands that make up the C language. For example, C89 defined 32 keywords, and C99 adds only
5 more. High-level languages typically have many more keywords. As a comparison, consider that
most versions of BASIC have well over 100 keywords!

C Isa Structured Language

In your previous programming experience, you may have heard the term block-structured applied to
a computer language. Although the term block- structured language does not strictly apply to C, Cis
commonly referred to ssimply as a structured language. It has many similarities to other structured
languages, such as ALGOL, Pascal, and Modula-2.

NOTE

The reason that C is not, technically, a block-structured language is that block-
structured languages permit procedures or functions to be declared inside other
procedures or functions. However, since C does not allow the creation of functions
within functions, it cannot formally be called block-structured.

The distinguishing feature of a structured language is compartmentalization of code and data. Thisis
the ability of alanguage to section off and hide from the rest of the program al information and
instructions necessary to perform a specific task. One way that you achieve compartmentalization is
by using subroutines that employ local (temporary) variables. By using local variables, you can
write subroutines so that the

Page 7

events that occur within them cause no side effectsin other parts of the program. This capability
makes it very easy for your C programs to share sections of code. If you develop compartmentalized
functions, you need to know only what a function does, not how it does it. Remember, excessive use
of global variables (variables known throughout the entire program) may alow bugsto creep into a
program by allowing unwanted side effects. (Anyone who has programmed in standard BASIC is
well aware of this problem.)

A structured language offers a variety of programming possibilities. For example, structured
languages typically support several loop constructs, such as while, do-while, and for. In a structured
language, the use of goto is either prohibited or discouraged and is not the common form of program
control (asisthe casein standard BASIC and traditional FORTRAN, for example). A structured
language alows you to place statements anywhere on aline and does not require a strict field
concept (as some older FORTRANS do).

Here are some examples of structured and nonstructured languages:

Nonstructured Structured
FORTRAN Pascal
BASIC Ads
COBOL C++

C

Java

Modula-2

Structured languages tend to be of more recent creation. In fact, amark of an old computer language
Isthat it is nonstructured. Today, few programmers would consider using a nonstructured language
for serious, new programs.

NOTE

New versions of many older languages have attempted to add structured elements.
BASIC is an example. However , the shortcomings of these languages can never be
fully mitigated because they were not designed along structured design principles
from the beginning.

C'smain structural component is the function—C's stand-alone subroutine. In C, functions are the
building blocks in which all program activity occurs. They allow you to define and code
individually the separate tasks in a program, thus allowing your programs to be modular. After you
have created a function, you can rely on it to work properly in various situations without creating
side effects in other parts of the program. Being able to create stand-alone functionsis extremely
important in larger projects where one programmer's code must not accidentally affect another's.

Page 8

Another way to structure and compartmentalize code in C is through the use of blocks of code. A
code block isalogically connected group of program statements that is treated as a unit. In C, you
create a code block by placing a sequence of statements between opening and closing curly braces.
In this example,

if (x <10) {
printf('"'Too low, try again.\n");
scanf ("%", &x);

}

the two statements after the if and between the curly braces are both executed if x isless than 10.
These two statements together with the braces represent a code block. They are alogical unit: One
of the statements cannot execute without the other executing also. Code blocks alow many
algorithms to be implemented with clarity, elegance, and efficiency. Moreover, they help the
programmer better conceptualize the true nature of the algorithm being implemented.

C IsaProgrammer's L anguage

Surprisingly, not all computer programming languages are for programmers. Consider the classic
examples of nonprogrammer languages, COBOL and BASIC. COBOL was designed not to better
the programmer's lot, not to improve the reliability of the code produced, and not even to improve
the speed with which code can be written. Rather, COBOL was designed, in part, to enable
nonprogrammers to read and presumably (however unlikely) to understand the program. BASIC was
created essentially to allow nonprogrammers to program a computer to solve relatively ssimple
problems.

In contrast, C was created, influenced, and field-tested by working programmers. The end result is
that C gives the programmer what the programmer wants. few restrictions, few complaints, block
structure, stand-alone functions, and a compact set of keywords. By using C, you can nearly achieve
the efficiency of assembly code combined with the structure of Pascal or Modula-2. It is no wonder
that C has become the universal language of programmers around the world.

The fact that C can often be used in place of assembly language was a mgjor factor initsinitial
success. Assembly language uses a symbolic representation of the actual binary code that the
computer executes directly. Each assembly-language operation maps into a single task for the
computer to perform. Although assembly language gives programmers the potential to accomplish
tasks with maximum flexibility and efficiency, it is notoriously difficult to work with when
developing and debugging a program. Furthermore, since assembly language is unstructured, the
final program tends to be spaghetti code—a tangled mess of jumps, calls, and indexes. Thislack of
structure makes assembly-language programs difficult to read, enhance, and maintain. Perhaps more
iImportant, assembly-language routines are not portable between machines with different CPUs.

Page 9

Initially, C was used for systems programming. A systems program forms a portion of the operating
system of the computer or its support utilities, such as editors, compilers, linkers, and the like. AsC
grew in popularity, many programmers began to use it to program all tasks because of its portability
and efficiency—and because they liked it! At the time of its creation, C was a much longed-for,
dramatic improvement in programming languages. In the years that have since elapsed, C has
proven that it is up to any task.

With the advent of C++, some programmers thought that C as a distinct language would cease to
exist. Such is not the case. First, not al programs require the application of the object-oriented
programming features provided by C++. For example, applications such as embedded systems are
still typically programmed in C. Second, much of the world still runs on C code, and those programs
will continue to be enhanced and maintained. Third, as the new C99 standard shows, Cisstill a
venue in which leading-edge innovation is taking place. While it is undeniably true that C will
always be remembered as forming the foundation for C++, it will also be known as one of the
world's great programming languages on its own.

Compilersvs. Interpreters

It isimportant to understand that a computer language defines the nature of a program and not the
way that the program will be executed. There are two general methods by which a program can be
executed. It can be compiled, or it can be interpreted. Although programs written in any computer
language can be compiled or interpreted, some languages are designed more for one form of
execution than the other. For example, Java was designed to be interpreted, and C was designed to
be compiled. However, in the case of C, it isimportant to understand that it was specifically
optimized as a compiled language. Although C interpreters have been written and are available in
some environments (especially as debugging aids or experimental platforms like the interpreter
developed in Part Six of this book), C was developed with compilation in mind. Therefore, you will
almost certainly be using a C compiler and not a C interpreter when developing your C programs.
Since the difference between a compiler and interpreter may not be clear to al readers, the following
brief description will clarify matters.

Initssimplest form, an interpreter reads the source code of your program one line at atime,
performing the specific instructions contained in that line. Thisisthe way earlier versions of BASIC
worked. In languages such as Java, a program's source code isfirst converted into an intermediary
form that is then interpreted. In either case, arun-time interpreter is still required to be present to
execute the program.

A compiler reads the entire program and convertsit into object code, which is atrandation of the
program's source code into aform that the computer can execute directly. Object code is also
referred to as binary code or machine code. Once the program is compiled, a line of source codeis
no longer meaningful in the execution of your program.

Page 10

In general, an interpreted program runs slower than a compiled program. Remember, a compiler
converts a program'’s source code into object code that a computer can execute directly. Therefore,
compilation is a one-time cost, while interpretation incurs an overhead each time a program is run.

The Form of a C Program

Table 1-2 lists the 32 keywords defined by the C89 standard. These are also the C keywords that
form the C subset of C++. Table 1-3 shows the keywords added by C99. The keywords, combined
with the formal C syntax, form the C programming language.

In addition to the standard keywords, many compilers add nonstandard keywords that better exploit
their operating environment. For example, several compilersinclude keywords to manage the
memory organization of the 8086 family of processors, to support interlanguage programming, and
to access interrupts. Hereisalist of some commonly used extended keywords:

asm ds huge pascal
cdecl _€s interrupt _SS
cs far near

Y our compiler may also support other extensions that help it take better advantage of its specific
environment.

auto double int struct
break dse long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Tablel-2. Keywords Defined by C89

Page 11

_Bool _Imaginary restrict
_Complex inline

Table 1-3. Keywords Added by C99

In C, uppercase and lowercase characters are different: else is akeyword; EL SE is not. Y ou may not
use a keyword for any purpose other than as a keyword in a C program—that is, you may not use it
asavariable or function name.

All C programs consist of one or more functions. As ageneral rule, the only function that must be
present is called main(), which is the first function called when program execution begins. In well -
written C code, main() contains what is, in essence, an outline of what the program does. The
outline is composed of function calls. Although main() is not akeyword, treat it asif it were. For
example, don't try to use main as the name of a variable because you will probably confuse the
compiler.

The general form of aC program isillustrated in Figure 1-1, wheref1() through fN() represent
user-defined functions.

TheLibrary and Linking

Technically speaking, you can create a useful, functional C program that consists solely of
statements involving only the C keywords. However, thisis quite rare because C does not provide
keywords that perform such things as input/output (1/0) operations, high-level mathematical
computations, or character handling. As aresult, most programs include calls to various functions
contained in C's standard library.

All C compilers come with a standard library of functions that perform most commonly needed
tasks. Standard C specifiesaminimal set of functions that will be supported by all compilers.
However, your compiler will probably contain many other functions. For example, the standard
library does not define any graphics functions, but your compiler will probably include some.

When you call alibrary function, the C compiler "remembers’ its name. Later, the linker combines
the code you wrote with the object code already found in the standard library. This processis called
linking. Some compilers have their own linker, while others use the standard linker supplied by your
operating system.

The functionsin the library are in relocatable format. This means that the memory addresses for the
various machine-code instructions have not been absolutely defined—only offset information has
been kept. When your program links with the functions in the standard library, these memory offsets
are used to create the actual addresses used. Several technical manuals and books explain this
Process in more

d obal decl arati ons

int mai n(paraneter |ist)

{
}

return-type fl(paraneter |ist)

st at enment sequence

statenment sequence

}

return-type f2(paraneter |ist)

{
}

st at enment sequence

return-type fN(paraneter |ist)

{
}

st at enent sequence

Figure 1-1
The general form of a C program

Page 12

detail. However, you do not need any further explanation of the actual relocation process to program

inC.

Many of the functions that you will need as you write programs are in the standard library. They act
as building blocks that you combine. If you write afunction that you will use again and again, you

can put it into alibrary, too.

Separ ate Compilation

Most short C programs are completely contained within one source file. However, as a program's
length grows, so does its compile time (and long compile times make for short tempers). Thus, C

allows a program to be spread across two or more files, and it

Page 13

lets you compile each file separately. Once you have compiled al files, they are linked, along with
any library routines, to form the complete object code. The advantage of separate compilation is that
if you change the code of onefile, you do not need to recompile the entire program. On all but the
most simple projects, this saves a substantial amount of time. Separate compilation also allows
multiple programmers to more easily work together on a single project, and it provides a means of
organizing the code for alarge project. (Strategies for separate compilation are discussed in Part
Five of this book.)

Compiling a C Program

Creating an executable form of your C program consists of these three steps:
1. Creating your program

2. Compiling your program

3. Linking your program with whatever functions are needed from the library

Today, most compilers supply integrated programming environments that include an editor. Most
also include stand-alone compilers. For stand-alone versions, you must have a separate editor to
create your program. In either case, be careful: Compilers only accept standard text files for input.
For example, your compiler will not accept files created by certain word processors because they
contain control codes and nonprinting characters.

The exact method you use to compile your program will depend upon what compiler you are using.
Also, how linking is accomplished will vary between compilers and environments; for example, it
may be included as part of the compiler or as a stand-aione application. Consult your compiler's
documentation for details.

C'sMemory Map

A compiled C program creates and uses four logically distinct regions of memory. Thefirst regionis
the memory that actually holds the program's executable code. The next region is memory where
global variables are stored. The remaining two regions are the stack and the heap. The stack is used
for agreat many things while your program executes. It holds the return addresses of function calls,
arguments to functions, and local variables. It will also save the current state of the CPU. The heap
isaregion of free memory that your program can use via C's dynamic memory allocation functions.

Although the exact physical layout of each of the four regions of memory differs among CPU types
and C implementations, the diagram in Figure 1-2 shows conceptually how your C programs appear
in memory.

Page 14

Stack

|
|

Heap

Global variables

Program code

Figure 1-2
Conceptualized memory
map of aC program

Cvs. C++

Before concluding this chapter, afew words about C++ are in order. Newcomers are sometimes
confused about what C++ isand how it differs from C. In short, C++ is an object-oriented
programming language that was built upon the foundation of C. In general terms, C is a subset of
C++, or conversely, C++ isasuperset of C.

In general, you can use a C++ compiler to compile a C program. In fact, today most compilers
handle both C and C++ programs. Thus, most programmers will use a C++ compiler to compile
their C code! However, since C++ was built upon the 1989 C standard, you must restrict your C
code to the features defined by that standard (which are the features described in Part One of this
book).

Thereis one thing that you must be careful about when using a C++ compiler to compileaC
program: the file extension. By convention, C programs use the .C extension. C++ programs

use .CPP. Don't accidentally give your C program a.CPP extension. Differences between the two
languages might prevent avalid C program from being compiled asif it werea C++ program. By
specifying the .C extension, you are telling the C++ compiler to perform a"C compile.”

NOTE

For a complete description of the C++ language, see C++: The Complete

Reference, by Herbert Schildt (Berkeley, CA: Osborne/McGraw-Hill).

Page 15
Review of Terms

The terms that follow will be used frequently throughout the remainder of this reference. You
should be completely familiar with them.

» Source code The text of a program that a user can read, commonly thought of as the program. The
source code is input into the C compiler.

* Object code Tranglation of the source code of a program into machine code, which the computer
can read and execute directly. Object code is the input to the linker.

* Linker A program that links separately compiled modules into one program. It also combines the
functions in the Standard C library with the code that you wrote. The output of the linker isan
executable program.

* Library The file containing the standard functions that your program can use. These functions
include all 1/0 operations as well as other useful routines.

» Compile time The time during which your program is being compiled.

* Run time The time during which your program is executing.

Page 17

Chapter 2—
Expressions

Page 18

This chapter examines the most fundamental element of the C language: the expression. Expressions
in C are substantially more flexible and powerful than in many other computer languages.
Expressions are formed from these atomic elements: data and operators. Data may be represented by
variables, constants, or values returned by functions. C supports several different types of data. It
also provides awide variety of operators.

The Basic Data Types

C89 defines five foundational datatypes: character, integer, floating-point, double floating-point,
and valueless. These are declared using char, int, float, double, and void, respectively. These types
form the basis for several other types. The size and range of these data types may vary among
processor types and compilers. However, in all cases an object of type char is 1 byte. The size of an
int is usually the same as the word length of the execution environment of the program. For most
16-bit environments, such as DOS or Windows 3.1, an int is 16 bits. For most 32-bit environments,
such as Windows 95/98/NT/2000, an int is 32 bits. However, you cannot make assumptions about
the size of an integer if you want your programs to be portable to the widest range of environments.
It isimportant to understand that C stipulates only the minimal range of each datatype, not its size
in bytes.

NOTE

To the five basic data types defined by C89, C99 adds three more: _Bool,
_Complex, and _Imaginary. They are described in Part Two.

The exact format of floating-point values will depend upon how they are implemented. Variables of
type char are generally used to hold values defined by the ASCII character set. Vaues outside that
range may be handled differently by different compilers.

The range of float and doublewill depend upon the method used to represent the floating-point
numbers. Standard C specifies that the minimum range for afloating-point value is 1E-37 to 1E+37.
The minimum number of digits of precision for each floating-point typeis shown in Table 2-1.

Thetypevoid either explicitly declares afunction as returning no value or creates generic pointers.
Both of these uses are discussed in subsequent chapters.

Modifying the Basic Types

Except type void, the basic data types may have various modifiers preceding them. A type modifier
alters the meaning of the base type to more precisely fit a specific need. Thelist of modifiersis
shown here:

Page 19

signed
unsigned
long
short

The int base type can be modified by signed, short, long, and unsigned. The char type can be
modified by unsigned and signed. Y ou may also apply long to double (C99 also allows long to
modify long, thus creating long long. See Part Two for details.) Table 2-1 shows all valid data type
combinations supported by C, along with their minimal ranges and typical bit widths. Remember,
the table shows the minimum range that these types will have, not their typical range. For example,
on computers that use two's complement arithmetic (which is nearly al), an integer will have a
range of at least 32,767 to —32,768.

Typical Sizein
Type Bits Minimal Range
char 8 —127 to 127
unsigned char 8 0to 255
signed char 8 —127 to 127
int 16 or 32 —32,767 to 32,767
unsigned int 16 or 32 0to 65,535
signed int 16 or 32 Same asint
short int 16 —32,767 to 32,767
unsigned short int 16 0to 65,535
signed short int 16 Same as short int
long int 32 —2,147,483,647 to 2,147,483,647
long long int 64 —(263—1) to 263 — 1 (Added by C99)
signed long int 32 Same as long int
unsigned long int 32 010 4,294,967,295
unsigned long long int 64 264 _1 (Added by C99)
float 32 1E-37 to 1E+37 with six digits of precision
double 64 1E-37 to 1E+37 with ten digits of precision
long double 80 1E-37 to 1E+37 with ten digits of precision

Table2-1. All Data Types Defined by the C Standard

Page 20

The use of signed on integersisalowed, but it is redundant because the default integer declaration
assumes a signed number. The most important use of signed isto modify char in implementations
in which char isunsigned by default.

Signed and unsigned integers differ in the way that the high-order bit of the integer isinterpreted. If
you specify a signed integer, the compiler generates code that assumes the high-order bit of an
integer isto be used asasign flag. If the sign flag is 0, the number is positive; if it is 1, the number
IS negative.

In general, negative numbers are represented using the two's complement approach, which reverses
al bitsin the number (except the sign flag), adds 1 to this number, and sets the sign flag to 1.

Signed integers are important for agreat many algorithms, but they only have half the absolute
magnitude of their unsigned relatives. For example, hereis 32,767 in binary:

- 01111111 11111111

If the high-order bit were set to 1, the number would be interpreted as—1. However, if you declare
thisto be an unsigned int, the number becomes 65,535 when the high-order bit is set to 1.

When atype modifier is used by itself (that is, when it does not precede a basic type), then int is
assumed. Thus, the following sets of type specifiers are equivalent:

Specifier Same As
signed signed int
unsigned unsigned int
long long int
short short int

Although theint isimplied, it is common practice today to specify the int anyway.

Identifier Names

In C, the names of variables, functions, |abels, and various other user-defined items are called
identifiers. The length of these identifiers can vary from one to several characters. The first character
must be aletter or an underscore, and subsequent characters must be either letters, digits, or
underscores. Here are some correct and incorrect identifier names:

Correct Incorrect
count 1count
test23 hilthere

high_balance high . . . balance

Page 21

In C, identifiers may be of any length. However, not all characters will necessarily be significant. C
defines two kinds of identifiers: external and internal. An external identifier will be involved in an
external link process. These identifiers, called external names, include function names and global
variable names that are shared between sourcefiles. If the identifier is not used in an externa link
process, then it isinternal. Thistype of identifier is called aninternal name and includes the names
of local variables, for example. In C89, at least the first 6 characters of an external identifier and at
least the first 31 characters of an internal identifier will be significant. C99 has increased these
values. In C99, an external identifier has at least 31 significant characters, and an internal identifier
has at |east 63 significant characters. As apoint of interest, in C++, at least the first 1,024 characters
of an identifier are significant. These differences may be important if you are converting a program
from C89 to C99, or from C to C++.

In an identifier, upper- and lowercase are treated as distinct. Hence, count , Count, and COUNT are
three separate identifiers.

An identifier cannot be the same as a C keyword and should not have the same name as functions
that arein the C library.

Variables

Asyou probably know, avariable is anamed location in memory that is used to hold a value that
can be modified by the program. All variables must be declared before they can be used. The
general form of adeclaration is

" typevariable list;

Here, type must be avalid data type plus any modifiers, and variable list may consist of one or
more identifier names separated by commas. Here are some declarations:

int i, j, I;

short int si;

unsi gned int ui;

doubl e bal ance, profit, |oss;

Remember, in C the name of a variable has nothing to do with itstype.
Where Variables Are Declared

Variables can be declared in three places: inside functions, in the definition of function parameters,
and outside of al functions. These positions correspond to local variables, formal parameters, and
global variables, respectively.

Page 22
Local Variables

Variables that are declared inside afunction are called local variables. In some C literature, these
variables are referred to as automatic variables. This book uses the more common term local
variable. Local variables can be used only by statements that are inside the block in which the
variables are declared. In other words, local variables are not known outside their own code block.
Remember, a block of code begins with an opening curly brace and terminates with a closing curly
brace.

Local variables exist only while the block of code in which they are declared is executing. That is, a
local variable is created upon entry into its block and destroyed upon exit. Furthermore, avariable
declared within one code block has no bearing on or relationship to another variable with the same
name declared within a different code block.

The most common code block in which local variables are declared is the function. For example,
consider the following two functions:

voi d funcl(void)

{

int Xx;

X = 10;
}

voi d func2(void)

{

int Xx;

X = -199;

}

The integer variable x is declared twice, once in funcl() and oncein func2(). Thex in funcl() has
no bearing on or relationship to the x in func2(). As explained, thisis because each x is known only
to the code within the block in which it is declared.

The C language contains the keyword auto, which you can use to declare local variables. However,
since al nonglobal variables are, by default, assumed to be auto, this keyword is virtually never
used. Hence, the examplesin this book will not useit.

For reasons of convenience and tradition, most programmers declare all the variables used by a
function immediately after the function's opening curly brace and before any other statements.
However, you may declare local variables within any code block. The block defined by afunctionis
simply a special case. For example:

void f(void)

b
Int t;

scanf ("%%c", &t);

if(t==1) {
char s[80]; /* this is created only upon
entry into this block */
printf(''Enter nane:");
gets(s);
/* do sonmething . . . */

}

/* s not known here */

Here, thelocal variable s is created upon entry into the if code block and destroyed upon exit.

Page 23

Furthermore, sis known only within theif block and cannot be referenced el sewhere—even in other

parts of the function that containsit.

Declaring variables within the block of code that uses them helps prevent unwanted side effects.
Since the variable does not exist outside the block in which it is declared, it cannot be accidentally

atered by other code.

When a variable declared within an inner block has the same name as a variable declared by an
enclosing block, the variable in the inner block hides the variable in the outer block. Consider the

following:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
int Xx;

X = 10;

if(x == 10) {
int x; /* this x hides the outer x */

X = 99;
printf("lnner x: %\n", x);

}

Page 24

printf("Quter x: %\ n", Xx);

return O;

}

The program displays this output:

I nner x: 99
Quter x: 10

In this example, the x that is declared within the if block hides the outer x. Thus, the inner x and the
outer X are two separate and distinct objects. Once that block ends, the outer x once again becomes
visible.

In C89, you must declare all local variables at the start of ablock, prior to any "action” statements.
For example, the following function isin error if compiled by a C89-compatible compiler.

/* This function is in error if conpiled as
a C89 program
*/
void f(void)
{
int i;
i = 10;
int j; /* this line will cause an error */
j = 20;
}

However, in C99 (and in C++), thisfunction is perfectly valid because you can declare local
variables at any point within ablock, prior to their first use.

Because local variables are created and destroyed with each entry and exit from the block in which
they are declared, their content islost once the block isleft. Thisis especialy important to
remember when calling a function. When afunction is called, itslocal variables are created, and
upon its return they are destroyed. This means that local variables cannot retain their values between
calls. (However, you can direct the compiler to retain their values by using the static modifier.)

Unless otherwise specified, local variables are stored on the stack. The fact that the stack isa
dynamic and changing region of memory explains why local variables cannot, in general, hold their
values between function calls.

Page 25

You can initialize alocal variable to some known value. This value will be assigned to the variable
each time the block of code in which it is declared is entered. For example, the following program

prints the number 10 ten times:

#i ncl ude <stdi o. h>
void f(void);

i nt mai n(voi d)

{
int i;

for(i=0; i<10; i++) f();

return O,
}
void f(void)
{
int j = 10;
printf("% ", j);
j++; /* this line has no lasting effect */
}

Formal Parameter<

If afunction isto use arguments, it must declare variables that will accept the values of the
arguments. These variables are called the formal parameters of the function. They behave like any
other local variables inside the function. As shown in the following program fragment, their
declarations occur after the function name and inside parentheses.

/* Return 1 if c is part of string s; O otherw se */

int is_in(char *s, char c)
whi | e(*s)
if(*s==c) return 1;
el se s++;

return O;

}

Page 26

The functionis_in() hastwo parameters. sand c. Thisfunction returns 1 if the character specifiedin
c iscontained within the string s, O if it is not.

Even though the formal parameters receive the value of the arguments passed to the function, they
otherwise act like "normal” local variables. For example, you can make assignments to a parameter
or use onein any allowable expression. Keep in mind that, as local variables, they are al'so dynamic
and are destroyed upon exit from the function.

Global Variables

Unlike local variables, global variables are known throughout the program and may be used by any
piece of code. Also, they will hold their value throughout the program'’s execution. Y ou create global
variables by declaring them outside of any function. Any expression may access them, regardless of
what block of code that expressionisin.

In the following program, the variable count has been declared outside of all functions. Although its
declaration occurs before the main() function, you could have placed it anywhere before its first use
aslong asit was not in afunction. However, it is usually best to declare global variables at the top of
the program.

#i ncl ude <stdio. h>
int count; /* count is global */

voi d funcl(void);
voi d func2(void);

i nt mai n(voi d)

{
count = 100;
funcl();

return O;

}

voi d funcl(void)

{
int tenp;

tenp = count;
func2();
printf("count is %
d', count); /* will print 100 */

voi d func2(void)

Page 27

{

i nt count;
for(count=l; count<10; count ++)
putchar('.");

Look closely at this program. Notice that although neither main(') nor funcl() has declared the
variable count, both may useit. func2(), however, has declared alocal variable called count . When
func2() refersto count, it refersto only itslocal variable, not the global one. If aglobal variable
and alocal variable have the same name, al references to that variable name inside the code block
in which the local variable is declared will refer to that local variable and have no effect on the
global variable.

Storage for global variablesisin afixed region of memory set aside for this purpose by the
compiler. Global variables are helpful when many functionsin your program use the same data. You
should avoid using unnecessary global variables, however. They take up memory the entire time
your program is executing, not just when they are needed. In addition, using a global where alocal
variable will do makes a function less general because it relies on something that must be defined
outside itself. Finally, using a large number of global variables can lead to program errors because
of unknown and unwanted side effects. A major problem in developing large programsisthe
accidental changing of a variable's value because it was used el sewhere in the program. This can
happen in C if you use too many global variablesin your programs.

The Four C Scopes

In the preceding discussion (and throughout the remainder of this book) the terms local and global
are used to describe in a general way the difference between identifiers that are declared within a
block and those declared outside all blocks. However, these two broad categories are more finely
subdivided by C. Standard C defines four scopes that determine the visibility of an identifier. They
are summarized here:

Scope Meaning

File scope Starts at the beginning of thefile (also called atrandation
unit) and ends with the end of thefile. It refers only to those
identifiers that are declared outside of all functions. File scope
identifiers are visible throughout the entire file. Variables that
have file scope are global.

Page 28

Scope M eaning

Block scope Begins with the opening { of ablock and ends with its
associated closing }. However, block scope also extends to
function parametersin afunction definition. That is, function
parameters are included in a function's block scope. Variables
with block scope are local to their block.

Function prototype Identifiers declared in afunction prototype; visible within the
scope prototype.

Function scope Begins with the opening { of afunction and ends with its
closing }. Function scope applies only to labels. A label is
used as the target of agoto statement, and that label must be
within the same function as the goto.

For the most part, this book will continue to use the more general categories of local and global.
However, when amore finely grained distinction is required, one or more of the preceding scopes
will be explicitly used.

Type Qualifiers

C defines type qualifiers that control how variables may be accessed or modified. C89 defines two
of these qualifiers: const and volatile. (C99 adds athird, called restrict, which is described in Part
Two.) The type qualifiers must precede the type names that they qualify.

const

Variables of type const may not be changed by your program. (A const variable can be given an
initial value, however.) The compiler isfree to place variables of this type into read-only memory
(ROM). For example,

const int a=10;

creates an integer variable called a with an initial value of 10 that your program may not modify.
However, you can use the variable a in other types of expressions. A const variable will recelve its
value either from an explicit initialization or by some hardware-dependent means.

The const qualifier can be used to prevent the object pointed to by an argument to a function from
being modified by that function. That is, when a pointer is passed to a function, that function can
modify the actual object pointed to by the pointer. However, if the pointer is specified as const in
the parameter declaration, the function code won't be able to modify what it pointsto. For example,
the sp_to _dash() function in the

Page 29

following program prints a dash for each space in its string argument. That is, the string "thisisa
test" will be printed as "this-is-a-test". The use of const in the parameter declaration ensures that the
code inside the function cannot modify the object pointed to by the parameter.

#i ncl ude <stdio. h>

void sp_to_dash(const char *str);
i nt mai n(voi d)

{

sp_to_dash("this is a test");

return O;

}
voi d sp_to_dash(const char *str)

while(*str) {

if(*str==" ") printf("%", '-');
else printf("%", *str);
str++;

}
}

If you had written sp_to_dash() in such away that the string would be modified, it would not
compile. For example, if you had coded sp_to _dash() asfollows, you would receive a compile
time error:

[* This is wong. */
voi d sp_to_dash(const char *str)

while(*str) {

if(*str==" ") *str ='-'; [/* can't do this; str is const */
printf("%", *str);
str++;

}

}

Many functionsin the standard library use const in their parameter declarations. For example, the
strlen()) function has this prototype:

~ dize t strlen(const char *str);

Page 30

Specifying str as const ensures that strlen() will not modify the string pointed to by str. In general,
when a standard library function has no need to modify an object pointed to by a calling argument, it
is declared as const.

Y ou can aso use congt to verify that your program does not modify avariable. Remember, a
variable of type const can be modified by something outside your program. For example, a
hardware device may set its value. However, by declaring avariable as const, you can prove that
any changes to that variable occur because of external events.

volatile

The modifier volatile tells the compiler that a variable's value may be changed in ways not explicitly
specified by the program. For example, a global variable's address may be passed to the operating
system'’s clock routine and used to hold the system time. In this situation, the contents of the variable
are altered without any explicit assignment statements in the program. Thisis important because
most C compilers automatically optimize certain expressions by assuming that a variable's content is
unchanging if it does not occur on the |eft side of an assignment statement; thus, it might not be
reexamined each time it is referenced. Also, some compilers change the order of evaluation of an
expression during the compilation process. The volatile modifier prevents these changes.

Y ou can use const and volatile together. For example, if 0x30 is assumed to be the value of a port
that is changed by external conditions only, the following declaration would prevent any possibility
of accidental side effects:

const volatile char *port = (const volatile char *) 0x30;

Storage Class Specifiers

C supports four storage class specifiers.
extern

static

register

auto

These specifiers tell the compiler how to store the subsequent variable. The general form of a
variable declaration that uses one is shown here:

~ storage specifier type var_name;

Notice that the storage specifier precedes the rest of the variable declaration.

NOTE

Both C89 and C99 state that typedef is a storage class specifier for the purposes of
syntactic convenience, but it is not a storage class specifier in the common meaning
of the term. typedef is examined later in this book.

Page 31

extern

Before examining extern, abrief description of C linkageisin order. C defines three categories of
linkage: external, internal, and none. In general, functions and global variables have external
linkage. This meansthey are available to all files that constitute a program. File scope objects
declared as static (described in the next section) have internal linkage. These are known only within
the file in which they are declared. Local variables have no linkage and are therefore known only
within their own block.

The principal use of extern isto specify that an object is declared with external linkage elsewhere in
the program. To understand why thisisimportant, it is necessary to understand the difference
between a declaration and a definition. A declaration declares the name and type of an object. A
definition causes storage to be allocated for the object. The same object may have many
declarations, but there can be only one definition.

In most cases, variable declarations are also definitions. However, by preceding a variable name
with the extern specifier, you can declare a variable without defining it. Thus, when you need to
refer to avariable that is defined in another part of your program, you can declare that variable using
extern.

Hereis an example that uses extern. Notice that the global variables first and last are declared after
main().

#i ncl ude <stdi o. h>
i nt mai n(voi d)

{

extern int first, last; /* use global vars */
printf("% %", first, last);

return O;

}

/* global definition of first and |last */
int first = 10, |last = 20;

This program outputs 10 20 because the global variables first and last used by the printf()
statement are initialized to these values. Because the exter n declaration tells the compiler that fir st
and last are declared elsewhere (in this case, later in the samefile), the program can be compiled
without error even though first and last are used prior to their definition.

It isimportant to understand that the exter n variable declarations as shown in the preceding program
are necessary only because first and last had not yet been declared prior to their usein main(). Had
their declarations occurred prior to main(), there

Page 32

would have been no need for the extern statement. Remember, if the compiler finds a variable that
has not been declared within the current block, the compiler checks whether it matches any of the
variables declared within enclosing blocks. If it does not, the compiler then checks the global
variables. If amatch isfound, the compiler assumes that is the variable being referenced. The extern
specifier is needed when you want to use avariable that is declared later in thefile.

As mentioned, extern allows you to declare a variable without defining it. However, if you give that
variable an initialization, the extern declaration becomes a definition. Thisisimportant because, as
stated earlier, an object can have multiple declarations, but only one definition.

An important use of extern relates to multiple-file programs. C allows a program to be spread across
two or more files, compiled separately, and then linked together. When thisis the case, there must
be some way of telling al the files about the global variables required by the program. The best (and
most portable) way to do thisisto declare all of your global variablesin one file and use extern
declarations in the other, asin Figure 2-1.

In File 2, the global variable list was copied from File 1, and the extern specifier was added to the
declarations. The extern specifier tells the compiler that the variable types and names that follow it
have been defined elsewhere. In other words, exter n lets the compiler know what the types and
names are for these global variables without

FileOne File Two
int x, vy; extern int x, vy;
char ch; extern char ch;
int main(void) void func22(void)
{ {

[* . . . % x =y [/ 10;
} }
voi d funcl(void) voi d func23(void)
{ {

X = 123; y = 10;
} }

Figure 2-1
Using global variables in separately compiled modules

Page 33

actually creating storage for them again. When the linker links the two modules, all referencesto the
external variables are resolved.

One last point: In real-world, multiple-file programs, extern declarations are normally contained in
a header file that is ssmply included with each source codefile. Thisis both easier and less error
prone than manually duplicating extern declarations in each file.

NOTE

extern can also be applied to a function declaration, but doing so is redundant.
static Variables

Variables declared as static are permanent variables within their own function or file. Unlike global
variables, they are not known outside their function or file, but they maintain their values between
calls. This feature makes them useful when you write generalized functions and function libraries
that other programmers may use. The static modifier has different effects upon local variables and
global variables.

static Local Variables

When you apply the static modifier to alocal variable, the compiler creates permanent storage for it,
much asit creates storage for aglobal variable. The key difference between a staticlocal variable
and aglobal variable isthat the staticlocal variable remains known only to the block in whichiitis
declared. In simple terms, a static local variableisalocal variable that retains its value between
function calls.

static local variables are very important to the creation of stand-alone functions because several
types of routines must preserve avalue between calls. If static variables were not allowed, globals
would have to be used, opening the door to possible side effects. An example of afunction that
benefits from a staticlocal variable is a number -series generator that produces a new value based on
the previous one. Y ou could use aglobal variable to hold this value. However, each time the
function is used in a program, you would have to declare that global variable and make sure it did
not conflict with any other global variables aready in place. The better solution is to declare the
variable that holds the generated number to be static, as shown here:

int series(void)

{

static int series_num

series_num = series_num23;
return series_num

}

In this example, the variable series_ num stays in existence between function calls, instead of
coming and going the way anormal local variable would. This means that

Page 34

each call to series() can produce a new member of the series based on the preceding number
without declaring that variable globally.

You can give astatic local variable an initialization value. This value is assigned only once, at
program start-up—not each time the block of code is entered, as with normal local variables. For
example, thisversion of serieg() initializes series num to 100:

int series(void)

{

static int series_num = 100;

series_num = series_numt23;
return series_num

}

As the function now stands, the series will always begin with the value 123. While thisis acceptable
for some applications, most series generators need to let the user specify the starting point. One way
to give series_ num auser-specified value isto make series hum aglobal variable and then let the
user set its value. However, not defining series_ num as global was the point of making it static.
Thisleads to the second use of static.

static Global Variables

Applying the specifier static to aglobal variable instructs the compiler to create a global variable
known only to the filein which it is declared. Thus, a static global variable has internal linkage (as
described under the exter n statement). This means that even though the variable is global, routines
in other files have no knowledge of it and cannot aiter its contents directly, keeping it free from side
effects. For the few situations where a local static cannot do the job, you can create a small file that
contains only the functions that need the giobal static variable, separately compile that file, and use
it without fear of side effects.

Toillustrate aglobal static, the series generator example from the previous section is recoded so
that a seed value initializes the series through a call to a second function called series start(). The
entire file containing serieg(), series start(), and series num is shown here:

/[* This nust all be in one file - preferably by itself. */

static int series_num
void series_start(int seed);
int series(void);

int series(void)

{

Page 35

series_num = series_num23;
return series_num

}

/* initialize series_num*/
void series_start(int seed)

{
}

series_num = seed;

Calling series_start() with some known integer value initializes the series generator. After that,
calsto series() generate the next element in the series.

Toreview: The names of local static variables are known only to the block of code in which they are
declared; the names of global static variables are known only to the file in which they reside. If you
place the series() and series_start() functionsin alibrary, you can use the functions but cannot
reference the variable series_num, which is hidden from the rest of the code in your program. In
fact, you can even declare and use another variable called series_num in your program (in another
file, of course). In essence, the static modifier permits variables that are known only to the functions
that need them, without unwanted side effects.

By using static variables, you can hide portions of your program from other portions. This can be a
tremendous advantage when you are trying to manage a very large and complex program.

register Variables

The register storage specifier originally applied only to variables of type int, char, or pointer types.
However, in Standard C, register's definition has been broadened so that it can be applied to any
type of variable.

Originally, theregister specifier requested that the compiler keep the value of avariablein a
register of the CPU rather than in memory, where normal variables are stored. This meant that
operationson aregister variable could occur much faster than on anormal variable because the
register variable was actually held in the CPU and did not require a memory access to determine or
modify its value.

Today, the definition of register has been greatly expanded, and it now may be applied to any type
of variable. Both C89 and C99 simply state that "access to the object be as fast as possible.” In
practice, characters and integers are still stored in registersin the CPU. Larger objects, such as
arrays, obviously cannot be stored in aregister, but they may still receive preferential treatment by
the compiler. Depending upon the implementation of the C compiler and its operating environment,
register variables may be handled in any way deemed fit by the compiler'simplementor. In fact, it is
technically permissible

Page 36

for acompiler to ignore the register specifier altogether and treat variables modified by it asif they
were "normal” variables, but thisis seldom done in practice.

Y ou can only apply theregister specifier to local variables and to the formal parametersin a
function. Global register variables are not allowed. Here is an example that usesregister variables.
This function computes the result of Mefor integers.

int int pw(register int m register int e)
{
register int tenp;

temp = 1;

for(; e; e--) tenp = tenmp * m
return tenp;

}

In thisexample, e, m, and temp are declared asregister variables because they are all used within
theloop. The fact that register variables are optimized for speed makes them ideal for control of or
usein loops. Generally, register variables are used where they will do the most good, which is often
in places where many references will be made to the same variable. Thisisimportant because you
can declare any number of variables as being of type register, but not all will recelve the same
access speed optimization.

The number of register variables optimized for speed allowed within any one code block is
determined by both the environment and the specific implementation of C. Y ou don't have to worry
about declaring too many register variables because the compiler automatically transformsregister
variables into nonregister variables when the limit is reached. (This ensures portability of code
across a broad line of processors.)

Usually at least two register variables of type char or int can actually be held in the registers of the
CPU. Because environments vary widely, consult your compiler's user manual to determine whether
you can apply any other types of optimization options.

In C, you cannot obtain the address of a register variable by using the & operator (discussed later in
this chapter). This makes sense because aregister variable may be stored in aregister of the CPU,
which is not usually addressable.

Although the description of register has been broadened beyond its traditional meaning, in practice
it still generally has a significant effect only with integer and character types. Thus, you should
probably not count on substantial speed improvements for other variable types.

Variable I nitializations

Y ou can give variables a value as you declare them by placing an equal sign and a constant after the
variable name. The general form of initialization is

" typevariable name = constant;

Page 37

Some examples are

char ch = "a';
int first = 0;
doubl e bal ance = 123. 23;

Global and staticlocal variables are initialized only at the start of the program. Local variables
(excluding static local variables) areinitialized each time the block in which they are declared is
entered. Local variables that are not initialized have unknown values before the first assignment is
made to them. Uninitialized global and static local variables are automatically set to zero.

Constants

Constants refer to fixed values that the program may not alter. Constants can be of any of the basic
data types. The way each constant is represented depends upon its type. Constants are also called
literals.

Character constants are enclosed between single quotes. For example, 'a and '%' are both character
constants. C defines both multibyte characters, which consist of one or more bytes, and wide
characters (which are usually 16 bits long). Multibyte and wide characters are used primarily to
represent languages that have large character sets. To specify a multibyte character, enclose the
characters within single quotes, for example, 'xy'. To specify awide character constant, precede the
character with an L. For example:

wchar _t wc;
we = L"A';

Here, wc is assigned the wide-character constant equivalent of A. The type of wide charactersis
wchar _t, which isdefined in the <stddef.h> header file, and is not a built-in type.

Integer constants are specified as numbers without fractional components. For example, 10 and —100
are integer constants. Floating-point constants require the decimal point followed by the number's
fractional component. For example, 11.123 is a floating-point constant. C also allows you to use
scientific notation for floating-point numbers.

By default, the compiler fits a numeric constant into the smallest compatible data type that will hold
it. Therefore, assuming 16-bit integers, 10 isint by default, but 103,000 isalong int. Even though
the value 10 could fit into a character type, the compiler will not cross type boundaries. The only
exception to the smallest type rule is floating-point constants, which are assumed to be doubles.

For most programs you will write, the compiler defaults are adequate. However, you can specify
precisely the type of numeric constant you want by using a suffix. For

Page 38

floating-point types, if you follow the number with an F, the number istreated as afloat. If you
follow it with an L, the number becomes a long double. For integer types, the U suffix stands for
unsigned and the L for long. The type suffixes are not case dependent, and you can use lowercase,
if you like. For example, both F and f specify afloat constant. Here are some examples:

Data Type Constant Examples
int 1123 21000 -234

long int 35000L -34L

unsigned int 10000U 987u 40000U
float 123.23F 4.34e-3f
double 123.23 1.0 -0.9876324
long double 1001.2L

C99 aso allows you to specify along long integer constant by specifying the suffix LL (or 11).
Hexadecimal and Octal Constants

It is sometimes easier to use a number system based on 8 or 16 rather than 10. The number system
based on 8 is called octal and uses the digits O through 7. In octal, the number 10 isthe sameas8in
decimal. The base 16 number system is called hexadecimal and uses the digits O through 9 plus the
letters A through F, which stand for 10, 11, 12, 13, 14, and 15, respectively. For example, the
hexadecimal number 10 is 16 in decimal. Because these two number systems are used frequently, C
allows you to specify integer constants in hexadecimal or octal instead of decimal. A hexadecimal
constant must consist of a Ox followed by the constant in hexadecimal form. An octal constant
begins with a 0. Here are some examples.

0x80; /[* 128 in deciml */
012; /* 10 in deciml */

i nt hex
i nt oct

String Constants

C supports another type of constant: the string. A string isaset of characters enclosed in double
quotes. For example, "thisisatest" isastring. Y ou have seen examples of strings in some of the
printf() statementsin the sample programs. Although C alows you to define string constants, it
does not formally have a string data type.

Y ou must not confuse strings with characters. A single character constant is enclosed in single
quotes, asin 'a. However, "a" isastring containing only one letter.

Page 39
Backdash Character Constants

Enclosing character constants in single quotes works for most printing characters. A few, however,
such as the carriage return, can't be. For this reason, C includes the special backslash character
constants, shown in Table 2-2, so that you may easily enter these special characters as constants.
These are also referred to as escape sequences. Y ou should use the backslash codes instead of their
ASCII equivalents to help ensure portability.

For example, the following program outputs a new line and atab and then prints the string Thisisa
test.

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{ printf(""\n\tThis is a test.");
return O;
}
Code M eaning
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\" Double quote
\' Single quote
\\ Backslash
\v Vertical tab
\a Alert
\? Question mark
\N Octal constant (where N is an octal constant)
\XN Hexadecimal constant (where N is ahexadecimal constant)

Table 2-2. Backslash Codes

Page 40

Operators

Cisvery richin built-in operators. In fact, it places more significance on operators than do most
other computer languages. There are four main classes of operators: arithmetic, relational , logical,
and bitwise. In addition, there are some specia operators, such as the assignment operator, for
particular tasks.

The Assignment Operator

Y ou can use the assignment operator within any valid expression. Thisis not the case with most
computer languages (including Pascal, BASIC, and FORTRAN), which treat the assignment
operator as a special case statement. The general form of the assignment operator is

variable _name = expression;

where an expression may be as ssmple as a single constant or as complex as you require. C uses a
single equal sign to indicate assignment (unlike Pascal or Modula-2, which use the := construct).
The target, or left part, of the assignment must be an object, such as avariable, that can receive a
value.

Frequently in literature on C and in compiler error messages you will see these two terms: lvalue
and rvalue. Simply put, an Ivalue is an object. If that object can occur on the left side of an
assignment statement, it is called a modifiable Ivalue. Thus, for all practical purposes, a modifiable
lvalue means "variable." The term rvalue refers to expressions on the right side of an assignment and
simply means the value of an expression.

Type Conversion in Assignments

When variables of one type are mixed with variables of another type, a type conversion will occur.
In an assignment statement, the type conversion ruleis easy: The value of the right side (expression
side) of the assignment is converted to the type of the |eft side (target variable), asillustrated here:

int Xx;
char ch;
float f;

voi d func(void)

ch = x; /* line 1 */

x = f; /[* line 2 */

f = ch /* line 3 */

f = x; /[* line 4 */
}

Page 41

Inline 1, the left high-order bits of the integer variable x are lopped off, leaving ch with the lower 8
bits. If x were between 255 and 0, ch and x would have identical values. Otherwise, the value of ch
would reflect only the lower-order bits of x. In line 2, x will receive the nonfractiona part of f. In
line 3, f will convert the 8-bit integer value stored in ch to the same value in the floating-point
format. This also happensin line 4, except that f will convert an integer value into floating-point
format.

When converting from integers to characters and long integers to integers, the appropriate amount of
high-order bitswill be removed. In many 16-bit environments, this means that 8 bits will be lost
when going from an integer to a character, and 16 bits will be lost when going from along integer to
an integer. For 32-bit environments, 24 bits will be lost when converting from an integer to a
character, and 16 bits will be lost when converting from an integer to a short integer.

Table 2-3 summarizes several common assignment type conversions. Remember that the conversion
of anint to afloat, or afloat to a double and so on, does not add any precision or accuracy. These
kinds of conversions only change the form in which

Target Type Expression Type Possible Info Loss

signed char char If value> 127, target is
negative

char short int High-order 8 bits

char int (16 bits) High-order 8 bits

char int (32 bits) High-order 24 hits

char long int High-order 24 hits

short int int (16 bits) None

short int int (32 bits) High-order 16 bits

int (16 bits) long int High-order 16 bits

int (32 bits) long int None

long int (32 bits) long long int (64 bits) High-order 32 hits (appliesto
C99 only)

int float Fractional part and possibly
more

float double Precision, result rounded

double long double Precision, result rounded

Table2-3. Outcome of Common Type Conversions

Page 42

the value is represented. In addition, some compilers alwaystreat a char variable as positive, no
matter what value it has, when converting it to an int or float . Other compilerstreat char variable
values greater than 127 as negative numbers when converting. Generally speaking, you should use
char variables for characters and use ints, short ints, or signed char s when needed to avoid
possible portability problems.

To use Table 2-3 to make a conversion not shown, simply convert one type at atime until you
finish. For example, to convert from double to int, first convert from doubleto float and then from
float to int.

Multiple Assignments

Y ou can assign many variables the same value by using multiple assignments in a single statement.
For example, this program fragment assigns x, y, and z the value O:

X:y:z:O;

In professional programs, variables are frequently assigned common values using this method.

Compound Assignments

Thereis avariation on the assignment statement, called compound assignment, that simplifies the
coding of a certain type of assignment operations. For example,

X = X+10;

can be written as

X += 10;

The operator += tells the compiler to assign to x the value of x plus 10.

Compound assignment operators exist for al the binary operators (those that require two operands).
In general, statements like

var = var operator expression
can be rewritten as

var operator = expression

Page 43

For another example,

X = X-100;
isthe same as
X -= 100;

Because compound assignment is more compact than the corresponding = equivalent, compound
assignment is also sometimes referred to as shorthand assignment. Compound assignment is widely
used in professionally written C programs; you should be familiar with it.

Arithmetic Operators

Table 2-4 lists C's arithmetic operators. The operators +, —, *, and / work as they do in most other
computer languages. Y ou can apply them to amost any built-in data type. When you apply / to an
integer or character, any remainder will be truncated. For example, 5/2 will equal 2 in integer
division.

The modulus operator % also worksin C asit does in other languages, yielding the remainder of an
integer division. However, you cannot use it on floating-point types. The following code fragment
illustrates %:

int x, vy;

X
y

5;
2,

printf("% ", x/y); [/* will display 2 */
printf(""% ", x%); /* will display 1, the remainder of
the integer division */

X
y

printf("vd %", x/y, x%); /* will display 0 1 */

1;
2,

Thelast line printsa 0 and a 1 because 1/2 in integer division is 0 with aremainder of 1.

Operator

+
*
/
%

++

Action

Subtraction, also unary minus
Addition

Multiplication

Division

Modulus

Decrement

Increment

Table2-4. Arithmetic Operators

The unary minus multiplies its operand by —1. That is, any number preceded by aminus sign
switchesits sign.

The Increment and Decrement Operators

Page 44

C includes two useful operators that simplify two common operations. These are the increment and
decrement operators, ++ and ——. The operator ++ adds 1 to its operand, and —— subtracts 1. In other

words:

X = X+1;

isthe same as

++X;

and

isthe same as

Page 45

Both the increment and decrement operators may either precede (prefix) or follow (postfix) the
operand. For example,

X = X+1;

can be written

++X;

or

X++:

Thereis, however, a difference between the prefix and postfix forms when you use these operators
in alarger expression. When an increment or decrement operator precedes its operand, the
increment or decrement operation is performed before obtaining the value of the operand for use in
the expression. If the operator follows its operand, the value of the operand is obtained before
incrementing or decrementing it. For instance,

X
y

10;
++X;

setsy to 11. However, if you write the code as

X
y

10;
X++:

y is set to 10. Either way, x is set to 11; the differenceisin when it
happens.

Most C compilers produce very fast, efficient object code for increment and decrement operations—
code that is better than that generated by using the equivalent assignment statement. For this reason,
you should use the increment and decrement operators when you can.

Here is the precedence of the arithmetic operators:
Highest ++ - —

— (unary minus)

* | %

L owest +—

Page 46

Operators on the same level of precedence are evaluated by the compiler from left to right. Of
course, you can use parentheses to alter the order of evaluation. C treats parentheses in the same way
asvirtually al other computer languages. Parentheses force an operation, or set of operations, to
have a higher level of precedence.

Relational and Logical Operators

In the term relational operator, relational refers to the relationships that values can have with one
another. In the term logical operator, logical refers to the ways these relationships can be connected.
Because the relational and logical operators often work together, they are discussed together here.

The idea of true and false underlies the concepts of relational and logical operators. In C, true is any
value other than zero. Falseis zero. Expressions that use relational or logical operators return O for
faseand 1 for true.

NOTE

Like C89, C99 defines true as nonzero and false as zero. However, C99 also defines
the _Bool data type, which can hold the values 1 and 0. See Part Two for details.

Table 2-5 shows the relational and logical operators. The truth table for the logical operatorsis
shown hereusing 1'sand O's.

p a P&&q plla 'p
0 0 0 0 1
0 1 0 1 1
1 1 1 1 0
1 0 0 1 0

Both the relational and logical operators are lower in precedence than the arithmetic operators. That
IS, an expression like 10 > 1+12 isevaluated as if it were written 10 > (1+12). Of course, the result is
false.

Y ou can combine several operations into one expression, as shown here:
~ 10>5&& 1(10<9) | | 3<=4
In this case, the result istrue.

Although C does not contain an exclusive OR (XOR) logical operator, you can easily create a
function that performs this task by using the other logical operators. The outcome of an XOR
operation istrueif and only if one operand (but not both) is true. The following program contains
the function xor ('), which returns the outcome of an exclusive OR operation performed on its two
arguments.

#i ncl ude <stdi o. h>

int xor(int a,

int main (void)
{
printf('"' %",
printf("%",
printf("%",
printf("%",

return O;

}

int b);

xor(1, 0));
xor (1, 1));
xor (0, 1));
xor (0, 0));

/* Performa |ogical XOR operation using the

two ar gunent

s. */

int xor(int a, int b)

{ return (a || b)&& !(a && b);

}
Relational Operators

Operator Action

> Greater than

>= Greater than or equal

< Lessthan

<= Less than or equal

== Equal

1= Not equal
Logical Operators

Operator Action

&& AND

I OR

! NOT

Table2-5. Relational

and Logical Operators

Page 47

Page 48
The following table shows the relative precedence of the relational and logical operators:

|
>>=<<=

&&
L owest [

Highest

As with arithmetic expressions, you can use parentheses to alter the natural order of evaluationin a
relational and/or logical expression. For example,

—!10&&0]|0

is false. However, when you add parentheses to the same expression, as shown here, the result is
true.

—!1(0&& 0)|]0

Remember, all relational and logical expressions produce aresult of either 1 or 0. Therefore, the
following program fragment is not only correct, but will print the number 1.

int Xx;

x = 100;
printf('" %", x>10);

Bitwise Operators

Unlike many other languages, C supports afull complement of bitwise operators. Since C was
designed to take the place of assembly language for most programming tasks, it needed to be able to
support many operations that can be done in assembler, including operations on bits. Bitwise
operation refersto testing, setting, or shifting the actual bitsin a byte or word, which correspond to
the standard char and int data types and variants.

Page 49

Y ou cannot use bitwise operations on float , double long double, void, or other more complex
types. Table 2-6 lists the operators that apply to bitwise operations. These operations are applied to
the individual bits of the operands.

The bitwise AND, OR, and NOT (one's complement) are governed by the same truth table as their

logical equivalents, except that they work bit by bit. The exclusive OR has the truth table shown
here:

p q P~
0 0 0
1 0 1
1 1 0
0 1 1

Asthe table indicates, the outcome of an XOR istrue only if exactly one of the operandsistrue;
otherwise, it isfalse.

Bitwise operations most often find application in device drivers—such as modem programs, disk
file routines, and printer routines—because the bitwise operations can be used to mask off certain
bits, such as parity. (The parity bit confirms that the rest of the bitsin the byte are unchanged. It is
often the high-order bit in each byte.)

Operator Action

& AND

| OR

A Exclusive OR (XOR)

~ One's complement (NOT)
>> Shift right

<< Shift left

Table2-6. Bitwise Operators

Page 50

Think of the bitwise AND as away to clear abit. That is, any bit that is 0 in either operand causes
the corresponding bit in the outcome to be set to 0. For example, the following function reads a
character from the modem port and resets the parity bit to O:

char get _char _from noden(voi d)

{

char ch;

ch = read_nmoden(); /* get a character fromthe
nodem port */
return(ch & 127);

}

Parity is often indicated by the eighth bit, which is set to 0 by ANDing it with a byte that has bits 1
through 7 set to 1 and bit 8 set to 0. The expression ch & 127 meansto AND together the bitsin ch
with the bits that make up the number 127. The net result isthat the eighth bit of ch isset to 0. Inthe
following example, assume that ch had received the character A and had the parity bit set:

Parity bit
11000001 ch containing an “A" with parity set
01111111 127 in binary

fiy —————— do bitwise AND
01000001 “A"without parity

The bitwise OR, as the reverse of AND, can be used to set abit. Any bit that isset to 1 in either
operand causes the corresponding bit in the outcome to be set to 1. For example, the following is

128 3:

10000000 128 in binary
poooonl1l 3 in binary

| e bitwise OR
10000011 result

An exclusive OR, usually abbreviated XOR, will set abit on, if and only if the bits being compared
are different. For example, 127 2120 i<

D1111111 127 in binary

01111000 120 in binary
A — bitwise XOR

00000111 result

Page 51

Remember, relational and logical operators always produce aresult that is either true or false,
whereas the similar bitwise operations may produce any arbitrary value in accordance with the
specific operation. In other words, bitwise operations may produce values other than 0 or 1, while
logical operators will always evaluateto O or 1.

The bit-shift operators, >> and <<, move al bitsin avariable to the right or left as specified. The
general form of the shift-right statement i<

~ variable>> number of bit positions
The general form of the shift-left statement i<
"~ variable << number of bit positions

As bits are shifted off one end, zeroes are brought in the other end. (In the case of a signed, negative
integer, aright shift will cause a 1 to be brought in so that the sign bit is preserved.) Remember, a
shift isnot arotate. That is, the bits shifted off one end do not come back around to the other. The
bits shifted off are lost.

Bit-shift operations can be very useful when you are decoding input from an external device, such as
aD/A converter, and reading status information. The bitwise shift operators can also quickly
multiply and divide integers. A shift right effectively divides a number by 2 and a shift left
multipliesit by 2, as shown in Table 2-7. The following program illustrates the shift operators:

/* A bit shift exanmple. */
#i ncl ude <stdio. h>

i nt mai n(voi d)
{
unsi gned int i

int j;

i = 1;

[* left shifts */
for(j=0; j<4; j++) {
i =i << 1; /* left shift i by 1, which
is same as a nultiply by 2 */
printf('"Left shift %: %l\n", j, i);
}

/* right shifts */
for(j=0; j<4; j++) {
i =i > 1; /* right shift i by 1, which

Page 52

is sane as a division by 2 */
printf('" R ght shift %: %\n", j, i);
}

return O;

}

The one's complement operator, ~, reverses the state of each bit initsoperand. That is, al 1's are set
to0,and all O'sare set to 1.

The bitwise operators are often used in cipher routines. If you want to make a disk file appear
unreadable, perform some bitwise manipulations on it. One of the ssmplest methodsisto

complement each byte by using the one's complement to reverse each bit in the byte, asis shown
here:

Original byte go101100
After 1st complement 1101001 1:> Same
After 2nd complement 00101100

Notice that a sequence of two complementsin arow always produces the original number. Hence,
the first complement represents the coded version of that byte. The second complement decodes the
byte to its original value.

X as each statement

unsigned char x; executes value of x
— X=T7 00000111 7
— x = x<<l; 00001110 14
— X = X<<3; 01110000 112
— X = X<<2; 11000000 192
— X = x>>l; 01100000 9%
— X = X>>2; 00011000 24

Each |eft shift multiplies by 2. Notice that information has been lost after x<<2 because a bit was
shifted off the end.

Each right shift divides by 2. Notice that subsequent divisions do not bring back any lost hits.
Table2-7. Multiplication and Division with Shift Operators

Page 53

Y ou could use the encode() function shown here to encode a character.

/* A sinple cipher function. */
char encode(char ch)

{
}

return(~ch); /* conplenent it */

Of course, afile encoded using encode() would be very easy to crack!
The ? Operator

C contains a powerful and convenient operator that replaces certain statements of the if-then-else
form. The ternary operator ? takes the general form

T BExpl ? Exp2: Exp3;

where Expl, Exp2, and Exp3 are expressions. Notice the use and placement of the
colon.

The ? operator works like this: Expl is evaluated. If it istrue, Exp2 is evaluated and becomes the
value of the expression. If Expl isfalse, Exp3 isevauated, and its value becomes the value of the
expression. For example, in

X = 10;

y x>9 ? 100 : 200;

y isassigned the value 100. If x had been lessthan 9, y would have received the value 200. The
same code written using the if-else statement is

X = 10;

if(x>9) y = 100;
el se y = 200;

The ? operator will be discussed more fully in Chapter 3 in relationship to the other conditional
statements.

The & and * Pointer Operators

A pointer isthe memory address of an object. A pointer variable isavariable that is specifically
declared to hold a pointer to an object of its specified type. Pointers are one of C's most powerful
features, and they are used for awide variety of purposes. For example, they can provide afast
means of referencing array elements. They allow

Page 54

functions to modify their calling parameters. They support linked lists, binary trees, and other
dynamic data structures. Chapter 5 is devoted exclusively to pointers. This chapter briefly coversthe
two operators that are used to manipulate pointers.

The first pointer operator is & , aunary operator that returns the memory address of its operand.
(Remember, a unary operator requires only one operand.) For example,

m = &count;

places into m the memory address of the variable count. This address is the computer's internal
location of the variable. It has nothing to do with the value of count . Y ou can think of & as meaning
"the address of ." Therefore, the preceding assignment statement means "m receives the address of
count."

To better understand this assignment, assume that the variable count is at memory location 2000.
Also assume that count has avalue of 100. Then, after the previous assignment, m will have the
value 2000.

The second pointer operator is*, which isthe complement of & . The * isaunary operator that
returns the value of the object located at the address that follows it. For example, if m contains the
memory address of the variable count,

q = *m

places the value of count into g. Now g has the value 100 because 100 is stored at location 2000,
the memory address that was stored in m. Think of * as meaning "at address.” In this case, you
could read the statement as "q receives the value at addressm."

Unfortunately, the multiplication symbol and the "at address’ symbol are the same, and the symbol
for the bitwise AND and the "address of" symbol are the same. These operators have no relationship
to each other. Both & and * have a higher precedence than all other arithmetic operators except the
unary minus, with which they share equal precedence.

Variables that will hold pointers must be declared as such, by putting * in front of the variable name.
Thisindicates to the compiler that it will hold a pointer to that type of variable. For example, to
declare ch as a pointer to a character, write

char *ch;

It isimportant to understand that ch is not a character but a pointer to a character—there isabig
difference. The type of datathat a pointer pointsto, in this case char, is called the base type of the
pointer. The pointer variable itself is a variable that holds the address to an object of the base type.
Thus, acharacter pointer (or any type of pointer) is of sufficient size to hold an address as defined
by the architecture of the host computer. It is the base type that determines what that address
contains.

Page 55

Y ou can mix both pointer and nonpointer variables in the same declaration statement. For example,

int x, *y, count;

declares x and count as integer types and y as a pointer to an integer type.

The following program uses * and & operators to put the value 10 into avariable called target. As
expected, this program displays the value 10 on the screen.

#i ncl ude <stdi o. h>

int main(void)

{
int target, source;
int *m

source = 10;
m = &source
target = *m
printf("%l", target);

return O;

The Compile-Time Operator sizeof

Sizeof isaunary compile-time operator that returns the length, in bytes, of the variable or
parenthesized type specifier that it precedes. For example, assuming that integers are 4 bytes and
doubles are 8 bytes, this fragment will display 8 4.

doubl e f;

printf("%l ", sizeof f);
printf('" %", sizeof(int));

Remember, to compute the size of atype, you must enclose the type name in parentheses. Thisis not
necessary for variable names, although there is no harm done if you do so.

C defines (using typedef) a special type called size t, which corresponds loosely to an unsigned
integer. Technically, the value returned by sizeof is of type size t. For al

Page 56

practical purposes, however, you can think of it (and useit) asif it were an unsigned integer value.

sizeof primarily helps to generate portable code that depends upon the size of the built-in data types.
For example, imagine a database program that needs to store six integer values per record. If you
want to port the database program to a variety of computers, you must not assume the size of an
integer, but must determine its actual length using sizeof. This being the case, you could use the
following routine to write arecord to adisk file:

/* Wite 6 integers to a disk file. */
void put_rec(int rec[6], FILE *fp)

int len;
len = fwite(rec, sizeof(int)*6, 1, fp);

if(len!=1) printf(""Wite Error");
}

Coded as shown, put_rec() compiles and runs correctly in any environment, including those that
use 16- and 32-bit integers.

One final point: sizeof isevaluated at compile time, and the value it producesis treated as a constant
within your program.

The Comma Operator

The comma operator strings together several expressions. The left side of the comma operator is
always evaluated asvoid. This means that the expression on the right side becomes the value of the
total comma-separated expression. For example,

X = (y:3, y+1);

first assignsy the value 3 and then assigns x the value 4. The parentheses are necessary because the
comma operator has alower precedence than the assignment operator.

Essentially, the comma causes a sequence of operations. When you use it on the right side of an
assignment statement, the value assigned is the value of the last expression of the comma-separated
list.

The comma operator has somewhat the same meaning as the word "and" in English, as used in the
phrase "do this and this and this."

The Dot (.) and Arrow (—>) Operators

In C, the . (dot) and the — (arrow) operators access individual elements of structures and unions.
Sructures and unions are compound data types that may be referenced under a single name. (See
Chapter 7 for adiscussion of structures and unions.)

Page 57

The dot operator is used when working with a structure or union directly. The arrow operator is used
with a pointer to a structure or union. For example, given the fragment,

struct enpl oyee

{

char nane[80];
i nt age;
fl oat wage;

} enp;

struct enployee *p = &enp;

/* address of enp into p */

you would write the following code to assign the value 123.23 to the wage member of structure

variable emp:

enp. wage = 123. 23;

However, the same assignment using a pointer to emp would be

p->wage = 123. 23;

The[1 and () Operators

Parentheses are operators that increase the precedence of the operations inside them. Square
brackets perform array indexing (arrays are discussed fully in Chapter 4). Given an array, the
expression within sguare brackets provides an index into that array. For example,

#i ncl ude <stdio. h>
char s[80];

i nt mai n(voi d)
s[3] ="'X;
printf('" %", s

[3]):

return O;

}

first assignsthe value 'X' to the fourth element (remember, all arrays begin at 0) of array s, and then

prints that element.

Page 58

Precedence Summary

Table 2-8 lists the precedence of all operators defined by C. Note that all operators, except the unary
operators and ?, associate from left to right. The unary operators (*, &, —) and ? associate from right
to left.

Expressions

Operators, constants, functions, and variables are the constituents of expressions. An expression in C
isany valid combination of these elements. Because most expressions tend to follow the general
rules of algebra, they are often taken for granted. However, afew aspects of expressions relate
specifically to C.

Order of Evaluation

C does not specify the order in which the subexpressions of an expression are evaluated. This|leaves
the compiler free to rearrange an expression to produce more

Highest O[]—.
I ~++ ———(type) * & sizeof
* 1%
4
<< >>

<<=>>=

L owest)
Table2-8. Precedence of C Operators

Page 59

optimal code. However, it also means that your code should never rely upon the order in which
subexpressions are evaluated. For example, the expression

x = f1() + f2();

does not ensure that f1() will be called beforef2().
Type Conversion in Expressions

When constants and variables of different types are mixed in an expression, they are al converted to
the same type. The compiler converts all operands up to the type of the largest operand, which is
called type promotion. First, all char and short int values are automatically elevated to int. This
processis called integral promotion. (In C99, an integer promotion may also result in a conversion
to unsigned int.) Once this step has been completed, all other conversions are done operation by
operation, as described in the following type conversion algorithm:

IF an operand is a long double
THEN the second is converted to long double
ELSE IF an operand isa double
THEN the second is converted to double
ELSE IF an operand is a float

——THEN the second is converted to float
ELSE IF an operand isan unsigned long
THEN the second is converted to unsigned long
ELSE IF an operand is long
THEN the second is converted to long
ELSE IF an operand is unsigned int
THEN the second is converted to unsigned int

Thereis one additional specia case: If one operand is long and the other isunsigned int, and if the
value of the unsigned int cannot be represented by along, both operands are converted to unsigned
long.

NOTE

See Part Two for a description of the C99 integer promotion rules.

Once these conversion rules have been applied, each pair of operandsis of the same type, and the
result of each operation is the same as the type of both operands.

For example, consider the type conversions that occur in Figure 2-2. First, the character ch is
converted to an integer. Then the outcome of ch/i is converted to adoublebecause f*d is double
The outcome of f+i is float, because f isafloat. The final result isdouble.

Page 60

char ch;

int i;

float f;

double d;

result=(ch/i) + (f+=d} — (f+i);
irt double float
int double float

double

Figure 2-2
A type conversion example

Casts
Y ou can force an expression to be of a specific type by using a cast. The general form of acast is
~ (type) expression

where type isavalid data type. For example, to cause the expression x/2 to evaluate to type float ,
write

(float) x/2

Casts are technically operators. As an operator, a cast is unary and has the same precedence as any
other unary operator.

Casts can be very useful. For example, suppose you want to use an integer for loop control, yet to
perform computation on it requires afractional part, asin the following program:

#i ncl ude <stdi o. h>

int main(void) /* print i and i/2 with fractions */
{
int i;
for(i=l; i<=100; ++i)
printf('"% / 2 is: %\n", i, (float) i /2);

Page 61

return O;

Without the cast (float), only an integer division would have been performed. The cast ensures that
the fractional part of the answer is displayed.

Spacing and Parentheses

Y ou can add tabs and spaces to expressions to make them easier to read. For example, the following
two expressions are the same:

x=10/y~(127/ x) ;

x =10 / y ~(127/x);

Redundant or additional parentheses do not cause errors or slow down the execution of an
expression. Y ou should use parentheses to clarify the exact order of evaluation, both for yourself
and for others. For example, which of the following two expressionsis easier to read?

X y/ 3-34*t enp+127,

X (y/3) - (34*tenp) + 127;

Page 63

Chapter 3—
Statements

Page 64

In the most general sense, a statement is a part of your program that can be executed. That is, a
statement specifies an action. C categorizes statements into these groups:

* Selection

* [teration

* Jump

* Label

» Expression
* Block

Included in the selection statements are if and switch. (The term conditional statement is often used
in place of selection statement.) The iteration statements are while, for, and do-while These are
also commonly called loop statements. The jJump statements are break, continue, goto, and return.
The label statements include the case and default statements (discussed along with the switch
statement) and the label statement itself (discussed with goto). Expression statements are statements
composed of avalid expression. Block statements are simply blocks of code. (A block beginswith a
{ and ends with a}.) Block statements are also referred to as compound statements.

Since many statements rely upon the outcome of some conditional test, let's begin by reviewing the
concepts of true and false.

Trueand Falsein C

Many C statements rely upon a conditional expression that determines what course of action isto be
taken. A conditional expression evaluates to either atrue or false value. In C, true is any nonzero
value, including negative numbers. A false value is 0. This approach to true and false allows awide
range of routines to be coded extremely efficiently.

Selection Statements

C supports two selection statements: if and switch. In addition, the ? operator is an aternative to if
In certain circumstances.

if
The general form of the if statement
IS
—if (expression) statement;
€l se statement;

where a statement may consist of a single statement, a block of statements, or nothing (in the case of
empty statements). The else clause is optional.

Page 65

If expression evaluates to true (anything other than 0), the statement or block that forms the target of
If is executed; otherwise, the statement or block that is the target of else will be executed, if it exists.
Remember, only the code associated with if or the code associated with else executes, never both.

The conditional statement controlling if must produce a scalar result. A scalar is either an integer,
character, pointer, or floating-point type. (In C99, Booal is also a scalar type and may also be used
inan if expression.) It israre to use afloating-point number to control a conditional statement
because this slows execution time considerably. It takes several instructions to perform afloating-
point operation. It takes relatively few instructions to perform an integer or character operation.

The following program contains an example of if. The program plays avery simple version of the
"guess the magic number" game. It prints the message** Right ** when the player guesses the
magic number. It generates the magic number using the standard random number generator rand(),
which returns an arbitrary number between 0 and RAND_MAX (which defines an integer value that
iIs32,767 or larger). The rand() function requires the header <stdlib.h>.

/* Magi ¢ nunmber program #1. */
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

int main (void)
{
int magic; /* mmgic nunber */
int guess; /* user's guess */
magi c = rand(); /* generate the magi c nunber */

printf("Guess the magic nunber: ");
scanf (" %", &guess);

i f(guess == mmgic) printf("** Right **");

return O;

Taking the magic number program further, the next version illustrates the use of the else statement
to print a message in response to the wrong number.

/* Magi c nunber program #2. */
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

Page 66

i nt mai n(voi d)
{
int magic; /* magic nunber */
int guess; /* user's guess */
magi c = rand(); /* generate the magi c nunber */

printf("Guess the magic nunber: ");
scanf ("' %", &guess);

i f(guess == magic) printf("** Right **");
else printf("Wong");

return O;

Nested ifs

A nested if isan if that isthe target of another if or else. Nested ifs are very common in
programming. In a nested if, an else statement always refers to the nearest if statement that iswithin
the same block as the else and that is not already associated with an else. For example:

if(i)
{
if(j) dosonethingl();
i f(k) dosonething2(); /* this if */
el se dosonething3(); /* is associated with this else */

}

el se dosomething4(); /* associated with if(i) */

As noted, the final else is not associated with if(j) becauseit is not in the same block. Rather, the
fina ese isassociated with if(i). Also, the inner else is associated with if(k), which is the nearest if.

C89 specifiesthat at least 15 levels of nesting must be supported by the compiler. C99 raises this
limit to 127. In practice, most compilers allow substantially more levels. However, nesting beyond a
few levelsis seldom necessary, and excessive nesting can quickly confuse the meaning of an
algorithm.

Y ou can use anested if to further improve the magic number program by providing the player with
feedback about awrong guess.

/* Magi ¢ nunber program #3. */
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt mai n(voi d)
{
int magic; /* magic nunber */
int guess; /* user's guess */

magic = rand(); /* get a random number */

printf("Guess the magic nunber: ");
scanf ("' %", &guess);

if (guess == magic) {
printf ("** Right **");

}

el se {
printf("Wong, ");
i f(guess > magic) printf("too high\n");
el se printf("too lomn");

}

return O;

printf(" % is the magi c nunmber\n", magic);

/* nested if

*/

Theif-else-if Ladder

Page 67

A common programming construct is the if-else-if ladder, sometimes called the if-else-if staircase

because of its appearance. Its general formiis

if (expression) statement;

ese
if (expression) statement;
else

if (expression) statement;

ase statement;

Page 68

The conditions are evaluated from the top downward. As soon as a true condition is found, the
statement associated with it is executed and the rest of the ladder is bypassed. If none of the
conditions aretrue, thefinal elseisexecuted. That is, if al other conditional testsfail, the last else
statement is performed. If the final else is not present, no action takes place if al other conditions
arefalse.

Although the indentation of the preceding if-else-if ladder istechnically correct, it can lead to overly
deep indentation. For thisreason, the if-else-if ladder is usually indented like this:

If (expression)

Statement;
eseif (expression)
Statement;
elseif (expression)
~ statement;
ese
Statement;

Using an if-else-if ladder, the magic number program becomes

/* Magi ¢ nunmber program #4. */
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

i nt mai n(voi d)
{
int magic; /* mmgic nunber */
int guess; /* user's guess */

magic = rand(); /* generate the magi c nunber */

printf("Guess the magi c nunber: ");
scanf ("' %", &guess);

i f(guess == mmgic) {

printf("** Right ** ");

printf("% is the nmagic nunmber", magic);
}
el se if(guess > magic)

printf("Wong, too high");

Page 69

el se printf("Wong, too |ow');

return O;

}

The ? Alternative
Y ou can use the ? operator to replace if-else statements of the general form:

—if (condition) var = expression;
ese var = expression;

The ? iscdled a ternary operator because it requires three operands. It takes the genera form
 Expl? Exp2: Exp3

where Expl, Exp2, and Exp3 are expressions. Notice the use and placement of the
colon.

The value of a ? expression is determined as follows: Expl is evaluated. If it istrue, Exp2 is
evaluated and becomes the value of the entire ? expression. If Expl isfalse, then Exp3 is evaluated
and its value becomes the value of the expression. For example, consider

X
y

10;
x>9 ? 100 : 200;

In this example, y is assigned the value 100. If x had been less than 9, y would have received the
vaue 200. The same code written with the if-else statement would be

x = 10;
if(x>9) y = 100;
el se y = 200;

The following program uses the ? operator to square an integer value entered by the user. However,
this program preserves the sign (10 squared is 100 and —10 squared is—100).

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{

int isqgrd, i;

printf("Enter a nunber: ");
scanf (""", &i);

isqgrd = i>0 ? i*i : -(i*i);
printf("%l squared is %d", i, isqrd);

return O;

The use of the ? operator to replace if-else statementsis not restricted to assignments only.

Page 70

Remember, all functions (except those declared asvoid) return avalue. Thus, you can use one or
more function calls in a ? expression. When the function's name is encountered, the function is
executed so that its return value can be determined. Therefore, you can execute one or more function
callsusing the ? operator by placing the callsin the expressions that form the ?'s operands. Here is

an example:

#i ncl ude <stdi o. h>

int f1(int n);
int f2(void);

i nt mai n(voi d)
{
int t;

printf("Enter a nunber: ");
scanf ("%d", &t);

/* print proper nmessage */
t 2 f1(t) + f2() : printf("zero entered.");
printf("\n");

return O;

}
int f1(int n)

printf("% ", n);
return O;

}

Page 71

int f2(void)

{
printf('"entered ");
return O;

}

The program first prompts the user for avalue. Entering 0 causes the printf() function to be called,
which displays the message zer o entered. If you enter any other number, both f1() and f2()
execute. Note that the value of the? expression is discarded in this example. Y ou don't need to
assign it to anything.

One other point: It is permissible for acompiler to rearrange the order of evaluation of an expression
in an attempt to optimize the object code. In the preceding example, this could cause the calls to the
f1() and f2() functionsin the ? expression to execute in an unexpected sequence.

Using the ? operator, you can rewrite the magic number program yet again.

/* Magi ¢ nunber program #5. */
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt mai n(voi d)
{
i nt magic;
i nt guess;

magic = rand(); /* generate the nmagi ¢ nunber */

printf("Guess the magic nunber: ");
scanf ("%l", &guess);

i f(guess == magic) {
printf("** Right ** ");
printf("% is the magi c nunber”, magic);
}
el se
guess > magic ? printf("Hgh") : printf("Low');

return O;

Here, the ? operator displays the proper message based on the outcome of the test guess > magic.

Page 72

The Conditional Expression

Sometimes newcomers to C are confused by the fact that you can use any valid expression to control
the if or the ? operator. That is, you are not restricted to expressions involving the relational and
logical operators (asisthe case in languages like BASIC or Pascal). The expression must ssimply
evaluate to either atrue or false (zero or nonzero) value. For example, the following program reads
two integers from the keyboard and displays the quotient. It uses an if statement, controlled by the
second number, to avoid a divide-by-zero error.

/* Divide the first nunber by the second. */

#i ncl ude <stdio. h>
i nt mai n(voi d)
{

int a, b;

printf("Enter two nunmbers: ");
scanf ("' %d%", &a, &b);

if(b) printf("%\n", a/b);
el se printf("Cannot divide by zero.\n");

return O;

This approach works because if b is 0, the condition controlling the if isfalse, and the else executes.
Otherwise, the condition is true (nonzero), and the division takes place.

One other point: Writing the if statement in the preceding example as shown here

if(b!=0) printf("%\n", a/b);

Is redundant, potentially inefficient, and is considered bad style. Since the value of b aoneis
sufficient to control the if, there is no need to test it against O.

switch

C has a built-in multiple-branch selection statement, called switch, which successively tests the
value of an expression against alist of integer or character constants. When a match is found, the
statements associated with that constant are executed. The general form of the switch statement is

Page 73

switch (expression) {
case constantl:
statement sequence
break;
case constant?:
statement sequence
break;
—— Case constant3:

statement sequence
break;

default
Statement sequence

t

The expression must evaluate to an integer type. Thus, you can use character or integer values, but
floating-point expressions, for example, are not allowed. The value of expression is tested against
the values, one after another, of the constants specified in the case statements. When amatch is
found, the statement sequence associated with that case is executed until the break statement or the
end of the switch statement is reached. The default statement is executed if no matches are found.
The default isoptional, and if it is not present, no action takes place if all matches fail.

C89 specifies that a switch can have at least 257 case statements. C99 requires that at least 1,023
case statements be supported. In practice, you will usually want to limit the number of case
statements to a smaller amount for efficiency. Although case is alabel statement, it cannot exist by
itself, outside of a switch.

The break statement is one of C's jump statements. Y ou can useit in loops as well asin the switch
statement (see the section "lteration Statements'). When break is encountered in a switch, program
execution "jumps’ to the line of code following the switch statement.

There are three important things to know about the switch statement:

» The switch differsfrom theif in that switch can only test for equality, whereas if can evaluate any
type of relational or logical expression.

* No two case constants in the same switch can have identical values. Of course, a switch statement
enclosed by an outer switch may have case constants that are in common.

* If character constants are used in the switch statement, they are automatically converted to integers
(asis specified by C's type conversion rules).

Page 74

The switch statement is often used to process keyboard commands, such as menu selection. As
shown here, the function menu() displays a menu for a spelling-checker program and calls the
proper procedures.

voi d nmenu(voi d)

{

char ch;

printf("1. Check Spelling\n");
printf(''2. Correct Spelling Errors\n");
printf("3. Display Spelling Errors\n");
printf("Strike Any Other Key to Skip\n");
printf(" Enter your choice: ");

ch = getchar(); /* read the selection fromthe keyboard */

switch(ch) {

case '1':
check_spelling ();
break;

case '2':
correct _errors ();
break;

case '3':
di splay_errors ();
br eak;

def aul t
printf

("No option selected");

}
}

Technically, the break statementsinside the switch statement are optional. They terminate the
statement sequence associated with each constant. If the break statement is omitted, execution will
continue on into the next case's statements until either abreak or the end of the switch is reached.
For example, the following function uses the "drop through” nature of the cases to simplify the code
for adevice-driver input handler:

/* Process a val ue */
void inp_handler(int i)

{

int flag;

Page 75

flag = -1;

switch(i) {
case 1: /* These cases have conmon */
case 2: [* statement sequences. */
case 3.
flag = 0;
br eak;
case 4:
flag = 1;
case 5:
error(flag);
br eak;
defaul t:
process(i);

This example illustrates two aspects of switch. First, you can have case statements that have no
statement sequence associated with them. When this occurs, execution simply drops through to the
next case. In this example, the first three cases al execute the same statements, which are

flag = 0;
br eak;

Second, execution of one statement sequence continues into the next case if no break statement is
present. If i matches 4, flag is set to 1, and because there is no break statement at the end of that
case, execution continues and the call to error (fiag) is executed. If i had matched 5, error (flag)
would have been called with a flag value of -1 (rather than 1).

The fact that cases can run together when no break is present prevents the unnecessary duplication
of statements, resulting in more efficient code.

Nested switch Statements

Y ou can have a switch as part of the statement sequence of an outer switch. Even if the case
constants of the inner and outer switch contain common values, no conflicts arise. For example, the
following code fragment is perfectly acceptable:

switch(x) {
case 1:

Page 76

switch(y) {
case 0: printf(''Divide by zero error.\n");
br eak;
case 1. process(x, VY);
br eak;
}
br eak;
case 2:

|teration Statements

In C, and all other modern programming languages, iteration statements (also called loops) alow a
set of instructions to be repeatedly executed until a certain condition is reached. This condition may
be predetermined (asin the for loop) or open ended (as in the while and do-while loops).

Thefor Loop

The general design of the for loop is reflected in some form or another in al procedural
programming languages. However, in C, it provides unexpected flexibility and power.

The general form of the for statement is
~ for (initialization; condition; increment) statement ;

The for loop alows many variations, but its most common form works like this. The initialization is
an assignment statement that is used to set the loop control variable. The condition is arelational
expression that determines when the loop exits. The increment defines how the loop control variable
changes each time the loop is repeated. Y ou must separate these three major sections by semicolons.
The for loop continues to execute as long as the condition is true. Once the condition becomes fal se,
program execution resumes on the statement following the for.

In the following program, afor loop is used to print the numbers 1 through 100 on the screen:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{

int Xx;

Page 77

for(x=1; x <= 100; x++) printf("% ", x);

return O;

}

In the loop, x isinitialy set to 1 and then compared with 100. Since x islessthan 100, printf() is
called and the loop iterates. This causes x to be increased by 1 and again tested to seeif it is still less
than or equal to 100. If itis, printf() iscaled. This process repeats until x is greater than 100, at
which point the loop terminates. In this example, x is the loop control variable, which is changed
and checked each time the loop repeats.

The following exampleisafor loop that iterates a block of statements:

for(x=100; x !'= 65; x -=5) {
z = xX*Xx;
printf(''The square of %, %", x, z);

}

Both the squaring of x and the call to printf() are executed until x equals 65. Note that the loop is
negative running: X isinitialized to 100, and 5 is subtracted from it each time the loop repeats.

Infor loops, the conditional test is always performed at the top of the loop. This means that the code
inside the loop may not be executed at all if the condition is false to begin with. For example, in

X = 10;

for(y=10; y != x; ++y) printf("od", y);

printf("%", y); [/* this is the only printf()
statenment that will execute */

the loop will never execute because x and y are equal when the loop is entered. Because this causes
the conditional expression to evaluate to false, neither the body of the loop nor the increment portion
of the loop executes. Thus, y till has the value 10, and the only output produced by the fragment is
the number 10 printed once on the screen.

for Loop Variations

The previous discussion described the most common form of the for loop. However, several
variations of the for are allowed that increase its power, flexibility, and applicability to certain
programming situations.

One of the most common variations uses the comma operator to allow two or more variablesto
control the loop. (Remember, the comma operator strings together a number of expressionsin a™do
this and this" fashion. See Chapter 2.) For example, the

variables x and y control the following loop, and both are initialized inside the for statement:

for(x=0, y=0; x+y < 10; ++x) {
y = getchar();
y y - '0"; /* subtract the ASCII code for O fromy */

Page 78

Commas separate the two initialization statements. Each time the loop repeats, x isincremented and

y'svalueis set by keyboard input. Both x and y must be at the correct value for the loop to

terminate. Even though y's valueis set by keyboard input, y must be initialized to O so that its value
is defined before the first evaluation of the conditional expression. (If y's value was not set, it could

by chance contain the value 10, making the conditional test false and preventing the loop from

executing.)

The converge() function shown next demonstrates multiple loop control variablesin action. The
converge() function copies the contents of one string into another by moving characters from both

ends, converging in the middle.

/* Denonstrate nultiple loop control variables. */
#i ncl ude <stdio. h>
#i ncl ude <string. h>

voi d converge(char *targ, char *src);

i nt mai n(voi d)
{
char target[80] = """ XXXXXXXXXXIXKHKIIKHIIKIKHKHKIKIHKHKHXKXK"

converge(target, "This is a test of converge
0-");
printf("Final string: %\n", target);

return O;

}

[* This function copies one string into another
It copies characters to both the ends,
converging at the mddle. */

voi d converge(char *targ, char *src)

{

Page 79

int i, j;

for(i=0, j
targ[i]
targ[j]

}
}

printf("%\n", targ);

printf ("’

=strlen(src); i<zj; i++, j--) {
= src[i];

srcljl;

%\ n", targ)

Hereisthe output produced by the

program:

This is a
This is a
This is a
This is a
This is a

P9.0.0.9.0.9.9.0.0.0.9.9.0.0.0.0.9.0.0.9.0.9.0. 9,909,904
LD, 80.0.0.9.9.0.0.0.9.9.0.9.9.0.9.0.9.9.0.9.9.9.9.0.9.0¢
RED 0.0, 0.0.:0.0.0.0.9.9.9.9.0.9.9.0.9.0.9.9.0.9.99.0.6
Thi XXX KKXKX)
Thi s XXOKIXKIXIKKKIKXKKXK()
Thi s XXX XXKXXXXXXe () .
Thi s 1 XXXXXXXXXXXXXXXXXXge() .
Thi s i sXXXXXXXXXXXXXXr ge() .
This is XXXXXXXXXXXXXXer ge() .
This is aXXXXXXXXXXXXver ge() .
XXXXXXXXXXNnver ge() .
t XXXXXXXXonver ge() .
t eXXXXXXconver ge() .
t esXXXX converge() .
test XXf converge()
This is a test of converge()
Final string: This is a test of converge().

In converge(), the for loop uses two loop control variables, i and j, to index the string from
opposite ends. Asthe loop iterates, i isincreased and | is decreased. The loop stopswhen i is greater
than j, thus ensuring that all characters are copied.

The conditional expression does not have to involve testing the loop control variable against some
target value. In fact, the condition may be any relational or logical statement. This means that you
can test for several possible terminating conditions. For example, you could use the following
function to log a user onto a remote system. The user has three tries to enter the password. The loop
terminates when the three tries are used up, or when the user enters the correct password.

{

voi d sign_on(void)

char str[20];
int x;

for(x=0; x<3 && strcnp(str, "password");
printf(''Enter password please:");
gets(str);

}

if(x == 3) return;
/* else log user in. . . */

++x) {

Page 80

This function uses strcmp(), the standard library function that compares two strings and returns O if

they match.

Remember, each of the three sections of the for loop may consist of any valid expression. The
expressions need not actually have anything to do with what the sections are generally used for.

With thisin mind, consider the following example:

#i ncl ude <stdi o. h>

int sqrnun(int nun);
i nt readnum(void);
i nt pronpt(void);

i nt mai n(voi d)
{
int t;

for(prompt(); t=readnum(); pronpt())
sqrnum(t);

return O;

}
int pronpt (void)
{

printf("Enter a nunber: ");
return O;

}

i nt readnum (voi d)

Page 81

{
int t;

scanf ("%d", &t);
return t;

}
int sqgrnun(int num

printf('"%\n", numnum;
return nuntnum

}

Look closely at the for loop in main(). Notice that each part of the for loop is composed of function
calls that prompt the user and read a number entered from the keyboard. If the number entered is O,
the loop terminates because the conditional expression will be false. Otherwise, the number is
squared. Thus, this for loop uses the initialization and increment portions in a nontraditional but
completely valid manner.

Another interesting trait of the for loop isthat pieces of the loop definition need not be there. In fact,
there need not be an expression present for any of the sections—the expressions are optional. For
example, thisloop will run until the user enters 123:

for(x=0; x !'= 123;) scanf("%l", &x);

Notice that the increment portion of the for definition is blank. This means that each time the loop
repeats, X istested to seeif it equals 123, but no further action takes place. If you type 123 at the
keyboard, however, the loop condition becomes false and the loop terminates.

The initialization of the loop control variable can occur outside the for statement. This most
frequently happens when the initial condition of the loop control variable must be computed by
some complicated means, asin this example:

gets(s); /* read a string into s */
if(*s) x = strlen(s); /* get the string's length */
el se x = 10;

for(; x <10;) {
printf("od", x);
++X;

Page 82

The initialization section has been left blank, and x isinitialized before the loop is entered.

The Infinite Loop

Although you can use any loop statement to create an infinite loop, for is traditionally used for this
purpose. Since none of the three expressions that form the for loop are required, you can make an
endless loop by leaving the conditional expression empty, as here:

for(; ;) printf("This loop will run forever.\n");

When the conditional expression is absent, it is assumed to be true. Y ou may have an initialization
and increment expression, but C programmers more commonly use the for (;;) construct to signify
an infinite loop.

Actually, the for (;;) construct does not guarantee an infinite loop because a break statement,
encountered anywhere inside the body of aloop, causes immediate termination. (break is discussed
in detail later in this chapter.) Program control then resumes at the code following the loop, as
shown here:

ch = '\0';:
for(; ;) {

ch = getchar(); /* get a character */
if(ch == "A") break; /* exit the |loop */
}

printf("you typed an A");

Thisloop will run until the user types an A at the keyboard.

for Loopswith No Bodies

A statement may be empty. This means that the body of the for loop (or any other loop) may also be
empty. You can use this fact to simplify the coding of certain algorithms and to create time delay
loops.

Removing spaces from an input stream is a common programming task. For example, a database
program may allow a query such as "show all balances less than 400." The database needs to have
each word fed to it separately, without leading spaces. That is, the database input processor
recognizes "show" but not "show". The following loop shows one way to accomplish this. It
advances past leading spaces in the string pointed to by str.

Page 83

for(; *str ==" ", str++)

Asyou can see, thisloop has no body—and no need for one either.

Time delay loops are sometimes useful. The following code shows how to create one by using for:

for(t=0; t < SOVE VALUE; t++)

The only purpose of thisloop isto eat up time. Be aware, however, that some compilers will
optimize such atime delay loop out of existence, since (as far as the compiler is concerned) it has no
effect! So, you might not always get the time delay you expect.

Declaring Variables within a for Loop

In C99 and C++, but not C89, it is possible to declare a variable within the initialization portion of a
for loop. A variable so declared hasits scope limited to the block of code controlled by that
statement. That is, avariable declared within afor loop will be local to that loop.

Hereis an example that declares a variable within the initialization portion of afor loop:

/*
Here, i is local to for loop; j is known outside | oop

*** This exanple is invalid for C89. ***
*/
int j;
for(int i = 0; i<10; i++)
' [[

jo=iox

/* i = 10; *** Error ***-- | not known here! */

Here, i isdeclared within theinitialization portion of the for and is used to control the loop. Outside
the loop, i is unknown.

Since aloop control variable is often needed only by that 1oop, the declaration of a variable in the
initialization portion of thefor is becoming common practice. Remember, however, that thisis not
supported by C89.

The while Loop
The second loop available in C is the while loop. Its general form i<

~ while(condition) statement;

Page 84

where statement is either an empty statement, a single statement, or ablock of statements. The
condition may be any expression, and true is any nonzero value. The loop iterates while the
condition is true. When the condition becomes false, program control passesto the line of code
immediately following the loop.

The following example shows a keyboard input routine that simply loops until the user types
A:

char wait_for_char(void)

{

char ch;

ch ="'"\0"; /* initialize ch */
while(ch '= "A") ch = getchar();
return ch;

First, chisinitialized to null. Asalocal variable, its value is not known when wait_for_char() is
executed. The whileloop then checksto seeif ch is not equal to A. Because ch wasiinitialized to
null, the test is true and the loop begins. Each time you press a key, the condition is tested again.
Once you enter an A, the condition becomes fal se because ch equals A, and the loop terminates.

Likefor loops, whileloops check the test condition at the top of the loop, which means that the
body of the loop will not execute if the condition is false to begin with. This feature may eliminate
the need to perform a separate conditional test before the loop. The pad(') function provides a good
illustration of this. It adds spaces to the end of a string to fill the string to a predefined length. If the
string is already at the desired length, no spaces are added.

#i ncl ude <stdio. h>
#i ncl ude <string. h>

voi d pad(char *s, int length);

i nt mai n(voi d)

{

char str[80];

strcpy(str, "this is a test");
pad(str, 40);

printf('"%", strlen(str));

return O;

}

/* Add spaces to the end of a string. */
voi d pad(char *s, int length)
{
int I|;
| = strlen(s); /* find out howlong it is */
while(l < length) {
s[I] =" "; /* insert a space */

| ++;

s[I]="\0"; /* strings need to be terninated in a nul

}

*/

Page 85

The two arguments of pad() are s, a pointer to the string to lengthen, and length, the number of
charactersthat s should have. If the length of string sis aready equal to or greater than length, the
code inside thewhile loop does not execute. If sis shorter than length, pad() adds the required
number of spaces. The strlen() function, part of the standard library, returns the length of the string.

In cases in which any one of several separate conditions can terminate awhile loop, often asingle
loop-control variable forms the conditional expression. The value of thisvariable is set at various

points throughout the loop. In this example

voi d funcl(void)

{

i nt worKking;
working = 1; /* i.e., true */

while (working) {
wor ki ng = processl();
i f (working)
wor ki ng = process2();
i f (working)
wor ki ng = process3();

any of the three routines may return false and cause the loop to exit.

Page 86

There need not be any statements in the body of the while loop. For example,

whil e((ch=getchar()) '= "A") ;

will simply loop until the user types A. If you feel uncomfortable putting the assignment inside the
while conditional expression, remember that the equal sign isjust an operator that evaluates to the
value of the right-hand operand.

The do-while Loop

Unlike for and while loops, which test the loop condition at the top of the loop, the do-whileloop
checksits condition at the bottom of the loop. This means that a do-whileloop always executes at
least once. The general form of the do-while loop is

do {
- Statement;
} while(condition);

Although the curly braces are not necessary when only one statement is present, they are usually
used to avoid confusion (to you, not the compiler) with the while The do-while loop iterates until
condition becomes false.

The following do-while loop will read numbers from the keyboard until it finds a number less than
or egqual to 100:

do {
scanf ("' %", &nun);
} while(num > 100);

Perhaps the most common use of the do-whileloop isin a menu selection function. When the user
entersavalid response, it is returned as the value of the function. Invalid responses cause a
reprompt. The following code shows an improved version of the spelling-checker menu shown
earlier in this chapter:

voi d rmenu(voi d)

{

char ch;

printf("1. Check Spelling\n");
printf("2. Correct Spelling Errors\n");
printf("3. Display Spelling Errors\n");
printf(" Enter your choice: ");

Page 87

do {
ch = getchar(); /* read the selection from
the keyboard */

switch(ch) {

case '1':
check_spel I'ing();
br eak;

case '2':
correct _errors();
br eak;

case '3':
di splay_errors();
br eak;

}
} while(ch!="1" && ch!="2" && ch!="3");

}

Here, the do-whileloop is a good choice because you will always want a menu function to execute
at least once. After the options have been displayed, the program will loop until avalid optionis
selected.

Jump Statements

C hasfour statements that perform an unconditional branch: return, goto, break, and continue. Of
these, you can use return and goto anywhere inside a function. Y ou can use the break and
continue statements in conjunction with any of the loop statements. As discussed earlier in this
chapter, you can also use break with switch.

Thereturn Statement

The return statement is used to return from afunction. It is categorized as a jump statement because
it causes execution to return (jump back) to the point at which the call to the function was made. A
return may or may not have a value associated with it. A return with avalue can be used only in a
function with anon-void return type. In this case, the value associated with retur n becomes the
return value of the function. A return without avalueis used to return from a void function.

Technicaly, in C89, areturn statement in anon-void function does not have to return avalue. If no
return value is specified, a garbage value is returned. However, in C99, a return statement in anon-
void function must return avalue. (Thisis also true for C++.) Of course, even for C89, if afunction
Is declared as returning avalue, it is good practice to actually return one!

Page 88

The general form of the retur n statement is
~return expression;

The expression is present only if the function is declared as returning a value. In this case, the value
of expression will become the return value of the function.

Y ou can use as many return statements as you like within afunction. However, the function will
stop executing as soon as it encountersthefirstreturn. The} that ends afunction also causes the
function to return. It isthe same as areturn without any specified value. If this occurs within a non-
void function, then the return value of the function is undefined.

A function declared as void cannot contain a retur n statement that specifies avalue. Since a void
function has no return value, it makes sense that no retur n statement within a void function can
return avaue.

See Chapter 6 for more information on return.

The goto Statement

Since C has arich set of control structures and allows additional control using break and continue,
thereislittle need for goto. Most programmers chief concern about the goto isits tendency to
render programs unreadable. Nevertheless, although the goto statement fell out of favor some years
ago, it occasionally hasit uses. While there are no programming situations that require goto, itisa
convenience, which, if used wisely, can be a benefit in a narrow set of programming situations, such
as jumping out of a set of deeply nested loops. The goto is not used in this book outside of this
section.

The goto statement requires alabel for operation. (A label isavalid identifier followed by a colon.)
Furthermore, the label must be in the same function as the goto that uses it—you cannot jump
between functions. The general form of the goto statement is

goto labdl;
label

where label isany valid label either before or after goto. For example, you could create aloop from
1to 100 using the goto and alabel, as shown here:

X = 1;
| oopl:
X++;
i f(x <= 100) goto | oopl;

Page 89
The break Statement

The break statement has two uses. Y ou can use it to terminate a case in the switch statement
(covered in the section on switch earlier in this chapter). You can also useit to force immediate
termination of aloop, bypassing the normal loop conditional test.

When the break statement is encountered inside aloop, the loop isimmediately terminated, and
program control resumes at the next statement following the loop. For example,

#i ncl ude <stdi o. h>

int main (void)
t
int t;

for(t=0; t < 100; t++) {
printf('"% ", t);
if(t == 10) break;

}

return O;

}

prints the numbers 0 through 10 on the screen. Then the loop terminates because break causes
immediate exit from the loop, overriding the conditional test t<100.

Programmers often use the break statement in loops in which a specia condition can cause

Immediate termination. For example, here a keypress can stop the execution of the look_up()
function:

void | ook_up(char *nane)
{
do {
/* look up names . . . */
i f(kbhit()) break;
} while(!found);
/* process match */

}

The kbhit() function returns O if you do not press akey. Otherwise, it returns a nonzero value.
Because of the wide differences between computing environments, Standard C does not define

kbhit(), but you will almost certainly have it (or one with adlightly different name) supplied with
your compiler.

Page 90

A break causes an exit from only the innermost loop. For example,

for(t=0; t < 100; ++t) {

count = 1;

for(;;) {
printf('"% ", count);
count ++;
i f(count == 10) break;

}
}

prints the numbers 1 through 9 on the screen 100 times. Each time the compiler encounters break,
control is passed back to the outer for loop.

A break used in aswitch statement will affect only that switch. It does not affect any loop the
switch happensto bein.

The exit() Function

Although exit() is not a program control statement, a short digression that discussesit isin order at
thistime. Just as you can break out of aloop, you can break out of a program by using the standard
library function exit(). This function causes immediate termination of the entire program, forcing a
return to the operating system. In effect, the exit() function acts asif it were breaking out of the
entire program.

The general form of the exit() functionis
~void exit(int return_code);

The value of return_code is returned to the calling process, which is usually the operating system.
Zero is commonly used as areturn code to indicate normal program termination. Other arguments
are used to indicate some sort of error. Y ou can also use the macros EXIT_SUCCESS and
EXIT_FAILURE for return_code. The exit() function requires the header <stdlib.h>.

Programmers frequently use exit() when a mandatory condition for program execution is not
satisfied. For example, imagine a virtual -reality computer game that requires a special graphics
adapter. The main(') function of this game might look like this,

#i ncl ude <stdlib. h>

i nt mai n(voi d)

{
if(!virtual _graphics()) exit(1);

play();

T

Page 91

where virtual_graphics() is some function that returnstrue if the virtual -reality graphics adapter is

present. If the adapter is not in the system, virtual_graphics() returns false and the program

terminates.

As another example, this version of menu() uses exit() to quit the program and return to the

operating system:

voi d nmenu(voi d)

{

char ch;

printf("1. Check Spelling\n");
printf('"2. Correct Spelling Errors\n");
printf("3. Display Spelling Errors\n");
printf("4. Qit\n");

printf(" Enter your choice: ");

do {
ch = getchar(); /* read the selection from
t he keyboard */
switch(ch) {
case '1':
check_spel ling();
br eak;
case '2':
correct _errors();
br eak;
case '3':
di splay_errors();
br eak;
case '4':
exit(0); /* return to CS */

}
} while(ch!l=1" && ch!="2" && ch!=3");
}

The continue Statement

The continue statement works somewhat like the break statement. Instead of forcing termination,

however, continue forces the next iteration of the loop to take place,

Page 92

skipping any code in between. For thefor loop, continue causes the increment and then the
conditional test portions of the loop to execute. For the while and do-while loops, program control
passes to the conditional tests. For example, the following program counts the number of spaces
contained in the string entered by the user:

/* Count spaces */
#i ncl ude <stdio. h>

i nt mai n(voi d)

char s[80], *str;
i nt space;

printf("Enter a string: ");
gets(s);
str = s;

for(space=0; *str; str++) {
if(*str !'=" ") continue
space++;

}

printf('' % spaces\n", space);

return O;

Each character istested to seeiif it isa space. If it is not, the continue statement forces the for to
iterate again. If the character is a space, space is incremented.

The following example shows how you can use continue to expedite the exit from aloop by forcing
the conditional test to be performed sooner:

voi d code(void)

{

char done, ch;

done = O;
whi | e(! done) {
ch = getchar();

if(ch =="'8%") {
done = 1;
conti nue;

}

Page 93

put char (ch+1); /* shift the al phabet one position higher */

}
}

This function codes a message by shifting all characters you type one letter higher. For example, an
A becomes aB. The function will terminate when you type a $. After a $ has been input, no further
output will occur because the conditional test, brought into effect by continue, will find done to be
true and will cause the loop to exit.

Expression Statements

Chapter 2 covers expressions thoroughly. However, afew special points are mentioned here.
Remember, an expression statement is simply avalid expression followed by a semicolon, asin

func(); /* a function call */

a = b+c; /* an assignment statenent */

b+f (); /* a valid, but strange statenment */
; /* an enpty statenent */

Thefirst expression statement executes a function call. The second is an assignment. The third
expression, though strange, is still evaluated by the compiler because the function f() may perform
some necessary task. The final example shows that a statement can be empty (sometimes called a
null statement).

Block Statements

Block statements are simply groups of related statements that are treated as a unit. The statements
that make up ablock are logically bound together. Block statements are also called compound
statements. A block is begun with a{ and terminated by its matching } . Programmers use block
statements most commonly to create a multistatement target for some other statement, such as if.
However, you may place a block statement anywhere you would put any other statement. For
example, thisis perfectly valid (although unusual) C code:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{

Page 94

}

int i;

{ I* a free-standing bl ock statenent

i = 120;
printf('"' %",
}

return O;

i);

*/

Page 95

Chapter 4—
Arraysand Strings

Page 96

An array isacollection of variables of the same type that are referred to through a common name.

A specific element in an array is accessed by an index. In C, al arrays consist of contiguous
memory locations. The lowest address corresponds to the first element and the highest address to the
last element. Arrays can have from one to several dimensions. The most common array isthe string,
which issimply an array of characters terminated by anull.

Arrays and pointers are closely related; a discussion of one usually refersto the other. This chapter
focuses on arrays, while Chapter 5 looks closely at pointers. Y ou should read both to understand
fully these important constructs.

Single-Dimension Arrays
The general form for declaring asingle-dimension array is
" typevar_name[size];

Like other variables, arrays must be explicitly declared so that the compiler can allocate space for
them in memory. Here, type declares the base type of the array, which is the type of each element in
the array, and size defines how many elements the array will hold. For example, to declare a 100-
element array called balance of type double, use this statement:

doubl e bal ance[100];

In C89, the size of an array must be specified using a constant expression. Thus, in C89, the size of
an array isfixed at compile time. (C99 allows arrays whose sizes are determined at run time. They
are briefly described later in this chapter and examined in detail in Part Two.)

An element is accessed by indexing the array name. Thisis done by placing the index of the element
within square brackets after the name of the array. For example,

bal ance[3] = 12.23;

assigns element number 3 in balance the value 12.23.

In C, dl arrays have 0 as the index of their first element. Therefore, when you write

char p[10];

you are declaring a character array that has 10 elements, p[0] through p[9]. For example, the
following program loads an integer array with the numbers 0 through 99:

Page 97

#i ncl ude <stdi o. h>
i nt mai n(voi d)

int x[100]; /* this declares a 100-integer array */
int t;

/* load x with values 0 through 99 */
for(t=0; t<100; ++t) x[t] =t;

/* display contents of x */
for(t=0; t<100; ++t) printf('"o%d ", x[t]);

return O;

The amount of storage required to hold an array is directly related to its type and size. For asingle-
dimension array, the total size in bytesis computed as shown here:

~ tota bytes = sizeof(base type) x length of array

C has no bounds checking on arrays. Y ou could overwrite either end of an array and write into some
other variable's data or even into the program's code. As the programmer, it is your job to provide
bounds checking where needed. For example, this code will compile without error, but it isincorrect
because the for loop will cause the array count to be overrun.

int count[10], i;

/* this causes count to be overrun */
for(i=0; i<100; i++) count[i] = i;

Single-dimension arrays are essentially lists that are stored in contiguous memory locations in index
order. For example, Figure 4-1 shows how array a appearsin memory if it starts at memory location
1000 and is declared as shown here:

char a[7];

Generating a Pointer to an Array

Y ou can generate a pointer to the first element of an array by simply specifying the array name,
without any index. For example, given

i nt sampl e[10];

Page 98

Element | 2[0] a[1] a[2] a3] a[4] a5 a[6]
Address [1000 |1001 [1002 |1003 |1004 |1005 |1006

Figure 4-1
A seven-element character array beginning at location 1000

you can generate a pointer to the first element by using the name sample. Thus, the following
program fragment assigns p the address of the first element of sample:

int *p;
i nt sampl e[10];

p = sanpl e;

Y ou can also specify the address of the first element of an array by using the & operator. For
example, sample and & sampl€e[0] both produce the same results. However, in professionally
written C code, you will amost never see & sample[0].

Passing Single-Dimension Arraysto Functions

In C, you cannot pass an entire array as an argument to a function. Y ou can, however, pass a pointer
to an array by specifying the array's name without an index. For example, the following program
fragment passes the address of i to funcl():

i nt mai n(voi d)
int i[10];
funcl(i);

I* o *]
}

If afunction receives a pointer to a single-dimension array, you can declare its formal parameter in
one of three ways:. as a pointer, as asized array, or as an unsized array. For example, to receivei, a
function called funcl() can be declared as

void funcl(int *x) /* pointer */

{

Page 99

[* .. *

or

void funcl(int x[10]) /* sized array */

{
}

[* . .. *

or finally as

void funcl (int x[]) /* unsized array */

{
}

[* o .. *

All three declaration methods produce similar results because each tells the compiler that an integer
pointer is going to be received. The first declaration actually uses a pointer. The second employs the
standard array declaration. In the final version, amodified version of an array declaration ssmply
specifies that an array of type int of some length isto be received. Asyou can see, the length of the
array doesn't matter as far as the function is concerned because C performs no bounds checking. In
fact, asfar asthe compiler is concerned,

void funcl(int x[32])
{

}

[* .. *

also works because the compiler generates code that instructs funcl() to receive a pointer—it does
not actually create a 32-element array.

Strings

By far the most common use for the one-dimensional array is as a character string. In C, a stringisa
null -terminated character array. (A null is zero.) Thus, a string contains the characters that make up
the string followed by a null. The null-terminated string is the only type of string defined by C.

Page 100

NOTE

C++ also defines a string class, called string, which provides an object-oriented
approach to string handling, but it is not supported by C.

When declaring a character array that will hold a string, you need to declare it to be one character
longer than the largest string that it will hold. For example, to declare an array str that can hold a
10-character string, you would write

char str[11];

Specifying 11 for the size makes room for the null at the end of the string.

When you use a quoted string constant in your program, you are also creating a null -terminated
string. A string constant is alist of characters enclosed in double quotes. For example:

~ "hello there"

Y ou do not need to add the null to the end of string constants manually—the compiler does this for
you automatically.

C supports awide range of functions that manipulate strings. The most common are listed here:
Name Function

strepy(sl, s2) Copiess2 into sl

streat(sl, s2) Concatenates s2 onto the end of sl

strien(sl) Returns the length of sl

stremp(sl, Returns 0 if sl and s2 are the same; lessthan O if s1<s2; greater
2) than O if s1>s2

strchr(sl, ch) Returns a pointer to the first occurrence of chin sl

strstr(sl, s2) Returns a pointer to the first occurrence of s2insl

These functions use the standard header <string.h>. The following program illustrates the use of
these string functions:

#i ncl ude <stdio. h>
#i ncl ude <string. h>

i nt mai n(voi d)
char s1[80], s2[80];

gets(sl);

Page 101

gets (s2);

strcat(sl, s2);

printf(sl);
if(strchr("hello",

return O;

printf("lengths: % %\ n",

if(!strcnmp(sl, s2)) printf("The strings are equal\n");

printf ('"'"%\n", sl);
strcpy(sl, "This is a test.\n");

"e')) printf("e is in hello\n");

i f(strstr("hi there”, "hi")) printf("found hi");

strlen(sl), strlen(s2));

If you run this program and enter the strings "héello" and "hdllo", the output is

lengths: 55

The strings are equa
hel | ohel | 0

This is a test.
eisin hello

found hi

Remember, strcmp() returnsfalseif the strings are equal. Be sure to use the logical ! operator to
reverse the condition, as just shown, if you are testing for equality.

Two-Dimensional Arrays

C supports multidimensional arrays. The simplest form of the multidimensional array is the two-
dimensional array. A two-dimensional array is, essentially, an array of one-dimensional arrays. To
declare atwo-dimensional integer array d of size 10,20, you would write

int d[10][20];

Pay careful attention to the declaration. Some other computer languages use commas to separate the
array dimensions; C places each dimension in its own set of brackets.

Similarly, to access point 1,2 of array d, you would use

df1] [2]

Page 102

The following example loads a two-dimensional array with the numbers 1 through 12 and prints

them row by row.

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
int t, i, nunf3][4];

for(t=0; t<3; ++t)
for(i=0; i<4; ++i)
nunft][i] = (t*4)+i +1;

/* now print them out */
for(t=0; t<3; ++t) {
for(i=0; i<4; ++i)
printf('"9@d ", nunit] [i]);
printf("\n");
}

return O;

In this example, num[0][0] hasthe value 1, num[0][1] the value 2, num[Q][2] the value 3, and so

on. The value of num[2][3] will be 12. Y ou can visualize the num array as shown here:

num [t] [i]

01 2 3
gjr(21314
115|678
219101112

Two-dimensional arrays are stored in arow-column matrix, where the left index indicates the row
and the right indicates the column. This means that the rightmost index changes faster than the
leftmost when accessing the elementsin the array in the

Page 103

order in which they are actually stored in memory. See Figure 4-2 for a graphic representation of a
two-dimensional array in memory.

In the case of atwo-dimensional array, the following formulayields the number of bytes of memory
needed to hold it:

~ bytes=size of 1stindex x size of 2nd index x sizeof(base type)

Therefore, assuming 4-byte integers, an integer array with dimensions 10,5 would have
~ 10x5x4

or 200 bytes allocated.

When atwo-dimensional array is used as an argument to afunction, only a pointer to the first
element is actually passed. However, the parameter receiving a two-dimensional array must define
at least the size of the rightmost dimension. (Y ou can specify the left dimension if you like, but it is
not necessary.) The rightmost dimension is needed because the compiler needs to know the length of
each row if it isto index the array correctly. For example, afunction that receives a two-dimensional
integer array with dimensions 10,10 can be declared like this:

void funcl(int x[] [10])
{

}

[. .. *

The compiler needs to know the size of the right dimension in order to correctly execute expressions
such as

x[2] [4]

Given: char ch [4] [3]
Right index determines column

| cho]fo] | chlojf1] | ehlo][2] |
Left »"""ﬂ
index — [ch [1][0] | h [1]11] | ch[1112]]

determines
row [ch[2I[0] [ch[2111] | ch[2112]]

\\.

[ch3][0] | ch[3][1] | ch[3][2] |

Figure 4-2
A two-dimensional array

Page 104

inside the function. If the length of arow is not known, the compiler cannot determine where the
next row begins.

The following program uses a two-dimensional array to store the numeric grade for each student in a
teacher's classes. The program assumes that the teacher has three classes and a maximum of 30
students per class. Notice the way the array grade is accessed by each of the functions.

/* A sinple student grades database. */
#i ncl ude <stdio. h>

#i ncl ude <ctype. h>

#i ncl ude <stdlib. h>

#defi ne CLASSES 3
#defi ne GRADES 30

i nt grade[CLASSES] [GRADES];

voi d enter_grades(void);
int get_grade(int num;
voi d disp_grades(int g[][GRADES]);

i nt mai n(voi d)
char ch, str[80];

for(;:)

do {
printf('"(E)nter grades\n");
printf("(R)eport grades\n");
printf(" (Quit\n");
gets(str);
ch = toupper(*str);

} while(ch!="E && ch!='R && ch!="Q);

switch(ch) {
case 'E':
enter _grades();
break;
case 'R :
di sp_grades(grade);
break;

case 'Q:
exit (0);
}
}
return O,

}

/* Enter the student's grades. */
voi d enter_grades(void)

{

int t, i;

for(t=0; t<CLASSES;, t++) {
printf('"Class # %:\n", t+1);

for(i=0; i<GRADES; ++i)
grade[t][i] = get_grade(i);

}

/* Read a grade. */
int get_grade(int num

{
char s[80];

printf("Enter grade for student # %l:\n", numl);

gets(s);
return(atoi(s));

}

/* Display grades. */
voi d disp_grades(int g[][GRADES])
{

int t, i;

for(t=0; t<CLASSES, ++t) {
printf("Class # %:\n", t+1);
for(i=0; i<GRADES; ++i)
printf("Student #% is %\ n",

i+1, g[t][i]);

Page 105

Page 106

Arrays of Strings

It is not uncommon in programming to use an array of strings. For example, the input processor to a
database may verify user commands against an array of valid commands. To create an array of
strings, use atwo-dimensional character array. The size of the left dimension determines the number
of strings, and the size of the right dimension specifies the maximum length of each string. The
following declares an array of 30 strings, each with a maximum length of 79 characters:

char str_array[30][80];

It iseasy to access an individual string: Y ou simply specify only the left index. For example, the
following statement calls gets() with thethird stringin str array.

gets(str_array[2]);

The preceding statement is functionally equivalent to

gets(&str_array[2][0]);

but the first of the two forms is much more common in professionally written C code.

To understand better how string arrays work, study the following short program, which uses a string
array as the basisfor avery simple text editor.

/* A very sinmple text editor. */
#i ncl ude <stdio. h>

#defi ne MAX 100
#define LEN 80

char text[MAX][LEN];

i nt mai n(voi d)
{

register int t, i, j;
printf("Enter an enpty line to quit.\n");
for(t=0; t<MAX; t++) {

printf('"%: ", t);
gets(text[t]);

Page 107

if(!*text[t]) break; /* quit on blank line */
}
for(i=0; i<t; i++) {

for(j=0; text[i][j]; j++) putchar(text[i][j]);

putchar('\n");
}

return O;

}

This program inputs lines of text until ablank line is entered. Then it redisplays each line one
character at atime.

Multidimensional Arrays

C allows arrays of more than two dimensions. The general form of a multidimensional array
declarationis

~ typename[Szel][Sze2][Sze3] . . .[SzeN];

Arrays of more than three dimensions are not often used because of the amount of memory they
require. For example, afour-dimensional character array with dimensions 10,6,9,4 requires

~ 10*6*9*4

or 2,160 bytes. If the array held 2-byte integers, 4,320 bytes would be needed. If the array held
doubles (assuming 8 bytes per double), 17,280 bytes would be required. The storage required
increases exponentially with the number of dimensions. For example, if afifth dimension of size 10
was added to the preceding array, then 172,800 bytes would be required.

In multidimensional arrays, it takes the computer time to compute each index. This means that
accessing an element in amultidimensional array can be slower than accessing an element in a
single-dimension array.

When passing multidimensional arrays into functions, you must declare all but the |eftmost
dimension. For example, if you declare array m as

int n{4][3][6][5];

Page 108

afunction, funcl(), that receives m, would look like

void funcl(int d[][3][6][5])
{

}

Y

Of course, you can include the first dimension if you like.

Indexing Pointers

Pointers and arrays are closely related. As you know, an array name without an index is a pointer to
the first element in the array. For example, consider the following array:

char p[10];

The following statements are identical:

p
&p[0]

Put another way,

p == &p[0]

evaluates to true because the address of the first element of an array is the same as the address of the
array.

As stated, an array name without an index generates a pointer. Conversely, a pointer can be indexed
asif it were declared to be an array. For example, consider this program fragment:

int *p, i[10];

p =1

p[5] = 100; /* assign using index */

(p+5) = 100; / assign using pointer arithnetic */

Both assignment statements place the value 100 in the sixth element of i. The first statement indexes
p; the second uses pointer arithmetic. Either way, the result is the same. (Chapter 5 discusses
pointers and pointer arithmetic.)

Page 109

This same concept also appliesto arrays of two or more dimensions. For example, assuming that a is
a 10-by-10 integer array, these two statements are equivalent:

a
&a[0] [0O]

Furthermore, the 0,4 element of a may be referenced two ways: either by array indexing, a[0][4], or
by the pointer, * ((int *)a+4). Similarly, element 1,2 iseither a[1][2] or *((int *)a+12). In general,
for any two-dimensiona array:

—da[j][K] isequivalent to *((base type *)at+(j *row length)
+k)

The cast of the pointer to the array into a pointer of its base type is necessary in order for the pointer
arithmetic to operate properly. Pointers are sometimes used to access arrays because pointer
arithmetic is often faster than array indexing.

A two-dimensional array can be reduced to a pointer to an array of one-dimensional arrays.
Therefore, using a separate pointer variable is one easy way to use pointers to access elements
within arow of atwo-dimensional array. The following function illustrates this technique. It will
print the contents of the specified row for the global integer array num.

int nuni10] [10];
[* ..
void pr_row(int j)
{ int *p, t;

p=(int *) &un{j] [0]; /* get address of first
element in rowj */

for(t=0; t<10; ++t) printf("%l ", *(p+t));
}

Y ou can generalize this routine by making the calling arguments the row, the row length, and a
pointer to the first array element, as shown here:

void pr_row(int j, int row.dinension, int *p)

{

int t;

Page 109

This same concept also appliesto arrays of two or more dimensions. For example, assuming that a is
a 10-by-10 integer array, these two statements are equivalent:

a
&a[0] [0O]

Furthermore, the 0,4 element of a may be referenced two ways: either by array indexing, a[0][4], or
by the pointer, * ((int *)a+4). Similarly, element 1,2 iseither a[1][2] or *((int *)a+12). In general,
for any two-dimensiona array:

—da[j][K] isequivalent to *((base type *)at+(j *row length)
+k)

The cast of the pointer to the array into a pointer of its base type is necessary in order for the pointer
arithmetic to operate properly. Pointers are sometimes used to access arrays because pointer
arithmetic is often faster than array indexing.

A two-dimensional array can be reduced to a pointer to an array of one-dimensional arrays.
Therefore, using a separate pointer variable is one easy way to use pointers to access elements
within arow of atwo-dimensional array. The following function illustrates this technique. It will
print the contents of the specified row for the global integer array num.

int nuni10] [10];
[* ..
void pr_row(int j)
{ int *p, t;

p=(int *) &un{j] [0]; /* get address of first
element in rowj */

for(t=0; t<10; ++t) printf("%l ", *(p+t));
}

Y ou can generalize this routine by making the calling arguments the row, the row length, and a
pointer to the first array element, as shown here:

void pr_row(int j, int row.dinension, int *p)

{

int t;

Page 111
Character arrays that hold strings allow a shorthand initialization that takes the form:
~ char array_name[size] = "string";

For example, this code fragment initializes str to the phrase "l like C":

char str[9] = "1 like C'

Thisisthe same aswriting

char str{9] = {"1", " ", "I, "i", "k', '"e," ', 'C, "\0},;

Because strings end with a null, you must make sure that the array you declare is long enough to
include the null. Thisiswhy str is nine characters long even though "l like C" is only eight. When
you use the string constant, the compiler automatically supplies the null terminator.

Multidimensional arrays areinitialized the same as single-dimension ones. For example, the
following initializes sgrs with the numbers 1 through 10 and their squares.

int sqrs[10] [2] = {
1, 1,
2, 4,
3, 9,
4, 16,
5, 25,
6, 36,
7, 49,
8, 64,
9, 81,
10, 100

When initializing a multidimensional array, you may add braces around the initializers for each
dimension. Thisis called subaggregate grouping. For example, here is another way to write the
preceding declaration:

int sqrs[10] [2] = {
{1, 1},
{2, 4},
{3, 9},

Page 112

{4,
{5,
{6,
{7,
{8,
{9,
{10,

16},
25},
36},
49},
64},

81}

100

When using subaggregate grouping, if you don't supply enough initializers for a given group, the
remaining members will be set to zero, automatically.

Unsized Array I nitializations

Imagine that you are using array initialization to build atable of error messages, as shown here:

char el[12]
char e2[13]
char e3[18]

"Read error\n";
""Wite error\n";
"Cannot open file\n";

Asyou might guess, it istedious to count the characters in each message manually to determine the
correct array dimension. Fortunately, you can let the compiler automatically calculate the
dimensions of the arrays. If, in an array initialization statement, the size of the array is not specified,
the compiler automatically creates an array big enough to hold al the initializers present. Thisis
called an unsized array. Using this approach, the message table becomes

char el[]
char e2[]
char e3[]

"Read error\n";
"Wite error\n";
"Cannot open file\n";

Given these initializations, this statement

printf("% has length %d\n", e2, sizeof e2)

will print

Wite error
has | ength 13

Page 113

Besides being less tedious, unsized array initialization allows you to change any of the messages
without fear of using incorrect array dimensions.

Unsized array initializations are not restricted to one-dimensional arrays. For multidimensional
arrays, you must specify all but the leftmost dimension. (The other dimensions are needed to allow
the compiler to index the array properly.) In thisway, you can build tables of varying lengths, and
the compiler automatically allocates enough storage for them. For example, the declaration of sgrs
as an unsized array is shown here:

int sqrs[] [2] = {

{1, 1),

{2, 4},

{3, 9},

{4, 16},
{5, 25},
{6, 36},
{7, 49},
{8, 64},
{9, 81},
{10, 100

The advantage of this declaration over the sized version is that you may lengthen or shorten the table
without changing the array dimensions.

Variable-Length Arrays

Asexplained earlier, in C89 array dimensions must be declared using constant expressions. Thus, in
C89 the size of an array isfixed at compile time. However, thisis not the case for C99, which adds a
powerful new feature to arrays:. variable length. In C99, you can declare an array whose dimensions
are specified by any valid expression, including those whose value is known only at run time. Thisis
called avariable-length array. However, only local arrays (that is, those with block scope or
prototype scope) can be of variable length. Here is an example of avariable-length array:

void f(int dim
{

char str[din]; /* a variable-length character array */

I* o *]
}

Page 114

Here, the size of str is determined by the value passed to f() in dim. Thus, each call to f() can result
instr being created with a different length.

One major reason for the addition of variable-length arraysto C99 is to support numeric processing.
Of coursg, it isafeature that has widespread applicability. But remember, variable-length arrays are
not supported by C89 (or by C++). We will look more closely at variable-length arrays in Part Two.

A Tic-Tac-Toe Example

The longer example that follows illustrates many of the ways that you can manipulate arrays with C.
This section develops a simple tic-tac-toe program. Two-dimensional arrays are commonly used to
simulate board game matrices.

The computer plays avery simple game. When it is the computer's turn, it uses
get_computer_move() to scan the matrix, looking for an unoccupied cell. When it finds one, it puts
an O there. If it cannot find an empty location, it reports a draw game and exits. The

get_player _move() function asks you where you want to place an X. The upper-1eft corner is
location 1,1; the lower-right corner is 3,3.

The matrix array isinitialized to contain spaces. Each move made by the player or the computer
changes a space into either an X or an O. This makes it easy to display the matrix on the screen.

Each time a move has been made, the program calls the check() function. This function returns a
space if thereis no winner yet, an X if you have won, or an O if the computer has won. It scans the
rows, the columns, and then the diagonals, looking for one that contains either all X'sor all O's.

The disp_matrix() function displays the current state of the game. Notice how initializing the
matrix with spaces ssimplified this function.

The routinesin this example all access the matrix array differently. Study them to make sure you
understand each array operation.

/* A sinple Tic Tac Toe gane. */
#i ncl ude <stdio. h>
#include <stdlib. h>

char matrix[3][3]; /* the tic tac toe matrix */

char check(void);

void init_matrix(void);

voi d get _player_nove(void);
voi d get_conput er_nmove(void);
voi d disp_matrix(void);

i nt mai n(voi d)

{
char done;
printf("This is the game of Tic Tac Toe.\n");
printf('"You will be playing against the conmputer.\n");
done ="' ';
init_matrix();
do {
disp_matrix();
get _player_nove();
done = check(); /* see if winner */
if(donel=" ") break; /* w nner!*/
get _conputer_nove ();
done = check(); /* see if w nner */
} while(done==" ");
i f(done=="X") printf("You won!'\n");
else printf("l won!!!!\n");
di sp_matrix(); /* show final positions */
return O;
}

/[* Initialize the matrix. */
void init_matrix(void)

{
int i, j;
for(i=0; i<3; i++)
for(j=0; j<3; j++) matrix[i][j] ="' ";
}

[* Get a player's move. */
voi d get _player_nove (void)
{

int x, vy;

printf("Enter X Y coordinates for your move: ");
scanf ("%% c%l", &, &),

Page 115

X--3 Y-,

if(matrix[x][yl'=" "){
printf(''Invalid nove, try again.\n");
get _player_nove();

else matrix[x][y] = "'X;

}

/* Get a nmove fromthe conputer. */
voi d get _conput er _nove(voi d)
{
int i, j;
for(i=0; i<3; i++){
for(j=0; j<3; j++)
if(matrix[i][j]==" ") break;
if(matrix[i][j]==" ") break;
}

if(i*j==9) {
printf("drawn");
exit(0);
}
el se
matrix[i][j] = '0;
}

/* Display the matrix on the screen. */
voi d disp_matrix(void)

{
int t;
for(t=0; t<3; t++) {
printf(" % | % | % ", mtrix[t][0],
matrix[t][1], matrix [t][2]);
if(t!=2) printf("\n---|---]---\n");
}
printf ("\n");
}

/[* See if there is a winner. */
char check(voi d)

Page 116

{

int i;
for(i=0; i<3; i++) /* check rows */

if(matrix[i][O]==matrix[i][1l] &&
matri x[i][0]==matrix[i][2]) return matrix[i][O];

for(i=0; i<3; i++) /* check colums */
if(matrix[O][i]==matrix[1][i] &&
matri x[O][i]==matrix[2][i]) return matrix[O0] [i];

/* test diagonals */
if(matrix[0] [O]==matrix[1]

[1] &&

matrix[1] [1] ==matrix[2][2])
return matrix[0][O0];

if(matrix[0] [2]==matrix[1]

[1] &&

}

matri x[1] [1]==matrix[2][0])
return matrix[0][2];

return ' '

Page 117

Page 119

Chapter 5—
Pointers

Page 120

The correct understanding and use of pointersis crucial to successful C programming. There are
severa reasons for this: First, pointers provide the means by which functions can modify their
calling arguments. Second, pointers support dynamic alocation. Third, pointers can improve the
efficiency of certain routines. Finally, pointers provide support for dynamic data structures, such as
binary trees and linked lists.

Pointers are one of the strongest but also one of the most dangerous featuresin C. For example, a
pointer containing an invalid value can cause your program to crash. Perhaps worsg, it is easy to use
pointers incorrectly, causing bugs that are very difficult to find. Because of their importance and
their potential for abuse, this chapter examines the subject of pointersin detail.

What Are Pointers?

A pointer is avariable that holds a memory address. This address is the location of another object
(typically another variable) in memory. For example, if one variable contains the address of another
variable, the first variable is said to point to the second. Figure 5-1 illustrates this situation.

Memory Variable in

address memory
1000 1003
1001
1002
1003
1004
1005
1006
-
-
*
Memory
Figure 5-1

Onevariable points
to another

Page 121

Pointer Variables

If avariableis going to be a pointer, it must be declared as such. A pointer declaration consists of a
base type, an *, and the variable name. The general form for declaring a pointer variableis

type * name;

where type is the base type of the pointer and may be any valid type. The name of the pointer
variable is specified by name.

The base type of the pointer defines the type of object to which the pointer will point. Technicaly,
any type of pointer can point anywhere in memory. However, all pointer operations are done relative
to the pointer's base type. For example, when you declare a pointer to be of type int *, the compiler
assumes that any address that it holds points to an integer—whether it actually does or not. (That is,
anint * pointer always "thinks" that it points to an int object, no matter what that piece of memory
actually contains.) Therefore, when you declare a pointer, you must make sure that itstype is
compatible with the type of object to which you want to point.

The Pointer Operators

The pointer operators were discussed in Chapter 2. We will review them here. There are two pointer
operators. * and & . The & isaunary operator that returns the memory address of its operand.
(Remember, a unary operator only requires one operand.) For example,

m = &count;

placesinto m the memory address of the variable count . This address is the computer's internal
location of the variable. It has nothing to do with the value of count . Y ou can think of & as
returning "the address of." Therefore, the preceding assignment statement can be verbalized as"m
receives the address of count ."

To understand the above assignment better, assume that the variable count uses memory location
2000 to store its value. Also assume that count has avalue of 100. Then, after the preceding
assignment, m will have the value 2000.

The second pointer operator, *, isthe complement of &. It isaunary operator that returns the value
located at the address that follows. For example, if m contains the memory address of the variable
count,

q=*m

places the value of count into g. Thus, g will have the value 100 because 100 is stored at location
2000, which is the memory address that was stored in m. Y ou can think of * as"at address." In this
case, the preceding statement can be verbalized as"q receives the value at addressm."

Page 122

Pointer Expressions

In general, expressions involving pointers conform to the same rules as other expressions. This
section examines a few special aspects of pointer expressions, such as assignments, conversions, and
arithmetic.

Pointer Assignments

Y ou can use a pointer on the right-hand side of an assignment statement to assign its value to
another pointer. When both pointers are the same type, the situation is straightforward. For example:

#i ncl ude <stdi o. h>

i nt mai n(voi d)
{
int x = 99;

int *pl, *p2;

&X .

pl ;
pl;

p2

/[* print the value of x twice */
printf(''Values at pl and p2: % %
din", *pl, *p2);

/* print the address of x twice */
printf("Addresses pointed to by pl and p2: % %", pl, p2);

return O;

}

After the assignment sequence

&X .

pl ;
pl;

p2

pl and p2 both point to x. Thus, both pl and p2 refer to the same object. Sample output from the
program, which confirmsthis, is shown here.

Val ues at pl and p2: 99 99
Addr esses pointed to by pl and p2: 0063FDFO 0063FDFO

Page 123

Notice that the addresses are displayed by using the % p printf() format specifier, which causes
printf() to display an address in the format used by the host computer.

It isalso possible to assign a pointer of one type to a pointer of another type. However, doing so
involves a pointer conversion, which is the subject of the next section.

Pointer Conversions

One type of pointer can be converted into another type of pointer. There are two general categories
of conversion: those that involve void * pointers, and those that don't. Each is examined here.

InC, it ispermissible to assign a void * pointer to any other type of pointer. It is also permissible to
assign any other type of pointer to a void * pointer. A void * pointer is called a generic pointer. The
void * pointer is used to specify a pointer whose base type is unknown. The void * type alows a
function to specify a parameter that is capable of receiving any type of pointer argument without
reporting atype mismatch. It isalso used to refer to raw memory (such as that returned by the
malloc() function described later in this chapter) when the semantics of that memory are not
known. No explicit cast is required to convert to or from avoid * pointer.

Except for void *, al other pointer conversions must be performed by using an explicit cast.
However, the conversion of one type of pointer into another type may create undefined behavior.
For example, consider the following program that attempts to assign the value of x toy, through the
pointer p. This program compiles without error, but does not produce the desired result.

#i ncl ude <stdi o. h>

int main(void)
{
double x = 100.1, v;
int *p;
/* The next statenent causes p (which is an
i nteger pointer) to point to a double. */
p = (int *) &x;

/* The next statenent does not operate as expected. */
y = *p; /* attenpt to assign y the value x through p */

/* The follow ng statement won't output 100.1. */
printf('' The (incorrect) value of x is: %", y);

return O;

Page 124

Notice that an explicit cast is used when assigning the address of x (whichisimplicitly adouble*
pointer) to p, whichisan int * pointer. While this cast is correct, it does not cause the program to
act asintended (at least not in most environments). To understand the problem, assume 4-byte ints
and 8-byte doubles. Because p is declared as an integer pointer, only 4 bytes of information will be
transferred to y by this assignment statement,

y =7*p;

not the 8 bytes that make up a double Thus, even though p isavalid pointer, the fact that it points
to a doubledoes not change the fact that operations on it expect int values. Thus, the use to which p
isputisinvalid.

The preceding example reinforces the rule stated earlier: Pointer operations are performed relative to
the base type of the pointer. While it istechnically permissible for a pointer to point to some other
type of object, the pointer will still "think" that it is pointing to an object of its base type. Thus,
pointer operations are governed by the type of the pointer, not the type of the object being pointed
to.

One other pointer conversion is allowed: Y ou can convert an integer into a pointer or a pointer into
an integer. However, you must use an explicit cast, and the result of such a conversionis
implementation defined and may result in undefined behavior. (A cast is not needed when
converting zero, which isthe null pointer.)

NOTE

InC++,inall casesitisillegal to convert one type of pointer into another type of
pointer without the use of an explicit type cast. Thisincludes void * pointer
conversions, too. For thisreason, many C programmers cast all pointer conversions
so that their code is also compatible with C++.

Pointer Arithmetic

There are only two arithmetic operations that you can use on pointers. addition and subtraction. To
understand what occurs in pointer arithmetic, let p1 be an integer pointer with a current value of
2000. Also, assume ints are 2 byteslong. After the expression

pl++;

pl contains 2002, not 2001. The reason for thisisthat each time pl isincremented, it will point to
the next integer. The same is true of decrements. For example, assuming that pl has the value 2000,
the expression

pl--;

causes pl to have the value 1998.

Page 125

Generalizing from the preceding example, the following rules govern pointer arithmetic. Each time a
pointer isincremented, it points to the memory location of the next element of its base type. Each
timeit is decremented, it points to the location of the previous element. When applied to char
pointers, thiswill appear as "normal™ arithmetic because a char object is always 1 byte long no
matter what the environment. All other pointers will increase or decrease by the length of the data
type they point to. This approach ensures that a pointer is always pointing to an appropriate element
of its base type. Figure 5-2 illustrates this concept.

Y ou are not limited to the increment and decrement operators. For example, you may add or subtract
integersto or from pointers. The expression

pl = pl + 12;

makes pl point to the 12th element of pl's type beyond the one it currently pointsto.

Besides addition and subtraction of a pointer and an integer, only one other arithmetic operation is
allowed: Y ou can subtract one pointer from another in order to find the number of objects of their
base type that separate the two. All other arithmetic operations are prohibited. Specifically, you
cannot multiply or divide pointers; you cannot add two pointers; you cannot apply the bitwise
operators to them; and you cannot add or subtract type float or double to or from pointers.

char *ch = (char *) 3000;
int *i = (int *) 3000;

ch —» W0
el
ch+l—» 001 e
ch+2—* 3002 -
—i+]
ch+3— 3003
chd —+ M
l—i+2
ch+5—* 05 —

Memory

Figure 5-2
All pointer arithmeticis relative
toits base type (assume
2-byte integers)

Page 126
Pointer Comparisons

Y ou can compare two pointersin arelational expression. For instance, given two pointers p and g,
the following statement is perfectly valid:

if(p <q) printf("p points to |ower nenory than g\n");

Generally, pointer comparisons are useful only when two pointers point to a common object, such as
an array. As an example, a set of stack functions are devel oped that store and retrieve integer values.
As most readers will know, astack isalist that usesfirst-in, last-out accessing. It is often compared
to astack of plates on atable—the first one set down isthe last one to be used. Stacks are used
frequently in compilers, interpreters, spreadsheets, and other system-related software. To create a
stack, you need two functions: push() and pop(). The push() function places values on the stack,
and pop() takes them off. These routines are shown here with a simple main(') function to drive
them. The program puts the values you enter into the stack. If you enter O, avaueis popped from
the stack. To stop the program, enter —1.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

#defi ne SIZE 50

voi d push(int i);
i nt pop(void);

int *tos, *pl, stack[SlIZE];

i nt mai n(voi d)
{

i nt val ue;

tos = stack; /* tos points to the top of stack */
pl = stack; /* initialize pl */

do {
printf('"Enter value: ");
scanf ("%", &val ue);

i f(value !'= 0) push(val ue);
el se printf("value on top is %\ n", pop());

} while(value I'= -1);

return O;

}

void push(int i)

{
pl++;
if(pl == (tos+SIZE)) {
printf(''Stack Overflow. \n");
exit(1l);
}
*pl = i;

}
i nt pop(void)
{

if(pl == tos) {

exit(1l);
}
pl--;
return *(pl+l);
}

printf("Stack Underflow. \n");

Page 127

Y ou can see that memory for the stack is provided by the array stack. The pointer pl is set to point
to thefirst element in stack. The p1 variable accesses the stack. The variable tos holds the memory
address of the top of the stack. It isused to prevent stack overflows and underflows. Once the stack
has been initialized, push() and pop() can be used. Both the push(') and pop() functions perform a
relational test on the pointer pl to detect limit errors. In push(), pl istested against the end of the
stack by adding SIZE (the size of the stack) to tos. This prevents an overflow. In pop(), pl is

checked against tos to be sure that a stack underflow has not occurred.

In pop(), the parentheses are necessary in the return statement. Without them, the statement would

look like this,

return *pl+1;

which would return the value at location pl plus one, not the value of the location p1+1.

Page 128

Pointersand Arrays

Thereis aclose relationship between pointers and arrays. Consider this program fragment:

char str[80], *pil;
pl = str;

Here, p1 has been set to the address of the first array element in str. To access the fifth element in
str, you could write

str[4]

or

*(p1+4)

Both statements will return the fifth element. Remember, arrays start at 0. To access the fifth
element, you must use 4 to index str. You also add 4 to the pointer pl to access the fifth element
because pl currently pointsto the first element of str. (Recall that an array name without an index
returns the starting address of the array, which isthe address of the first element.)

The preceding example can be generalized. In essence, C provides two methods of accessing array
elements: pointer arithmetic and array indexing. Although the standard array-indexing notation is
sometimes easier to understand, pointer arithmetic can be faster. Since speed is often a consideration
in programming, C programmers often use pointers to access array elements.

These two versions of putstr()—one with array indexing and one with pointers—illustrate how you
can use pointersin place of array indexing. The putstr() function writes a string to the standard
output device one character at atime.

/* Index s as an array. */
voi d putstr(char *s)

{

register int t;

for(t=0; s[t]; ++t) putchar(s[t]);
}

/* Access s as a pointer. */
voi d putstr(char *s)

whi l e(*s) putchar(*s++);
}

Page 129

Most professiona C programmers would find the second version easier to read and understand.
Depending upon the compiler, it might also be more efficient. In fact, the pointer version is the way
routines of this sort are commonly writtenin C.

Arrays of Pointers

Pointers can be arrayed like any other data type. The declaration for an int pointer array of size 10 is

int *x[10];

To assign the address of an integer variable called var to the third element of the pointer array, write

x[2] = &var;

To find the value of var, write

*x[2]

If you want to pass an array of pointersinto afunction, you can use the same method that you use to
pass other arrays. Simply call the function with the array name without any subscripts. For example,
afunction that can receive array x looks like this:

void display_array(int *q[])

{
int t;

for(t=0; t<10; t++)
printf('"% ", *q[t]);

Remember, q is not a pointer to integers, but rather a pointer to an array of pointersto integers.
Therefore you need to declare the parameter q as an array of integer pointers, as just shown. Y ou
cannot declare q simply as an integer pointer because that is not what it is.

Pointer arrays are often used to hold pointers to strings. For example, you can create a function that
outputs an error message given itsindex, as shown here:

void syntax_error(int num

{

static char *err[] ={

Page 130

"Cannot Open File\n",
'""Read Error\n",
"Wite Error\n",
"Medi a Failure\n"

b
printf("%", err[nuni);

}

The array err holds a pointer to each error string. This works because a string constant used in an
expression (in this case, an initialization) produces a pointer to the string. The printf() function is
called with a character pointer that points to the error message whose index is passed to the function.
For example, if num is passed a 2, the message Write Error isdisplayed.

Asapoint of interest, note that the command line argument argv is an array of character pointers.
(See Chapter 6.)

Multiple Indirection

Y ou can have a pointer point to another pointer that points to the target value. This situation is called
multiple indirection, or pointersto pointers Pointers to pointers can be confusing. Figure 5-3 helps
clarify the concept of multiple indirection. Asyou can see, the value of anormal pointer isthe
address of the object that contains the desired value. In the case of a pointer to a pointer, the first
pointer contains the address of the second pointer, which points to the object that contains the
desired value.

Multiple indirection can be carried on to whatever extent desired, but more than a pointer to a
pointer israrely needed. In fact, excessive indirection is difficult to follow and prone to conceptual
errors.

NOTE

Do not confuse multiple indirection with high-level data structures, such as linked
lists, that use pointers. These are two fundamentally different concepts.

A variable that is a pointer to a pointer must be declared as such. Y ou do this by placing an
additional asterisk in front of the variable name. For example, the following declaration tells the
compiler that newbalance is apointer to a pointer of type float:

fl oat **newbal ance;

Y ou should understand that newbalance is not a pointer to a floating-point number but rather a
pointer to a float pointer.

Pointer

addpess

Page 131

Pointer Variahle

address *

value

Single Indirection

Pointer Wariable

o address value

Multiple Indirection

Figure 5-3

Single and multiple indirection

To access the target value indirectly pointed to by a pointer to a pointer, you must apply the asterisk

operator twice, asin this example:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{

int x, *p, **q;

X

p
q

10;
&x;
&p;

printf("od", **q);

return O;

}

/* print the value of x */

Here, p isdeclared as a pointer to an integer and g as a pointer to a pointer to an integer. The call to
printf() printsthe number 10 on the screen.

Initializing Pointers

After anonstatic, local pointer is declared but before it has been assigned a value, it contains an
unknown value. (Global and static local pointers are automatically initialized to null.) Should you
try to use the pointer before giving it avalid value, you will probably crash your program—and
possibly your computer's operating system as well—a very nasty type of error!

Page 132

Thereis an important convention that most C programmers follow when working with pointers: A
pointer that does not currently point to a valid memory location is given the value null (whichis
zero). Null is used because C guarantees that no object will exist at the null address. Thus, any
pointer that is null implies that it points to nothing and should not be used.

One way to give apointer anull value isto assign zero to it. For example, the following initializes p
to null.

char *p = 0;

Additionally, many of C's headers, such as<stdio.h>, define the macro NULL , whichisanull
pointer constant. Therefore, you will often see a pointer assigned null using a statement such asthis:

p = NULL;

However, just because a pointer has anull value, it is not necessarily "safe." The use of null to
indicate unused pointersis simply a convention that programmers follow. It is not arule enforced by
the C language. For example, the following sequence, athough incorrect, will still be compiled
without error:

int *p = 0;
p = 10; / wong! */

In this case, the assignment through p causes an assignment at 0, which will usually cause a program
crash.

Because anull pointer is assumed to be unused, you can use the null pointer to make many of your
pointer routines easier to code and more efficient. For example, you can use a null pointer to mark
the end of a pointer array. A routine that accesses that array knows that it has reached the end when
it encounters the null value. The search() function shown in the following program illustrates this
type of approach. Given alist of names, search() determines whether a specified nameisin that
list.

#i ncl ude <stdio. h>
#i ncl ude <string. h>

i nt search(char *p[], char *nane);
char *names[] = {
"Herb",

"Rex"

Page 133

"Denni s",
"*John "
NULL}; /* null pointer constant ends the list */

i nt mai n(voi d)

i f(search(names, "Dennis") != -
1)
printf
("Dennis is in list.\n");

i f(search(names, "Bill") == -1)
printf("Bill not found.\n");

return O;

}

/* Look up a nane. */
int search(char *p[], char *nane)

{

register int t;

for(t=0; p[t]; ++t)
if(!'strcmp(p[t], nane)) return t;

return -1; /* not found */

The search() function is passed two parameters. The first, p, isan array of char * pointers that
point to strings containing names. The second, name, is a pointer to a string that points to the name
being sought. The search() function searches through the list of pointers, seeking a string that
matches the one pointed to by name The for loop inside search() runs until either amatch isfound
or anull pointer is encountered. Assuming the end of the array is marked with a null, the condition
controlling the loop is false when the end of the array isreached. That is, p[t] will be false when p[t]
isnull. In the example, this occurs when the name Bill istried, sinceit isnot in the list of names.

C programmers commonly initialize char * pointers to point to string constants, as the previous
example shows. To understand why this works, consider the following statement:

char *p = "hello world";

Asyou can see, p isapointer, not an array. Thisraises a question: Where is the string constant
"hello world" being held? Since p isnot an array, it can't be stored inp. Y€,

Page 134

the string is obviously being stored somewhere. The answer to the question is found in theway C
compilers handle string constants. The C compiler creates what is called a string table, which stores
the string constants used by the program. Therefore, the preceding declaration statement places the
address of "hello world", as stored in the string table, into the pointer p. Throughout a program, p
can be used like any other string. For example, the following program is perfectly valid:

#i ncl ude <stdio. h>
#i ncl ude <string. h>

char *p = "hello world";
i nt mai n(voi d)
{
register int t;
/* print the string forward and backwards */
printf(p);
for(t=strlen(p)-1; t>-1; t--) printf("%", p[t]);

return O;

Pointer sto Functions

A particularly confusing yet powerful feature of C is the function pointer. A function has a physical
location in memory that can be assigned to a pointer. This addressis the entry point of the function
and it is the address used when the function is called. Once a pointer points to afunction, the
function can be called through that pointer. Function pointers also alow functions to be passed as
arguments to other functions.

Y ou obtain the address of a function by using the function's name without any parentheses or
arguments. (Thisissimilar to the way an array's address is obtained when only the array name,
without indexes, is used.) To see how thisis done, study the following program, which compares
two strings entered by the user. Pay close attention to the declarations of check() and the function
pointer p, inside main().

#i ncl ude <stdio. h>
#i ncl ude <string. h>

voi d check(char *a, char *b,
int (*cnp)(const char *, const char *));

Page 135

i nt mai n(voi d)

char s1[80], s2[80];
int (*p)(const char *, const char *); /* function pointer */

p = strcnp; /* assign address of strcnp to p */

printf("Enter two strings.\n");
gets(sl);
gets(s2);

check(sl, s2, p); /* pass address of strcnp via p */

return O;

}

voi d check(char *a, char *b
int (*cnp) (const char *, const char *))
{

printf(''Testing for equality.\n");

if(!'(*cmp)(a, b)) printf("Equal");
el se printf("Not Equal");

}

Let'slook closely at this program. First, examine the declaration for p in main(). It is shown here:

int (*p)(const char *, const char *);

This declaration tells the compiler that p is apointer to afunction that has two const char *
parameters, and returns an int result. The parentheses around p are necessary in order for the
compiler to properly interpret this declaration. Y ou must use a similar form when declaring other
function pointers, although the return type and parameters of the function may differ.

Next, examine the check() function. It declares three parameters. two character pointers, a and b,
and one function pointer, cmp. Notice that the function pointer is declared using the same format as
was p inside main(). Thus, cmp is able to receive a pointer to a function that takes two const char
* arguments and returns an int result. Like the declaration for p, the parentheses around the *cmp
are necessary for the compiler to interpret this statement correctly.

When the program begins, it assigns p the address of strcmp(), the standard string comparison
function. Next, it prompts the user for two strings, and then it passes

Page 136

pointers to those strings along with p to check(), which compares the strings for equality. Inside
check(), the expression

(*cnp) (a, b)

calsstremp(), which is pointed to by cmp, with the arguments a and b. The parentheses around
*cmp are necessary. Thisis oneway to cal afunction through a pointer. A second, ssmpler syntax,
as shown here, can also be used.

cnp(a, b);

The reason that you will frequently see the first styleisthat it tips off anyone reading your code that
afunction is being called through a pointer (that is, that cmp is afunction pointer, not the name of a
function). Also, the first style was the form originally specified by C.

Note that you can call check() by using strcmp() directly, as shown here:

check(sl, s2, strcmp);

This eliminates the need for an additional pointer variable, in this case.

Y ou may wonder why anyone would write a program like the one just shown. Obviously, nothing is
gained, and significant confusion is introduced. However, at timesit is advantageous to pass
functions as parameters or to create an array of functions. For example, when an interpreter is
written, the parser (the part that processes expressions) often calls various support functions, such as
those that compute mathematical operations (sine, cosine, tangent, etc.), perform I/O, or access
system resources. Instead of having alarge switch statement with all of these functionslisted init,
an array of function pointers can be created. In this approach, the proper function is selected by its
index.

Y ou can get a better idea of the value of function pointers by studying the expanded version of the
previous example, shown next. In this version, check () can be made to check for either alphabetical
equality or numeric equality by simply calling it with adifferent comparison function. When
checking for numeric equality, the string "0123" will compare equal to "123", even though the
strings, themselves, differ.

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

voi d check(char *a, char *b,
int (*cnp)(const char *, const char *));
i nt conmpval ues(const char *a, const char *b);

Page 136

pointers to those strings along with p to check(), which compares the strings for equality. Inside
check(), the expression

(*cnp) (a, b)

calsstremp(), which is pointed to by cmp, with the arguments a and b. The parentheses around
*cmp are necessary. Thisis oneway to cal afunction through a pointer. A second, ssmpler syntax,
as shown here, can also be used.

cnp(a, b);

The reason that you will frequently see the first styleisthat it tips off anyone reading your code that
afunction is being called through a pointer (that is, that cmp is afunction pointer, not the name of a
function). Also, the first style was the form originally specified by C.

Note that you can call check() by using strcmp() directly, as shown here:

check(sl, s2, strcmp);

This eliminates the need for an additional pointer variable, in this case.

Y ou may wonder why anyone would write a program like the one just shown. Obviously, nothing is
gained, and significant confusion is introduced. However, at timesit is advantageous to pass
functions as parameters or to create an array of functions. For example, when an interpreter is
written, the parser (the part that processes expressions) often calls various support functions, such as
those that compute mathematical operations (sine, cosine, tangent, etc.), perform I/O, or access
system resources. Instead of having alargeswitch statement with all of these functionslisted init,
an array of function pointers can be created. In this approach, the proper function is selected by its
index.

Y ou can get a better idea of the value of function pointers by studying the expanded version of the
previous example, shown next. In this version, check () can be made to check for either alphabetical
equality or numeric equality by simply calling it with adifferent comparison function. When
checking for numeric equality, the string "0123" will compare equal to "123", even though the
strings, themselves, differ.

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

voi d check(char *a, char *b,
int (*cnp)(const char *, const char *));
i nt conmpval ues(const char *a, const char *b);

i nt mai n(voi d)
char s1[80], s2[80];

printf ("Enter two values or two strings.\n");
gets (sl);
gets(s2);

if(isdigit(*sl)) {
printf('' Testing values for equality.\n");
check(sl, s2, conpval ues);

}

el se {
printf("Testing strings for equality.\n");
check(sl, s2, strcnp);

}

return O;

}

voi d check(char *a, char *b,
int (*cnp)(const char *, const char *))

if(!(*cmp)(a, b)) printf("Equal");
el se printf("Not Equal");

}

i nt conmpval ues(const char *a, const char *b)

i f(atoi(a)==atoi(b)) return O;
el se return 1;

}

Page 137

In this program, if you enter a string that begins with adigit, compvalues() is passed to check().
Otherwise, stremp() is used. Since check() callsthe function that it is passed, it can use a different

comparison function in different cases. Two sample program runs are shown here:

Enter two values or two strings.
Test

Test

Testing strings for equality.

Page 139

region of memory alocated from the heap. If there is not enough available memory to satisfy the
malloc() request, an allocation failure occurs and malloc() returns anull.

The code fragment shown here allocates 1,000 bytes of contiguous memory:

char *p;
p = malloc(1000); /* get 1000 bytes */

After the assignment, p pointsto the first of 1,000 bytes of free memory.

In the preceding example, notice that no type cast is used to assign the return value of malloc() to p.
Asexplained, avoid * pointer is automatically converted to the type of the pointer on the left side of
an assignment. (However, this automatic conversion does not occur in C++, and an explicit type cast
is needed.)

The next example allocates space for 50 integers. Notice the use of sizeof to ensure portability.

int *p;
p = malloc(50*sizeof (int));

Since the heap is not infinite, whenever you allocate memory, you must check the value returned by
malloc() to make surethat it isnot null before using the pointer. Using a null pointer will almost
certainly crash your program. The proper way to allocate memory and test for avalid pointer is
illustrated in this code fragment:

p = malloc(100);

if(tp) {
printf(''Qut of nmenory.\n");
exit (1);

}

Of course, you can substitute some other sort of error handler in place of the call to exit(). Just
make sure that you do not use the pointer p if it isnull.

The free() function is the opposite of malloc() in that it returns previously allocated memory to the
system. Once the memory has been freed, it may be reused by a subsequent call to malloc(). The
function freg(') hasthis prototype:

~void freg(void *p);

Here, p isapointer to memory that was previousy allocated using malloc(). It iscritical that you
never call freg()) with an invalid argument; this will damage the allocation system.

C's dynamic alocation subsystem is used in conjunction with pointers to support a variety of
Important programming constructs, such as linked lists and binary trees. Several examples of these
areincluded in Part Four. Another important use of dynamic allocation is discussed next:
dynamically alocated arrays.

Page 140
Dynamically Allocated Arrays

Sometimes you will want to allocate memory using malloc(), but operate on that memory asif it
were an array, using array indexing. In essence, you may want to create a dynamically allocated
array. Since any pointer can be indexed asif it were an array, this presents no trouble. For example,
the following program shows how you can use a dynamically allocated array to hold a one-
dimensional array—in this case, astring.

/* Al'locate space for a string dynam cally, request user
i nput, and then print the string backwards. */

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <string. h>

i nt mai n(voi d)

{
char *s;
register int t;

s = mal | oc(80);

if(ls) {
printf('' Menory request failed.\n");
exit (1);

}

gets(s);

for(t=strlen(s)-I; t>=0; t--) putchar(s[t]);
free(s);

return O;

As the program shows, before itsfirst use, sistested to ensure that the allocation request succeeded
and that avalid pointer was returned by malloc(). Thisis absolutely necessary to prevent accidental
use of anull pointer. Notice how the pointer sis used in the call to gets() and then indexed as an
array to print the string backwards.

Y ou can also dynamically allocate multidimensional arrays. To do so, you must declare a pointer
that specifies all but the leftmost array dimension. To see how this works, study the following
example, which builds atable of the numbers 1 through 10 raised to their first, second, third, and
fourth powers.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

int pw(int a, int b);

i nt mai n(voi d)

{
/* Declare a pointer to an array that has 10
ints in each row */

int (*p)[10];
register int i, j;

/* allocate menory to hold a 4 x 10 array */
p = mall oc(40*sizeof (int));

if(tp) {
printf('' Menory request failed.\n");
exit (1);
}
for(j=l; j<it; j++)
for(i=l; i<5; i++) pli-lI][j-I] =pw(j, i);
for(j=l; j<il; j++) {
for(i=l; i<b; i++) printf("9dod ", p[i-1][]-
1)
printf ("\n");
}
return O;

}

/* Raise an integer to the specified power. */
pw(int a, int b)
{

register int t=l

for(; b; b--) t = t*a;
return t;

}

Page 141

Page 142

The output produced by this program is shown here.

1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256
5 25 125 625
6 36 216 1296
7 49 343 2401
8 64 512 4096
9 81 729 6561
10 100 1000 10000

In main(), the pointer p is declared like this:

int (*p)[10];

The parentheses around * p are necessary. This declaration states that p is a pointer to an array of 10
integers. That is, its base typeis a 10-int array. When p isincremented, it will point to the start of
the next 10 integers, when decremented, p will point to the previous 10 integers. Thus, p is a pointer
to atwo-dimensional integer array that has 10 elementsin each row. This meansthat p can be
indexed as atwo-dimensional array, as the program shows. The only difference is that the storage
for the array is allocated manually using the malloc() statement, rather than automatically using a
normal array declaration statement.

One final point: As has been mentioned, in C++ you must cast all pointer conversions. Therefore, if
you want to make the preceding program compatible with both C and C++, you must cast the
pointer returned by malloc(), as shown here:

p = (int (*)[10]) malloc(40*sizeof(int));

Asexplained earlier, many C programmers cast all pointer conversions for the sake of compatibility
with C++.

restrict-Qualified Pointers

The C99 standard has added a new type qualifier that applies only to pointers: restrict. Pointers
qualified by restrict are discussed in detail in Part Two, but a brief description is given here.

A pointer qualified by restrict isinitially the only means by which the object it pointsto is accessed.
Access to the object by another pointer can occur only if the second pointer is based on the first.
Thus, access to the object is restricted to expressions based on the restrict-qualified pointer.
Pointers qualified by restrict are primarily used as

Page 143

function parameters or to point to memory allocated viamalloc(). By qualifying a pointer with
restrict, the compiler is better able to optimize certain types of routines. For example, if afunction
specifiestwo restrict-qualified pointer parameters, then the compiler can assume that the pointers
point to different (that is, non-overlapping) objects. The restrict qualifier does not change the
semantics of a program.

Problemswith Pointers

Nothing will get you into more trouble than awild pointer! Pointers are amixed blessing. They give
you tremendous power, but when a pointer is used incorrectly, or contains the wrong value, it can be
avery difficult bug to find.

An erroneous pointer is difficult to find because the pointer, by itself, is not the problem. The
trouble starts when you access an object through that pointer. In short, when you attempt to use a
bad pointer, you are reading or writing to some unknown piece of memory. If you read from it, you
will get agarbage value, which will probably cause your program to malfunction. If you writeto it,
you might be writing over other pieces of your code or data. In either case, the problem might not
show up until later in the execution of your program and may lead you to look for the bug in the
wrong place. There may be little or no evidence to suggest that the pointer is the original cause of
the problem. Programmers lose sleep over this type of bug time and time again.

Because pointer errors are so troublesome, you should, of course, do your best never to generate
one. To help you avoid them, afew of the more common errors are discussed here. The classic
example of apointer error isthe uninitialized pointer. Consider this program:

/* This programis wong. */
i nt mai n(voi d)

{

p = x; [error, p not initialized */

This program assigns the value 10 to some unknown memory location. Here iswhy. Since the
pointer p has never been given avalue, it contains an unknown value when the assignment *p = x
takes place. This causes the value of x to be written to some unknown memory location. This type of
problem often goes unnoticed when the program is small because the odds are in favor of p
containing a"safe" address—one that is not in your code, data area, or operating system. However, as
your program grows, the probability increases of p pointing to something vital. Eventually, your
program stops working. In this simple example, most compilers will issue awarning

Page 144

message stating that you are attempting to use an uninitialized pointer, but the same type of error
can occur in more roundabout ways that the compiler can't detect.

A second common error is caused by a simple misunderstanding of how to use a pointer. Consider
the following:

/* This programis wong. */
#i ncl ude <stdio. h>

i nt mai n(voi d)

{

int x, *p;

X
p

10;
X3

printf("%", *p);

return O;

}

The call to printf() does not print the value of x, which is 10, on the screen. It prints some unknown
value because the assignment

p =X

iswrong. That statement assigns the value 10 to the pointer p. However, p is supposed to contain an
address, not avalue. To correct the program, write

p = &;

Aswith the earlier error, most compilers will issue at least a warning message when you attempt to
assign x to p. But as before, this error can manifest itself in a more subtle fashion which the
compiler can't detect.

Another error that sometimes occurs is caused by incorrect assumptions about the placement of
variablesin memory. In general, you cannot know where your data will be placed in memory, or
whether it will be placed there the same way again, or whether different compilerswill treat it in the
same way. For these reasons, making any comparisons between pointers that do not point to a
common object may yield unexpected results. For example,

char s[80], y[80];
char *pl, *p2;

Page 145

pl S,
p2 =y;
if(pl < p2)

iIsgeneraly an invalid concept. (In very unusua situations, you might use something like thisto
determine the relative position of the variables. But thiswould be rare.)

A related error results when you assume that two adjacent arrays may be indexed as one by simply
incrementing a pointer across the array boundaries. For example:

int first[10], second[10];
int *p, t;

p = first;
for(t=0; t<20; ++t) *p++ = t;

Thisisnot agood way to initialize the arrays first and second with the numbers 0 through 19. Even
though it may work on some compilers under certain circumstances, it assumes that both arrays will
be placed back to back in memory with first first. This may not always be the case.

The next program illustrates a very dangerous type of bug. Seeif you can find it.

/* This program has a bug. */
#i ncl ude <string. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)

{
char *pl;
char s[80];

pl = s;
do {
gets(s); /* read a string */
/* print the deciml equival ent of each
character */
while(*pl) printf('" %", *pl++);
} while(strcnp(s, "done"));

return O;

Page 146

This program uses p1 to print the ASCII values associated with the characters contained in s. The
problem is that pl is assigned the address of sonly once, outside the loop. The first time through the
loop, pl pointsto the first character in s. However, the second time through, it continues where it
left off becauseit is not reset to the start of s. This next character may be part of the second string,
another variable, or a piece of the program! The proper way to write this program is

/* This programis now correct. */
#i ncl ude <string. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)

{
char *pl;
char s[80];

do {
pl = s; /* reset pl to beginning of s */
gets(s); /* read a string */
/* print the deciml equival ent of each
character */
while(*pl) printf('" %", *pl++);
} while(strcnp(s, "done"));

return O;

Here, each time the loop iterates, pl is set to the start of the string. In general, you should remember
to reinitialize a pointer if it isto be reused.

The fact that handling pointersincorrectly can cause tricky bugsis no reason to avoid using them.
Just be careful, and make sure that you know where each pointer is pointing before you useit.

Page 147

Chapter 6—
Functions

Page 148

Functions are the building blocks of C and the place where all program activity occurs. This chapter
examines their features, including function arguments, return values, prototypes, and recursion.

The General Form of a Function
The general form of afunction i<

ret-type function-name(parameter list)

body of the function
}

The ret-type specifies the type of datathat the function returns. A function may return any type of
data except an array. The parameter list isacomma-separated list of variable names and their
associated types. The parameters receive the values of the arguments when the functionis called. A
function can be without parameters, in which case the parameter list is empty. An empty parameter
list can be explicitly specified as such by placing the keyword void inside the parentheses.

In variable declarations, you can declare severa variables to be of the same type by using a comma
separated list of variable names. In contrast, al function parameters must be declared individually,
each including both the type and name. That is, the parameter declaration list for a function takes
this general form:

~ f(type varnamel, type varname2, . . . , type varnameN)

For example, here are a correct and an incorrect function parameter declaration:

f(int i, int k, int j) /* correct */
f(int i, k, float j) /* wong, k nmust have its own type specifier */

Understanding the Scope of a Function

The scope rules of alanguage are the rules that govern whether a piece of code knows about or has
access to another piece of code or data. The scopes defined by C were described in Chapter 2. Here
we will look more closely at one specific scope: the one defined by a function.

Each function is adiscrete block of code. Thus, afunction defines ablock scope. This means that a
function's code is private to that function and cannot be accessed by any statement in any other
function except through a call to that function. (For instance, you cannot use goto to jump into the
middle of another function.) The code that constitutes the body of afunction is hidden from the rest
of the program, and unlessiit uses global variables, it can neither affect nor be affected by other parts
of the

Page 149

program. Stated another way, the code and data defined within one function cannot interact with the
code or data defined in another function because the two functions have different scopes.

Variablesthat are defined within afunction are local variables. A local variable comesinto
existence when the function is entered and is destroyed upon exit. Thus, alocal variable cannot hold
its value between function calls. The only exception to this rule is when the variable is declared with
the static storage class specifier. This causes the compiler to treat the variable asif it were aglobal
variable for storage purposes, but limit its scope to the function. (See Chapter 2 for additional
information on global and local variables.)

The formal parameters to afunction also fall within the function's scope. This means that a
parameter is known throughout the entire function. A parameter comes into existence when the
functionis called and is destroyed when the function is exited.

All functions have file scope. Thus, you cannot define a function within afunction. Thisiswhy Cis
not technically a block-structured language.

Function Arguments

If afunction isto accept arguments, it must declare the parameters that will receive the values of the

arguments. As shown in the following function, the parameter declarations occur after the function
name.

/* Return 1 if c is part of string s; 0 otherw se. */
int is_in(char *s, char c)

while (*s)
if(*s==c) return 1;
el se s++;

return O;

}

Thefunctionis_in() hastwo parameters. sand c. Thisfunction returns 1 if the character c is part of
the string s; otherwise, it returns 0.

Even though parameters perform the special task of receiving the value of the arguments passed to
the function, they behave like any other local variable. For example, you can make assignmentsto a
function's formal parameters or use them in an expression.

Call by Value, Call by Reference

In acomputer language there are two ways that arguments can be passed to a subroutine. Thefirst is
call by value. This method copies the value of an argument intc

Page 150

the formal parameter of the subroutine. In this case, changes made to the parameter have no effect
on the argument.

Call by reference is the second way of passing arguments to a subroutine. In this method, the
address of an argument is copied into the parameter. Inside the subroutine, the address is used to
access the actual argument used in the call. This means that changes made to the parameter affect
the argument.

With few exceptions, C uses call by value to pass arguments. In general, this means that code within
afunction cannot alter the arguments used to call the function. Consider the following program:

#i ncl ude <stdi o. h>
int sqgr(int x);

i nt mai n(voi d)

{
int t=10;

printf("% %", sqr(t), t);

return O;

}

int sqr(int x)
{
X = X*X;

return(x);

}

In this example, the value of the argument to sgr(), 10, is copied into the parameter x. When the
assignment x = x*x takes place, only the local variable x is modified. The variable t, used to call sqr
(), still hasthe value 10. Hence, the output is 100 10.

Remember that it is a copy of the value of the argument that is passed into a function. What occurs
inside the function has no effect on the variable used in the call.

Creating a Call by Reference

Even though C uses call by value for passing parameters, you can create a call by reference by
passing a pointer to an argument, instead of passing the argument itself. Since the address of the
argument is passed to the function, code within the function can change the value of the argument
outside the function.

Pointers are passed to functionsjust like any other argument. Of course, you need to declare the
parameters as pointer types. For example, the function swap(),

Page 151

which exchanges the values of the two integer variables pointed to by its arquments, shows how:

void swap(int *x, int *y)
{
int tenp:

temp = *x; /* save the value at address x */
* X *ys /* put y into x */
y temp; / put X intoy */

The swap() function is able to exchange the values of the two variables pointed to by x and y
because their addresses (not their values) are passed. Within the function, the contents of the
variables are accessed using standard pointer operations, and their values are swapped.

Remember that swap() (or any other function that uses pointer parameters) must be called with the
addresses of the arguments. The following program shows the correct way to call swap():

#i ncl ude <stdi o. h>
void swap(int *x, int *y);

int main (void)

{
int i, j;
i = 10;
j = 20;
printf("i and j before swapping: % %\n", i, j);

swap(& , &); /* pass the addresses of i and j */

printf("i and j after swapping: %l %\n", i, j);
return O,

}

void swap(int *x, int *y)

{

int tenp;

Page 152

temp = *x; /* save the value at address x */
X = ty, /[put y into x */
y = tenp; / put x intoy */

The output from this program is shown here:

i and j before swapping: 10 20
i and j after swapping: 20 10

In the program, the variablei is assigned the value 10, and j is assigned the value 20. Then swap()
Is called with the addresses of i and j. (The unary operator & is used to produce the address of the
variables.) Therefore, the addresses of i and |, not their values, are passed into the function swap().

NOTE

C++ allows you to fully automate a call by reference through the use of reference
parameters. Reference parameters are not supported by C.

Calling Functions with Arrays

Arrays are covered in detail in Chapter 4. However, this section discusses passing arrays as
arguments to functions because it is an exception to the normal call-by-value parameter passing.

When an array is used as afunction argument, its addressis passed to afunction. Thisisan
exception to the call -by-value parameter passing convention. In this case, the code inside the
function is operating on, and potentially altering, the actual contents of the array used to call the
function. For example, consider the function print_upper (), which printsits string argument in
uppercase;

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>

void print_upper(char *string);
i nt mai n(voi d)
char s[80];

printf("Enter a string: ");

gets(s);

print_upper(s);

printf(''\ns is now uppercase: %", s);

return O;

}

/* Print a string in uppercase. */
voi d print_upper(char *string)
{

register int t;

for(t=0; string[t]; ++t) {
string[t] = toupper(string
[tl);
put char(string[t]);
}
}

Here is sample output:

Enter a string: This is a test.
THIS IS A TEST.
s is now uppercase: THIS IS A TEST.

Page 153

After the call to print_upper (), the contents of array sin main() are changed to uppercase. If this

is not what you want, you could write the program like this:

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>

voi d print_upper(char *string);

i nt mai n(voi d)
{
char s[80];

printf("Enter a string: ");

gets (s);

print_upper(s);

printf('"\ns is unchanged: %", s);

return O;

}

voi d print_upper(char *string)

{
register int t;
for(t=0; string[t]; ++t)
put char (t oupper (string[t]));

Here is sample output from this version of the program:

Enter a string: This is a test.
THIS IS A TEST.
s is unchanged: This is a test.

Page 154

In this case, the contents of array s remain unchanged because its values are not altered inside

print upper().

The standard library function gets() is a classic example of passing arrays into functions. Although
the gets() in your standard library is more sophisticated, the following simpler version, called xgets

(), will give you an idea of how it works.

/* A sinple version of the standard
gets() library function. */

char *xgets(char *s)

{
char ch, *p
int t;

p =s; /* gets() returns a pointer to s */

for(t=0; t<80; ++t){
ch = getchar();

swi tch(ch) {

case '\n':
s[t] = '\0'"; /* termnate the string */
return p;

case '\b':
if(t>0) t--;
br eak;

defaul t:
s[t] = ch;

Page 155

s[79] = '\O';
return P

The xgets() function must be called with a char * pointer. This, of course, can be the name of a
character array, which by definition isa char * pointer. Upon entry, xgets() establishesafor loop
from 0 to 80. This prevents larger strings from being entered at the keyboard. If more than 80
characters are entered, the function returns. (The real gets() function does not have this restriction.)
Because C has no built-in bounds checking, you should make sure that any array used to call xgets
() can accept at least 80 characters. As you type characters on the keyboard, they are placed in the
string. If you type a backspace, the counter t is reduced by 1, effectively removing the previous
character from the array. When you press enter, anull is placed at the end of the string, signaling its
termination. Because the array used to call xgets() is modified, upon return it contains the
characters that you type.

argc and argv—Argumentsto main()

Sometimesiit is useful to pass information into a program when you run it. Generally, you pass
information into the main(') function viacommand line arguments. A command line argument is the
information that follows the program’'s name on the command line of the operating system. For
example, when you compile a program, you might type something like the following after the
command prompt,

CC program name

where program_name is a command line argument that specifies the name of the program you wish
to compile.

Two special built-in arguments, argc and ar gv, are used to receive command line arguments. The

ar gc parameter holds the number of arguments on the command line and is an integer. It is always at
least 1 because the name of the program qualifies as the first argument. The argv parameter isa
pointer to an array of character pointers. Each element in this array points to acommand line

argument. All command line arguments are strings—any numbers will have to be converted by the
program into the proper binary format, manually.

Hereis a simple example that uses a command line argument. It printsHello and your name on the
screen, if you specify your name as a command line argument.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

Page 156

int main(int argc, char *argv[])

i f(argc!=2) {
printf(''You forgot to type your nane.\n");
exit(1l);

}
printf("Hello %", argv[1]);

return O;

}

If you called this program name and your name were Tom, you would type name Tom to run the
program. The output from the program would beHello Tom.

In many environments, each command line argument must be separated by a space or atab.
Commeas, semicolons, and the like are not considered separators. For example,

run Spot, run

is made up of three strings, while

Her b, Ri ck, Fred

Isasingle string because commas are not generally iegal separators.

Some environments allow you to enclose within double quotes a string containing spaces. This
causes the entire string to be treated as a single argument. Check your operating system
documentation for details on the definition of command line parameters for your system.

Y ou must declare ar gv properly. The most common method is

char *argv[];

The empty brackets indicate that the array is of undetermined length. Y ou can now access the
individual arguments by indexing argv. For example, argv[0] pointsto the first string, whichis
always the program's name; ar gv[1] pointsto the first argument, and so on.

Another short example using command line arguments is the program called countdown, shown
here. It counts down from a starting value (which is specified on the command line) and beeps when
it reaches 0. Notice that the first argument containing the starting count is converted into an integer
by the standard function atoi(). If the string "display” is the second command line argument, the
countdown will also be displayed on the screen.

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

/* Countdown program */

<stdi 0. h>
<stdlib. h>
<ctype. h>
<string. h>

int main(int argc, char *argv[])

{
i nt disp, count;
i f(argc<2) {
printf(''You nust enter the length of the count\n");
printf("on the conmand line. Try again.\n");
exit(1l);
}

if(argc==3 && !strcnp(argv[2], "display")) disp =1
el se disp = 0O;

for(count=atoi (argv[1]); count; --count)
i f(disp) printf("%\n", count);

putchar('\a'); /* this will ring the bell */
printf("Done");

return O;

Page 157

Noticethat if no command line arguments have been specified, an error message is printed. A
program with command line arguments often issues instructions if the user attempts to run the

program without entering the proper information.

To access an individual character in one of the command line arguments, add a second index to
argv. For example, the next program displays all of the arguments with which it was called, one

character at atime;

#i ncl ude <stdio. h>
int main(int argc, char *argv[])
{

int t, i;

for(t=0 t<argc; ++t) {

Page 158

i = 0;

while(argv[t][i]) {
put char(argv[t][i]);
++i ;
}
printf('"\n");
}

return O;

}

Remember, for argv, the first index accesses the string, and the second index accesses the individual
characters of the string.

Usually, you use argc and argv to get initial commands into your program that are needed at start-
up. For example, command line arguments often specify such things as afilename, an option, or an
aternate behavior. Using command line arguments gives your program a professional appearance
and facilitatesits use in batch files.

The names argc and argv are traditional but arbitrary. Y ou may name these two parameters to main
() anything you like. Also, some compilers may support additional argumentsto main(), so be sure
to check your compiler's documentation.

When a program does not require command line parameters, it is common practice to explicitly
declare main() as having no parameters. Thisis accomplished by using the void keyword in its
parameter list.

Thereturn Statement

The mechanics of return are described in Chapter 3. As explained, it has two important uses. First,
It causes an immediate exit from the function. That is, it causes program execution to return to the
calling code. Second, it can be used to return avalue. The following sections examine how the
return statement is applied.

Returning from a Function

A function terminates execution and returns to the caller in two ways. The first occurs when the last
statement in the function has executed, and, conceptually, the function's ending curly brace (}) is
encountered. (Of course, the curly brace isn't actually present in the object code, but you can think
of it in thisway.) For example, the pr_reverse() function in this program simply prints the string |
like C backwards on the screen and then returns.

#i ncl ude <string. h>
#i ncl ude <stdio. h>

void pr_reverse(char *s);

i nt mai n(voi d)

{
pr_reverse(''l like C");
return O;

}

voi d pr_reverse(char *s)

{

register int t;

for(t=strlen(s)-1; t>=0; t--) putchar(s[t]);

}

Page 159

Once the string has been displayed, there is nothing left for pr_reverse() to do, so it returns to the

place from which it was called.

Actually, not many functions use this default method of terminating their execution. Most functions
rely on thereturn statement to stop execution either because a value must be returned or to make a

function's code ssimpler and more efficient.

A function may contain severa return statements. For example, the find_substr () function in the
following program returns the starting position of a substring within a string, or it returns—1 if no

match is found. It usestwo return statements to simplify the coding.

#i ncl ude <stdio. h>
int find_substr(char *sl1, char *s2);
i nt mai n(voi d)

i f(find_substr("Cis fun", "is") = -1)
printf("Substring is found.");

return O;

}

/* Return index of first match of s2 in sl1. */

Page 160

int find_substr(char *sl1l, char *s2)

{
register int t;
char *p, *p2;
for(t=0; sil[t]; t++)
p = &s1[t];
p2 = s2;
while(*p2 && *p2==*p) {
pt+;
p2++;

if(!'*p2) return t; /* 1st return */

}

return -1; /* 2nd return */

Returning Values

All functions, except those of type void, return avalue. Thisvalueis specified by thereturn
statement. In C89, if anon-void function executes areturn statement that does not include a value,
then a garbage value isreturned. Thisis, to say the least, bad practice! In C99 (and C++), anon-void
function must use areturn statement that returnsavalue. That is, in C99, if afunction is specified
asreturning avalue, any return statement within it must have a value associated with it. However,

if execution reaches the end of anon-void function (that is, encounters the function's closing curly
brace), a garbage value is returned. Although this condition is not a syntax error, it is still a
fundamental flaw and should be avoided.

Aslong asafunction is not declared as void, you can use it as an operand in an expression.
Therefore, each of the following expressionsis valid:

X = power (y);
| f (max(x,y) > 100) printf('"greater");
for(ch=getchar(); isdigit(ch);)

Asageneral rule, afunction call cannot be on the left side of an assignment. A statement such as

swap(x,y) = 100; /* incorrect statenent */

iswrong. The C compiler will flag it as an error and will not compile a program that containsit.

Page 161

When you write programs, your functions will be of three types. The first typeis simply
computational. These functions are specifically designed to perform operations on their arguments
and return a value based on that operation. A computational function isa"pure” function. Examples
are the standard library functions sqrt() and sin(), which compute the square root and sine of their
arguments.

The second type of function manipulates information and returns a value that ssmply indicates the
success or failure of that manipulation. An exampleisthe library function fclose(), which closes a
file. If the close operation is successful, the function returns O; it returns EOF if an error occurs.

The last type of function has no explicit return value. In essence, the function is strictly procedural
and produces no value. An exampleisexit(), which terminates a program. All functions that do not
return values should be declared as returning type void. By declaring afunction as void, you keep it
from being used in an expression, thus preventing accidental misuse.

Sometimes, functions that really don't produce an interesting result return something anyway. For
example, printf() returns the number of characterswritten. Yet, it isunusual to find a program that
actually checksthis. In other words, although all functions, except those of type void, return values,
you don't have to use the return value for anything. A common question concerning function return
valuesis, "Don't | have to assign this value to some variable since avalue is being returned?' The
answer isno. If thereis no assignment specified, the return value is simply discarded. Consider the
following program, which uses the function mul():

#i ncl ude <stdio. h>
int mul (int a, int b);
i nt mai n(voi d)

{

int x, vy, z;

x = 10; y = 20;
z = mul

(X, ; [* 1 */
printf("o%d", nul

(x,y)); I* 2%
mul

(x, vy); [* 3 */
return O;

}

int mul (int a, int b)

{
}

return a*b;

Page 162

Inline 1, the return value of mul() isassigned to z. In line 2, the return value is not actually
assigned, but it is used by theprintf() function. Finaly, in line 3, the return value is lost because it
is neither assigned to another variable nor used as part of an expression.

Returning Pointers

Although functions that return pointers are handled just like any other type of function, it is helpful
to review some key concepts and look at an example. Pointers are neither integers nor unsigned
integers. They are the memory addresses of a certain type of data. One reason for thisdistinction is
that pointer arithmetic isrelative to the base type. For example, if an integer pointer isincremented,
it will contain avalue that is four greater than its previous value (assuming 4-byte integers). In
general, each time a pointer isincremented (or decremented), it points to the next (or previous) item
of itstype. Since the length of different data types may differ, the compiler must know what type of
data the pointer is pointing to. For this reason, afunction that returns a pointer must declare
explicitly what type of pointer it is returning. For example, you should not use areturn type of int *
to return a char * pointer! In afew cases, afunction will need to return a generic pointer. In this
case, the function return type must be specified as void *.

To return a pointer, afunction must be declared as having a pointer return type. For example, the
following function returns a pointer to the first occurrence of the character ¢ in string s. If no match
isfound, a pointer to the null terminator is returned.

/* Return pointer of first occurrence of ¢ ins. */
char *match(char c, char *s)

while(c!=*s && *s) s++;
return(s);

Hereis a short program that uses match():

#i ncl ude <stdio. h>
char *match(char c, char *s); /* prototype */

i nt mai n(voi d)

{
char s[80], *p, ch;

gets(s);
ch = getchar();
p = match(ch, s);

if(*p) /* there is a match */
printf('"% ", p);

el se
printf("No match found.");

return O;

}

Page 163

This program reads a string and then a character. It then searches for an occurrence of the character
in the string. If the character isin the string, p will point to that character, and the program prints the
string from the point of match. When no match isfound, p will be pointing to the null terminator,

making *p false. In this case, the program prints No match found.

Functions of Type void

One of void's usesisto explicitly declare functions that do not return values. This prevents their use
in any expression and helps avert accidental misuse. For example, the function print_vertical()
prints its string argument vertically down the side of the screen. Sinceit returns no value, it is

declared as void.

void print_vertical (char *str)

while (*str)
printf("%\n", *str++);

Hereis an example that uses print_vertical():

#i ncl ude <stdio. h>

void print_vertical (char *str); [* prototype */
int main(int argc, char *argv[])

{ if(argc > 1) print_vertical (argv[1]);

return O;

}

void print_vertical (char *str)

{

Page 164

whil e(*str)
printf('"%\n", *str++);

One last point: Early versions of C did not define the void keyword. Thus, in early C programs,
functions that did not return values simply defaulted to type int, even though no value was returned.

What Does main() Return?

The main() function returns an integer to the calling process, which is generally the operating
system. Returning a value frommain() isthe equivalent of calling exit() with the same value. If
main() does not explicitly return avalue, the value passed to the calling processistechnically
undefined. In practice, most C compilers automatically return O, but do not rely on thisif portability
isaconcern.

Recursion

In C, afunction can call itself. In this case, the function is said to be recursive. Recursion isthe
process of defining something in terms of itself, and is sometimes called circular definition.

A simple example of arecursive function is factr(), which computes the factorial of an integer. The
factorial of a number n isthe product of all the whole numbers between 1 and n. For example, 3
factorial is1 x 2 x 3, or 6. Both factr () and itsiterative equivalent are shown here:

/* recursive */
int factr(int n) {
i nt answer;

if(n==l) return(l);
answer = factr(n-1)*n; /* recursive call */
return(answer);

}

/* non-recursive */
int fact(int n) {
int t, answer;

answer = 1;

Page 165

for(t=1; t<=n; t++)
answer =answer *(t);

return(answer);

}

The nonrecursive version of fact() should be clear. It uses aloop that runs from 1 to n and
progressively multiplies each number by the moving product.

The operation of the recursive factr () isalittle more complex. When factr() is called with an
argument of 1, the function returns 1. Otherwise, it returns the product of factr (n-1)*n. To evaluate
this expression, factr() iscalled with n-1. This happens until n equals 1 and the callsto the function
begin returning.

Computing the factorial of 2, thefirst call to factr() causes a second, recursive call with the
argument of 1. Thiscall returns 1, which isthen multiplied by 2 (the original n value). The answer is
then 2. Try working through the computation of 3 factorial on your own. (Y ou might want to insert
printf() statementsinto factr () to seethelevel of each call and what the intermediate answers are.)

When afunction callsitself, a new set of local variables and parameters are allocated storage on the
stack, and the function code is executed from the top with these new variables. A recursive call does
not make a new copy of the function. Only the values being operated upon are new. As each
recursive call returns, the old local variables and parameters are removed from the stack, and
execution resumes immediately after the recursive call inside the function. Recursive functions
could be said to "telescope” out and back.

Although recursion seemsto offer the possibility of improved efficiency, such is seldom the case.
Often, recursive routines do not significantly reduce code size or improve memory utilization. Also,
the recursive versions of most routines may execute a bit slower than their iterative equivalents
because of the overhead of the repeated function calls. In fact, many recursive calls to afunction
could cause a stack overrun. Because storage for function parameters and local variablesis on the
stack and each new call creates a new copy of these variables, the stack could be exhausted. A stack
overrun iswhat usually causes a program to crash when arecursive function runs wild.

The main advantage to recursive functionsis that you can use them to create clearer and ssimpler
versions of several algorithms. For example, the quicksort algorithm (shown in Part Four) is difficult
to implement in an iterative way. Also, some problems, especially onesrelated to artificia
intelligence, lend themselves to recursive solutions. Finally, some people seem to think recursively
more easily than iteratively.

When writing recursive functions, you must have a conditional statement, such as an if, somewhere
to force the function to return without the recursive call being executed. If you don't, the function
will never return once you call it. Omitting the conditional statement is acommon error when
writing recursive functions. Use

Page 166

printf() liberally during program development so that you can watch what is going on and abort
execution if you see amistake.

Function Prototypes

In modern, properly written C programs, all functions must be declared before they are used. Thisis
normally accomplished using a function prototype. Function prototypes were not part of the original
C language, but were added by C89. Although prototypes are not technically required, their useis
strongly encouraged. (Prototypesare required by C++, however.) In this book, all examplesinclude
full function prototypes. Prototypes enable the compiler to provide stronger type checking,
somewhat like that provided by languages such as Pascal. When you use prototypes, the compiler
can find and report any questionable type conversions between the arguments used to call a function
and the type of its parameters. The compiler will also catch differences between the number of
arguments used to call afunction and the number of parameters in the function.

The general form of afunction prototypeis

—type func_name(type parm_namel, type parm _name2, . . .,
type parm_nameN);

The use of parameter names is optional. However, they enable the compiler to identify any type
mismatches by name when an error occurs, so it is agood idea to include them.

The following program illustrates the value of function prototypes. It produces an error message
because it contains an attempt to call sqr_it() with an integer argument instead of the integer
pointer required.

/* This programuses a function prototype to
enforce strong type checking. */

void sqr_it(int *i); /* prototype */
i nt mai n(voi d)
{

int Xx;

x = 10;
sqr_it(x); [/* type msmatch */

return O;

}

Page 167

void sqgr_it(int *i)

A function's definition can also serve asiits prototype if the definition occurs prior to the function's
first usein the program. For example, thisisavalid program:

#i ncl ude <stdi o. h>

/* This definition will also serve

as a prototype within this program */
void f(int a, int b)
{

}

int main (void)

printf('"% ", a %b);

f(10, 3)

return O;

}

In this example, since f() isdefined prior to its usein main(), no separate prototype is required.
Although it is possible for a function's definition to serve as its prototype in small programs, itis
seldom possible in large ones—especialy when several files are used. The programsin this book
include a separate prototype for each function because that is the way C code is normally written in
practice.

The only function that does not require a prototype is main() because it is the first function called
when your program begins.

Thereisasmall but important difference between how C and C++ handle the prototyping of a
function that has no parameters. In C++, an empty parameter list isindicated in the prototype by the
absence of any parameters. For example,

int f(); /* Ct+ prototype for a function with no parameters */

However, in C this statement means something different. Because of the need for compatibility with
the original version of C, an empty parameter list simply says that no parameter information is
given. Asfar asthe compiler is concerned, the function could have several parameters or no
parameters. (Such a statement is called an old-style function declaration and is described in the
following section.)

Page 168

In C, when afunction has no parameters, its prototype uses void inside the parameter list. For
example, hereisf()'s prototype as it would appear in a C program:

float f(void);

Thistells the compiler that the function has no parameters, and any call to that function that has
argumentsis an error. In C++, the use of void inside an empty parameter list is still allowed, but
redundant.

Function prototypes help you trap bugs before they occur. In addition, they help verify that your
program is working correctly by not alowing functions to be called with mismatched arguments.

One last point: Since early versions of C did not support the full prototype syntax, prototypes are
technically optional in C. Thisis necessary to support pre-prototype C code. If you are porting older
C code to C++, you will need to add full function prototypes before the code will compile.
Remember, although prototypes are optional in C, they are required by C++. This means that every
function in a C++ program must be fully prototyped. Because of this, most C programmers also
fully prototype their programs.

Old-Style Function Declarations

In the early days of C, prior to the creation of function prototypes, there was still aneed to tell the
compiler in advance about the return type of afunction so that the proper code could be generated
when the function was called. (Since sizes of different data types differ, the size of the return type
needs to be known prior to a call to afunction.) This was accomplished using a function declaration
that did not contain any parameter information. The old-style approach is archaic by today's
standards. However, it can still be found in older code. For this reason, it isimportant to understand
how it works.

Using the old-style approach, the function's return type and name are declared near the start of your
program, as illustrated here:

#i ncl ude <stdi o. h>

double div(); /* old-style function declaration */

i nt mai n(voi d)

{
printf('"%", div(10.2, 20.0));

return O;

}

Page 169

doubl e di v(doubl e num double denom
{

}

return num/ denom

The old-style function type declaration tells the compiler that div() returns an object of type double
This allows the compiler to correctly generate code for callsto div(). It does not, however, say
anything about the parametersto div().

The old-style function declaration statement has the following genera form:
~ type specifier function _name();

Notice that the parameter list isempty. Even if the function takes arguments, none are listed in its
type declaration.

As stated, the old-style function declaration is outmoded and should not be used for new code. It is
also incompatible with C++.

Standard Library Function Prototypes

Any standard library function used by your program must be prototyped. To accomplish this, you
must include the appropriate header for each library function. All necessary headers are provided by
the C compiler. In C, the library headers are (usually) files that use the .h extension. A header
contains two main elements: any definitions used by the library functions and the prototypes for the
library functions. For example, <stdio.h> isincluded in almost all programs in this book because it
contains the prototype for printf(). The headers for the standard library are described in Part Two.

Declaring Variable Length Parameter Lists

Y ou can specify afunction that has a variable number of parameters. The most common exampleis
printf(). Totell the compiler that an unknown number of arguments will be passed to a function,
you must end the declaration of its parameters using three periods. For example, this prototype
specifiesthat func() will have at least two integer parameters and an unknown number (including 0)
of parameters after that:

int func(int a, int b, . . .);

This form of declaration is aso used by a function's definition.

Page 170

Any function that uses a variable number of parameters must have at least one actual parameter. For
example, thisisincorrect:

int func(. . .); /* illegal */

The"Implicit int" Rule

The original version of C included a feature that is sometimes described as the "implicitint” rule
(also called the "default to int"” rule). This rule states that in the absence of an explicit type specifier,
the typeint is assumed. Thisrule was included in the C89 standard, but has been eliminated by C99.
(It is also not supported by C++.) Since theimplicitint rule is now obsolete, this book does not use
it. However, sinceit is still employed by many existing programs, a brief discussion is warranted.

The most common use of the implicitint rule wasin the return type of functions. Y ears ago, many
(probably most) C programmers took advantage of the rule when creating functions that returned an
int result. Thus, years ago afunction such as

int f(void) {
[* . .. *
return O;

}

would often have been written like this:;

f(void) { /* return type int by default */

In the first instance, the return type of int is explicitly specified. In the second, it is assumed by
default.

Theimplicit int rule does not apply only to function return values (although that was its most
common use). For example, for C89 and earlier, the following function is correct:

/* Here, the return type defaults to int, and so do
the types of a and b. */

f(register a, register b) {
register c; /* c defaults to int, too */

c = a + b;

Page 171

printf("%d", c);

return c;

}

Here, the return type of f() defaultsto int; so do the types of the parameters, a and b, and the local
variable c.

Remember, the implicit int ruleis not supported by C99 or C++. Thus, its use in C89-compatible
programsis not recommended. It is best to explicitly specify every type used by your program.

Old-Style vs. M odern Function Parameter Declar ations

Early versions of C used a different parameter declaration method than do modern versions of C,
including both C89 and C99 (and C++). This early approach is sometimes called the classic form.
This book uses a declaration approach called the modern form. Standard C supports both forms, but
strongly recommends the modern form. (C++ supports only the modern parameter declaration
method.) However, you should know the ol d-style form because many older C programs still use it.

The old-style function parameter declaration consists of two parts: a parameter list, which goes
inside the parentheses that follow the function name, and the actual parameter declarations, which
go between the closing parentheses and the function's opening curly brace. The general form of the
old-style parameter definition is

type func_name(parml, parm2, . . . parmN)
type parmi,
type parmz;

iype parmN;
{

function code

1

For example, this modern declaration

float f(int a, int b, char ch)

{
}

[* .. *

Page 172

will look like thisin its old-style form:

float f(a, b, ch)
int a, b;
char ch;

{
}

[* .. *

Notice that the old-style form allows the declaration of more than one parameter in alist after the
type name.

REMEMBER

The old-style form of parameter declaration is designated as obsolete by Standard C
and is not supported by C++.

Theinline Keyword

C99 has added the keyword inline, which applies to functions. It is described fully in Part Two, but
abrief description is given here. By preceding a function declaration with inline, you are telling the
compiler to optimize calls to the function. Typically, this means that the function's code will be
expanded in line, rather than called. However, inlineis only arequest to the compiler, and can be
ignored.

NOTE

Theinline specifier is also supported by C++.

Page 173

Chapter 7—
Structures, Unions, Enumer ations, and
typedef

Page 174

The C language gives you five ways to create a custom data type:

 The structure, which is agrouping of variables under one name and is called an aggregate data
type. (The terms compound or conglomerate are also commonly used.)

* The union, which enables the same piece of memory to be defined as two or more different types
of variables.

* Thebit-field, which is a specia type of structure or union element that allows easy access to
individual bits.

» The enumeration, which isalist of named integer constants.
» Thetypedef keyword, which defines a new name for an existing type.

Each of these featuresis described in this chapter.

Structures

A structure is a collection of variables referenced under one name, providing a convenient means of
keeping related information together. A structure declaration forms a template that can be used to
create structure objects (that is, instances of a structure). The variables that make up the structure are
called members. (Structure members are also commonly referred to as elements or fields.)

Usually, the members of a structure are logically related. For example, the name and address
information in amailing list would normally be represented in a structure. The following code
fragment shows how to declare a structure that defines the name and address fields. The keyword
struct tellsthe compiler that a structure is being declared.

struct addr
{
char nane[30];
char street[40];
char city[20];
char state[3];
unsigned long int zip

Notice that the declaration is terminated by a semicolon. Thisis because a structure declaration isa
statement. Also, the structure tag addr identifies this particular data structure and isitstype
specifier.

At this point, no variable has actually been created. Only the form of the data has been defined.
When you declare a structure, you are defining an aggregate type, not a

Page 175

variable. Not until you declare a variable of that type does one actually exist. To declare avariable
(that is, aphysical object) of type addr, write

struct addr addr_info;

This declares avariable of type addr called addr_info. Thus, addr describes the form of a structure
(itstype), and addr_info is an instance (an object) of the structure.

When a structure variable (such as addr_info) is declared, the compiler automatically allocates
sufficient memory to accommodate all of its members. Figure 7-1 shows how addr_info appearsin
memory, assuming 4-byte long integers.

Y ou can also declare one or more objects when you declare a structure. For example,

struct addr {
char nane[30];
char street[40];
char city[20];
char state[3];
unsi gned long int zip;
} addr_info, binfo, cinfo;

defines a structure type called addr and declares variables addr_info, binfo, and cinfo of that type.
It is important to understand that each structure variable contains its own copies of the structure's
members. For example, the zip field of binfo is separate and distinct from the zip field of cinfo.
Changesto zip in binfo do not, for example, affect the zip in cinfo.

| Mame 30 bytes I

l Strect 40 bytes

H) 1‘|!.'[|_n.

Zip 4 byvtes

Figure 7-1
The addr_|nfc structure in memory

Page 176

If you only need one structure variable, the structure tag is not needed. This means that

struct {

char nane[30];

char street[40];

char city[20];

char state[3];

unsi gned long int zip;
} addr _i nfo;

declares one variable named addr_info as defined by the structure preceding it.
The general form of a structure declaration i<
struct tag {
type member -name;

type member -name;
— type member -name;

} structure-variables;
where either tag or structure-variables may be omitted, but not both.
Accessing Structure Members

Individual members of a structure are accessed through the use of the . operator (usually called the
dot operator). For example, the following statement assigns the ZIP code 12345 to the zip field of
the structure variable addr _info declared earlier:

addr _info.zip = 12345;

The object name (in this case, addr_info) followed by a period and the member name (in this case,
zip) refersto that individual member. The general form for accessing a member of astructureis

~ object-name.member -name

Therefore, to print the ZIP code on the screen, write

printf("% u", addr_info.zip);

This prints the ZIP code contained in the zip member of the structure variable addr _info.

Page 177

In the same fashion, the character array addr_info.name can be used in acall to gets(), as shown
here:

get s(addr _i nfo. nane) ;

This passes a character pointer to the start of name.

Since nameis a character array, you can access the individual characters of addr_info.name by
indexing name. For example, you can print the contents of addr_info.name one character at atime
by using the following code:

for(t=0; addr_info.nanme[t]; ++t)
put char (addr _i nfo. nane[t]);

Notice that it isname (not addr_info) that isindexed. Remember, addr _info isthe name of an
entire structure object; nameis an element of that structure. Thus, if you want to index an element
of astructure, you must put the subscript after the element's name.

Structure Assignments

The information contained in one structure can be assigned to another structure of the same type
using a single assignment statement. Y ou do not need to assign the value of each member
separately. The following program illustrates structure assignments.

#i ncl ude <stdio. h>
i nt mai n(voi d)

{

struct {
int a;
int b;
}oxoys
x.a = 10;
y = X; [|* assign one structure to another */

printf("od", y.a);

return O;

}

After the assignment, y.a will contain the value 10.

Page 178

Arraysof Structures

Structures are often arrayed. To declare an array of structures, you must first define a structure and
then declare an array variable of that type. For example, to declare a 100-element array of structures
of type addr defined earlier, write

struct addr addr_list[100];

This creates 100 sets of variables that are organized as defined in the structure addr .

To access a specific structure, index the array name. For example, to print the ZIP code of structure
3, write

printf("%u", addr_list[2].zip);

Like all array variables, arrays of structures begin indexing at O.

To review: When you want to refer to a specific structure within an array of structures, index the
structure array name. When you want to index a specific element of a structure, index the element.
Thus, the following statement assigns ‘X' to the first character of name in the third structure of
addr_list.

addr _list[2].name[0] = "'X;

A Mailing List Example

To illustrate how structures and arrays of structures are used, this section develops a simple mailing
list program that uses an array of structures to hold the address information. In this example, the
stored information includes name, street, city, state, and ZIP code.

The address information is held in an array of addr structures, as shown here:

struct addr {
char nane[30];
char street[40];
char city[20];
char state[3];
unsi gned long int zip

} addr _|ist[MAX];

Notice that the zip field isan unsigned long integer. Frankly, it is more common to store postal
codes using a character string because it accommodates postal codes that use letters as well as
numbers (as used by Canada and other countries). However, this

Page 179

example stores the ZIP code in an integer as a means of illustrating a numeric structure element.

The first function needed for the program ismain(), shown

here:
i nt mai n(voi d)
{
char choice
init_list(); /* initialize the structure array */
for(;;) {
choi ce = nenu_sel ect();
swi tch(choice) {
case 1. enter();
br eak;
case 2: delete();
break;
case 3: list();
break;
case 4. exit(0);
}
}
return O,
}

The function begins by initializing the structure array and then responds to menu selections.

The function init_list() prepares the structure array for use by putting anull character into the first
byte of the name field for each structure in the array. The program assumes that an array element is
not in use if name isempty. The init_list() function is shown here:

[* Initialize the list. */
void initlist(void)
{

register int t;

for(t=0; t<MAX; ++t) addr_list[t].name[0] = "\0";

}

The menu_select() function displays the menu and returns the user's selection.

/* Get a nmenu selection. */
i nt menu_sel ect (voi d)

{
char s[80];
int c;
printf("1. Enter a nane\n");
printf('"2. Delete a nane\n");
printf("3. List the file\n");
printf("4. Qit\n");
do {
printf("\nEnter your choice:
gets(s);

c = atoi(s);
} while(c<0 || c>4);

return c;

")

Page 180

The enter () function prompts the user for input and stores the information in the next free structure.
If the array isfull, the message List Full isdisplayed. find_free() searches the structure array for an

unused element.

/* I nput addresses into the list.

voi d enter(void)

{
int slot;
char s[80];

slot = find free();

i f(slot==-1) {
printf("\nList Full");
return;

}

printf("Enter name: ");
gets(addr_list[slot].nane);

printf("Enter street: ");
gets(addr _list[slot].street);

*/

printf("Enter city: ");
gets(addr_list[slot].city);

printf("Enter state: ");
gets(addr _list[slot].state);

printf("Enter zip: ");

gets(s);

addr list[slot].zip = strtoul(s, "\0', 10);
}

/* Find an unused structure. */
int find free(void)

{

register int t;
for(t=0; addr_list[t].name[0] && t<MAX; ++t)

i f(t==MAX) return -1; /* no slots free */
return t;

}

Page 181

Notice that find_free() returnsa—L1 if every structure array variable isin use. Thisis a safe number

because there cannot be a -1 element in an array.

The delete() function asks the user to specify the index of the address that needs to be deleted. The

function then puts a null character in the first character position of the name field.

/* Delete an address. */

voi d del ete(void)

{
regi ster int slot;
char s[80];

printf("Enter record # ");
gets(s);
slot = atoi(s);
i f(slot>=0 && slot < MAX)
addr _list[slot].nane
[0] = "\0";
}

Page 182

The final function needed by the program islist(), which prints the entire mailing list on the screen.
C does not define a standard function that sends output to the printer because of the wide variation
among computing environments. However, all C compilers provide some means to accomplish this.
Y ou might want to add printing capability to the mailing list program on your own.

/* Display the list on the screen. */
void list(void)
{

register int t;

for(t=0; t<MAX; ++t) {

if(addr _list[t].name[0]) {
printf('"%\n", addr_list[t].nanme);
printf("%\n", addr_list[t].street);
printf("%\n", addr_list[t].city);
printf("%\n", addr_list[t].state);
printf("%u\n\n", addr_list[t].zip);

}

}
printf("\n\n");

The complete mailing list program is shown next. If you have any remaining doubts about
structures, enter this program into your computer and study its execution, making changes and
watching their effects.

/* A sinple mailing |list exanple using an array of structures. */
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

#defi ne MAX 100

struct addr {
char nane[30];
char street[40];
char city[20];
char state[3];
unsi gned long int zip

} addr_list[MAX];

void init_list (void), enter(void);
voi d delete(void), list(void);
int menu_select(void), find free(void);

i nt mai n(voi d)

{

char choice

init_list(); /* initialize the structure array */

for(;;) {
choi ce = nenu_sel ect();
swi tch(choice) {
case 1. enter();
br eak;
case 2: delete();
br eak;
case 3: list();
br eak;
case 4: exit(0);
}
}

return O;

}

[* Initialize the list. */
void init_list(void)
{

register int t;

for(t=0; t<MAX; ++t) addr_list[t].name[0]
}

/* Get a nmenu selection. */
i nt menu_sel ect (voi d)

char s[80];
int c;

printf("1. Enter a nane\n");
printf(''2. Delete a nanme\n");

="\0';

Page 183

}

/*

printf("3. List the file\n");
printf('"4. Quit\n");
do {
printf("\nEnter your choice: ");
gets(s);
c = atoi(s);
} while(c<0 || c>4);
return c;

I nput addresses into the list. */

voi d enter(void)

{

int slot;
char s[80];

slot = find_free();

i f(slot==-1) {
printf("\nList Full");
return;

}

printf("Enter nanme: ");
gets(addr_list[slot].nane);

printf("Enter street: ");
gets(addr _list[slot].street);

printf("Enter city: ");
gets(addr _list[slot].city);

printf("Enter state: ");
gets(addr_list[slot].state);

printf("Enter zip: ");
gets(s);
addr _list[slot].zip = strtoul(s, '\O

10);

Page 184

Page 185

/* Find an unused structure. */
int find_free(void)

{
register int t;
for(t=0; addr_list[t].nane[0] && t<MAX; ++t)
if(t==MAX) return -1; /* no slots free */
return t;

}

/* Del ete an address. */
voi d del ete(void)

{
regi ster int slot;
char s[80];
printf("enter record #: ");
gets(s);
slot = atoi(s);
i f(slot>=0 && slot < MAX)
addr _list[slot].nane
[0] ="\0";
}

/* Display the list on the screen. */
void list (void)

{

register int t;

for(t=0; t<MAX; ++t) {
if(addr_list[t].name[0]) {
printf('"%\n", addr_list[t].nane);
printf("%\n", addr_list[t].street);
printf("%\n", addr _list[t].city);
printf("%\n", addr_list[t].state);
printf("%u\n\n", addr_list[t].zip);
}

}
printf("\n\n");

Page 186

Passing Structuresto Functions
This section discusses passing structures and their members to functions.
Passing Structure Membersto Functions

When you pass a member of a structure to afunction, you are passing the value of that member to
the function. It isirrelevant that the value is obtained from a member of a structure. For example,
consider this structure:

struct fred
{
char x;
int y;
float z;
char s[10];
} mke;

Here are examples of each member being passed to afunction:

func(m ke. x); /* passes character value of x */
func2(m ke.y); /* passes integer value of y */
func3(m ke. z); /* passes float value of z */
func4(m ke. s); /* passes address of string s */
func(m ke.s[2]); /* passes character value of s[2] */

In each case, it isthe value of a specific element that is passed to the function. It does not matter that
the element is part of alarger unit.

If you wish to pass the address of an individual structure member, put the & operator before the
structure name. For example, to pass the address of the members of the structure mike, write

func(&m ke. x); /* passes address of character x */
func2(&nm ke.y); /* passes address of integer y */
func3(&m ke. z) ; /* passes address of float z */
func4(m ke. s); /* passes address of string s */
func(&m ke.s[2]); /* passes address of character s[2] */

Note that the & operator precedes the structure name, not the individual member name. Note also
that < already signifies an address, so no & isrequired.

Page 187
Passing Entire Structures to Functions

When a structure is used as an argument to afunction, the entire structure is passed using the normal
call-by-value method. Of course, this means that any changes made to the contents of the parameter
inside the function do not affect the structure passed as the argument.

When using a structure as a parameter, remember that the type of the argument must match the type
of the parameter. For example, in the following program both the argument ar g and the parameter
parm are declared as the same type of structure.

#i ncl ude <stdi o. h>

/* Define a structure type. */
struct struct_type {

int a, b;
char ch;

b
void f1(struct struct_type parm;
i nt mai n(voi d)
{ struct struct_type arg;
arg.a = 1000;
fl(arg);

return O;

}

void fl(struct struct_type parm
{

}

printf(''%", parma);

Asthis program illustrates, if you will be declaring parameters that are structures, you must make
the declaration of the structure type global so that all parts of your program can use it. For example,
had struct_type been declared inside main(), it would not have been visibleto f1().

Asjust stated, when passing structures, the type of the argument must match the type of the
parameter. It is not sufficient for them simply to be physically similar; their

Page 188

type names must match. For example, the following version of the preceding program isincorrect
and will not compile because the type name of the argument used to call f1() differs from the type

name of its parameter.

/* This programis incorrect and will not conpile. */
#i ncl ude <stdio. h>

/* Define a structure type. */
struct struct_type {

int a, b;

char ch;

}s

/* Define a structure simlar to struct_type,
but with a different nane. */

struct struct_type2 {

int a, b;

char ch;

i
void fl(struct struct_type2 parn);
i nt mai n(voi d)

{ struct struct_type arg;

arg.a = 1000;

fl(arg); /* type msmtch */

return O;
}
void fl(struct struct_type2 parm
{
printf(''%", parma);
}

Structure Pointers

C allows pointersto structures just asit allows pointers to any other type of object. However, there

are some special aspects to structure pointers, which are described next.

Page 189
Declaring a Structure Pointer

Like other pointers, structure pointers are declared by placing * in front of a structure variable's
name. For example, assuming the previously defined structure addr, the following declares
addr_pointer as apointer to data of that type:

struct addr *addr_pointer;

Using Structure Pointers

There are two primary uses for structure pointers. to pass a structure to afunction using call by
reference and to create linked lists and other dynamic data structures that rely on dynamic
alocation. This chapter coversthefirst use.

There is one major drawback to passing all but the simplest structures to functions: the overhead
needed to push the structure onto the stack when the function call is executed. (Recall that
arguments are passed to functions on the stack.) For simple structures with few members, this
overhead is not too great. If the structure contains many members, however, or if some of its
members are arrays, run-time performance may degrade to unacceptable levels. The solution to this
problem isto pass a pointer to the structure.

When a pointer to a structure is passed to a function, only the address of the structure is pushed on
the stack. This makes for very fast function calls. A second advantage, in some cases, is that passing
a pointer makes it possible for the function to modify the contents of the structure used as the
argument.

To find the address of a structure variable, place the & operator before the structure's name. For
example, given the following fragment,

struct bal {
fl oat bal ance;
char nane[80];
} person;

struct bal *p; /* declare a structure pointer */

this places the address of the structure per son into the pointer p:

p = &person,

To access the members of a structure using a pointer to that structure, you must use the —> operator.
For example, this references the balance field:

p—>bal ance

Page 190

The —>, usually called the arrow operator, consists of the minus sign followed by a greater than
sign. The arrow is used in place of the dot operator when you are accessing a structure member
through a pointer to the structure.

To see how a structure pointer can be used, examine this simple program, which displays the hours,
minutes, and seconds using a software timer:

/* Display a software tiner. */
#i ncl ude <stdio. h>

#defi ne DELAY 128000

struct my_tine {
int hours;

int m nutes;

i nt seconds;

}

voi d display(struct my_tine *t);
voi d update(struct ny_time *t);
voi d del ay(void);

i nt mai n(voi d)
{

struct my_tinme systine;

=

0;
0;

systime. hours =
systinme. m nutes
systi nme. seconds

for(;;) {
updat e(&systi nme);
di spl ay(&systine);

}

return O;

}

voi d update(struct ny_time *t)
{
t - >seconds++;
i f(t->seconds==60) {
t->seconds = O;

t->m nut es++

}

i f(t->m nutes==60) {
t->m nutes = O;
t - >hour s++;

}

del ay();
}

voi d display(struct my_tine *t)
{

printf("v®2d:", t->hours);
printf('"%2d:", t->mnutes);
printf("v®2d\n", t->seconds);

}
voi d del ay(voi d)
{

long int t;

/* change this as needed */
for(t=l; t<DELAY; ++t)
}

i f(t->hours==24) t->hours = O;

The timing of this program is adjusted by changing the definition of DELAY .

Page 191

Asyou can see, aglobal structure called my_timeisdefined, but no variable is declared. Inside
main(), the structure systime is declared and initialized to 00:00:00. This means that systime is

known directly only to the main(') function.

The functions update() (which changes the time) and display() (which prints the time) are passed
the address of systime. In both functions, their arguments are declared as a pointer to amy_time

Sstructure.

Inside update() and display(), each member of systimeis accessed via a pointer. Because update
() receives a pointer to the systime structure, it can update its value. For example, to set the hours

back to 0 when 24:00:00 is reached, update() contains thisline of code:

i f(t->hours==24) t->hours = O;

Page 192

Thistells the compiler to take the address of t (which points to systime in main()) and to reset
hour s to zero.

Remember, use the dot operator to access structure elements when operating on the structure itself.
When you have a pointer to a structure, use the arrow operator.

Arrays and Structureswithin Structures

A member of astructure can be either asimple variable, such as anint or double, or an aggregate
type. In C, aggregate types are arrays and structures. Y ou have already seen one type of aggregate
element: the character arrays used in addr .

A member of astructure that is an array is treated as you might expect from the earlier examples.
For example, consider this structure:

struct x {
int a[10] [210]; /* 10 x 10 array of ints */
fl oat b;

by

To reference integer 3,7 in a of structure y, write

y.-a[3][7]

When a structure is amember of another structure, it is called a nested structure. For example, the
structure address is nested inside emp in this example:

struct enp {
struct addr address; /* nested structure */
fl oat wage;

} worker;

Here, structure emp has been defined as having two members. The first is a structure of type addr,
which contains an employee's address. The other is wage, which holds the employee's wage. The
following code fragment assigns 93456 to the zip element of addr ess.

wor ker . address. zip = 93456;

Asyou can see, the members of each structure are referenced from outermost to innermost. The C89
standard specifies that structures can be nested to at least 15 levels. The C99 standard suggests that
at least 63 levels of nesting be allowed.

Page 193

Unions

A union isamemory location that is shared by two or more different types of variables. A union
provides away of interpreting the same bit pattern in two or more different ways. Declaring a union
issimilar to declaring a structure. Its general formis

union tag {
type member -name;

type member -name;
— type member -name;

1 union-variables;

For example:

uni on u_type {
int i;
char ch;

s

This declaration does not create any variables. Y ou can declare a variable either by placing its name
at the end of the declaration or by using a separate declaration statement. To declare aunion
variable called cnvt of type u_type using the definition just given, write

uni on u_type cnvt;

In cnvt, both integer i and character ch share the same memory location. Of course, i occupies 2
bytes (assuming 2-byte integers), and ch usesonly 1. Figure 7-2 shows how i and ch share the same
address. At any point in your program, you can refer to the data stored in a cnvt as either an integer
or acharacter.

N
Byte

S

Figure 7-2
How i and ch utilize the union
cnvt (assume 2-byte integers)

Page 194

When aunion variable is declared, the compiler automatically allocates enough storage to hold the
largest member of the union. For example, (assuming 2-byte integers) cnvt is 2 bytes long so that it
can hold i, even though ch requires only 1 byte.

To access amember of a union, use the same syntax that you would use for structures: the dot and
arrow operators. If you are operating on theunion directly, use the dot operator. If the union is
accessed through a pointer, use the arrow operator. For example, to assign the integer 10 to element
I of cnvt, write

cnvt.i = 10;

In the next example, a pointer to cnvt is passed to a function:

void funcl(union u_type *un)

{
}

un-> = 10; /* assign 10 to cnvt through a pointer */

Unions are used frequently when specialized type conversions are needed because you can refer to
the data held in the union in fundamentally different ways. For example, you might use aunion to
manipulate the bytes that constitute a doublein order to alter its precision or to perform some
unusual type of rounding.

To get an idea of the usefulness of aunion when nonstandard type conversions are needed, consider
the problem of writing a short integer to adisk file. The C standard library defines no function
specifically designed to write ashort integer to afile. Although you can write any type of datato a
fileusing fwrite(), using fwrite() incurs excessive overhead for such a simple operation. However,
using a union, you can easily create afunction called putw(), which writes the binary
representation of ashort integer to afile one byte at atime. (This example assumes that short
integers are 2 byteslong.) To see how, first create a union consisting of one short integer and a 2-
byte character array:

uni on pw {
short int i;
char ch[2];
1

Now, you can use pw to create the version of putw() shown in the following program.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

uni on pw {
short int i;

char ch[2];
1

int putw(short int num FILE *fp);

i nt mai n(voi d)

{
FILE *fp;

fp = fopen("test.tnp", "wbo+");
if(fp == NULL) {
printf
('" Cannot open file.\n");
exit(1l);
}

putw(1025, fp); /* wite the value 1025 */
fclose(fp);

return O;

}
int putw(short int num FILE *fp)
{

uni on pw word;

word.i = num

putc(word.ch[O], fp); /* wite first half */
return putc(word.ch[1], fp); /* wite second half */

}

Page 195

Although putw() is called with ashort integer, it can still use the standard function putc() to write

each byte in the integer to adisk file one byte at atime.

Bit-Fields

Unlike some other computer languages, C has a built-in feature, called a bit-field, that allows you to

access a single bit. Bit-fields can be useful for a number of reasons, such as.

« |f storage islimited, you can store several Boolean (true/false) variables in one byte.

Page 196
« Certain devices transmit status information encoded into one or more bits within a byte.

« Certain encryption routines need to access the bits within a byte.

Although these tasks can be performed using the bitwise operators, a bit-field can add more
structure (and possibly efficiency) to your code.

A bit-field must be amember of a structure or union. It defines how long, in bits, the field isto be.
The general form of abit-field definition is

~ typename: length;

Here, type isthe type of the bit-field, and length is the number of bitsin the field. The type of abit-
field must be int, signed, or unsigned. (C99 also allows a bit-field to be of type Bool.)

Bit-fields are frequently used when analyzing input from a hardware device. For example, the status
port of aserial communications adapter might return a status byte organized like this:

Bit Meaning When Set
0 Changein clear-to-send line
1 Change in data-set-ready
2 Trailing edge detected
3 Change in receive line
4 Clear-to-send
5 Date-set-ready
6 Telephone ringing
7 Received signal

Y ou can represent the information in a status byte using the following bit-field:

struct status_type {
unsi gned delta_cts:
unsi gned del ta_dsr:
unsi gned tr_edge:
unsi gned delta_rec:
unsi gned cts:
unsi gned dsr:
unsi gned ring:
unsi gned rec_line:
} status;

PR RPRRRRRPR

Page 197

Y ou might use statements like the ones shown here to enable a program to determine when it can
send or receive data:

status = get_port_status();
if(status.cts) printf('"clear to send");
if(status.dsr) printf("data ready");

To assign avalue to a bit-field, simply use the form you would use for any other type of structure
element. For example, this code fragment clears thering field:

status.ring = O;

Asyou can see from this example, each bit-field is accessed with the dot operator. However, if the
structure is referenced through a pointer, you must use the —> operator.

Y ou do not have to name each bit-field. This makesit easy to reach the bit you want, bypassing

unused ones. For example, if you only care about the cts and dsr bits, you could declare the
status type structure like this:

struct status_type
unsi gned : 4,
unsi gned cts: 1;
unsi gned dsr: 1;
} status;

Also, notice that the bits after dsr do not need to be specified if they are not used.

It isvalid to mix normal structure members with bit-fields. For example,

struct enp {
struct addr address;

fl oat pay;

unsi gned | ay_off: 1; /* lay off or active */
unsi gned hourly: 1; /* hourly pay or wage */
unsi gned deductions: 3; /* IRS deductions */

defines an employee record that uses only 1 byte to hold three pieces of information: the employee's
status, whether the employee is salaried, and the number of deductions. Without the bit-field, this
information would take 3 bytes.

Bit-fields have certain restrictions. Y ou cannot take the address of a bit-field. Bit-fields cannot be
arrayed. Y ou cannot know, from machine to machine, whether the fields will run from right to left
or from left to right; this implies that any code using

Page 198

bit-fields may have some machine dependencies. Other restrictions may be imposed by various
specific implementations.

Enumerations

An enumeration is a set of named integer constants. Enumerations are common in everyday life. For
example, an enumeration of the coins used in the United States is

~ penny, nickel, dime, quarter, half-dollar, dollar

Enumerations are defined much like structures; the keyword enum signals the start of an
enumeration type. The general form for enumerationsis

" enum tag{ enumeration list} variable list:

Here, both the tag and the variable list are optional. (But at least one must be present.) The following
code fragment defines an enumeration called coin:

enum coin { penny, nickel, dime, quarter
hal f _dol | ar, dollar};

The enumeration tag name can be used to declare variables of its type. The following declares
money to be avariable of typecoin:

enum coi n noney;

Given these declarations, the following types of statements are perfectly valid:

noney = di ne;
i f(money==quarter) printf(''Mney is a quarter.\n");

The key point to understand about an enumeration is that each of the symbols stands for an integer
value. As such, they can be used anywhere that an integer can be used. Each symbol is given avalue
one greater than the symbol that precedes it. The value of the first enumeration symbol is 0.
Therefore,

printf("% %", penny, dine);

displays 0 2 on the screen.

Y ou can specify the value of one or more of the symbols by using an initiaizer. Do this by
following the symbol with an equal sign and an integer value. Symbols that appear after an
initializer are assigned values greater than the preceding value. For example, the following code
assigns the value of 100 to quarter:

Page 199

enum coin { penny, nickel, dine, quarter=100,
hal f _dol | ar, dollar};

Now, the values of these symbols

are

penny 0
nickel 1
dime 2
quarter 100
half_dollar 101
dollar 102

One common but erroneous assumption about enumerationsis that the symbols can be input and
output directly. Thisis not the case. For example, the following code fragment will not perform as
desired:

/* this will not work */
money = doll ar;
printf('" %", noney);

Remember, dollar is ssimply aname for an integer; it is not a string. Thus, attempting to output
money as astring is inherently invalid. For the same reason, you cannot use this code to achieve the
desired results:

/* this code is wong */
strcpy(noney, "dinme");

That is, a string that contains the name of a symbol is not automatically converted to that symbol.

Actually, creating code to input and output enumeration symbolsis quite tedious (unless you are
willing to settle for their integer values). For example, you need the following code to display, in
words, the kind of coin that money contains:

swi tch(money) {
case penny: printf("penny");
br eak;
case nickel: printf("nickel");
br eak;
case dine: printf("dinme");
br eak;

Page 200

case quarter: printf("quarter");
br eak;

case half _dollar: printf('"half_dollar");
br eak;

case dollar: printf("dollar");

}

Sometimes, you can declare an array of strings and use the enumeration value as an index to
trandate that value into its corresponding string. For example, this code also outputs the proper
string:

char nane[][12] ={
"penny",
"ni ckel ",
"di me",
"quarter",
"hal f _dollar",
“dol | ar"

b

printf("%", nane[noney]);

Of course, this only worksif no symbol isinitialized, because the string array must be indexed
starting at O in strictly ascending order using increments of 1.

Since enumeration values must be converted manually to their human-readable string equivalents
for 1/0O operations, they are most useful in routines that do not make such conversions. An
enumeration is often used to define a compiler's symbol table, for example.

An Important Difference between C and C++

Thereis an important difference between C and C++ related to the type names of structures, unions,
and enumerations. To understand the difference, consider the following structure declaration:

struct MyStruct {
int a;
int b;
} .

Page 201

In C, the name MyStruct iscalled a tag. To declare an object of type MyStruct, you need to use a
statement such as this:

struct MyStruct obj;

Asyou can see, the tag name MyStruct is preceded by the keyword struct. However, in C++, you
can use this shorter form:

MyStruct obj; /* OK for C++, wong for C */

Here, the keyword struct is not needed. In C++, once a structure has been declared, you can declare
variables of itstype using only its tag, without preceding it with the keyword struct. The reason for
this differenceis that in C, a structure's name does not define a complete type name. Thisiswhy C
refers to this name as atag. However, in C++, a structure's name is a complete type name and can be
used by itself to define variables. Keep in mind, however, that it is still perfectly legal to use the C-
style declaration in a C++ program.

The preceding discussion can be generalized to unions and enumerations. Thus, in C, you must
precede a tag name with the keyword struct, union, or enum (whichever applies) when declaring
objects. In C++, you don't need the keyword.

Since C++ accepts the C-style declarations, there is no trouble regarding this issue when porting
from C to C++. However, if you are porting C++ code to C, you will need to make the appropriate
changes.

Using Sizeof to Ensure Portability

Y ou have seen that structures and unions can be used to create variables of different sizes, and that
the actual size of these variables might change from machine to machine. The sizeof operator
computes the size of any variable or type and can help eliminate machine-dependent code from your
programs. This operator is especially useful where structures or unions are concerned.

For the following discussion, assume an implementation that has the sizes for the data types shown
here:

Type Sizein Bytes
char 1
int 4

double 8

Page 202

Therefore, the following code will print the numbers 1, 4, and 8 on the screen:

char ch;

int i;

doubl e f;

printf("%d", sizeof(ch));

printf('"' %", sizeof(i));
printf("%", sizeof(f));

The size of astructureis equal to or greater than the sum of the sizes of its members. For example:

struct s {
char ch;
int i;
doubl e f;
} s_var;

Here, sizeof(s var) isat least 13 (8+4+1). However, the size of s var might be greater because the
compiler is alowed to pad a structure in order to achieve word or paragraph alignment. (A
paragraph is 16 bytes.) Since the size of a structure may be greater than the sum of the sizes of its
members, you should always use sizeof when you need to know the size of a structure. For example,
If you want to dynamically allocate memory for an object of type s, you should use a statement
sequence like the one shown here (rather than manually adding up the lengths of its members):

struct s *p;
p = malloc(sizeof(struct s));

Since sizeof isacompile-time operator, all the information necessary to compute the size of any
variable isknown at compiletime. Thisis especially meaningful for unions, because the size of a
union is always equal to the size of its largest member. For example, consider

union u {
char ch;
int i;
doubl e f;
} u_var;

Page 203

Here, the sizeof(u_var) is 8. At run time, it does not matter what u_var isactually holding. All that
mattersis the size of itslargest member, because any union must be as large as its largest element.

typedef

Y ou can define new data type names by using the keyword typedef. Y ou are not actually creating a
new data type, but rather defining a new name for an existing type. This process can help make
machine-dependent programs more portable. If you define your own type name for each machine-
dependent data type used by your program, then only the typedef statements have to be changed
when compiling for a new environment. typedef also can aid in self-documenting your code by
allowing descriptive names for the standard data types. The general form of the typedef statement is

" typedef type newname;

where type is any valid data type, and newnameis the new name for this type. The new name you
defineisin addition to, not a replacement for, the existing type name.

For example, you could create a new name for float by using

typedef float bal ance;

This statement tells the compiler to recognize balance as another name for float. Next, you could
create afloat variable using balance:

bal ance over _due;

Here, over _dueisafloating-point variable of type balance, which is another word for float.

Now that balance has been defined, it can be used in another typedef. For example,

t ypedef bal ance overdraft;

tells the compiler to recognize over draft as another name for balance, which is another name for
float.

Using typedef can make your code easier to read and easier to port to a new machine. But you are
not creating a new physical type.

Page 205

Chapter 8—
Consolel/O

Page 206

The C language does not define any keywords that perform I/O. Instead, input and output are

accomplished through library functions. C's I/O system is an elegant piece of engineering that offers
aflexible yet cohesive mechanism for transferring data between devices. C's I/O system is, however,
quite large, and consists of several different functions. The header for the I/O functionsis <stdio.h>.

There are both console and file I/O functions. Technically, there islittle distinction between console
I/0 and file I/O. But conceptually they are in very different worlds. This chapter examinesin detall
the console /O functions. The next chapter presents the file 1/0 system and describes how the two
systemsrelate.

With one exception, this chapter covers only console 1/0O functions defined by Standard C. Standard
C does not define any functions that perform various screen control operations (such as cursor
positioning) or that display graphics, because these operations vary widely among machines. Nor
does it define any functions that write to awindow or dialog box under Windows. Instead, the
console 1/0 functions perform only TTY -based output. However, most compilersinclude in their
libraries screen control and graphics functions that apply to the specific environment in which the
compiler is designed to run. And, of course, you can use C to write Windows programs. It isjust that
the C language does not define functions that perform these tasks directly.

This chapter refersto the console 1/0O functions as performing input from the keyboard and output to
the screen. In actuality, these functions operate on standard input and standard output. Furthermore,
standard input and standard output may be redirected to other devices. Thus, the "console functions"
do not necessarily operate on the console. 1/0 redirection is covered in Chapter 9. In this chapter it is
assumed that the standard input and standard output have not been redirected.

NOTE

In addition to I/O functions, C++ also includes I/O operators. These operators are,
however, not supported by C.

Reading and Writing Character s

The simplest of the console I/0 functions are getchar ('), which reads a character from the keyboard,
and putchar ('), which writes a character to the screen. The getchar () function waitsuntil akey is
pressed and then returnsits value. The keypressis also automatically echoed to the screen. The
putchar () function writes a character to the screen at the current cursor position. The prototypes for
getchar () and putchar () are shown here:

—int getchar(void);
int putchar(int c);

Page 207

Asits prototype shows, the getchar () function is declared as returning an integer. However, you
can assign thisvalue to a char variable, asisusually done, because the character is contained in the
low-order byte. (The high-order byte is usually zero.) getchar () returns EOF if an error occurs.
(The EOF macro isdefined in <stdio.h> and is often equal to -1.)

In the case of putchar(), even though it is declared as taking an integer parameter, you will
generally call it using a character argument. Only the low-order byte of its parameter is actually
output to the screen. The putchar () function returns the character written or EOF if an error occurs.

The following program illustrates getchar () and putchar (). It inputs characters from the keyboard
and displaysthem in reverse case. That is, it prints uppercase as lowercase and lowercase as
uppercase. To stop the program, enter a period.

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>

i nt mai n(voi d)

{

char ch;
printf("Enter sone text (type a period to quit).\n");
do {

ch = getchar();

i f(islower(ch)) ch = toupper(ch);
el se ch = tol ower(ch);

put char (ch);
} while (ch!I=".");

return O;

A Problem with getchar()

There are some potential problems with getchar (). For many compilers, getchar () isimplemented
in such away that it buffersinput until enter is pressed. Thisis called line-buffered input; you have
to press enter before any character is returned. Also, since getchar () inputs only one character each
timeit iscalled, line buffering may leave one or more characters waiting in the input queue, which
is annoying in interactive environments. Even though it is permissible for getchar () to be
implemented as an

Page 208

interactive function, it seldom is. Therefore, if the preceding program did not behave as you
expected, you now know why.

Alternativesto getchar()

Since getchar () might not be implemented by your compiler in such away that it is useful inan
interactive environment, you might want to use a different function to read characters from the
keyboard. Standard C does not define any function that is guaranteed to provide interactive input,
but virtually all C compilers do. Although these functions are not defined by Standard C, they are
commonly used because getchar () does not fill the needs of most programmers.

Two of the most common alternative functions, getch() and getche(), have these prototypes;

——int getch(void);
int getche(void);

For most compilers, the prototypes for these functions are found in the header file <conio.h>. For
some compilers, these functions have a leading underscore. For example, in Microsoft's Visual C++,

they arecalled getch() and getche().

The getch() function waits for a keypress after which it returns immediately. It does not echo the
character to the screen. The getche()) function isthe same as getch(), but the key is echoed. Y ou
will frequently see getche() or getch() used instead of getchar () when a character needs to be read
from the keyboard in an interactive program. For example, the previous program is shown here
using getch() instead of getchar():

#i ncl ude <stdi o. h>
#i ncl ude <coni 0. h>
#i ncl ude <ctype. h>

i nt mai n(voi d)

{

char ch;

printf("Enter sonme text (type a period to quit).\n");
do {
ch = getch();

i f(islower(ch)) ch = toupper(ch);
el se ch = tol ower(ch);

put char (ch);
} while (ch !=".");

Page 209

return O;

When you run this version of the program, each time you press akey, it isimmediately transmitted
to the program and displayed in reverse case. Input is no longer line buffered. Although the codein
this book will not make further use of getch() or getche(), they may be useful in the programs that
you write.

NOTE

At the time of this writing, when using Microsoft's Visual C++ compiler, _getche()
and _getch() are not compatible with the standard C input functions, such as scanf
() or gets(). Instead, you must use special versions of the standard functions, such
as cscanf() or cgets(). You will need to examine the Visual C++ documentation for
details.

Reading and Writing Strings

The next step up in console 1/0, in terms of complexity and power, are the functionsgets() and puts
(). They enable you to read and write strings of characters.

The gets() function reads a string of characters entered at the keyboard and stores them at the
address pointed to by its argument. Y ou can type characters at the keyboard until you strike a
carriage return. The carriage return does not become part of the string; instead, a null terminator is
placed at the end, and gets() returns. In fact, you cannot use gets() to return a carriage return
(although getchar () can do so). You can correct typing mistakes by using the backspace key before
pressing enter. The prototype for gets() is

~ char *gets(char *tr);

where gtr is a pointer to a character array that receives the characters entered by the user. gets() aso
returns str. The following program reads a string into the array str and printsits length:

#i ncl ude <stdi o. h>
#i ncl ude <string. h>

int main (void)

{
char str[80];

gets(str);
printf(''Length is %", strlen(str));

return O;

}

Page 210

Y ou need to be careful when using gets() because it performs no boundary checks on the array that
Isreceiving input. Thus, it is possible for the user to enter more characters than the array can hold.
While gets() isfine for sample programs and simple utilities that only you will use, you will want to
avoid its use in commercial code. One aternative is the fgets() function described in the next
chapter, which allows you to prevent an array overrun.

The puts() function writes its string argument to the screen followed by a newline. Its prototypeis
~int puts(const char *str);

puts() recognizes the same backslash escape sequences as printf(), such as\t for tab. A call to puts
() requiresfar less overhead than the same call to printf() because puts() can only output a string
of characters—it cannot output numbers or do format conversions. Therefore, puts() takes up less
space and runs faster than printf(). For this reason, the puts() function is often used when no
format conversions are required.

The puts() function returns a nonnegative value if successful or EOF if an error occurs. However,
when writing to the console, you can usually assume that no error will occur, so the return value of
puts() is seldom monitored. The following statement displays hello:

puts("hello");

Table 8-1 summarizes the basic console |/O functions.

Function Operation

getchar() Reads a character from the keyboard; usually waits for carriage return.

getche() Reads a character with echo; does not wait for carriage return; not
defined by Standard C, but a common extension.

getch() Reads a character without echo; does not wait for carriage return; not
defined by Standard C, but a common extension.

putchar() Writes a character to the screen.

gets() Reads a string from the keyboard.

puts() Writes a string to the screen.

Table8-1. The Basic |/O Functions

Page 211

The following program—a simple computerized dictionary—demonstrates several basic console 1/0
functions. It prompts the user to enter aword and then checksto see if the word matches onein its
built-in database. If a match is found, the program prints the word's meaning. Pay special attention
to theindirection used in this program. If you have any trouble understanding it, remember that the
dic array isan array of pointersto strings. Notice that the list must be terminated by two nulls.

/[* A sinple dictionary. */
#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>

/* list of words and neani ngs */
char *dic[][40] = {

"tatlas", "A volume of maps.",
"car", "A nmotorized vehicle.",
"t el ephone", "A comrunication device.",
"airplane", "A flying machine.",
troo"t /* null terminate the list */
1
i nt mai n(voi d)
{
char word[80], ch;
char **p;
do {

puts("\nEnter word: ");
scanf ("%", word);

p = (char **)dic;

/* find matching word and print its nmeaning */
do {
if(!'strcmp(*p, word)) {
put s(" Meani ng: ") ;
puts(*(p+1));
br eak;

}

if(!'strcmp(*p, word)) break;

p=p+ 2, /[* advance through the l[ist */
} while(*p);

Page 212

if(!'*p) puts(Word not in d| ctionary.");
printf('" Another? (y/n): ");
scanf (" %% c", &ch);

} while(toupper(ch) = "N);

return O;

}

Formatted Console /O

The functions printf() and scanf() perform formatted output and input—that is, they can read and
write datain various formats that are under your control. The printf() function writes data to the
console. The scanf() function, its complement, reads data from the keyboard. Both functions can
operate on any of the built-in data types, plus null-terminated character strings.

printf()

The prototype for printf() is

~int printf(const char *control_string, . . .);

The printf() function returns the number of characters written or a negative value if an error occurs.

The control_string consists of two types of items. The first type is composed of characters that will
be printed on the screen. The second type contains format specifiers that define the way the
subsequent arguments are displayed. A format specifier begins with a percent sign and is followed
by the format code. There must be exactly the same number of arguments as there are format
specifiers, and the format specifiers and the arguments are matched in order from left to right. For
example, thisprintf() cal

printf("l like % %", 'C, "very nuch!");

displays

| like C very much!

Here, the % ¢ matches the character 'C', and the % s matches the string "very much".

The printf() function accepts awide variety of format specifiers, as shown in Table 8-2.

Code
%a
%A
%cC
%d
%i
%e
%E
%f
%g
%G
%0
%s
%u
%X
%X
%p

%n

%%

For mat

Hexadecimal output in the form Oxh.hhhhp+d (C99 only).
Hexadecimal output in the form 0Xh.hhhhP+d (C99 only).
Character.

Signed decimal integers.

Signed decimal integers.

Scientific notation (lowercase €).

Scientific notation (uppercase E).

Decimal floating point.

Uses %e or %f, whichever is shorter.

Uses %E or %F, whichever is shorter.

Unsigned octal.

String of characters.

Unsigned decimal integers.

Unsigned hexadecimal (lowercase letters).

Unsigned hexadecimal (uppercase letters).

Displays a pointer.

The associated argument must be a pointer to an integer. This
specifier causes the number of characters written (up to the
point at which the %n is encountered) to be stored in that
integer.

Printsa % sign.

Table8-2. printf() Format Specifiers

Printing Characters

To print an individual character, use % c. This causes the matching argument to be output,

unmodified, to the screen.

To print astring, use %s.

Page 213

Page 214
Printing Numbers

Y ou can use either %d or %i to display a signed integer in decimal format. These format specifiers
are equivalent; both are supported for historical reasons, of which oneisthe desire to maintain an
eguivalence relationship with the scanf() format specifiers.

To output an unsigned integer, use %u.

The %f format specifier displays numbersin floating point. The matching argument must be of type
double.

The % e and % E specifierstell printf() to display a double argument in scientific notation.
Numbers represented in scientific notation take this general form:

" x.dddddE+/-yy
If you want to display the letter E in uppercase, use the % E format; otherwise, use %e.

You can tell printf() to use either %f or % e by using the % g or % G format specifiers. This causes
printf() to select the format specifier that produces the shortest output. Where applicable, use % G
if you want E shown in uppercase; otherwise, use %g. The following program demonstrates the
effect of the % g format specifier:

#i ncl ude <stdi o. h>
i nt mai n(voi d)
doubl e f;

for(f=1.0; f<1.0e+10; f=f*10)
printf('""% ", f);

return O;

}

It produces the following output:

1 10 100 1000 10000 100000 1e+006 1e+007 1e+008 1e+009

Y ou can display unsigned integersin octal or hexadecimal format using % o and %X, respectively.
Since the hexadecimal number system uses the letters A through F to represent the numbers 10
through 15, you can display these lettersin either upper- or lowercase. For uppercase, use the % X
format specifier; for lowercase, use % x, as shown here:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

unsi gned num

for(num=0; num < 16; numt+) {
printf('""% ", nunm;
printf("% ", num;
printf("%\n", num;

}

return O;

The output is shown here:

~NOoO o~ WNEO
~NOoO o~ WNEO
~NOoO o~ WNEO

[

w
- DO O0OT®O®
TMO O ®X>©w

Displaying an Address

If you want to display an address, use % p. Thisformat specifier causes printf() to display a

Page 215

machine address in a format compatible with the type of addressing used by the computer. The next

program displays the address of sample:

#i ncl ude <stdio. h>
i nt sanpl e;

i nt mai n(voi d)

Page 216

{
printf('" %", &sanple);

return O;

}

The %n Specifier

The %n format specifier is different from the others. Instead of telling printf() to display
something, it causes printf() to load the integer variable pointed to by its corresponding argument
with avalue equal to the number of characters that have been output. In other words, the value that
corresponds to the % n format specifier must be a pointer to avariable. After the call to printf() has
returned, this variable will hold the number of characters output, up to the point at which the%n
was encountered. Examine the next program to understand this somewhat unusual format code:

#i ncl ude <stdi o. h>
i nt mai n(voi d)
{

int count;

printf("this% is a test\n", &count);
printf("%l", count);

return O;

This program displaysthisisatest followed by the number 4. The % n format specifier is used
primarily to enable your program to perform dynamic formatting.

Format Modifiers

Many format specifiers can take modifiers that ater their meaning sightly. For example, you can
specify aminimum field width, the number of decimal places, and left justification. The format
modifier goes between the percent sign and the format code. These modifiers are discussed next.

The Minimum Field Width Specifier

An integer placed between the % sign and the format code acts as a minimum field width specifier.
This pads the output with spaces to ensure that it reaches a certain minimum length. If the string or
number islonger than that minimum, it will still be printed in

Page 217

full. The default padding is done with spaces. If you wish to pad with O's, place a 0 before the field
width specifier. For example, % 05d will pad a number of less than five digits with 0's so that its
total length isfive. The following program demonstrates the minimum field width specifier:

#i ncl ude <stdio. h>

int main (void)
double item
item= 10.12304;
printf("%\n", item;
printf('"9dof\n", item;
printf("9®12f\n", item;

return O;

This program produces the foll owing output:

10. 123040
10. 123040
00010. 123040

The minimum field width modifier is most commonly used to produce tables in which the columns
line up. For example, the next program produces a table of squares and cubes for the numbers
between 1 and 19:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{

int i;
/* display a table of squares and cubes */

for(i=1; i<20; i++)
printf("98d 98d 98d\n", i, i*i, i*i*i);

return O;

}

A sample of its output is shown here:

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100
11 121
12 144
13 169
14 196
15 225
16 256
17 289
18 324
19 361

1

8

27
64
125
216
343
512
729
1000
1331
1728
2197
2744
3375
4096
4913
5832
6859

The Precision Specifier

Page 218

The precision specifier follows the minimum field width specifier (if thereis one). It consists of a

period followed by an integer. Its exact meaning depends upon the type of datato whichitis

applied.

When you apply the precision specifier to floating-point data using the %f, %e, or % E specifiers, it
determines the number of decimal places displayed. For example, % 10.4f displays a number at |east

10 characters wide with four decimal places.

When the precision specifier is applied to % g or % G, it specifies the number of significant digits.

Applied to strings, the precision specifier specifies the maximum field length. For example, %5.7s
displays astring at least five and not exceeding seven characters long. If the string is longer than the

maximum field width, the end characters will be truncated.

When applied to integer types, the precision specifier determines the minimum number of digits that
will appear for each number. Leading zeroes are added to achieve the required number of digits.

The following program illustrates the precision specifier:

{

i nt mai n(voi d)

#i ncl ude <stdi o. h>

printf("%4f\n", 123.1234567);
printf(''9s.8d\n", 1000);

return O;

printf("9%0.15s\n", "This is a sinple test.");

It produces the following output:

123. 1235
00001000
This is a sinp

Justifying Output

Page 219

By default, all output isright justified. That is, if the field width is larger than the data printed, the
datawill be placed on the right edge of the field. Y ou can force output to be l€eft justified by placing
aminus sign directly after the %. For example, %—10.2f left-justifies a floating-point number with

two decimal placesin a 10-character field.

The following program illustrates left justification:

#i ncl ude <stdio. h>

i nt mai n(voi d)
{
printf(".
printf("right-justified: %8d\n",
printf(" left-justified: % 8d\n",

return O;

The output is shown here:

right-justified: 100
left-justified: 100

Handling Other Data Types

There are format modifiersthat allow printf() to display short and long integers. These modifiers
can be appliedto thed, i, 0, u, and x type specifiers. The 1 (l) modifier tellsprintf() that along

data type follows. For example, % 1d meansthat alongint istc

Page 220

be displayed. The h modifier instructs printf() to display a short integer. For instance, %hu
indicates that the datais of type short unsigned int.

The 1 and h modifiers can also be applied to the n specifier, to indicate that the corresponding
argument is a pointer to along or short integer, respectively.

If you are using a compiler that supports the wide-character features added by the 1995 Amendment
1, you can use the 1 modifier with the ¢ format to indicate a wide character. Y ou can also use the 1
modifier with the s format to indicate a wide-character string.

The L modifier may prefix the floating-point specifierse, f, and g and indicates that along double
follows.

C99 adds two new format modifiers: hh and Il. The hh modifier can be appliedto d, i, 0, u, X, or n.
It specifies that the corresponding argument isasigned or unsigned char value or, in the case of n,
apointer to a signed char variable. The Il modifier also can be appliedto d, i, o, u, X, or n. It
specifies that the corresponding argument isasigned or unsigned long long int value or, in the case
of n, apointer to a long long int. C99 also allows the 1 to be applied to the floating-point specifiers
a, € f, and g, but it has no effect.

NOTE

C99 includes some additional printf() type modifiers, which are described in Part
Two.

The* and # Modifiers
The printf() function supports two additional modifiersto some of itsformat specifiers: * and #.

Preceding g, G, f, E, or e specifierswith a# ensures that there will be a decimal point even if there
are no decimal digits. If you precede the x or X format specifier with a#, the hexadecimal number
will be printed with a Ox prefix. Preceding the o specifier with # causes the number to be printed
with aleading zero. Y ou cannot apply # to any other format specifiers. (In C99, the # can also be
applied to the % a conversion, which ensures that a decimal point will be displayed.)

Instead of constants, the minimum field width and precision specifiers can be provided by
arguments to printf(). To accomplish this, use an * as a placeholder. When the format string is
scanned, printf() will match the * to an argument in the order in which they occur. For example, in
Figure 8-1, the minimum field width is 10, the precision is 4, and the value to be displayed is123.3.

The following program illustrates both # and *:

#i ncl ude <stdi o. h>

i nt mai n(voi d)
{
printf('" %% %#x\n", 10, 10);
printf("9.*f", 10, 4, 1234.34);

return O;

}

Page 221

.]
printf("%«.#f ", 10 4, 123.3);

Figure 8-1
How the* is matched
toitsvalue

scanf()

scanf() isthe general -purpose console input routine. It can read all the built-in data types and
automatically convert numbers into the proper internal format. It is much like the reverse of printf
(). The prototype for scanf() is

~int scanf(const char *control_string, . . .);

The scanf() function returns the number of dataitems successfully assigned avalue. If an error
occurs, scanf() returns EOF. The control_string determines how values are read into the variables
pointed to in the argument list.

The control string consists of three classifications of characters.
* Format specifiers

» White-space characters

» Non-white-space characters

Let'stake alook at each of these now.

Format Specifiers

The input format specifiers are preceded by a % sign and tell scanf() what type of dataisto be read
next. These codes are listed in Table 8-3. The format specifiers are matched, in order from left to
right, with the arguments in the argument list. Let's ook at some examples.

I nputting Numbers

To read an integer, use either the %d or %i specifier. To read afloating-point number represented
in either standard or scientific notation, use %e, %f, or %g. (C99 aso includes % a, which reads a
floating-point number.)

Y ou can use scanf() to read integersin either octal or hexadecimal form by using the % o and % x
format commands, respectively. The % x can be in either upper- or lowercase. Either way, you can
enter the letters A through F in either case

Page 222

Code Meaning

%a Reads a floating -point value (C99 only).

%cC Reads a single character.

%d Reads a decimal integer.

%i Reads an integer in either decimal, octal, or hexadecimal format.
%e Reads a floating -point number.

%f Reads a floating -point number.

%g Reads a floating -point number.

%0 Reads an octal number.

%s Reads a string.

%X Reads a hexadecimal number.

%p Reads a pointer.

%n Receives an integer value equal to the number of charactersread so far.
%u Reads an unsigned decimal integer.

%[] Scans for a set of characters.

%% Reads a percent sign.

Table 8-3. scanf() Format Specifiers

when entering hexadecimal numbers. The following program reads an octal and hexadecimal
number:

#i ncl ude <stdio. h>

i nt mai n(voi d)

scanf ("%W", &, &);
printf('"% %", i, j);

return O;

}

Page 223
The scanf() function stops reading a number when the first non-numeric character is encountered.
I nputting Unsigned I ntegers

To input an unsigned integer, use the % u format specifier. For
example,

unsi gned num
scanf ("' %", &nun);

reads an unsigned number and puts its value into num.
Reading Individual Characters Using scanf()

Asexplained earlier in this chapter, you can read individual characters using getchar () or a
derivative function. You can also use scanf() for this purpose if you use the % c format specifier.
However, like most implementations of getchar (), scanf() will generaly line-buffer input when
the % c specifier is used. This makes it somewhat troublesome in an interactive environment.

Although spaces, tabs, and newlines are used as field separators when reading other types of data,
when reading a single character, white-space characters are read like any other character. For
example, with an input stream of "x y," this code fragment

scanf ("%%%", &a, &b, &c);

returns with the character x in a, aspacein b, and the charactery in c.
Reading Strings

The scanf(') function can be used to read a string from the input stream using the % s format
specifier. Using %s causes scanf() to read characters until it encounters a white-space character.
The charactersthat are read are put into the character array pointed to by the corresponding
argument, and the result is null terminated. As it appliesto scanf(), awhite-space character is either
aspace, anewline, atab, avertical tab, or aformfeed. Unlike gets(), which reads a string until enter
IS pressed, scanf() reads a string until the first white space is entered. This means that you cannot
use scanf() toread astring like "thisis atest” because the first space terminates the reading process.
To see the effect of the % s specifier, try this program using the string "hello there":

#i ncl ude <stdi o. h>

i nt mai n(voi d)

Page 224

char str[80];

printf("Enter a string: ");
scanf ("' %", str);

printf("Here's your string: %", str);

return O;

The program responds with only the "hello" portion of the string.
I nputting an Address
To input a memory address, use the % p format specifier. This specifier causes scanf() to read an

addressin the format defined by the architecture of the CPU. For example, this program inputs an
address and then displays what is at that memory address:

#i ncl ude <stdi o. h>

i nt mai n(voi d)
{

char *p

printf("Enter an address: ");

scanf (" %", &p);

printf("Value at location % is %\n", p, *p);

return O;

The %n Specifier

The %n specifier instructs scanf() to store the number of characters read from the input stream (up
to the point at which the % n was encountered) in the integer variable pointed to by the
corresponding argument.

Using a Scanset

The scanf() function supports a general -purpose format specifier called a scanset. A scanset defines
aset of characters. When scanf() processes a scanset, it will input characters as long as those
characters are part of the set defined by the scanset. The characters read will be assigned to the
character array that is pointed to by the scanset's

Page 225

corresponding argument. Y ou define a scanset by putting the characters to scan for inside square
brackets. The beginning square bracket must be prefixed by a percent sign. For example, the
following scanset tells scanf() to read only the characters X, Y, and Z:

% [XYZ]

When you use a scanset, scanf() continues to read characters, putting them into the corresponding
character array until it encounters a character that is not in the scanset. Upon return from scanf(),
thisarray will contain a null-terminated string that consists of the characters that have beenread. To

see how thisworks, try this program:

#i ncl ude <stdi o. h>

i nt mai n(voi d)
{
int i;
char str[80], str2[80];

scanf (" %% abcdef g] %", & , str, str2);
printf('"% % %", i, str, str2);

return O;

Enter 123abcdtye followed by enter. The program will then display 123 abced tye. Because the "t" is
not part of the scanset, scanf() stops reading charactersinto str when it encountersthe "t." The
remaining characters are put into str2.

Y ou can specify an inverted set if the first character in the set isa”. The” instructs scanf() to
accept any character that is not defined by the scanset.

In most implementations you can specify arange using a hyphen. For example, thistells scanf() to
accept the characters A through Z:

N A-Z]

One important point to remember is that the scanset is case sensitive. If you want to scan for both
upper- and lowercase letters, you must specify them individually.

Discarding Unwanted White Space

A white-space character in the control string causes scanf() to skip over one or more leading white-
space charactersin the input stream. A white-space character is either a

Page 226

space, atab, vertical tab, formfeed, or a newline. In essence, one white-space character in the control
string causes scanf() to read, but not store, any number (including zero) of white-space characters
up to the first non-white-space character.

Non-White-Space Charactersin the Control String

A non-white-space character in the control string causes scanf() to read and discard matching
charactersin the input stream. For example, "'%d,%d" causes scanf() to read an integer, read and
discard a comma, and then read another integer. If the specified character is not found, scanf()
terminates. If you want to read and discard a percent sign, use %% in the control string.

You Must Pass scanf() Addresses

All the variables used to receive values through scanf() must be passed by their addresses. This
means that all arguments must be pointers. Recall that thisis how C creates acall by reference,
which alows afunction to alter the contents of an argument. For example, to read an integer into the
variable count , you would use the following scanf() call:

scanf ("%", &count);

Strings will be read into character arrays, and the array name, without any index, is the address of
the first element of the array. So, to read a string into the character array str, you would use

scanf ("%", str);

Inthiscase, str isaready a pointer and need not be preceded by the & operator.
Format Modifiers

Aswith printf(), scanf() allows anumber of its format specifiers to be modified. The format
specifiers can include a maximum field length modifier. Thisis an integer, placed between the %
and the format specifier, that limits the number of characters read for that field. For example, to read
no more than 20 charactersinto str, write

scanf ("9R0s", str);

If the input stream is greater than 20 characters, a subsequent call to input begins where this call
leaves off. For example, if you enter

~ ABCDEFGHIJKLMNOPQRSTUVWXYZ

Page 227

as the response to the scanf() call in this example, only the first 20 characters, or upto the T, are
placed into str because of the maximum field width specifier. This means that the remaining
characters, UVWXY Z, have not yet been used. If another scanf() call is made, such as

scanf ("%", str);

the letters UVWXY Z are placed into str. Input for afield may terminate before the maximum field
length is reached if awhite space is encountered. In this case, scanf() moves on to the next field.

To read along integer, put an 1 (éll) in front of the format specifier. To read a short integer, put an h
in front of the format specifier. These modifiers can be used with thed, i, o, u, X, and n format
codes.

By default, the f, e, and g specifierstell scanf() to assign datato a float. If you put an 1 (el) in front
of one of these specifiers, scanf() assigns the datato adouble Using an L tells scanf() that the
variable recelving the datais along double.

The 1 modifier can also be used with the ¢ and s format codes as long as your compiler implements
the wide-character features added to C by the 1995 Amendment 1. Preceding ¢ with an 1 indicates a
pointer to an object of type wchar _t. Preceding swith an 1 indicates a pointer to a wchar _t array.
The 1 can also be used to modify a scanset for use with wide characters.

C99 adds the Il and hh modifiers. The hh modifier can be appliedto d, i, o, u, X, or n. It specifies
that the corresponding argument is a pointer to asigned or unsigned char value. The Il modifier
also can be appliedto d, i, o, u, X, or n. It specifies that the corresponding argument is a pointer to a
signed or unsigned long long int value.

NOTE

C99 includes some additional scanf() type modifiers, which are described in Part
Two.

Suppressing | nput

Y ou can tell scanf() to read afield but not assign it to any variable by preceding that field's format
code with an *. For example, given

scanf ("%% c%d", &x, &y);

you could enter the coordinate pair 10,10. The commawould be correctly read, but not assigned to
anything. Assignment suppression is especially useful when you need to process only a part of what
Is being entered.

Page 229

Chapter 9—
Filel/O

Page 230

This chapter describes the C file system. As explained in Chapter 8, the C 1/0O system is
implemented through library functions, not through keywords. This makes the I/O system extremely
powerful and flexible. For example, when operating on files, data can be transferred either in its
internal binary representation, or in its human-readable text format. This makesit easy to create files
to fit any need.

Cvs. C++ Filel/O

Because C forms the foundation for C++, there is sometimes confusion over how C'sfile system
relates to C++. First, C++ supports the entire C file system. Thus, if you will be porting older C code
to C++, you will not have to change all of your 1/0O routines right away. Second, C++ defines its
own, object-oriented /0 system, which includes both 1/0 functions and 1/O operators. The C++ /O
system completely duplicates the functionality of the C 1/0 system and renders the C file system
redundant. In general, if you are writing C++ programs, you will usually want to use the C++ /O
system, but you are free to use the C file system if you like.

Standard C vs. Unix Filel/O

C was originaly implemented for the Unix operating system. As such, early versions of C (and
many still today) support a set of 1/0 functions that are compatible with Unix. This set of 1/0
functionsis sometimes referred to as the Unix-like I/O system, or the unbuffered 1/0 system.
However, when C was standardized, the Unix-like functions were not incorporated into the standard,
largely because they are redundant. Also, the Unix-like system may not be relevant to certain
environments that could otherwise support C.

This chapter discusses only those I/0 functions that are defined by Standard C. In previous editions
of thiswork, the Unix-like file system was given a small amount of coverage. In the time that has
elapsed since the previous edition, use of the standard /O functions has steadily risen and use of the
Unix-like functions has steadily decreased. Today, most programmers use the standard functions
because they are portable to all environments (and to C++). Programmers wanting to use the Unix-
like functions should consult their compiler's documentation.

Streams and Files

Before beginning our discussion of the C file system it is necessary to know the difference between
the terms streams and files. The C 1/0 system supplies a consistent interface to the programmer
independent of the actual device being accessed. That is, the C 1/0 system provides alevel of
abstraction between the programmer and the device. This abstraction is called a stream, and the
actual deviceiscalled afile. It isimportant to understand how streams and files interact.

Page 231
Streams

The C file system is designed to work with awide variety of devices, including terminals, disk
drives, and tape drives. Even though each device is very different, the buffered file system
transforms each into alogical device called a stream. All streams behave similarly. Because streams
are largely device independent, the same function that can write to adisk file can also write to
another type of device, such as the console. There are two types of streams: text and binary.

Text Streams

A text streamis a sequence of characters. Standard C states that a text stream is organized into lines
terminated by a newline character. However, the newline character is optional on thelast line. Ina
text stream, certain character translations may occur as required by the host environment. For
example, a newline may be converted to a carriage return/linefeed pair. Therefore, there may not be
aone-to-one relationship between the characters that are written (or read) and those stored on the
external device. Also, because of possible trandations, the number of characters written (or read)
may not be the same as the number that is stored on the external device.

Binary Streams

A binary streamis a sequence of bytes that has a one-to-one correspondence to the bytesin the
external device—that is, no character trandations occur. Also, the number of bytes written (or read)
Is the same as the number on the external device. However, an implementation—defined number of
null bytes may be appended to a binary stream. These null bytes might be used to pad the
information so that it fills a sector on adisk, for example.

Files

In C, afile may be anything from adisk fileto aterminal or printer. Y ou associate a stream with a
specific file by performing an open operation. Once afileis open, information can be exchanged
between it and your program.

Not al files have the same capabilities. For example, a disk file can support random access, while
some printers cannot. This brings up an important point about the C I/O system: All streams are the
same, but all files are not.

If the file can support position requests, opening that file also initializes the file position indicator to
the start of the file. As each character isread from or written to the file, the position indicator is
Incremented, ensuring progression through the file.

Y ou disassociate a file from a specific stream with a close operation. If you close afile opened for
output, the contents, if any, of its associated stream are written to the external device. This process,
generally referred to as flushing the stream, guarantees that no information is accidentally left in the
disk buffer. All files are closed automatically when your program terminates normally, either by
main() returning to the operating

Page 232

system or by acall to exit(). Files are not closed when a program terminates abnormally, such as
when it crashes or when it calls abort().

Each stream that is associated with afile has afile control structure of type FILE. Never modify this
file control block.

If you are new to programming, the separation of streams and files may seem unnecessary or
contrived. Just remember that its main purpose is to provide a consistent interface. Y ou need only
think in terms of streams and use only one file system to accomplish al 1/O operations. The 1/O
system automatically converts the raw input or output from each device into an easily managed
stream.

File System Basics

The C file system is composed of severa interrelated functions. The most common of these are
shown in Table 9-1. They require the header <stdio.h>.

The header <stdio.h> provides the prototypes for the 1/0 functions and defines these three types:
size t, fpos t, and FILE. The size t typeis some variety of unsigned integer, asisfpos t. The
FILE typeisdiscussed in the next section.

Also defined in <stdio.h> are several macros. The ones relevant to this chapter areNULL , EOF,
FOPEN_MAX, SEEK_SET, SEEK_CUR, and SEEK_END. The NULL macro defines a null
pointer. The EOF macro, often defined as-1, is the value returned when an input function triesto
read past the end of the file. FOPEN_MAX defines an integer value that determines the number of
files that may be open at any one time. The other macros are used with fseek(), which isthe
function that performs random access on afile.

TheFile Pointer

The file pointer is the common thread that unites the C 1/0 system. A file pointer is a pointer to a
structure of type FILE. It pointsto information that defines various things about the file, including
its name, status, and the current position of the file. In essence, the file pointer identifies a specific
file and is used by the associated stream to direct the operation of the I/O functions. In order to read
or write files, your program needs to use file pointers. To obtain afile pointer variable, use a
statement like this:

FILE *fp;

Opening a File

The fopen() function opens a stream for use and links afile with that stream. Then it returns the file
pointer associated with that file. Most often (and for the rest of this discussion), thefileisadisk file.
The fopen() function has this prototype,

~ FILE *fopen(const char *filename, const char * mode);

Page 233

Name Function

fopen() Opens afile

fclose() Closes afile

putc() Writes a character to afile

fputc() Same asputc()

getc() Reads a character from afile

fgetc() Same asgetc()

foets() Reads a string from afile

fputs() Writesastring to afile

fseek() Seeksto a specified bytein afile

ftell() Returnsthe current file position

fprintf() Isto afilewhat printf() isto the console
fscanf() Isto afilewhat scanf() isto the console
feof() Returnstrueif end-of-file is reached
ferror() Returnstrueif an error has occurred
rewind() Resets the file position indicator to the beginning of the file
remove() Erases afile

fflush() Flushes afile

Table9-1. Commonly Used C File-System Functions

where filenameis a pointer to a string of characters that make up avalid filename and may include a
path specification. The string pointed to by mode determines how the file will be opened. Table 9-2
shows the legal values for mode. Strings like "r+b" may also be represented as "rb+".

As stated, the fopen(') function returns afile pointer. Y our program should never alter the value of
this pointer. If an error occurs when it istrying to open the file, fopen() returns a null pointer.

The following code uses fopen() to open afile named TEST for output.

FILE *fp;
fp = fopen("test", "w');

Page 234

Mode Meaning

r Open atext file for reading

w Create atext file for writing

a Append to atext file

rb Open abinary file for reading

wb Create a binary file for writing

&b Append to abinary file

r+ Open atext file for read/write

w+ Create atext file for read/write

at Append or create atext file for read/write
r+b Open abinary file for read/write

w+b Create abinary file for read/write

atb Append or create a binary file for read/write

Table9-2. Legal Valuesfor Mode

Although the preceding code is technically correct, you will usually seeit written like this:

FILE *fp;

if ((fp = fopen("test™,"w"'))==NULL) {
printf('" Cannot open file.\n");
exit(l);

}

This method will detect any error in opening afile, such as awrite-protected or afull disk, before
your program attempts to writeto it. In general, you will always want to confirm that fopen()
succeeded before attempting any other operations on the file.

Although most of the file modes are self-explanatory, afew comments are in order. If, when
opening afile for read-only operations, the file does not exist, fopen() will fail. When opening afile
using append mode, if the file does not exist, it will be created. Further, when afile is opened for
append, all new data written to the file will be written to the end of thefile. The original contents
will remain unchanged. If, when afile is opened for writing, the file does not exist, it will be
created. If it does exist, the

Page 235

contents of the original file will be destroyed, and a new file will be created. The difference between
modes r+ and w+ isthat r+ will not create afileif it does not exist; however, w+ will. Further, if the
file already exists, opening it with w+ destroys its contents; opening it with r+ does not.

As Table 9-2 shows, afile can be opened in either text or binary mode. In most implementations, in
text mode, carriage return/linefeed sequences are trand ated to newline characters on input. On
output, the reverse occurs: Newlines are translated to carriage return/linefeeds. No such translations
occur on binary files.

The number of filesthat may be open at any one time is specified by FOPEN_MAX . Thisvaue
will be at least 8, but you must check your compiler manual for its exact value.

Closing aFile

The fclose() function closes a stream that was opened by a call to fopen(). It writes any data still
remaining in the disk buffer to the file and does aformal operating-system-level close on thefile.
Failureto close a stream invites all kinds of trouble, including lost data, destroyed files, and possible
intermittent errorsin your program. fclose() also frees the file control block associated with the
stream, making it available for reuse. Since there is alimit to the number of files you can have open
at any onetime, you may have to close one file before opening another.

The fclose() function has this prototype,
—int fclose(FILE *fp);

where fp is the file pointer returned by the call to fopen(). A return value of zero signifiesa
successful close operation. The function returns EOF if an error occurs. Y ou can use the standard
function ferror () (discussed shortly) to determine the precise cause of the problem. Generally,
fclose() will fail only when adisk has been prematurely removed from the drive or there is no more
space on the disk.

Writing a Character

The C 1/0O system defines two equivalent functions that output a character: putc() and fputc().
(Actually, putc() isusually implemented as a macro.) The two identical functions exist simply to
preserve compatibility with older versions of C. This book uses putc(), but you can usefputc() if
you like.

The putc() function writes charactersto afile that was previously opened for writing using the
fopen(') function. The prototype of thisfunction is

~int putc(int ch, FILE *fp):

where fp isthe file pointer returned by fopen(), and ch isthe character to be output. The file pointer
tells putc(') which file to write to. Although chis defined as an int, only the low-order byteis
written.

If aputc() operation is successful, it returns the character written. Otherwise, it returns EOF-.

Page 236
Reading a Character

There are also two equivalent functions that input a character: getc() and fgetc(). Both are defined
to preserve compatibility with older versions of C. This book uses getc() (which isusually
implemented as a macro), but you can use fgetc() if you like.

The getc() function reads characters from a file opened in read mode by fopen(). The prototype of
gete() is

~int getc(FILE *fp);

where fp is afile pointer of type FILE returned by fopen(). getc() returns an integer, but the
character is contained in the low-order byte. Unless an error occurs, the high-order byte (or bytes) is
zero.

The getc() function returns an EOF when the end of the file has been reached. Therefore, to read to
the end of atext file, you could use the following code:

do {
ch = getc(fp);
} while(ch!=ECF);

However, getc() also returns EOF if an error occurs. You can use ferror () to determine precisely
what has occurred.

Using fopen(), getc(), putc(), and fclose()

The functions fopen(), getc(), putc(), and fclose() constitute the minimal set of file routines. The
following program, KTOD, is a simple example that uses putc(), fopen(), and fclose(). It reads
characters from the keyboard and writes them to a disk file until the user typesadollar sign. The
filename is specified from the command line. For example, if you call this program KTOD, typing
KTOD TEST alowsyou to enter lines of text into the file called TEST.

/[* KTOD: A key to disk program */
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

int main(int argc, char *argv[])
FILE *fp;
char ch;

if(argc!=2) {
printf(''You forgot to enter the filenane.\n");

exit(1);
}

i f((fp=fopen(argv[1], "w'))==NULL) {
printf('' Cannot open file.\n");
exit (1);

}

do {
ch = getchar();
putc(ch, fp);

} while (ch!= '$);

fclose(fp);

return O;

Page 237

The complementary program DTOS reads any text file and displays the contents on the screen.

/* DTOS: A programthat reads files and displays them
on the screen. */

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

int main(int argc, char *argv[])
{
FILE *fp;
char ch;

if(argc!=2) {
printf("You forgot to enter the filenanme.\n");
exit(1l);

}

i f((fp=fopen(argv[1], "r"))==NULL) {
printf("Cannot open file.\n");
exit(1l);

}

Page 238

ch = getc(fp); /* read one character */
while (ch!=ECF) {
putchar(ch); [/* print on screen */

ch = getc(fp);
}

fclose(fp);

return O;

To try these two programs, first use KTOD to create atext file. Then read its contents using
DTOS.

Using feof()

Asjust described, getc() returns EOF when the end of the file has been encountered. However,
testing the value returned by getc() may not be the best way to determine when you have arrived at
the end of afile. First, the C file system can operate on both text and binary files. When afileis
opened for binary input, an integer value that will test equal to EOF may be read. This would cause
the input routine to indicate an end-of -file condition even though the physical end of the file had not
been reached. Second, getc() returns EOF when it fails and when it reaches the end of the file.
Using only the return value of getc(), it isimpossible to know which occurred. To solve these
problems, C includes the function feof(), which determines when the end of the file has been
encountered. Thefeof() function has this prototype:

" int feof (FILE *fp);

feof() returnstrue if the end of the file has been reached; otherwise, it returns zero. Therefore, the
following routine reads a binary file until the end of thefileis encountered:

while(!feof (fp)) ch = getc(fp);

Of course, you can apply this method to text files as well as binary files.

The following program, which copies text or binary files, contains an example of feof(). Thefiles
are opened in binary mode, and feof() checks for the end of thefile.

[* Copy a file. */
#i ncl ude <stdi o. h>

Page 239

#i ncl ude <stdlib. h>

int main(int argc, char *argv[])

{
FILE *in, *out;
char ch;

i f(argc!=3)
printf(''You forgot to enter a filenane.\n");
exit(1l);

}

i f((in=fopen(argv[1l], "rb"))==NULL) {
printf("Cannot open source file.\n");

exit(1l);

}

i f((out=fopen(argv[2], "wb")) == NULL) {
printf("Cannot open destination file.\n");
exit(1l);

}

/* This code actually copies the file. */
while(!feof (in)) {

ch = getc(in);

if(!feof (in)) putc(ch, out);
}

fclose(in);
fclose(out);

return O;

Working with Strings:
fputs() and fgets()

In addition to getc() and putc(), C supports the related functions fgets() and fputs(), which read
and write character strings from and to a disk file. These functions work just like putc() and getc(),
but instead of reading or writing a single character, they read or write strings. They have the
following prototypes:

—int fputs(const char *str, FILE *p);
char *fgets(char *dir, int length, FILE *fp);

Page 240

The fputs() function writes the string pointed to by str to the specified stream. It returns EOF if an
error occurs.

The fgets(') function reads a string from the specified stream until either a newline character isread
or length—1 characters have been read. If anewlineisread, it will be part of the string (unlike the
gets() function). The resultant string will be null terminated. The function returnsstr if successful
and anull pointer if an error occurs.

The following program demonstrates fputs(). It reads strings from the keyboard and writes them to
thefile called TEST. To terminate the program, enter ablank line. Since gets() does not store the
newline character, one is added before each string is written to the file so that the file can be read
more easily.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

i nt mai n(voi d)

{
char str[80];
FILE *fp;

if((fp = fopen("TEST", "w'))==NULL) ({
printf(''Cannot open file.\n");
exit(1l);

}

do {
printf("Enter a string (CRto quit):\n");
gets(str);
strcat(str, "\n"); /* add a newine */
fputs(str, fp);

} while(*str!="\n");

return O;

rewind()

The rewind() function resets the file position indicator to the beginning of the file specified asits
argument. That is, it "rewinds' thefile. Its prototypeis

~ void rewind(FILE *fp);

where fp isavalid file pointer.

Page 241

To see an example of rewind(), you can modify the program from the previous section so that it
displays the contents of the file just created. To accomplish this, the program rewinds the file after
input is complete and then uses fgets() to read back the file. Notice that the file must now be opened

in read/write mode using "w+" for the mode parameter.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

i nt mai n(voi d)

{
char str[80];
FILE *fp;

if((fp = fopen("TEST", "w+"))==NULL) ({
printf("Cannot open file.\n");
exit(1l);

}

do {
printf("Enter a string (CRto quit):\n");
gets(str);
strcat(str, "\n"); /* add a newine */
fputs(str, fp);

} while(*str!="\n");

/* now, read and display the file */
rewi nd(fp); /* reset file position indicator to
start of the file. */
while(!feof (fp)) {
fgets(str, 79, fp);
printf(str);
}

return O;

ferror()

The ferror () function determines whether afile operation has produced an error. The ferror ()

function has this prototype,

~int ferror(FILE *fp);

Page 242

where fp isavalid file pointer. It returnstrue if an error has occurred during the last file operation;
otherwise, it returns false. Because each file operation sets the error condition, ferror () should be
caled immediately after each file operation; otherwise, an error may be lost.

The following program illustrates ferror () by removing tabs from a file and substituting the
appropriate number of spaces. Thetab sizeisdefined by TAB_SIZE. Notice how ferror() iscalled
after each file operation. To use the program, specify the names of the input and output files on the
command line.

/* The program substitutes spaces for tabs
in a text file and supplies error checking. */

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

#define TAB _SI ZE 8
#define IN O
#define OUT 1

void err(int e);

int main(int argc, char *argv[])

{
FILE *in, *out;
int tab, i;
char ch;

i f(argc!=3)
printf(''usage: detab <in> <out>\n");
exit(1l);

}

if((in = fopen(argv[1], "rb"))==NULL) {
printf("Cannot open %.\n", argv[1]);
exit(1l);

}

i f((out = fopen(argv[2], "wb"))==NULL) {
printf("Cannot open %.\n", argv[1]);
exit(1l);

}

tab = O;

do {
ch = getc(in);
if(ferror(in)) err(IN)

if(ch=="\t") {
for(i=tab; i<8; i++) {
putc(' ', out);
if(ferror(out)) err(QUT);

el se {
putc(ch, out);
if(ferror(out)) err(OUT);

tab++;
i f(tab==TAB_SI ZE) tab = O0;
if(ch=="\n" || ch=="\r") tab = O;

}
} while(!feof(in));
fclose(in);
fcl ose(out);

/* if tab found, output appropriate nunber of spaces */

return O,

}

void err(int e)

{
if(e==IN) printf('"Error on input.\n");
el se printf("Error on output.\n");
exit(1l);

}

Erasing Files

The remove() function erases the specified file. Its prototypeis

~int remove(const char *filename);

It returns zero if successful. Otherwise, it returns a nonzero value.

Page 243

Page 244

The following program erases the file specified on the command line. However, it first givesyou a

chance to change your mind. A utility like this might be useful for new computer users.

/* Doubl e check before erasing. */
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <ctype. h>
int main(int argc, char *argv[])
{
char str[80];
if(argc!=2) {
printf(''usage: xerase <filename>\n");
exit(1l);
}
printf("Erase %? (Y/N): ", argv[1]);
gets(str);
i f(toupper(*str)=="Y")
if(renove(argv[1])) {
printf("Cannot erase file.\n");
exit(1l);
}
return O;
}

Flushing a Stream

If you wish to flush the contents of an output stream, use the fflush(') function, whose prototypeis

shown here:

~int fflush(FILE *fp);

This function writes the contents of any buffered data to the file associated with fp. If you call fflush

() with fp being null, al files opened for output are flushed.

The fflush(') function returns zero if successful; otherwise, it returns EOF.

Page 245

fread() and fwrite()

To read and write data types that are longer than 1 byte, the C file system provides two functions:
fread() and fwrite(). These functions allow the reading and writing of blocks of any type of data.
Their prototypes are

—size t fread(void * buffer, size t num_bytes, size t count, FILE *fp);
size t fwrite(const void * buffer, size t num _bytes, size t count, FILE *fp);

For fread(), buffer isa pointer to aregion of memory that will receive the data from the file. For
fwrite(), buffer is a pointer to the information that will be written to the file. The value of count
determines how many items are read or written, with each item being num_bytes bytes in length.
(Remember, the type size t isdefined as some kind of unsigned integer.) Finally, fp isafile pointer
to apreviously opened stream.

The fread() function returns the number of items read. This value may be less than count if the end
of the fileisreached or an error occurs. The fwrite() function returns the number of items written.
Thisvalue will equal count unless an error occurs.

Using fread() and fwrite()

Aslong as the file has been opened for binary data, fread() and fwrite() can read and write any
type of information. For example, the following program writes and then reads back a double an
int, and along to and from a disk file. Notice how it uses sizeof to determine the length of each data

type.

/* Wite sone non-character data to a disk file
and read it back. */

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

i nt mai n(voi d)
{
FI LE *fp;
double d = 12.23;
int i = 101;
long 1 = 123023L;

i f((fp=fopen("test", "wb+"))==NULL) {
printf('" Cannot open file.\n");
exit(l);

}

Page 246

fwite(& , sizeof(int), 1, fp);

rewi nd(fp);
fread(&d, sizeof

(double), 1, fp);
fread(& , sizeof(int), 1, fp);
fread(& , sizeof(long), 1, fp);
printf("% % %d", d, i, 1);
fclose(fp);

return O;

fwite(&d, sizeof(double), 1, fp);

fwite(& , sizeof(long), 1, fp);

Asthis program illustrates, the buffer can be (and often is) simply the memory used to hold a
variable. In this simple program, the return values of fread() and fwrite() are ignored. In the real
world, however, you should check their return values for errors.

One of the most useful applications of fread() and fwrite() involves reading and writing user-
defined data types, especially structures. For example, given this structure,

struct struct_type {
fl oat bal ance;
char nane[80];

} cust;

the following statement writes the contents of cust to the file pointed to by fp:

fwite(&cust, sizeof(struct struct_type),

1, fp);

A Mailing List Example

Toillustrate just how easy it isto write large amounts of data using fread() and fwrite(), we will
rework the mailing list program first shown in Chapter 7. The enhanced version will be capable of
storing the addressesin afile. As before, addresses will be stored in an array of structures of this

type:

struct addr {
char nane[30];
char street[40];
char city[20];
char state[3];
unsigned long int zip

} addr _Ilist[MAX];

The value of MAX determines how many addresses the list can hold.

When the program executes, the namefield of each structureisinitialized with anull. By
convention, the program assumes that a structure is unused if the nameis of zero length.

Page 247

The save() and load() functions, shown next, are used to save and load the mailing list database.
Note how little code is contained in each function because of the power of fread() and fwrite().

Notice also how these functions check the return values of fread() and fwrite() for errors.

/* Save the list. */
voi d save(void)

{
FI LE *fp;
register int i;

if((fp=fopen("maillist", "wb"))==NULL)
printf('' Cannot open file.\n");
return,;

}

for(i=0; i<MAX; i++)
if(*addr _list[i].nanme)
if(fwite(&ddr_list[i],
si zeof (struct addr), 1, fp)!=l)
printf("File wite error.\n");

fclose(fp);
}

/* Load the file. */
voi d | oad(voi d)

{
FILE *fp;
register int i;

if((fp=fopen("maillist", "rb"))==NULL) {
printf('" Cannot open file.\n");
return;

}

init_list();

for(i=0; i<MAX; i++)
if(fread(&ddr_list[i],
si zeof (struct addr), 1, fp)!=1)
i f(feof(fp)) break;
printf("File read error.\n");

}
fclose(fp);

Page 248

Both functions confirm a successful file operation by checking the return value of fread() or fwrite
(). Also, load() must explicitly check for the end of the file via feof() because fread() returnsthe
same value whether the end of the file has been reached or an error has occurred.

The entire mailing list program is shown next. Y ou may wish to use this as a core for further

enhancements, such as the ability to search for addresses.

/* A sinple mailing |list exanple using an array of structures.
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

#defi ne MAX 100

struct addr {
char nane[30];
char street[40];
char city[20];
char state[3];
unsi gned long int zip

} addr_list[MAX];

void init_list(void), enter(void);

voi d delete(void), list(void);

voi d | oad(void), save(void);

int menu_sel ect(void), find free(void);

*/

i nt mai n(voi d)

{
char choice;
init_list(); /* initialize the structure array */
for(;;) {
choi ce = nenu_sel ect();
swi tch(choice) {
case 1: enter();
break;
case 2: delete();
break;
case 3: list();
break;
case 4: save();
br eak;
case 5: load();
break;
case 6: exit(0);
}
}
return O;
}

[* Initialize the list. */
void init_list(void)

{

register int t;

for(t=0; t<MAX; ++t) addr_list[t].name[0] = "\0";
}

/* Get a nmenu selection. */
i nt menu_sel ect (voi d)

char s[80];
int c;

printf("1. Enter a nane\n");
printf(''2. Delete a nanme\n");

Page 249

}
/*

printf("3. List the file\n");
printf('"4. Save the file\n");
printf("5. Load the file\n");
printf("6. Qit\n");
do {
printf("\nEnter your choice: ");
gets(s);
c = atoi(s);
} while(c<0 || c¢>6);
return c;

I nput addresses into the list. */

voi d enter(void)

{

}
/*

int slot;
char s[80];

slot = find free();

i f(slot==-1) {
printf("\nList Full");
return;

}

printf("Enter name: ");
gets(addr _list[slot].nane);

printf("Enter street: ");
gets(addr _list[slot].street);

printf("Enter city: ");
gets(addr _list[slot].city);

printf("Enter state: ");
gets(addr _list[slot].state);

printf("Enter zip: ");

gets(s);
addr _list[slot].zip = strtoul (s,

Find an unused structure. */

"\O',

10);

Page 251

int find free(void)

{
register int t;
for(t=0; addr_list[t].name[0] && t<MAX;, ++t) ;
if(t==MAX) return -1; /* no slots free */
return t;
}
/* Del ete an address. */
voi d del ete(void)
{
regi ster int slot;
char s[80];
printf("enter record # ");
gets(s);
slot = atoi(s);
i f(slot>=0 && slot < MAX)
addr _list[slot].nane
[0] ="\0O";
}

/* Display the |ist

on the screen. */

void list(void)

{

}

/* Save the |ist.

register int t;
for(t=0; t<MAX; ++t) {
if(addr_list[t].name[0]) {
printf('"%\n", addr_list[t].nane);
printf("%\n", addr_list[t].street);
printf("%\n", addr_list[t].city);
printf("%\n", addr _list[t].state);
printf("%u\n\n", addr_list[t].zip);
}

}
printf ("\'n\n");

*/

voi d save(void)

{
FILE *fp;
register int i;
if((fp=fopen("maillist", "wb"))==NULL) {
printf('' Cannot open file.\n");
return;
}
for(i=0; i<MAX; i ++)
if(*addr _list[i].nane)
if(fwite(&ddr_list[i],
si zeof (struct addr), 1, fp)!=1)
printf("File wite error.\n");
fclose(fp);
}

/* Load the file. */

voi d | oad(voi d)

{
FILE *fp;
register int i;

if((fp=fopen("maillist", "rb"))==NULL)
printf("Cannot open file.\n");
return;

}

init_list();
for(i=0; i<MAX; i ++)
if(fread(&addr list[i],
si zeof (struct addr), 1, fp)l=l) {
if(feof (fp)) break;
printf("File read error.\n");

}
fclose(fp);

{

Page 252

Page 253

fseek() and Random-Access |/O

Y ou can perform random read and write operations using the C I/O system with the help of fseek(),
which sets the file position indicator. Its prototype is shown here:

~int fseek(FILE *fp, long int numbytes, int origin);

Here, fp isafile pointer returned by acall to fopen(), numbytes is the number of bytes from origin,
which will become the new current position, and origin is one of the following macros.

Origin Macro Name
Beginning of file SEEK_SET
Current position SEEK CUR
End of file SEEK_END

Therefore, to seek numbytes from the start of the file, origin should be SEEK _SET. To seek from
the current position, use SEEK _CUR, and to seek from the end of the file, use SEEK_END. The
fseek () function returns zero when successful and a nonzero value if an error occurs.

The following program illustrates fseek(). It seeks to and displays the specified byte in the specified
file. Specify the filename and then the byte to seek to on the command line.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

int main(int argc, char *argv[])

FILE *fp;

i f(argc!=3) {
printf(''Usage: SEEK filename byte\n");
exit(l);

}

if((fp = fopen(argv[1l], "rb"))==NULL) {
printf("Cannot open file.\n");
exit(1l);

}

Page 254

i f(fseek(fp, atol (argv[2]), SEEK SET)) {
printf('' Seek error.\n");
exit(1l);

}

printf("Byte at %d is %.\n", atol (argv[2]), getc(fp));
fclose(fp);

return O;

Y ou can use fseek () to seek in multiples of any type of data by simply multiplying the size of the
data by the number of the item you want to reach. For example, assume amailing list that consists of
structures of type addr (as shown earlier). To seek to the tenth address in the file that holds the
addresses, use this statement:

fseek(fp, 9*sizeof(struct addr), SEEK SET);

Y ou can determine the current location of afile using ftell(). Its prototypeis
~ longint ftell(FILE *fp);

It returns the location of the current position of the file associated with fp. If afailure occurs, it
returns-1.

In general, you will want to use random access only on binary files. The reason for thisis simple.
Because text files may have character tranglations performed on them, there may not be a direct
correspondence between what is in the file and the byte that it would appear you want to seek to.
The only time you should use fseek() with atext file is when seeking to a position previously
determined by ftel(), using SEEK SET asthe origin.

Remember one important point: Even afile that contains only text can be opened as a binary file, if
you like. There is no inherent restriction about random access on files containing text. The
restriction applies only to files opened as text files.

fprintf() and fscanf()

In addition to the basic 1/0 functions aready discussed, the C 1/0 system includes fprintf() and
fscanf(). These functions behave exactly like printf() and scanf() except that they operate with
files. The prototypes of fprintf() and fscanf() are

—int fprintf(FILE *fp, const char *control_string, . . .);
int fscanf(FILE *fp, const char *control_string, . . .);

Page 255

where fp is afile pointer returned by acall to fopen(). fprintf() and fscanf() direct their 1/0
operations to the file pointed to by fp.

As an example, the following program reads a string and an integer from the keyboard and writes
themto adisk file called TEST. The program then reads the file and displays the information on the
screen. After running this program, examine the TEST file. Asyou will see, it contains human-
readable text.

[* fscanf() - fprintf() exanple */
#i ncl ude <stdi o. h>

#i ncl ude <i o. h>

#i ncl ude <stdlib. h>

i nt mai n(voi d)
{
FILE *fp;
char s[80];

int t;

i f((fp=fopen("test", "w')) == NULL) {
printf(''Cannot open file.\n");
exit(1l);

}

printf("Enter a string and a nunber: ");
fscanf(stdin, "%%", s, &); /* read from keyboard */

fprintf(fp, "% %", s, t); /* wite to file */
fclose(fp);

i f((fp=fopen("test”,"r")) == NULL) {
printf("Cannot open file.\n");
exit(1);

}

fscanf(fp, "%%", s, &); /* read fromfile */
fprintf(stdout, "% %", s, t); /* print on screen */

return O;

A word of warning: Although fprintf() and fscanf() often are the easiest way to write and read
assorted data to disk files, they are not always the most efficient. Because

Page 256

formatted ASCII datais being written as it would appear on the screen (instead of in binary), extra
overhead isincurred with each call. So, if speed or file sizeis aconcern, you should probably use
fread() and fwrite().

The Standard Streams

Asitrelatesto the C file system, when a program starts execution, three streams are opened
automatically. They are gdin (standard input), stdout (standard output), and stderr (standard error).
Normally, these streams refer to the console, but they can be redirected by the operating system to
some other device in environments that support redirectable 1/O. (Redirectable 1/O is supported by
Windows, DOS, Unix, and OS/2, for example.)

Because the standard streams are file pointers, they may be used by the C I/O system to perform 1/0O
operations on the console. For example, putchar () could be defined like this:

i nt putchar(char c)

{
}

return putc(c, stdout);

In general, stdin is used to read from the console, and stdout and stderr are used to write to the
console.

You can use din, stdout, and stderr asfile pointersin any function that uses a variable of type
FILE *. For example, you could use fgets() to input a string from the console using a call like this:

char str[255];
fgets(str, 80, stdin);

In fact, using fgets() in this manner can be quite useful. As mentioned earlier in this book, when
using gets(), it is possible to overrun the array that is being used to receive the characters entered by
the user because gets() provides no bounds checking. When used with stdin, the fgets() function
offers a useful alternative because it can limit the number of characters read and thus prevent array
overruns. The only trouble is that fgets() does not remove the newline character and gets() does, so
you will have to manually remove it, as shown in the following program:

#i ncl ude <stdio. h>
#i ncl ude <string. h>

Page 257

i nt mai n(voi d)

{
char str[80];

int i;

printf("Enter a string: ");
fgets(str, 10, stdin);

/* renove newine, if present */

i = strlen(str) - 1|;

if(str[i]=="\n") str[i] ="\0";
printf("This is your string: %", str);

return O;

Keep in mind that stdin, stdout, and stderr are not variables in the normal sense and can not be
assigned a value using fopen(). Also, just as these file pointers are created automatically at the start
of your program, they are closed automatically at the end; you should not try to close them.

The Console I/O Connection

C makes little distinction between console I/O and file I/O. The console I/O functions described in
Chapter 8 actually direct their I/O operationsto either stdin or stdout. In essence, the console 1/0
functions are ssimply special versions of their paralel file functions. The reason they existisas a
convenience to you, the programmer.

As described in the previous section, you can perform console 1/0 using any of C'sfile system
functions. However, what might surprise you is that you can perform disk file /O using console I/O
functions, such as printf()! Thisis because all of the console I/O functions described in Chapter 8
operate on gdin and stdout. In environments that allow redirection of 1/0, this means that stdin and
stdout could refer to a device other than the keyboard and screen. For example, consider this
program:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{

char str[80];

Page 258

printf("Enter a string: ");
gets(str);
printf(str);

return O;

Assume that this program is called TEST. If you execute TEST normally, it displays its prompt on
the screen, reads a string from the keyboard, and displays that string on the screen. However, in an
environment that supports I/O redirection, either stdin, stdout, or both could be redirected to afile.
For example, in a DOS or Windows environment, executing TEST like this,

TEST > OUTPUT

causes the output of TEST to be written to afile called OUTPUT. Executing TEST like this,

TEST < | NPUT > OUTPUT

directs stdin to thefile called INPUT and sends output to the file called OUTPUT.
When a C program terminates, any redirected streams are reset to their default status.
Using freopen() to Redirect the Standard Streams

Y ou can redirect the standard streams by using the freopen() function. This function associates an
existing stream with a new file. Thus, you can use it to associate a standard stream with a new file.
Its prototypeis

~ FILE *freopen(const char * filename, const char *mode, FILE * streair);

where filenameis a pointer to the filename you want associated with the stream pointed to by
stream. Thefileis opened using the value of mode, which may have the same val ues as those used
with fopen(). freopen() returns strearr if successful or NULL on failure.

Page 259

The following program uses freopen() to redirect stdout to afile called OUTPUT:

#i ncl ude <stdio. h>
i nt mai n(voi d)
{
char str[80];
freopen("OUTPUT", "w', stdout);
printf("Enter a string: ");
gets(str);
printf(str);

return O;

In general, redirecting the standard streams by using freopen() isuseful in special situations, such
as debugging. However, performing disk 1/0 using redirected stdin and stdout is not as efficient as
using functions like fread() or fwrite().

Page 261

Chapter 10—
The Preprocessor and Comments

Page 262

Y ou can include various instructions to the compiler in the source code of a C program. These are
called preprocessor directives, and they expand the scope of the programming environment. This
chapter also examines comments.

The Preprocessor

The preprocessor directives are shown here;

#define #endif #ifdef #line
#elif #error #ifndef #pragma
#else #if #include #undef

Asyou can see, all preprocessor directives begin with a # sign. In addition, each preprocessing
directive must be on its own line. For example, thiswill not work:

#i ncl ude <stdi o. h> #i nclude <stdlib. h>

t#define

The #define directive defines an identifier and a character sequence (a set of characters) that will be
substituted for the identifier each timeit is encountered in the source file. The identifier is referred
to as a macro name and the replacement process as macro replacement. The general form of the
directiveis

#define macro-name char -sequence

Notice that there is no semicolon in this statement. There may be any number of spaces between the
identifier and the character sequence, but once the character sequence begins, it isterminated only
by anewline.

For example, if you wish to usethe word LEFT for the value 1 and the word RIGHT for the value
0, you could declare these two #define directives:

#defi ne LEFT 1
#define RIGHT O

This causes the compiler to substitute a1l or a0 each time LEFT or RIGHT isencountered in your
source file. For example, the following prints 0 1 2 on the screen:

printf("% 9% %", RIGHT, LEFT, LEFT+1);

Page 263

Once a macro name has been defined, it may be used as part of the definition of other macro names.

For example, this code defines the values of ONE, TWO, and THREE:

#defi ne ONE
#defi ne TWO

1
ONE+ONE

#defi ne THREE ONE+TWO

Macro substitution is ssimply the replacement of an identifier by the character sequence associated
with it. Therefore, if you wish to define a standard error message, you might write something like

this:

[* .. *

printf(E_MS);

#define E_MS "standard error on input\n"

The compiler will substitute the string "standard error on input\n” when the identifier E MS is

encountered. To the compiler, the printf() statement will actually appear to be

printf("standard error on input\n");

No text substitutions occur if the identifier is within a quoted string. For example,

printf("Xyz");

#define XYZ this is a test

does not print thisisatest, but rather XY Z.

If the character islonger than one line, you may continue it on the next by placing a backslash at the

end of theline, as shown here:

#define LONG STRING "this is a very long \
string that is used as an exanpl e"

C programmers often use uppercase letters for defined identifiers. This convention helps anyone
reading the program know at a glance that a macro replacement will take place. Also, it isusually
best to put all #defines at the start of the file or in a separate header file rather than sprinkling them
throughout the program.

Page 264

Macros are most frequently used to define names for "magic numbers' that occur in a program. For
example, you may have a program that defines an array and has severa routines that access that
array. Instead of "hard-coding" the array's size with a constant, you can define the size using a
#define statement and then use that macro name whenever the array size is needed. In thisway, if
you need to change the size of the array, you will need to change only the#define statement and
then recompile your program. For example:

#def i ne MAX_SI ZE 100

;Loét bal illnce[MAX_SI ZE] ;

1/‘or.(i :0 i/<NAX_SI ZE; i++) printf("9%", balance[i]);
1/‘or.(i :0 i /<MAX_SI ZE; i++) x =+ bal ance[i];

Since MAX_SIZE defines the size of the array balance, if the size of balance needs to be changed
in the future, you need change only the definition of MAX_SIZE. All subsequent referencesto it
will be automatically updated when you recompile your program.

Defining Function-like Macros

The #define directive has another powerful feature: The macro name can have arguments. Each time
the macro name is encountered, the arguments used in its definition are replaced by the actual
arguments found in the program. This form of amacro is called afunction-like macro. For example:

#i ncl ude <stdio. h>
#defi ne ABS(a) (a) <0?-(a) : (a)
i nt mai n(voi d)

printf("abs of -1 and 1: % %", ABS(-1), ABS
(1)

return O;

}

When this program is compiled, a in the macro definition will be substituted with the values —1 and
1. The parentheses that enclose a ensure proper substitution in all cases. For example, if the
parentheses around a were removed, this expression

Page 265

ABS (10- 20)

would be converted to

10-20 < 0 ? -10-20 : 10-20

after macro replacement and would yield the wrong resullt.

The use of afunction-like macro in place of real functions has one major benefit: It increases the
execution speed of the code because there is no function call overhead. However, if the size of the
function-like macro is very large, thisincreased speed may be paid for with an increase in the size of
the program because of duplicated code.

One other point: Although parameterized macros are a valuable feature, C99 (and C++) has a better
way of creating in-line code, which uses the inline keyword.

NOTE

In C99, you can create a macro with a variable number of arguments. Thisis
described in Part Two of this book.

#Herror

The #error directive forces the compiler to stop compilation. It is used primarily for debugging. The
general form of the#error directiveis

#error error-message

The error-message is not between double quotes. When the #error directive is encountered, the
error message is displayed, possibly along with other information defined by the compiler.

#include

The #include directive tells the compiler to read another source file in addition to the one that
contains the #include directive. The name of the source file must be enclosed between double
guotes or angle brackets. For example,

#i ncl ude "stdio. h"
#i ncl ude <stdi o. h>

both cause the compiler to read and compile the header for the I/0O system library functions.

Include files can have #include directives in them. Thisisreferred to as nested includes. The
number of levels of nesting allowed varies between compilers. However, C89 stipulates that at |east
8 nested inclusions will be available. C99 specifiesthat at least 15 levels of nesting be supported.

Page 266

Whether the filename is enclosed by quotes or by angle brackets determines how the search for the
specified file is conducted. If the filename is enclosed in angle brackets, the file is searched for in a
manner defined by the creator of the compiler. Often, this means searching some special directory
set aside for includefiles. If the filename is enclosed in quotes, the file is looked for in another
implementation-defined manner. For many compilers, this means searching the current working
directory. If the fileis not found, the search is repeated as if the filename had been enclosed in angle
brackets.

Typically, most programmers use angle brackets to include standard header files. The use of quotes
is generally reserved for including files specifically related to the program at hand. However, there
isno hard and fast rule that demands this usage.

In addition to files, a C program uses the #include directive to include aheader. C defines a set of
standard headers that provide the information necessary for the various C libraries. A header isa
standard identifier that might map to afilename, but need not. Thus, a header is simply an
abstraction that guarantees that the appropriate information isincluded. As a practical matter,
however, C headers are nearly alwaysfiles.

Conditional Compilation Directives

There are several directives that allow you to selectively compile portions of your program's source
code. This processis called conditional compilation and is used widely by commercia software
houses that provide and maintain many customized versions of one program.

#f, #else, #elif, and #endif

Perhaps the most commonly used conditional compilation directives are #f, #else, #elif, and #endif.
These directives allow you to conditionally include portions of code based upon the outcome of a
constant expression.

The general form of #f is

#if constant-expression
~ statement sequence
#endif

If the constant expression following #if istrue, the code that is between it and #endif is compiled.
Otherwise, the intervening code is skipped. The #endif directive marks the end of an #if block. For
example:

[* Sinple #if example. */
#i ncl ude <stdio. h>

#defi ne MAX 100

Page 267

i nt mai n(voi d)
{
#i f MAX>99

printf('' Conpiled for array greater than 99.\n");
#endi f

return O;
}

This program displays the message on the screen because MAX is greater than 99. This example
illustrates an important point. The expression that follows the #if is evaluated at compile time.
Therefore, it must contain only previously defined identifiers and constants—no variables may be
used.

The #else directive works much like the else that is part of the C language: It establishes an
aternative if #if fails. The previous example can be expanded as shown here:

/* Sinple #if/l#el se exanple. */
#i ncl ude <stdio. h>

#defi ne MAX 10

i nt mai n(voi d)

{
f MAX>99
printf("Conpiled for array greater than 99.\n");
#el se
printf("Compiled for small array.\n");
#endi f
return O,
}

Inthiscase, MAX is defined to be less than 99, so the #if portion of the code is not compiled. The
#else alternative is compiled, however, and the message Compiled for small array is displayed.

Notice that #else is used to mark both the end of the #if block and the beginning of the #else block.
Thisis necessary because there can only be one #endif associated with any #if.

The #€lif directive means "else if" and establishes an if-else-if chain for multiple compilation
options. #elif is followed by a constant expression. If the expression is

Page 268

true, that block of code is compiled and no other #elif expressions are tested. Otherwise, the next
block in the seriesis checked. The general form for #€lif is

#f expression
statement sequence
#elif expression 1
statement sequence
#elif expression 2
statement sequence
#elif expression 3
~ statement sequence
#elif expression 4

#el if expression N
statement sequence
#endif

For example, the following fragment uses the value of ACTIVE_COUNTRY to define the
currency sign:

#define US O

#defi ne ENGLAND 1

#defi ne FRANCE 2

#defi ne ACTI VE_COUNTRY US

#i f ACTI VE_COUNTRY == US

char currency[] = ''dollar";
#el i f ACTI VE_COUNTRY == ENGLAND

char currency[] = "pound";
#el se

char currency[] = "franc";
#endi f

C89 states that #ifs and #elifs may be nested at least 8 levels. C99 states that at least 63 levels of
nesting be allowed. When nested, each #endif, #else, or #elif associates with the nearest #if or #elif.
For example, the following is perfectly valid:

#if MAX>100
#i f SERI AL_VERSI ON
i nt port=198;

Page 269

#el i f
int port=200;
#endi f
#el se
char out _buffer[100];
#endi f

#ifdef and #fndef

Another method of conditional compilation uses the directives #ifdef and #ifndef, which mean "if
defined" and "if not defined,” respectively. The general form of #fdef i<

#ifdef macro-name
~ statement sequence
#endif

If macro-name has been previously defined in a#define statement, the block of code will be
compiled.

The general form of #ifndef is

#ifndef macro-name
" statement sequence
#endif

If macro-name is currently undefined by a#define statement, the block of code is compiled.
Both #ifdef and #ifndef may use an #else or #€lif statement.

For example,

#i ncl ude <stdi o. h>

#defi ne TED 10

i nt mai n(voi d)
{
#i f def TED

printf("H Ted\n");
#el se

printf("H anyone\n");
#endi f
#i f ndef RALPH

Page 270

printf("RALPH not defined\n");
#endi f

return O;

}

will print Hi Ted and RALPH not defined. However, if TED were not defined, Hi anyone would
be displayed, followed by RAL PH not defined.

You may nest #ifdefsand #ifndefsto at least 8 levelsin C89. C99 specifiesthat at least 63 levels of
nesting be supported.

#undef

The #undef directive removes a previously defined definition of the macro name that follows it—
that is, it "undefines’ a macro. The general form for #undef is

~ #undef macro-name

For example:

#define LEN 100
#defi ne WDTH 100

char array[LEN] [W DTH] ;

#undef LEN
#undef W DTH
/* at this point both LEN and W DTH are undefined */

Both LEN and WIDTH are defined until the #undef statements are encountered.

#undef is used principally to allow macro names to be localized to only those sections of code that
need them.

Using defined

In addition to #fdef, there is a second way to determine whether a macro nameis defined. You can
use the #if directive in conjunction with the defined compile-time operator. The defined operator
has this genera form:

~ defined macro-name

Page 271

If macro-name is currently defined, the expression istrue; otherwise, it isfalse. For example, to
determine whether the macro MY FILE is defined, you can use either of these two preprocessing
commands:

#if defi ned MYFILE

or

#i f def MYFI LE

Y ou can also precede defined with the ! to reverse the condition. For example, the following
fragment is compiled only if DEBUG is not defined:

#if | defined DEBUG
printf('"Final version!\n");
#endi f

Onereason for using defined isthat it allows the existence of a macro name to be determined by a
#elif statement.

#line

The #line directive changesthe contentsof _ LINE__and __FILE _, which are predefined
identifiersin the compiler. The _ _LINE_ _ identifier contains the line number of the currently
compiled lineof code. The __FILE___ identifier isastring that contains the name of the source file
being compiled. The general form for #ine is

#line number "filename"

where number is any positive integer and becomesthe new valueof _ LINE_ _, and the optional
filename is any valid file identifier, which becomesthe new valueof _ FILE . #lineis primarily
used for debugging and specia applications.

For example, the following code specifies that the line count will begin with 100, and the printf()
statement displays the number 102 because it is the third line in the program after the #line 100
Statement.

#i ncl ude <stdi o. h>

#|line 100 /* reset the |line counter */
i nt mai n(voi d) /* line 100 */
{ /* line 101 */

Page 272

printf("%\n", _ LINE_ _); /* line 102 */

return O;

}

#pragma

#pragmais an implementation-defined directive that allows various instructions to be given to the
compiler. For example, acompiler may have an option that supports program execution tracing. A
trace option would then be specified by a #pragma statement. Y ou must check the compiler's
documentation for details and options.

NOTE

C99 has added an alternative to #pragma: the _Pragma operator. It isdescribed in
Part Two of this book.

The # and ## Preprocessor Operator s

There are two preprocessor operators. # and ##. These operators are used with the #define
Statement.

The # operator, which is generally called the stringize operator, turns the argument it precedesinto a
guoted string. For example, consider this program:

#i ncl ude <stdio. h>

#define nkstr(s) # s

i nt mai n(voi d)
printf(nmkstr(l like Q);

return O;

}

The preprocessor turnsthe line

printf(nkstr(l like Q));

into

printf("l like C");

The ## operator, called the pasting operator, concatenates two tokens. For example:

#i ncl ude <stdi o. h>

#define concat(a, b) a ## b
i nt mai n(voi d)
{ int xy = 10;

printf("%l", concat(x, y));

return O;

}

The preprocessor transforms

printf("%", concat(x, y));

into

printf("%", xy);

If these operators seem strange to you, keep in mind that they are not needed or used in most
programs. They exist primarily to allow the preprocessor to handle some special cases.

Predefined M acro Names

C specifiesfive built-in predefined macro names. They are

__LINE__
__FILE__
~ __DATE_

__TIME__
__SIDC_ _

Each will be described here, in turn.

Page 273

The LINE__and___FILE__ macroswere described in the discussion of #line. Briefly, they

contain the current line number and filename of the program when it is being compiled.

Page 274

The __DATE_ _macro contains a string of the form month/day/year that is the date of the
trandation of the source file into object code.

The __TIME_ _ macro contains the time at which the program was compiled. Thetimeis

represented in a string having the form hour: minute: second.

If STDC_ _isdefined as 1, then the compiler conformsto Standard C. C99 also defines these
two macros:

—__STDC HOSTED__
~ STDC VERSION__

__STDC _HOSTED __is1 for environments in which an operating system is present and 0
otherwise. STDC VERSION___ will beat least 199901 and will be increased with each new
version of C. (Other macros may also be defined by C99 and are described in Part Two.)

Comments

C89 defines only one style of comment, which begins with the character pair /* and ends with */.
There must be no spaces between the asterisk and the slash. The compiler ignores any text between
the beginning and ending comment symbols. For example, this program prints only hello on the
screen:

#i ncl ude <stdi o. h>

i nt mai n(voi d)
{
printf('"hello");
[* printf("there"); */

return O;

}

This style of comment is commonly called amultiline comment because the text of the comment
may extend over two or more lines. For example:

/* this is a
mul tiline
comment */

Page 275

Comments may be placed anywhere in a program, as long as they do not appear in the middie of a
keyword or identifier. That is, this comment is valid,

x = 10+ /* add the nunbers */5;

while

swi/*this will not work*/tch(c) { .

isincorrect because a keyword cannot contain a comment. However, you should not generally place
comments in the middle of expressions because it obscures their meaning.

Multiline comments may not be nested. That is, one comment may not contain another comment.
For example, this code fragment causes a compile-time error:

/* this is an outer conment

X = vyla;

/* this is an inner comment - and causes an error */
*/

Single-Line Comments

C99 (and C++) supports two types of comments. The first isthe /* */, or multiline comment just
described. The second is the single-line comment. Single-line comments begin with // and end at the
end of the line. For example,

/1 this is a single-line coment

Single-line comments are especially useful when short, line-by-line descriptions are needed.
Although they are not technically supported by C89, many C compilers accept them.

A single-line comment can be nested within a multiline comment. For example, the following
comment isvalid.

/* this is a/l/ test of nested comments. */

Y ou should include comments whenever they are needed to explain the operation of the code. All
but the most obvious functions should have a comment at the top that states what the function does,
how it is called, and what it returns.

Page 277

PART || —
THE C99 STANDARD

Computer languages are not static; they evolve, reacting to changes in methodol ogies, applications
generally accepted practices, and hardware. C is no exception. In the case of C, two evolutionary
paths were set in motion. The first is the continuing devel opment of the C language. The second is
C++, for which C provided the starting point. While most of the focus of the past several years has
been on C++, the refinement of C has continued unabated. For example, reacting to the

Page 278

internationalization of the computing environment, the original C89 standard was amended in 1995
to include various wide-character and multibyte functions. Once the 1995 amendment was compl ete,
work began on updating the language, in general. The end result is, of course, C99.

In the course of creating the 1999 standard, each element of the C language was thoroughly
reexamined, usage patterns were analyzed, and future demands were anticipated. As expected, C's
relationship to C++ provided a backdrop for the entire process. The resulting C99 standard isa
testimonial to the strengths of the original. Very few of the key elements of C were altered. For the
most part, the changes consist of a small number of carefully selected additions to the language and
the inclusion of several new library functions. Thus C is still C!

Part One of this book described those features of C that were defined by the C89 standard. Here we
will examine those features added by C99 and the few differences between C99 and C89.

Page 279

Chapter 11—
C99

Page 280

Perhaps the greatest cause for concern that accompanies the release of a new language standard is
the issue of compatibility with its predecessor. Does the new specification render old programs
obsolete? Have important constructs been altered? Do | have to change the way that | write code?
The answers to these types of questions often determine the degree to which the new standard is
accepted and, in the longer term, the viability of the language itself. Fortunately, the creation of C99
was a controlled, evenrhanded process that reflects the fact that several experienced pilots were at
the controls. Put smply: If you liked C the way it was, you will like the version of C defined by
C99. What many programmers think of as the world's most elegant programming language, still is!

In this chapter we will examine the changes and additions made to C by the 1999 standard. Many of
these changes were mentioned in passing in Part One. Here they are examined in closer detail. Keep
in mind, however, that as of thiswriting, there are no widely used compilers that support many of
C99's new features. Thus, you may need to wait awhile before you can "test drive" such exciting
new constructs as variable-length arrays, restricted pointers, and the long long data type.

C89 vs. C99:
An Overview

There are three general categories of changes between C89 and C99:
* Features added to C89

* Features removed from C89

* Features that have been changed or enhanced

Many of the differences between C89 and C99 are quite small and clarify nuances of the language.
This book will concentrate on the larger changes that affect the way programs are written.

Features Added
Perhaps the most important features added by C99 are the new keywords:
inline
restrict
_Bool
Complex
_Imaginary
Other mgjor additions include
 Variable-length arrays
* Support for complex arithmetic

* Thelong long int datatype

Page 281
* The//comment
 The ability to intersperse code and date
» Additions to the preprocessor
* Variable declarations inside the for statement
» Compound literals
* Flexible array structure members
 Designated initializers
» Changesto the printf() and scanf() family of functions
*The func predefined identifier
* New libraries and headers

Most of the features added by C99 are innovations created by the standardization committee, of
which many were based on language extensions offered by a variety of C implementations. In afew
cases, however, features were borrowed from C++. The inline keyword and // style comments are
examples. It isimportant to understand that C99 does not add C++-style classes, inheritance, or
member functions. The consensus of the committee wasto keep C as C.

Features Removed

The single most important feature removed by C99 is the "implicitint” rule. In C89, in many cases
when no explicit type specifier is present, the type int is assumed. Thisis not allowed by C99. Also
removed isimplicit function declaration. In C89, if afunction was not declared beforeit is used, an
implicit declaration is assumed. Thisis not supported by C99. Both of these changes may require
existing code to be rewritten if compatibility with C99 is desired.

Features Changed

C99 incorporates several changes to existing features. For the most part, these changes expand
features or clarify their meaning. In afew cases, the changes restrict or narrow the applicability of a
feature. Many such changes are small, but afew are quite important, including:

* Increased trandation limits

» Extended integer types

» Expanded integer type promotion rules

« Tightening of the return statement

As it affects existing programs, the change to return has the most significant effect because it might
require that code be rewritten slightly.

Page 282

Throughout the remainder of this chapter we will examine the major differences between C89 and
C99.

restrict-Qualified Pointers

One of the most important innovationsin C99 isthe restrict type qualifier. This qualifier applies
only to pointers. A pointer qualified by restrict isinitially the only means by which the object it
points to can be accessed. Access to the object by another pointer can occur only if the second
pointer is based on the first. Thus, access to the object is restricted to expressions based on the
restrict-qualified pointer. Pointers qualified by restrict are primarily used as function parameters,
or to point to memory allocated via malloc(). The restrict qualifier does not change the semantics
of aprogram.

By qualifying a pointer with restrict, the compiler is better able to optimize certain types of routines
by making the assumption that therestrict-qualified pointer is the sole means of accessto the
object. For example, if afunction specifiestwo restrict-qualified pointer parameters, the compiler
can assume that the pointers point to different (that is, non-overlapping) objects. For example,
consider what has become the classic example of restrict: the memcpy() function. In C89, itis
prototyped as shown here:

~ void *memcpy(void *strl, const void *str2, size t size);

The description for memcpy() states that if the objects pointed to by strl and str2 overlap, the
behavior is undefined. Thus, memcpy() is guaranteed to work for only non-overlapping objects.

In C99, restrict can be used to explicitly state in memcpy()'s prototype what C89 must explain
with words. Here is the C99 prototype for memcpy():

——void *memcpy
(void * restrict strl, const void * restrict str2, size t Sze);

By qualifying str1 and str2 with restrict, the prototype explicitly asserts that they point to non-
overlapping objects.

Because of the potential benefits that result from using restrict, C99 has added it to the prototypes
for many of the library functions originally defined by C89.

inline

C99 adds the keyword inline, which appliesto functions. By preceding a function declaration with
inline, you are telling the compiler to optimize callsto the function. Typically, this means that the
function's code will be expanded in line, rather than called. However, inlineis only arequest to the
compiler, and can be ignored. Specifically, C99 states that using inline "suggests that callsto the
function be asfast as possible.” Theinline specifier is also supported by C++, and the C99 syntax
for inline is compatible with C++.

Page 283

To create an in-line function, precede its definition with the inline keyword. For example, in this

program, callsto the function max() are optimized:

#i ncl ude <stdi o. h>

inline int max(int a,

{
}

i nt mai n(voi d)

{

int b)

return a >b ? a: b;

int x=5, y=10;

printf("Max of % and % is: %\n", X,

return O;

}

y, max(x,

y));

For atypical implementation of inline, the preceding program is equivalent to this one:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
int x=5, y=10;

printf("Max of % and % is: %\n", X,

return O;

}

(x>y ? x :

Yy, y));

The reason that inline functions are important is that they help you create more efficient code while
maintaining a structured, function-based approach. As you probably know, each time afunction is
called, asignificant amount of overhead is generated by the calling and return mechanism.
Typically, arguments are pushed onto the stack and various registers are saved when afunctionis
called, and then restored when the function returns. The trouble is that these instructions take time.

However, when afunction is expanded in line, none
function callsin line can produce faster run times, it

of those operations occur. Although expanding
can also result in larger code size because of

duplicated code. For thisreason, it isbest to inline only very small functions. Further, itisalso a
good ideato inline only those functions that will have significant impact on the performance of your

program.

Page 284

Remember: Although inline typically causes afunction's code to be expanded in line, the compiler
can ignore this request or use some other means to optimize calls to the function.

New Built-in Data Types
C99 adds severa new built-in data types. Each is examined here.
Bool

C99 adds the _Bool datatype, which is capable of storing the values 1 and O (true and false). _Bool
Is an integer type. As many readers know, C++ defines the keyword bool , which is different from
_Bool. Thus, C99 and C++ are incompatible on this point. Also, C++ defines the built-in Boolean
constants true and false, but C99 does not. However, C99 adds the header <stdbool.h>, which
defines the macros booal, true, and false Thus, code that is compatible with C/C++ can be easily
created.

Thereasonthat _Bool rather than bool is specified as a keyword is that many existing C programs
have already defined their own custom versions of bool. By defining the Boolean type as _Booal,
C99 avoids breaking this preexisting code. However, for new programs, it is best to include
<stdbool.h> and then use the bool macro.

Complex and Imaginary

C99 adds support for complex arithmetic, which includes the keywords _Complex and _I maginary,
additional headers, and severa new library functions. However, no implementation is required to
implement imaginary types, and freestanding implementations (those without operating systems) do
not have to support complex types. Complex arithmetic was added to C99 to provide better support
for numerical programming.

The following complex types are defined:

float _Complex

float _Imaginary
double Complex
double _Imaginary

long double _Complex
long double Imaginary

Thereasonthat _Complex and _I maginary, rather than complex and imaginary, are specified as
keywords is that many existing C programs have already defined their own custom complex data
types using the names complex and imaginary. By defining the keywords _Complex and
_Imaginary, C99 avoids breaking this preexisting code.

The header <complex.h> defines (among other things) the macros complex and imaginary, which
expand to Complex and _Imaginary. Thus, for new programs, it is best to include <complex.h>
and then use the complex and imaginary macros.

Page 285

Thelong long I nteger Types

C99 adds the long long int and unsigned long long int datatypes. A long long int has arange of at
least <(263-1) to 263-1. An unsigned long long int has aminimal range of 0 to 2%4-1. The long long
types alow 64-hit integers to be supported as a built-in type.

Array Enhancements

C99 has added two important features to arrays: variable length and the ability to include type
qualifiersin their declarations.

Variable-Length Arrays

In C89 array dimensions must be declared using integer constant expressions, and the size of an
array isfixed at compile time. C99 changes this for certain circumstances. In C99, you can declare
an array whose dimensions are specified by any valid integer expression, including those whose
valueis known only at run time. Thisis called avariable-length array (VLA). However, only local
arrays (that is, those with block scope or prototype scope) can be of variable length. Hereis an
example of avariable-length array:

void f(int diml, int dinR)

{
int matrix[dinml] [dinR]; /* a variable-length, 2-D array */

I* ..]
}

Here, the size of matrix is determined by the values passed to f() in dim1 and dim2. Thus, each
call to f()) canresult in matrix being created with different dimensions.

It isimportant to understand that variable-length arrays do not change their dimensions during their
lifetime. (That is, they are not dynamic arrays.) Rather, avariable-length array can be created with a
different size each time its declaration is encountered.

Y ou can specify avariable-length array of an unspecified size by using * asthe size.

Theinclusion of variable-length arrays causes a small change in the sizeof operator. In general,
sizeof isacompile-time operator. That is, it is normally translated into an integer constant whose
valueis equal to the size of the type or object when a program is compiled. However, when it is
applied to avariable-length array, sizeof isevaluated at run time. This change is hecessary because
the size of a variable-length array cannot be known until run time.

One of the major reasons for the addition of variable-length arrays to C99 is to support numeric
processing. Of course, it is afeature that has widespread applicability. But remember, variable-
length arrays are not supported by C89 (or by C++).

Page 286
Use of Type Qualifiersin an Array Declaration

In C99 you can use the keyword static inside the brackets of an array declaration when that
declaration isfor afunction parameter. It tells the compiler that the array pointed to by the
parameter will always contain at |least the specified number of elements. Here is an example:

int f(char str [static 80])

/1 here, str is always a pointer to an 80-el ement array
/1

}

In this example, str is guaranteed to point to the start of an array of charsthat contains at least 80
elements.

Y ou can also use the keywords restrict, volatile, and const inside the brackets, but only for function
parameters. Using restrict specifies that the pointer isthe sole initial means of access to the object.
Using congt states that the same array is always pointed to (that is, the pointer aways points to the
same object). The use of volatile is allowed, but meaningless.

Single-Line Comments

C99 adds the single-line comment to C. This type of comment begins with // and runs to the end of
the line. For example:

// This is a coment
int i; // this is another comren

Single-line comments are also supported by C++. They are convenient when only brief, single-line
remarks are needed. Many programmers use C's traditional multiline comments for longer
descriptions, reserving single-line comments for "play-by-play" explanations.

I nter sper sed Code and Declar ations

In C89, within ablock, al declarations must precede the first code statement. This rule does not
apply for C99. For example:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{

int i;

i = 10;

int j; // wong for C89; OK for C99 and C++
o=

printf("% %", i, j);

return O;

Here, the statement

i = 10;

Page 287

comes between the declaration of i and the declaration of j. Thisis not alowed by C89. It is alowed

by C99 (and by C++). The ahility to intersperse declarations and code iswidely used in C++.
Adding this feature to C makesit easier to write code that will be used in both environments.

Preprocessor Changes

C99 makes a number of small changes to the preprocessor.

Variable Argument Lists

Perhaps the most important change to the preprocessor is the ability to create macros that take a
variable number of arguments. Thisisindicated by an ellipsis(. . .) in the definition of the macro.
The built-in preprocessing identifier . VA _ARGS__ determines where the arguments will be

substituted. For example, given this definition

#define MyMax(. . .) max(__VA ARGS)

this statement

MWMax(a, b);

is transformed into

max(a, b);

There can be other arguments prior to the variable ones. For example, given

#def i ne conpare(conmpfunc,

.) compfunc(__VA ARGS_)

this statement

conpare(strcnp, "one", "two");

is transformed into

strcnp("one", "two");

Astheexampleshows, VA ARGS _isreplaced by all of the remaining arguments.

The Pragma Operator

Page 288

C99 includes another way to specify a pragmain a program: the Pragma operator. It has this

general form:

~ Pragma("directive")

Here, directive is the pragma being invoked. The addition of the _Pragma operator allows pragmas

to participate in macro replacement.

Built-in Pragmas

C99 defines the following built-in pragmas:

Pragma

STDC FP_CONTRACT ON/OFF/DEFAULT

STDC FENV_ACCESS ON/OFF/DEFAULT

STDC CX_LIMITED_RANGE ON/OFF/DEFAULT

Meaning

When on, floating-point
expressions are treated as
indivisible units that are
handled by hardware-based
methods. The default state is
implementation defined.

Tells the compiler that the
floating-point environment
might be accessed. The default
state is implementation defined.

When on, tells the compiler that
certain formulasinvolving
complex values are safe. The
default state is off.

Page 289
Y ou should refer to your compiler's documentation for details concerning these pragmas.
Additional Built-in Macros

C99 adds the following macros to those already supported by C89:

__STDC HOSTED 1if an operating system is present.
STDC VERSION 199901L or greater. Represents version of C.
_ _STDC IEC 559 1if IEC 60559 floating-point arithmetic is
supported.
__STDC _IEC 599 COMPLEX_ 1if IEC 60559 complex arithmetic is
supported.
__STDC _1SO 10646 A value of the form yyyymmL that states the

year and month of the ISO/IEC 10646
specification supported by the compiler.

Declaring Variableswithin a for Loop

C99 enhances the for loop by allowing one or more variables to be declared within the initialization
portion of the loop. A variable declared in thisway has its scope limited to the block of code
controlled by that statement. That is, a variable declared within afor loop will be local to that loop.
This feature has been included in C because often the variable that controls a for loop is needed only
by that loop. By localizing this variable to the loop, unwanted side effects can be avoided.

Here is an example that declares a variable within the initialization portion of afor loop:

#i ncl ude <stdi o. h>
i nt mai n(voi d)
// declare i within for
for(int i=0 i < 10; i+4)
printf('"% ", i);

return O;

}

Here, i isdeclared within the for loop, rather than prior to it.

As mentioned, avariable declared within afor islocal to that loop. Consider the following program.
Notice that the variable i is declared twice: at the start of main() and inside the for |oop.

#i ncl ude <stdio. h>
i nt mai n(voi d)
{

int i = -99;

/1 declare i within for

for(int i=0; i < 10; i++)

printf(''%d ", i);
printf("\n");
printf("Value of i is: %", i); // displays-99

return O;

This program displays the following:

01234567829
Val ue of i is: -99

Page 290

As the output shows, once thefor loop ends, the scope of the i declared within that loop ends. Thus,

thefina printf() statement displays—99, the value of thei declared at the start of main().

The ability to declare aloop-control variable inside the for has been available in C++ for quite some

time, and iswidely used. It is expected that most C programmers will do the same.

Compound Literals

C99 dlows you to define compound literals, which are array, structure, or union expressions

designating objects of the given type. A compound literal is created by specifying a parenthesized
type name, which is then followed by an initialization list, which must be enclosed between curly

braces. When the type nameis an array, its size must not be specified. The object created is

unnamed.

Hereis an example of acompound literal:

double *fp = (double[]) {1.0, 2.0, 3.0};

This creates a pointer to double, called fp, which pointsto the first of athree-element array of

double values.

Page 291

A compound literal created at file scope exists throughout the lifetime of the program. A compound
literal created within ablock isalocal object that is destroyed when the block is |€eft.

Flexible Array Structure Members

C99 allows you to specify an unsized array as the last member of a structure. (The structure must
have at |east one other member prior to the flexible array member.) Thisisreferred to asa flexible
array member . It allows a structure to contain an array of variable size. The size of such a structure
returned by sizeof does not include memory for the flexible array.

Typically, memory to hold a structure containing a flexible array member is allocated dynamically,
using malloc(). Extramemory must be allocated beyond the size of the structure to accommodate
the desired size of the flexible array. For example, given

struct mystruct {

int a;

int b;

float fa[]; // flexible array

b

the following statement allocates room for a 10-element
array:

struct mystruct *p;
p = (struct mystruct *) mall oc(sizeof (struct nystruct) + 10 *
si zeof (float));

Since sizeof (struct mystruct) yields a value that does not include any memory for fa, room for the
10-element array of floatsisadded by the expression

10 * sizeof (fl oat)

when malloc() is called.

Designated Initializers

A new feature of C99 that will be especialy helpful to those programmers working with sparse
arraysis designated initializers. Designators take two forms: one for arrays and one for structures
and unions. For arrays, thisform is used,

~ [index] = val

Page 292

where index specifiesthe element being initialized to the value val . For example:

int a[10] = { [0] = 100, [3] = 200 };

Here, only elements 0 and 3 are initialized.
For structure or union members, thisform is used:
. member -name

Using a designator with a structure alows an easy means of initializing only selected members of a
structure. For example:

struct mystruct {
int a;
int b;
int c;
} ob={ .c =30, .a =10 };

Here, b isuninitiaized.

Using designators also allows you to initialize a structure without knowing the order of its members.
Thisis useful for predefined structures, such asdiv t, or for structures defined by some third party.

Additionsto the printf() and scanf() Family of Functions

C99 adds to the printf() and scanf() family of functions the ability to handle the long long int and
unsigned long long int datatypes. The format modifier for long longis|l. For example, the
following fragment shows how to output along long int and an unsigned long long int:

long long int val;
unsi gned long long int u_val;
printf('"%I1d %Ilu", val, val2);

The Il can be applied to thed, i, o, u, and x format specifiers for both printf() and scanf
().

C99 adds the hh modifier, which is used to specify achar argument when using thed, i, o, u, or X
format specifiers.

Both the Il and hh specifiers can also be applied to the n specifier.

The format specifiers a and A, which were added to printf(), cause afloating-point value to be
output in a hexadecimal format. The format of the valueis

~[-]Oxh.hhhhp+d

Page 293

When A is used, the x and the p are uppercase. The format specifiersa and A were also added to
scanf(), and read afloating-point value.

Inacall to printf(), C99 allows the 1 modifier to be added to the %f specifier (asin, %If), but it has
no effect. In C89, %lf isundefined for printf().

New Librariesin C99

C99 adds severa new libraries and headers. They are shown here:

Header Purpose
<complex.h> Supports complex arithmetic.
<fenv.h> Gives access to the floating-point status flags and other aspects

of the floating-point environment.

<inttypes.h> Defines a standard, portable set of integer type names. Also
supports functions that handle greatest-width integers.

<is0646.h> Added in 1995 by Amendment 1. Defines macros that
correspond to various operators, such as & & and .

<stdbool.h> Supports Boolean data types. Defines the macros bool, true,
and false, which helps with C++ compatibility.

<stdint.h> Defines a standard, portable set of integer type names. This
header isincluded by <inttypes.h>.

<tgmath.h> Defines type-generic floating-point macros.

<wchar.h> Added in 1995 by Amendment 1. Supports multibyte and wide-
character functions.

<wctype.h> Added in 1995 by Amendment 1. Supports multibyte and wide-
character classification functions.

The contents of these headers and the functions they support are covered in Part Three.

The func__ Predefined Identifier

C99 defines __func__, which specifies the name (as a string literal) of the function in which _
_func__ occurs. For example:

voi d StrUpper(char *str)
{

Page 294

static int i = 0;

i ++;
printf(''% has been called %d time(s).\n", _ func__, 1i);

while(*str) {
*str = toupper(*str);
Str++;

}

}

When called the first time, StrUpper () will display this output:

StrUpper has been called 1 tine(s).

Increased Trandation Limits

The term "trandation limits" refers to the minimum number of various elements that a C compiler
must be able to handle. These include such things as the length of identifiers, levels of nesting,
number of case statements, and number of members allowed in a structure or union. C99 has
increased severa of these limits beyond the already generous ones specified by C89. Here are some
examples:

Limit C89 C99
Nesting levels of blocks 15 127
Nesting levels of conditional inclusion 8 63
Significant charactersin an internal identifier 31 63
Significant charactersin an external identifier 6 31
Members of a structure or union 127 1023
Argumentsin afunction call 31 127

Implicit int No Longer Supported

Severa years ago, C++ dropped the implicitint rule, and with the advent of C99, C follows suit. In
C89, the implicitint rule states that in the absence of an explicit type specifier, the typeint is
assumed. The most common use of the implicitint rule wasin the return type of functions. In the

past, C programmers often omitted the int when

Page 295

declaring functions that returned an int value. For example, in the early days of C, main() was often
written like this:

main ()

{
}

[* .. *

In this approach, the return type was simply allowed to default to int. In C99 (and in C++) this
default no longer occurs, and the int must be explicitly specified, asitisfor al of the programsin

this book.

Here is another example. In the past a function such as

int isEven(int val)

{
}

return !(val %%);

would often have been written like this:;

/* use integer default */
i sEven (int val)

{
}

return ! (val %®);

In the first instance, the return type of int is explicitly specified. In the second, it is assumed by
default.

Theimplicit int rule does not apply only to function return values (although that was its most
common use). For example, for C89 and earlier, the isEven() function could also be written like
this:

i sEven(const val)

{
}

return ! (val %%);

Here, the parameter val also defaults to int—in this case, const int. Again, this default to int is not
supported by C99.

Page 296

NOTE

Technically, a C99-compatible compiler can accept code containing implied ints
after reporting a warning error. This allows old code to be compiled. However,
there is no requirement that a C99-compatible compiler accept such code.

Implicit Function Declarations Have Been Removed

In C89, if afunction is called without a prior explicit declaration, then an implicit declaration of that
function is created. Thisimplicit declaration has the following form:

~ externint name();

Implicit function declarations are no longer supported by C99.

NOTE

Technically, a C99-compatible compiler can accept code containing implied
function declarations after reporting a warning error. This allows old code to be
compiled. However, there is no requirement that a C99-compatible compiler accept
such code.

Restrictionson return

In C89, afunction that has anon-void return type (that is, a function that supposedly returns a value)
could use areturn statement that did not include a value. Although this creates undefined behavior,
it was not technically illegal. In C99, anon-void function must use areturn statement that returns a
value. That is, in C99, if afunction is specified as returning avalue, any return statement within it
must have a value associated with it. Thus, the following function is technically valid for C89, but
invalid for C99:

int f(void)
{

[* . .. *

return ; // in C99, this statenent nust return a val ue
}

Page 297

Extended | nteger Types

C99 defines several extended integer typesin <stdint.h>. Extended types include exact-width,
minimum-width, maximum-width, and fastest integer types. Here is a sampling:

Extended Type Meaning

intl6 t An integer consisting of exactly 16 bits
int_leastl6 t An integer consisting of at least 16 bits

int fast32 t Fastest integer type that has at |east 32 bits
intmax_t Largest integer type

uintmax t Largest unsigned integer type

The extended types make it easier for you to write portable code. They are described in greater
detail in Part Three.

Changesto thelnteger Promotion Rules

C99 enhances the integer promotion rules. In C89, avalue of type char, short int, or an int bit-field
can be used in place of an int or unsigned int in an expression. If the promoted value can be held in
an int, the promotion is made to int; otherwise, the original value is promoted to unsigned int.

In C99, each of the integer typesis assigned arank. For example, the rank of long long int is greater
than int, which is greater than char, and so on. In an expression, any integer type that has arank less
than int or unsigned int can be used in place of an int or unsigned int.

Page 299

PART I1—
THE C STANDARD LIBRARY

Part Three of this book examines the C standard library. Chapter 12 discusses linking, libraries, and
headers. Chapters 13 through 20 describe the functions in the standard library, with each chapter
concentrating on a specific function subsystem.

This book describes the standard functions defined by both C89 and C99. C99 includes all functions
specified by C89. Thus, if you have a C99-compatible compiler you will be able to use all of the
functions

Page 300

described in Part Three. If you are using a C89-compatible compiler, the C99 functions will not be
available. Also, Standard C++ includes the functions defined by C89, but not those specified by
C99. Throughout Part Three, the functions added by C99 are so indicated.

When exploring the standard library, remember this: Most compiler implementors take great pride
in the completeness of their library. Y our compiler's library will probably contain many additional
functions beyond those described here. For example, the C standard library does not define any
screen-handling or graphics functions because of differences between environments, but your
compiler very likely includes such functions. Therefore, it is always a good ideato browse through
your compiler's documentation.

Page 301

Chapter 12—
Linking, Libraries, and Headers

Page 302

When a C compiler iswritten, there are actually two partsto the job. First, the compiler itself must
be created. The compiler translates source code into object code. Second, the standard library must
be implemented. Somewhat surprisingly, the compiler isrelatively easy to develop. Often, it isthe
library functions that take the most time and effort. One reason for thisis that many functions (such
asthe I/O system) must interface with the operating system for which the compiler is being written.
In addition, the C standard library defines alarge and diverse set of functions. Indeed, it isthe
richness and flexibility of the standard library that sets C apart from many other languages.

While subsequent chapters describe the C library functions, this chapter covers several foundational
concepts that relate to their use, including the link process, libraries, and headers.

TheLinker

Thelinker has two functions. Thefirst, as the name implies, isto combine (link) various pieces of
object code. The second is to resolve the addresses of call and load instructions found in the object
filesthat it is combining. To understand its operation, let's look more closely at the process of
separate compilation.

Separate Compilation

Separate compilation is the feature that allows a program to be broken down into two or morefiles,
compiled separately, and then linked to form the finished executable program. The output of the
compiler is an object file, and the output of the linker is an executable file. The linker physically
combines the files specified in the link list into one program file and resolves external references.
An external referenceis created any time the code in one file refers to code in another file. This may
be through either afunction call or areference to aglobal variable. For example, when the two files
shown here are linked, File 2's reference to count (which isdeclared in File 1) must be resolved.
The linker tells the code in File 2 where count will be found.

Filel File2

int count; #i ncl ude <stdio. h>

voi d di spl ay(void); extern int count;

i nt mai n(voi d) voi d di splay(void)

{ {
count = 10; printf('"%", count);
di splay(); }
return O;

}

Page 303

In asimilar fashion, the linker tells File 1 where the function display() islocated so that it can be
called.

When the compiler generates the object code for display(), it substitutes a placeholder for the
address of count because the compiler has no way of knowing where count is. The same sort of
thing occurs when main() is compiled. The address of display() is unknown, so a placeholder is
used. When these two files are linked together, these placeholders are replaced with the addresses of
the items. Whether these addresses are absolute or relocatable depends upon your environment.

Relocatable vs. Absolute Code

For most modern environments, the output of alinker isrelocatable code Thisis object code that
can run in any available memory region large enough to hold it. In arelocatable object file, the
address of each call or load instruction is not fixed, but isrelative. Thus, the addresses in relocatable
code are offsets from the beginning of the program. When the program is loaded into memory for
execution, the loader converts the relative addresses into physical addresses that correspond to the
memory into which the program is loaded.

For some environments, such as dedicated controllers in which the same address space is used for all
programs, the output of the linker actually contains the physical addresses. When thisis the case, the
output of the linker is absolute code.

Linking with Overlays

Although no longer commonplace, C compilers for some environments supply an overlay linker in
addition to a standard linker. An overlay linker works like aregular linker but can also create
overlays. An overlay is a piece of object code that is stored in adisk file and loaded and executed
only when needed. The place in memory into which an overlay isloaded is called the overlay
region. Overlays allow you to create and run programs that would be larger than available memory,
because only the parts of the program that are currently in use are in memory.

To understand how overlays work, imagine that you have a program consisting of seven object files
called F1 through F7. Assume also that there is insufficient free memory to run the program if the
object filesare all linked together in the normal way-you can only link the first five files before
running out of memory. To remedy this situation, instruct the linker to create overlays consisting of
filesF5, F6, and F7. Each time afunction in one of these filesisinvoked, the overlay manager
(provided by the linker) finds the proper file and placesit into the overlay region, alowing
execution to proceed. The code in files F1 through F4 remains resident at all times. Figure 12-1
illustrates this situation.

Asyou might guess, the principal advantage of overlaysisthat they enable you to write very large
programs. The main disadvantage—and the reason that overlays are usually alast resort—is that the
loading process takes time and has a significant impact on the overall speed of execution. For this
reason, you should group related functions

Page 304

F5-F7 loaded Fé

; ded
A5 MeeCle [_4
Owverlay
o

F7 region

Figure 12-1
Program with overlaysin memory

together if you have to use overlays, so that the number of overlay loadsis minimized. For example,
if the application isamailing list, it makes sense to place all sorting routines in one overlay, printing
routines in another, and so on.

As mentioned, overlays are not often used in today's modern computing environments.
Linking with DLLs

Windows provides another form of linking, called dynamic linking. Dynamic linking is the process
by which the object code for a function remainsin a separate file on disk until a program that usesit
Is executed. When the program is executed, the dynamically linked functions required by the
program are also loaded. Dynamically linked functions reside in a specia type of library called a
Dynamic Link Library, or DLL, for short.

The main advantage to using dynamically linked librariesis that the size of executable programsis
dramatically reduced because each program does not have to store redundant copies of the library
functionsthat it uses. Also, when DLL functions are updated, programs that use them will
automatically obtain their benefits.

Although the C standard library is not contained in adynamic link library, many other types of
functions are. For example, when you program for Windows, the entire set of API (Application
Program Interface) functions are stored in DLLs. Fortunately, relative to your C program, it does not
usually matter whether alibrary functionisstoredinaDLL or inaregular library file.

Page 305

TheC Standard Library

The ANSI/ISO standard for C defines both the content and form of the C standard library. That is,
the C standard specifies a set of functions that all standard compilers must support. However, a
compiler isfreeto supply additional functions not specified by the standard. (And, indeed, most
compilers do.) For example, it is common for a compiler to have graphics functions, mouse-handler
routines, and the like, even though none of these is defined by Standard C. Aslong as you will not
be porting your programs to a new environment, you can use these nonstandard functions without
any negative consequences. However, if your code must be portable, the use of these functions must
be restricted. From a practical point of view, virtually all nontrivial C programs will make use of
nonstandard functions, so you should not necessarily shy away from their use just because they are
not part of the standard function library.

Library Filesvs. Object Files

Although libraries are similar to object files, they have one important difference. When you link
object files, the entire contents of each object file becomes part of the finished executablefile. This
happens whether the code is actually used or not. Thisis not the case with library files.

A library isacollection of functions. Unlike an object file, alibrary file stores each function
individually. When your program uses a function contained in alibrary, the linker looks up that
function and adds its code to your program. In thisway, only functions that you actually use in your
program—not the contents of the entire library—are added to the executable file. Because functions
are selectively added to your program when alibrary is used, the C standard functions are contained
in libraries rather than object files.

Header s

Each function defined in the C standard library has a header associated with it. The headers that
relate to the functions that you use in your programs are included using #include. The headers
perform two important jobs. First, many functions in the standard library work with their own
specific data types, to which your program must have access. These data types are defined in the
header related to each function. One of the most common examples is the file system header
<stdio.h>, which provides the type FILE that is necessary for disk file operations.

The second reason to include headers is to obtain the prototypes for the standard library functions.
Function prototypes alow stronger type checking to be performed by

Page 306

the compiler. Although prototypes are technically optional, they are for all practical purposes
necessary. Also, they are required by C++. All programsin this book include full prototyping.

Table 12-1 shows the standard headers defined by C89. Table 12-2 shows the headers added by
C90.

Standard C reserves identifier names beginning with an underscore and followed by either a second
underscore or acapital letter for use in headers.

As explained in Part One, headers are usually files, but they are not necessarily files. It is
permissible for a compiler to predefine the contents of a header internally. However, for al practical
purposes, the Standard C headers are contained in files that correspond to their names.

The remaining chaptersin Part Three, which describe each function in the standard library, will
indicate which of these headers are necessary for each function.

Header Purpose

<assert.h> Definesthe assert() macro

<ctype.h> Character handling

<errno.h> Error reporting

<float.h> Defines implementation -dependent floating -point limits
<limits.h> Defines various implementati on-dependent limits
<locale.h> Supports localization

<math.h> Various definitions used by the math library
<setjmp.h> Supports nonlocal jumps

<signal.h> Supports signal handling

<stdarg.h> Supports variable argument lists

<stddef.h> Defines some commonly used constants
<stdio.h> Supportsthe I/O system

<stdlib.h> Miscellaneous declarations

<string.h> Supports string functions

<time.h> Supports system time functions

Table12-1. Headers Defined by C89

Header
<complex.h>

<fenv.h>
<inttypes.h>
<is0646.h>
<stdbool.h>
<stdint.h>

<tgmath.h>

<wchar.h>
<wctype.h>

Table12-2.

Macrosin Headers

Purpose
Supports complex arithmetic.

Gives access to the floating- point status flags and other aspects of
the floating-point environment.

Defines a standard, portable set of integer type names. Also supports
functions that handle greatest-width integers.

Added in 1995 by Amendment 1. Defines macros that correspond to
various operators, suchas & & and .

Supports Boolean data types. Defines the macro bool, which helps
with C++ compatibility.

Defines a standard, portable set of integer type names. Thisfileis
included by <inttypes.h>.

Defines type-generic floating-point macros.

Added in 1995 by Amendment 1. Supports multibyte and wide-
character functions.

Added in 1995 by Amendment 1. Supports multibyte and wide-
character classification functions.

Headers Added by C99

Page 307

Many of the C standard functions can be implemented either as actual functions or as function-like
macros defined in a header. For example, abs(), which returns the absolute value of its integer
argument, could be defined as a macro, as shown here:

#define abs(i) (i)<0 2 -(i) : (i)

Whether a standard function is defined as a macro or as aregular C function is usualy of no

consequence. However, in rare situations where a macro is unacceptable—for example, where code
size isto be minimized or where an argument must not be evaluated more than once—you will have
to create areal function and substitute it for the macro. Sometimes the C library itself also has areal
function that you can use to replace a macro.

Page 308

To force the compiler to use the real function, you need to prevent the compiler from substituting
the macro when the function name is encountered. Although there are several waysto do this, by far
the best is simply to undefine the macro name using #undef. For example, to force the compiler to
substitute the real abs() function for the previously defined macro, you would insert this line of
code near the beginning of your program:

#undef abs

Then, since abs is no longer defined as a macro, the function version is used.

Redefinition of Library Functions

Although linkers may vary dlightly between implementations, they all operate in essentially the
same way. For example, if your program consists of three files caled FI, F2, and F3, the linker
command line looks something like this,

"~ LINKF1F2F3LIBC

where LIBC isthe name of the standard library.

NOTE

Some linkers automatically use the standard library and do not require that it be
specified explicitly. Also, integrated programming environments often include the
appropriate library files automatically.

Asthelink process begins, usually the linker first attempts to resolve al external references by using
only thefiles F1, F2, and F3. Once thisis done, the library is searched if unresolved external
references still exist.

Because most linkers proceed in the order just described, you can redefine afunction that is
contained in the standard library. For instance, you could create your own version of fwrite() that
handled file output in some special way. In this case, when you link a program that includes your
redefined version of fwrite(), that implementation isfound first and used to resolve all referencesto
it. Therefore, by the time the library is scanned, there are no unresolved references to the fwrite()
function, and it is not loaded from the library.

Y ou must be very careful when you redefine library functions because you could be creating
unexpected side effects. Another part of your program might use the library function that you are
redefining. In this case, the other part will be expecting the library function but will get your
redefined function instead. For example, if you redefine fwrite() for usein one part of a program
and another part of your program uses fwrite(), expecting it to be the standard library function, then
(to say the least) unexpected behavior may result. It is a better idea simply to use a different name
for your function than to redefine alibrary function.

Page 309

Chapter 13—
/O Functions

Page 310

This chapter describes the Standard C 1/0 functions. It includes the functions defined by C89 and
those added by C99. The header associated with the 1/0O functionsis <stdio.h>. This header defines
several macros and types used by the file system. The most important typeis FILE, which isused to
declare afile pointer. Two other frequently used types are size t and fpos t. The size t type, which
Is some form of unsigned integer, isthe type of the result returned by sizeof. The fpos t type defines
an object that can uniquely specify each location within afile. The most commonly used macro
defined by the header is EOF, which is the value that indicates end-of-file. Other data types and
macros defined in <stdio.h> are described in conjunction with the functions to which they relate.

Many of the I/O functions set the built-in global integer variable errno when an error occurs. Y our
program can check this variable to obtain more information about the error. The values that errno
may have are implementation dependent.

C99 adds the restrict qualifier to certain parameters of severa functions originally defined by C89.
When thisis the case, the function will be shown using its C89 prototype (which is also the
prototype used by C++), but the restrict-qualified parameters will be pointed out in the function's
description.

For an overview of the 1/0 system, see Chapters 8 and 9 in Part One.

NOTE

This chapter describes the character -based I/O functions. These are the functions
that were originally defined for Standard C and are, by far, the most widely used. In
1995 several wide-character (wchar_t) functions were added, and they are briefly
described in Chapter 19.

clearerr

#i ncl ude <stdi o. h>
void clearerr(FILE *stream;

The clearerr () function resets (that is, sets to zero) the error flag associated with the stream pointed
to by strearr. The end-of -file indicator is aso reset.

The error flags for each stream are initially set to zero by a successful call to fopen(). File errors
can occur for awide variety of reasons, many of which are system dependent. The exact nature of
the error can be determined by calling perror (), which displays a message describing the error (see
perror).

Example

This program copies one file to another. If an error is encountered, a message is printed and the error
IS cleared.

/* Copy one file to another. */
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

int main(int argc, char *argv[])

{

FILE *in, *out;
char ch;

i f(argc!=3) {
printf(''You forgot to enter a filenane.\n");
exit(1l);

}

i f((in=fopen(argv[1], "rb")) == NULL) {
printf("Cannot open input file.\n");
exit:(1);

}

i f((out=fopen(argv[2], "wb")) == NULL) {
printf("Cannot open output file.\n");
exit(1l);

}

while(!feof (in)) {
ch = getc(in);
if(ferror(in)) {
printf("Read Error");
clearerr(in);
br eak;
} else {
if(!feof(in)) putc(ch, out);
if(ferror(out)) {
printf("Wite Error");
clearerr(out);
br eak;
}
}
}
fcl ose(in);
fcl ose(out);

return O;

Page 311

Page 312
Related Functions

feof(), ferror(), and perror()

fclose

#incl ude <stdio. h>
int fclose(FILE *streamn;

The fclose() function closes the file associated with stream and flushes its buffer. After acall to
fclose(), streamis no longer connected with the file, and any automatically allocated buffers are
deallocated.

If fclose() is successful, zero is returned; otherwise EOF isreturned. Trying to close afile that has
already been closed is an error. Removing the storage media before closing afile will also generate
an error, aswill lack of sufficient free disk space.

Example

The following code opens and closes afile:

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
i nt mai n(voi d)

{

FILE *fp;

i f((fp=fopen("test”, "rb"))==NULL) {
printf('" Cannot open file.\n");
exit(1l);

}

if(fclose(fp)) printf("File close error.\n");

return O;

}

Related Functions

fopen(), freopen(), and fflush()

Page 313

feof

#i ncl ude <stdi o. h>
int feof (FILE *stream;

The feof() function determines whether the end of the file associated with stream has been reached.
A nonzero valueisreturned if the file position indicator is at the end of the file; zero is returned
otherwise.

Once the end of the file has been reached, subsequent read operations will return EOF until either
rewind() iscalled or the file position indicator is moved using fseek().

The feof() function is particularly useful when working with binary files because the end-of-file
marker is also avalid binary integer. Explicit calls must be made to feof() rather than simply testing
the return value of getc(), for example, to determine when the end of abinary file has been reached.

Example

This code fragment shows one way to read to the end of afile:

/*

Assune that fp has been opened for read operations.
*/
whil e(!feof (fp)) getc(fp);

Related Functions

clearerr(), ferror(), perror(), putc(), and getc()

ferror

#incl ude <stdio. h>
int ferror(FILE *streamn;

The ferror () function checks for afile error on the given stream. A return value of zero indicates
that no error has occurred, while a nonzero value means an error.

To determine the exact nature of the error, use the perror () function.

Page 314

Example

The following code fragment aborts program execution if afile error
OCCUrS:

/-k
Assune that fp points to a stream opened for wite
operations.

*/

whi | e(! done) {
putc(info, fp);
if(ferror(fp)) {
printf('"File Error\n");
exit(1l);
}

}

Related Functions

clearerr(), feof(), and perror()

fflush

#i ncl ude <stdio. h>
int fflush(FILE *stream;

If streamis associated with afile opened for writing, a call to fflush(') causes the contents of the
output buffer to be physically written to the file. The file remains open.

A return value of zero indicates success; EOF indicates that awrite error has occurred.

All buffers are automatically flushed upon normal termination of the program or when they are full.
Also, closing afile flushes its buffer.

Example

The following code fragment flushes the buffer after each write operation:

/*
Assume that fp is associated with an output file.
*/

Page 315

for(i=0; i<MAX; i++) {
fwite(buf, sizeof(sonme_type), 1, fp);
fflush(fp);

}

Related Functions

fclose(), fopen(), fread(), fwrite(), gete(), and putc()

fgetc

#i ncl ude <stdio. h>
int fgetc(FILE *stream;

The fgetc() function returns the next character from the specified input stream and increments the
file position indicator. The character is read as an unsigned char that is converted to an integer.

If the end of the fileisreached, fgetc() returns EOF. However, since EOF isavalid integer value,
when working with binary files you must use feof() to check for the end of thefile. If fgetc()
encounters an error, EOF is aso returned. If working with binary files, you must use ferror() to
check for file errors.

Example

The following program reads and displays the contents of atext file:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

int main(int argc, char *argv[])

{

FILE *fp;

char ch;

i f((fp=fopen(argv[1],"r"))==NULL) {
printf('' Cannot open file.\n");
exit(1l);

}

while((ch=fgetc(fp)) != EOF) {

Page 316

printf("%", ch);
}
fclose(fp);

return O;

}

Related Functions

fputc(), gete(), putc(), and fopen()

fgetpos

#i ncl ude <stdi o. h>
int fgetpos(FILE *stream fpos_t *position);

For the specified stream, the fgetpos() function stores the current value of the file position indicator
in the object pointed to by position. The object pointed to by position must be of type fpos t. The
value stored there is useful only in a subsequent call to fsetpos().

In C99, both strear and position are qualified by restrict.
If an error occurs, fgetpos() returns nonzero; otherwise it returns zero.
Example

The following fragment stores the current file location in file loc:

FILE *fp;
fpos_t file_loc;

fgetpos(fp, &ile_loc);

Related Functions
fsetpos(), fseek(), and ftell()

Page 317

foets

#i ncl ude <stdio. h>
char *fgets(char *str, int num FILE *stream;

The fgets() function reads up to num-1 characters from streamand stores them in the character
array pointed to by str. Characters are read until either anewline or an EOF isreceived or until the
specified limit is reached. After the characters have been read, anull is stored in the array
immediately after the last character read. A newline character will be retained and will be part of the
array pointed to by str.

In C99, gtr and strear are qualified by restrict.

If successful, fgets() returns str; anull pointer is returned upon failure. If aread error occurs, the
contents of the array pointed to by str are indeterminate. Because a null pointer will be returned
when either an error has occurred or when the end of the file is reached, you should use feof() or
ferror() to determine what has actually happened.

Example

This program uses fgets() to display the contents of the text file whose name is specified as the first
command line argument:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

int main(int argc, char *argv[])

{
FILE *fp;
char str[128];

i f((fp=fopen(argv[1], "r"))==NULL) {
printf('' Cannot open file.\n");
exit(1l);

}

while(!feof (fp)) {

if(fgets(str, 126, fp)) printf("%", str);
}

fclose(fp);

return O;

Page 318

Related Functions
fputs(), foetc(), gets(), and puts()

fopen

#i ncl ude <stdi o. h>
FILE *fopen(const char *fname, const char *pode);

The fopen() function opens afile whose name is pointed to by fname and returns the stream that is
associated with it. The type of operations that will be allowed on the file are defined by the value of
mode. The legal values for mode are shown in Table 13-1. The filename must be a string of
characters constituting a valid filename as defined by the operating system and may include a path
specification if the environment supportsit.

In C99, fname and mode are qualified by restrict.

If fopen() issuccessful in opening the specified file, aFILE pointer isreturned. If the file cannot be
opened, anull pointer is returned.

Mode Meaning

"rt Open text file for reading

"w Create atext file for writing
"a Append to text file

"rb" Open binary file for reading
"wh" Create binary file for writing
"ab" Append to abinary file

"r+" Open text file for read/write
"w+" Create text file for read/write
"at" Open text file for read/write
"rb+" or "r+b" Open binary file for read/write
"wb+" or "w+b" Create binary file for read/write
"ab+" or "atb" Open binary file for read/write

Table13-1. Legal Values for the mode Parameter of fopen()

Page 319

Asthe table shows, afile can be opened in either text or binary mode. In text mode, some character
translations may occur. For example, newlines may be converted into carriage return/linefeed
sequences. No such trandations occur on binary files.

The correct method of opening afileisillustrated by this code fragment:

FILE *fp;

if ((fp = fopen("test™, "w'))==NULL) {
printf('" Cannot open file.\n");
exit(l);

}

This method detects any error in opening afile, such as awrite-protected or afull disk, before
attempting to write to it.

If you usefopen() to open afile for output, any preexisting file by that name will be erased and a
new file started. If no file by that name exists, one will be created. Opening afile for read operations
requires that the file exists. If it does not exist, an error will be returned. If you want to add to the
end of thefile, you must use mode "a". If the file does not exist, it will be created.

When accessing afile opened for read/write operations, you cannot follow an output operation with
an input operation without first calling either fflush(), fseek(), fsetpos(), or rewind(). Also, you
cannot follow an input operation with an output operation without first calling one of the previously
mentioned functions, except when the end of the fileis reached during input. That is, output can
directly follow input at the end of thefile.

Upto FOPEN_MAX files can be open at any onetime. FOPEN MAX isdefined in <stdio.h>.
Example
This fragment opens afile called TEST for binary read/write operations.

FILE *fp;

if((fp=fopen("test”, "rb+"))==NULL) {
printf("Cannot open file.\n");
exit(1l);

}

Related Functions
fclose(), fread(), fwrite(), putc(), and getc()

Page 320

fprintf

#i ncl ude <stdio. h>
int fprintf(FILE *stream const char *format, . . .);

The fprintf() function outputs the values of the arguments that make up the argument list as
specified in the format string to the stream pointed to by stream. The return value is the number of
characters actually printed. If an error occurs, a negative number is returned.

In C99, strear and format are qualified by restrict.

The operations of the format control string and commands are identical to those in printf(); see
printf for a complete description.

Example

This program creates afile called TEST and writesthisisatest 10 20.01 into the file using fprintf
() to format the data:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt mai n(voi d)
FILE *fp;
if((fp=fopen("test”, "wb"))==NULL) {
printf('" Cannot open file.\n");
exit(1l);
}

fprintf(fp, "this is a test % %", 10, 20.01);
fclose(fp);

return O;

Related Functions

printf() and fscanf()

Page 321
fputc

#i ncl ude <stdio. h>
int fputc(int ch, FILE *stream;

The fputc() function writes the character ch to the specified stream at the current file position and
then advances the file position indicator. Even though ch is declared to be an int for historical
reasons, it is converted by fputc() into an unsigned char. Because a character argument is elevated
to an integer at the time of the call, you will generally see character values used as arguments. If an
integer were used, the high-order byte(s) would simply be discarded.

The value returned by fputc() isthe value of the character written. If an error occurs, EOF is
returned. For files opened for binary operations, an EOF may be avalid character, and the function
ferror() will need to be used to determine whether an error has actually occurred.

Example

This function writes the contents of a string to the specified stream:

void wite_string(char *str, FILE *fp)

while(*str) if(!ferror(fp)) fputc(*str++, fp);

}

Related Functions

fgetc(), fopen(), fprintf(), fread(), and fwrite()

fputs

#i ncl ude <stdio. h>
int fputs(const char *str, FILE *stream;

The fputs() function writes the contents of the string pointed to by str to the specified stream. The
null terminator is not written.

In C99, gtr and strearr are qualified by restrict.
The fputs() function returns nonnegative on success and EOF on failure.

If the stream is opened in text mode, certain character translations may take place. This means that
there may not be a one-to-one mapping of the string onto the file.

Page 322

However, if the stream is opened in binary mode, no character translations will occur, and a one-to-
one mapping between the string and the file will exist.

Example

This code fragment writes the string thisis a test to the stream pointed to by fp:

fputs("this is a test", fp);

Related Functions
foets(), gets(), puts(), fprintf(), and fscanf()

fread

#i ncl ude <stdio. h>
size_t fread(void *buf, size_t size, size_t count, FILE *stream;

The fread() function reads count number of objects, each object being size bytes in length, from the
stream pointed to by stream and stores them in the array pointed to by buf. The file position
indicator is advanced by the number of characters read.

In C99, buf and strearr are qualified by restrict.

The fread() function returns the number of items actually read. If fewer items are read than are
requested in the call, either an error has occurred or the end of the file has been reached. Y ou must
use feof () or ferror () to determine what has taken place.

If the stream is opened for text operations, certain character trandlations, such as carriage
return/linefeed sequences being transformed into newlines, may occur.

Example

The following program writes five floating-point numbers from the bal array to adisk file called
TEST and then reads them back:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt mai n(voi d)
{
FILE *fp;
float bal[5] = { 1.1F, 2.2F, 3.3F, 4.4F, 5.5F };
int i;

/* wite the val ues */

if((fp=fopen("test”, "wb"))==NULL) {
printf('" Cannot open file.\n");
exit(1l);

}

if(fwite(bal, sizeof(float), 5, fp) !=5)
printf("File read error.");

fclose(fp);

/* read the val ues */

i f((fp=fopen("test”, "rb"))==NULL) {
printf("Cannot open file.\n");
exit (1);

}

if(fread(bal, sizeof(float), 5, fp) !'=5) {
if(feof (fp)) printf("Premature end of file.");
else printf("File read error.");

}

fclose(fp);

for(i=0; i<5b; i++)
printf("9% ", bal[i]);

return O;

Related Functions
fwrite(), fopen(), fscanf(), fgetc(), and getc()

freopen

#i ncl ude <stdio. h>
FI LE *freopen(const char *fname, const char *npde,

FI LE *stream;

Page 323

The freopen() function associates an existing stream with a different file. The end-of-file and error
flags are cleared in the process. The new file's name is pointed to by fname, the access mode is
pointed to by mode, and the stream to be reassigned is pointed to by stream The mode parameter

uses the same format as fopen(); a complete discussion isfound in the fopen() description.

In C99, fname, mode, and strearr are qualified by restrict.

Page 324

When called, freopen() first triesto close afile that may currently be associated with stream.
However, if the attempt to close the file fails, the freopen(') function still continues to open the
other file.

The freopen(') function returns a pointer to strearr on success and a null pointer otherwise.

The main use of freopen() isto redirect the system-defined files stdin, stdout, and stderr to some
other file.

Example
The program shown here uses freopen() to redirect the stream stdout to the file called OUT.

Because printf() writesto stdout, the first message is displayed on the screen and the second is
written to the disk file.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt mai n(voi d)
{
FILE *fp;
printf("This will display on the screen.\n");
i f((fp=freopen("OUT", "wW' ,stdout))==NULL) {
printf('" Cannot open file.\n");
exit(l);
}
printf("This will be witten to the file QUT.");
fclose(fp);

return O;

Related Functions
fopen() and fclose()

fscanf

#i ncl ude <stdio. h>
int fscanf(FILE *stream const char *format, . . .);

Page 325

The fscanf() function works exactly like the scanf() function except that it reads the information
from the stream specified by strean instead of stdin. See scanf for details.

In C99, strear and format are qualified by restrict.

The fscanf() function returns the number of arguments actually assigned values. This number does
not include skipped fields. A return value of EOF means that a failure occurred before the first
assignment was made.

Example

This code fragment reads a string and a float from the stream fp:

char str[80];
float f;

fscanf(fp, "%®%", str, &f);

Related Functions

scanf() and fprintf()

fseek

#i ncl ude <stdio. h>
int fseek(FILE *stream long int offset, int origin);

The fseek (') function sets the file position indicator associated with stream according to the values
of offset and origin. Its purposeis to support random access I/O operations. The offset is the number
of bytes from originto seek to. The values for origin must be one of these macros (defined in
<stdio.h>):

Name Meaning

SEEK_SET Seek from start of file
SEEK CUR Seek from current location
SEEK _END Seek from end of file

A return value of zero means that fseek () succeeded. A nonzero value indicates failure.

In general, fseek() should be used only with binary files. If used on atext file, origin must be
SEEK _SET and offset must be a value obtained by calling ftell() on the samefile, or zero (to set
the file position indicator to the start of thefile).

The fseek (') function clears the end-of-file flag associated with the specified stream. Furthermore, it
nullifies any prior ungetc() on the same stream (see ungetc).

Example

The following function seeks to the specified structure of type addr

obtain the size of the structure.

Page 326

. Notice the use of sizeof to

struct addr {
char nane[40];
char street[40];
char city[40];
char state[3];
char zip[10];

} info;

void find(long int client_num

{
FILE *fp;
if((fp=fopen("mail", "rb")) == NULL) {
printf('' Cannot open file.\n");
exit(1l);
}

/[* find the proper structure */

/* read the data into menory */
fread(& nfo, sizeof(struct addr), 1, fp);

fclose(fp);

fseek(fp, client_nunrsizeof(struct addr), SEEK SET);

Related Functions

ftel(), rewind(), fopen(), fagetpos(), and fsetpos()

fsetpos

#i ncl ude <stdio. h>
int fsetpos(FILE *stream const fpos_t *position);

Page 327

The fsetpos() function moves the file position indicator to the location specified by the object
pointed to by position. This value must have been previously obtained through a call to fgetpos().
After fsetpos() is executed, the end-of-file indicator is reset. Also, any previous call to ungetc() is
nullified.

If fsetpos() fails, it returns nonzero. If it is successful, it returns zero.
Example

This code fragment resets the current file position indicator to the value stored in file loc:

fsetpos(fp, &ile_loc);

Related Functions
fgetpos(), fseek(), and ftell()

ftell

#i ncl ude <stdio. h>
long int ftell (FILE *stream;

The ftell() function returns the current value of the file position indicator for the specified stream.
In the case of binary streams, the value is the number of bytes the indicator is from the beginning of
thefile. For text streams, the return value may not be meaningful except as an argument to fseek()
because of possible character trandations, such as carriage return/linefeeds being substituted for
newlines, which affect the apparent size of thefile.

The ftell(') function returns —1 when an error occurs.
Example

This code fragment obtains the current value of the file position indicator for the stream pointed to
by fp:

long int i;

if((i=ftell(fp)) == -1L)
printf('"Afile error has occurred.\n");

Page 328

Related Functions
fseek () and fgetpos()

fwrite

#i ncl ude <stdi o. h>
size t fwite(const void *puf, size_t size, size_t count,
FILE *stream;

The fwrite() function writes count number of objects, each object being size bytesin length, to the
stream pointed to by stream from the character array pointed to by buf. The file position indicator is
advanced by the number of characters written.

In C99, buf and stream are qualified by restrict.

The fwrite() function returns the number of items actually written, which, if the functionis
successful, will equal the number requested. If fewer items are written than are requested, an error
has occurred.

Example

This program writes a float to the file TEST. Notice that sizeof is used both to determine the number
of bytesin afloat and to ensure portability.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt mai n(voi d)

{
FILE *fp;
float f=12.23;

if((fp=fopen("test”, "wb"))==NULL) ({
printf('" Cannot open file.\n");
exit(l);

}

fwite(&, sizeof
(float), 1, fp);

fclose(fp);

return O;

}

Page 329
Related Functions
fread(), fscanf(), getc(), and fgetc()

getc

#i ncl ude <stdi o. h>
int getc(FILE *stream;

The getc() function returns the next character from the specified input stream and increments the
file position indicator. The character isread as an unsigned char that is converted to an integer.

If the end of thefileisreached, getc() returns EOF. However, since EOF isavalid integer value,
when working with binary files you must use feof() to check for the end-of -file condition. If getc()
encounters an error, EOF is aso returned. If working with binary files, you must use ferror() to
check for file errors.

The functions getc() and fgetc() are identical except that in most implementations getc() is defined
as amacro.

Example

The following program reads and displays the contents of atext file:

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

int main(int argc, char *argv[])

{

FILE *fp;

char ch;

i f((fp=fopen(argv[1], "r"))==NULL) {
printf('" Cannot open file.\n");
exit(1);

}

whil e((ch=getc(fp)) ! =EOF)
printf("%", ch);
}

fclose(fp);

Page 330

return O;

Related Functions

fputc(), fgetc(), putc(), and fopen()

getchar

#i ncl ude <stdi o. h>
i nt getchar(void);

The getchar () function returns the next character from stdin. The character isread as an unsigned
char that is converted to an integer.

If the end of thefileisreached, getchar () returns EOF. If getchar () encounters an error, EOF is
also returned.

The getchar () function is often implemented as a macro.
Example

This program reads characters from stdin into the array s until the user presses ENTER. Then, the
string is displayed.

#i ncl ude <stdi o. h>
i nt mai n(voi d)

char s[256], *p;

p =Ss;

while((*p++ = getchar())!= "\n") ;
p = '"\0"; / add null term nator */
printf(s);

return O;

Page 331
Related Functions

fputc(), fgetc(), putc(), and fopen()

gets

#i ncl ude <stdi o. h>
char *gets(char *str);

The gets() function reads characters from stdin and places them into the character array pointed to
by str. Characters are read until a newline or an EOF isreceived. The newline character is not made
part of the string; instead, it istrandated into a null to terminate the string.

If successful, gets() returns sir; anull pointer isreturned upon failure. If aread error occurs, the
contents of the array pointed to by str are indeterminate. Because a null pointer will be returned
when either an error has occurred or when the end of the file is reached, you should use feof() or
ferror () to determine what has actually happened.

There is no way to limit the number of charactersthat gets() will read, which meansthat the array
pointed to by str could be overrun. Thus, this function isinherently dangerous. Its use should be
limited to sample programs (such as those in this book) or utilities for your own use. It should not be
used for production code.

Example

This program uses gets() to read afilename:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

int main(void)
{
FILE *fp;
char fname[128];

printf("Enter filenanme: ");
gets(fnane);

i f((fp=fopen(fname, "r"))==NULL) {
printf(''Cannot open file.\n");

Page 332

exit(1);
}

fclose(fp);

return O;

}

Related Functions
fputs(), faetc(), foets(), and puts()

perror

#i ncl ude <stdi o. h>
voi d perror(const char *str);

The perror () function maps the value of the global variable errno onto a string and writes that
string to stderr. If the value of str is not null, the string is written first, followed by a colon and then
the implementation-defined error message.

Example

This fragment reports any |/O error that may have occurred on the stream associated with fp:

if(ferror(fp)) perror("File error ");

printf

#i ncl ude <stdio. h>
int printf(const char *format, ...);

The printf() function writes to stdout the arguments that make up the argument list as specified by
the string pointed to by format.

In C99, format is qualified with restrict.

The string pointed to by format consists of two types of items. The first type is made up of
characters that will be printed on the screen. The second type contains format specifiers

Page 333

that define the way the arguments are displayed. A format specifier begins with apercent signandis
followed by the format code. There must be exactly the same number of arguments as there are
format specifiers, and the format specifiers and the arguments are matched in order. For example,
the following printf() call displays"Hi c 10 there!"

printf("H % % %", 'c', 10, "there!");

If there are insufficient arguments to match the format specifiers, the output is undefined. If there
are more arguments than format specifiers, the remaining arguments are discarded. The format
specifiers are shown in Table 13-2.

The printf() function returns the number of characters actually printed. A negative return value
indicates that an error has taken place.

The format codes can accept modifiers that specify the field width, precision, and left justification.
An integer placed between the % sign and the format code acts as a minimum field-width specifier.
This pads the output with spaces or zeros to ensure that it is at |east a certain minimum length. If the
string or number is greater than that minimum, it will be printed in full, even if it overrunsthe
minimum. The default padding is done with spaces. If you want to pad with zeros, place azero
before the field-width specifier. For example, %05d will pad a number of less than five digits with
zeros so that itstotal length isfive.

The exact meaning of the precision modifier depends on the format code being modified. To add a
precision modifier, place adecimal point followed by the precision after the field-width specifier.
For a, A, e E, f, and F formats, the precision modifier determines the number of decimal places
printed. For example, %10.4f will display a number at least 10 characters wide with four decimal
places. When the precision modifier is applied to the g or G format code, it determines the
maximum number of significant digits displayed. When applied to integers, the precision modifier
specifies the minimum number of digitsthat will be displayed. Leading zeros are added, if
necessary.

When the precision modifier is applied to strings, the number following the period specifies the
maximum field length. For example, %5.7s will display a string that will be at |east five characters
long and will not exceed seven characters. If the string islonger than the maximum field width, the
characters will be truncated off the end.

By default, al output is right justified: If the field width islarger than the data printed, the data will
be placed on the right edge of the field. Y ou can force the information to be left justified by putting
aminus sign directly after the %. For example, %-10.2f will |eft-justify a floating point number
with two decimal placesin a 10-character field.

There are two format modifiersthat allow printf() to display short and long integers. These
modifiers can be applied to the d, i, 0, u, X, and X type specifiers. The | modifier tells printf() that a
long data type follows. For example, %1d means that a long int isto be displayed. The h modifier
tells printf() to display a short integer. Therefore, %hu indicates that the datais of type short
unsigned int.

Code
%a
%A
%cC
%d
%i
%e
%E
%f
%F

%g
%G
%0
%s
%u
%X
%X
%p

%n

%%

Page 334

For mat

Hexadecimal output in the form Oxh.hhhhp+d (C99 only).
Hexadecimal output in the form 0Xh.hhhhP+d (C99 only).
Character.

Signed decimal integers.

Signed decimal integers.

Scientific notation (lowercase €).

Scientific notation (uppercase E).

Decimal floating point.

Decimal floating point (C99 only; produces uppercase INF, INFINITY, or
NAN when applied to infinity or avalue that is not a number. The %f specifier
produces lowercase equivalents.)

Uses %eor %f, whichever is shorter.
Uses % E or % F, whichever is shorter.
Unsigned octal.

String of characters.

Unsigned decimal integers.

Unsigned hexadecimal (lowercase letters).
Unsigned hexadecimal (uppercase letters).
Displays a pointer.

The associated argument must be a pointer to an integer. This specifier causes
the number of characters written (up to the point at which the %n is
encountered) to be stored in that integer.

Prints a percent sign.

Table 13-2. The printf() Format Specifiers

If you are using a modern compiler that supports the wide-character features added in 1995, you can
use the | modifier with the ¢ specifier to indicate a wide character. Y ou can also use the | modifier
with the s format command to indicate a wide-character string.

Page 335

An L modifier can prefix the floating-point commands of a, A, g E, f, F, g, and G and indicates that
along double follows.

The n command causes the number of characters that have been written at thetimethen is
encountered to be placed in an integer variable whose pointer is specified in the argument list. For
example, this code fragment displays the number 14 after the line "thisis a test":

int i;

printf("This is a test%m", &);
printf("od", i);

Y ou can apply the | modifier to the n specifier to indicate that the corresponding argument points to
along integer. Y ou can specify the h modifier to indicate that the corresponding argument points to
ashort integer.

The # has a special meaning when used with some printf() format codes. Preceding a, A, g, G, f, e,
or E with a# ensures that the decimal point will be present, even if there are no decimal digits. If
you precede the x or X format code with a#, the hexadecimal number will be printed with a Ox
prefix. If you precede the o format with a#, the octal value will be printed with a O prefix. The #
cannot be applied to any other format specifiers.

The minimum field-width and precision specifiers may be provided by argumentsto printf()
instead of by constants. To accomplish this, use an * as a placeholder. When the format string is
scanned, printf() will match each * to an argument in the order in which they occur.

Format Modifiersfor Printf() Added by C99

C99 adds several format modifiersto printf(): hh, Il, j, z, and t. The hh modifier can be applied to
d, i, 0,u, X, X, orn. It specifies that the corresponding argument isasigned or unsigned char value
or, in the case of n, apointer to a signed char variable. The Il modifier also can be applied to d, i, 0,
u, X, X, or n. It specifies that the corresponding argument is asigned or unsigned long long int
value or, in the case of n, apointer to along long int. C99 aso allowsthe | to be applied to the
floating-point specifiersa, A, €, E, f, F, g, and G, but it has no effect.

The j format modifier, which appliesto d, i, o, u, X, X, or n, specifies that the matching argument is
of type intmax_t or uintmax_t. These types are declared in <stdint.h> and specify greatest-width
integers.

The z format modifier, which appliesto d, i, 0, u, X, X, or n, specifies that the matching argument is
of type size t. Thistypeisdeclared in <stddef.h> and specifies the result of sizeof.

The t format modifier, which appliesto d, i, o, u, X, X, or n, specifies that the matching argument is
of type ptrdiff_t. Thistypeisdeclared in <stddef.h> and specifies the difference between two
pointers.

Example

This program displays the output shown in its comments:

{

#i ncl ude <stdi o. h>

i nt mai n(voi d)

/* This prints '""this is a test" left justified
in 20 character field.

*/

printf ("% 20s", "this is a test");

[* This prints a float with 3 decinmal places in a 10

character field. The output will be " 12.235".

*/
printf("9d0.3f", 12.234657);

return O;

Related Functions

scanf() and fprintf()

putc

#i ncl ude <stdio. h>
int putc(int ch, FILE *stream;

Page 336

The putc() function writes the character contained in the least significant byte of ch to the output
stream pointed to by stream. Because character arguments are elevated to integer at the time of the
call, you can use character values as arguments to putc(). putc() is often implemented as a macro.

The putc() function returns the character written if successful or EOF if an error occurs. If the
output stream has been opened in binary mode, EOF isavalid value for ch. This means that you
may need to use ferror () to determine whether an error has occurred.

Page 337

Example

The following loop writes the charactersin string str to the stream specified by fp. The null
terminator is not written.

for(; *str; str++) putc(*str, fp);

Related Functions

fgetc(), fputc(), getchar (), and putchar ()

putchar

#i ncl ude <stdio. h>
int putchar(int ch);

The putchar () function writes the character contained in the least significant byte of ch to stdout. It
is functionally equivalent to putc(ch, stdout). Because character arguments are elevated to integer
at the time of the call, you can use character values as arguments to putchar ().

The putchar () function returns the character written if successful or EOF if an error occurs.
Example

The following loop writes to stdout the charactersin string str. The null terminator is not written.

for(; *str; str++) putchar(*str);

Related Function
putc()

puts

#i ncl ude <stdio. h>
int puts(const char *str);

Page 338

The puts() function writes the string pointed to by str to the standard output device. The null
terminator is translated to a newline.

The puts() function returns a nonnegative value if successful and an EOF upon failure.
Example

The following code writes the string thisis an example to stdout:

#i ncl ude <stdio. h>
#i ncl ude <string. h>

i nt mai n(voi d)
{
char str[80];
strcpy(str, "this is an exanple");

puts(str);

return O;

}

Related Functions

putc(), gets(), and printf()

remove

#i ncl ude <stdio. h>
int remove(const char *fname);

The remove() function erases the file specified by fname. It returns zero if the file was successfully
deleted and nonzero if an error occurred.

Example

This program removes the file whose name is specified on the command line;

#i ncl ude <stdi o. h>

int main(int argc, char *argv[])

Page 339

{

if(renove(argv[1])) printf('' Renove Error");

return O;

}

Related Function

rename()

rename

#i ncl ude <stdi o. h>
int renane(const char *ol df name, const char *newf nane);

The rename() function changes the name of the file specified by oldfname to newfname. The
newfname must not match any existing directory entry.

The rename() function returns zero if successful and nonzero if an error has
occurred.

Example

This program renames the file specified as the first command line argument to that specified by the
second command line argument. Assuming the program is called CHANGE, a command line
consisting of

" CHANGE THISTHAT
will change the name of afile called THISto THAT.

#i ncl ude <stdi o. h>
int main(int argc, char *argv[])
i f(rename(argv[1], argv[2]) !'= 0) printf("Rename Error");

return O;

}

Related Function

remove()

Page 340

rewind

#i ncl ude <stdio. h>
void rew nd(FILE *stream;

The rewind() function moves the file position indicator to the start of the specified stream. It also
clears the end-of -file and error flags associated with strearr.

Example

This function twice reads the stream pointed to by fp, displaying the file each time:

void re_read(FILE *fp)
{

/* read once */
whil e(!feof (fp)) putchar(getc(fp));

rewi nd(fp);

/* read twice */
while(!feof (fp)) putchar(getc(fp));

Related Function
fseek()

scanf

#i ncl ude <stdio. h>
i nt scanf(const char *format, ...);

The scanf() function is a general -purpose input routine that reads the stream stdin and stores the
information in the variables pointed to in its argument list. It can read all the built-in data types and
automatically converts them into the proper internal format.

In C99, format is qualified with restrict.
The control string pointed to by format consists of three classifications of characters:

Format specifiers
White-space characters
Non-white-space characters

Page 341

The input format specifiers begin with a % sign and tell scanf() what type of dataisto be read next.
The format specifiers are listed in Table 13-3. For example, % s reads a string, while %d reads an
integer. The format string is read |eft to right, and the format specifiers are matched, in order, with
the arguments that make up the argument list.

To read along integer, put an | (ell) in front of the format specifier. To read a short integer, put an h
in front of the format specifier. These modifiers can be used with thed, i, 0, u, and x format codes.

Code M eaning

%a Read afloating-point value (C99 only)
%A Same as%a (C99 only)

%cC Read a single character

%d Read adecimal integer

%i Read an integer in either decimal, octal, or hexadecimal format
%e Read afloating-point number

%E Sameas%e

%of Read a floating-point number

%F Same as%f (C99 only)

%g Read a floating-point number

%G Same as%g

%0 Read an octal number

%s Read a string

%X Read a hexadecimal number

%X Same as % x

%p Read a pointer

%n Receive an integer value equal to the number of characters read so far
%u Read an unsigned decimal integer

%[] Scan for a set of characters

%% Read a percent sign

Table 13-3. The scanf() Format Specifiers

Page 342

By default, the a, f, e, and g tell scanf() to assign datato a float. If you put an | (eéll) in front of one
of these specifiers, scanf() assigns the datato adouble. Using an L tells scanf() that the variable
recelving the datais a long double.

If you are using a modern compiler that supports wide-character features added in 1995, you can use
the 1 modifier with the ¢ format code to indicate a pointer to awide character of type whcar _t. You
can aso use the | modifier with the s format code to indicate a pointer to a wide-character string.
The | may also be used to modify a scanset to indicate wide characters.

A white-space character in the format string causes scanf() to skip over one or more white-space
charactersin the input stream. A white-space character is either a space, atab character, or a
newline. In essence, one white-space character in the control string will cause scanf() to read, but
not store, any number (including zero) of white-space characters up to the first non-white-space
character.

A non-white-space character in the format string causes scanf() to read and discard a matching
character. For example, %d,%d causes scanf() to first read an integer, then read and discard a
comma, and finally, read another integer. If the specified character is not found, scanf() will
terminate.

All the variables used to receive values through scanf() must be passed by their addresses. This
means that all arguments must be pointers to the variables used as arguments.

In the input stream, items must be separated by spaces, tabs, or newlines. Punctuation such as
commas, semicolons, and the like do not count as separators. This means that

scanf ("%d%d", &r, &c);

will accept an input of 10 20 but fail with 10,20.

An* placed after the % and before the format code will read data of the specified type but suppress
its assignment. Thus, the following command,

scanf ("%% c%d", &x, &y);

given the input 10/20, will put the value 10 into X, discard the divide sign, and give y the value 20.

The format commands can specify a maximum field-length modifier. Thisis an integer number
placed between the % and the format code that limits the number of characters read for any field.
For example, if you wish to read no more than 20 characters into addr ess, you would write

scanf ("%R0s", address);

Page 343

If the input stream were greater than 20 characters, a subsequent call to input would begin where
this call left off. Input for afield may terminate before the maximum field length is reached if a
white space is encountered. In this case, scanf() moves on to the next field.

Although spaces, tabs, and newlines are used as field separators, when reading a single character,
these are read like any other character. For example, given an input stream of x v,

scanf ("% %%", &, &b, &c);

will return with the character x in a, a space in b, and the character y in c.

Beware: Besides format commands, other characters in the control string—including spaces, tabs,
and newlines—will be used to match and discard characters from the input stream. Any character
that matches is discarded. For example, given the input stream 10t20,

scanf ("%t %", &, &y);

will store10inx and 20iny. Thet is discarded because of the t in the control string.

Another feature of scanf() iscalled a scanset. A scanset defines a set of characters that will be read
by scanf() and assigned to the corresponding character array. A scanset is defined by putting the
characters you want to scan for inside square brackets. The beginning square bracket must be
prefixed by a percent sign. For example, this scanset tells scanf() to read only the characters A, B,
and C:

% [ABC]

When a scanset is used, scanf() continuesto read characters and put them into the corresponding
character array until a character that is not in the scanset is encountered. The corresponding variable
must be a pointer to a character array. Upon return from scanf(), the array will contain anull -
terminated string made up of the characters read.

Y ou can specify aninverted set if the first character in the set isa ™. When the ” is present, it
instructs scanf(') to accept any character that isnot defined by the scanset.

For many implementations, you can specify arange using a hyphen. For example, thistells scanf()
to accept the characters A through Z:

N A-Z]

One important point to remember is that the scanset is case sensitive. Therefore, if you want to scan
for both upper- and lowercase |etters, they must be specified individualy.

The scanf() function returns a number equal to the number of fields that were successfully assigned
values. This number will not include fields that were read but not

Page 344

assigned because the * modifier was used to suppress the assignment. EOF isreturned if an error
occurs before thefirst field is assigned.

Format Modifiers for Scanf() Added by C99

C99 adds several format modifiersto scanf(): hh, Il, j, z, and t. The hh modifier can be applied to
d, i, 0, u, X, or n. It specifies that the corresponding argument is a pointer to a signed or unsigned
char value. The Il modifier also can be appliedto d, i, 0, u, X, or n. It specifies that the
corresponding argument is a pointer to a signed or unsigned long long int value.

The j format modifier, which appliesto d, i, 0, u, X, or n, specifies that the matching argument is a
pointer to an object of type intmax_t or uintmax_t. These types are declared in <stdint.h> and
specify greatest-width integers.

The z format modifier, which appliesto d, i, 0, u, X, or n, specifies that the matching argument isa
pointer to an object of type size t. Thistypeisdeclared in <stddef.h> and specifies the result of
Sizeof.

The t format modifier, which appliesto d, i, 0, u, X, or n, specifies that the matching argument is a
pointer to an object of type ptrdiff_t. Thistypeisdeclared in <stddef.h> and specifies the
difference between two pointers.

Example

The operation of these scanf() statements is explained in their comments:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
char str[80], str2[80];
int i;

/* read a string and an integer */
scanf ("' %s%", str, &);

/* read up to 79 chars into str */
scanf ("%9s", str);

/* skip the integer between the two strings */
scanf ("% % d¥%s", str, str2);

return O;

Page 345

Related Functions

printf() and fscanf()

setbuf

#incl ude <stdio. h>
voi d setbuf (FILE *stream char *buf);

The setbuf(') function specifies the buffer that stream will use or, if called with buf set to null, turns
off buffering. If a programmer-defined buffer is to be specified, it must be BUFSI Z characterslong.
BUFSIZ isdefined in <stdio.h>.

In C99, strearr and buf are qualified by restrict.

Example

The following fragment associates a programmer -defined buffer with the stream pointed to by fp:

char buffer[BUFSI Z];

set buf (fp, buffer);

Related Functions
fopen(), fclose(), and setvbuf()

setvbuf

#i ncl ude <stdi o. h>
int setvbuf (FILE *stream char *bpuf, int node, size_t size);

The setvbuf() function allows the programmer to specify a buffer, its size, and its mode for the
specified stream. The character array pointed to by buf is used as the buffer for 1/0 operations on
stream. The size of the buffer is set by size, and mode determines how buffering will be handled. 1f
buf is null, setvbuf() will allocate its own buffer.

In C99, strear and buf are qualified by restrict.

Page 346

The legal values of mode are _|OFBF, |ONBF, and _|OLBF. These are defined in <stdio.h>.
When mode is set to _| OFBF, full buffering will take place. If mode is _| OL BF, the stream will be
line buffered. For output streams, this means that the buffer will be flushed each time a newline
character iswritten. The buffer is also flushed when full. For input streams, input is buffered until a
newlineisread. If modeis IONBF, no buffering takes place.

The setvbuf() function returns zero on success, nonzero on failure.
Example

This code fragment sets the stream fp to line-buffered mode with a buffer size of 128:

#i ncl ude <stdi o. h>
char buffer[128];

setvbuf (fp, buffer, _IOLBF, 128);

Related Function

setbuf()

snprintf

#i ncl ude <stdio. h>
int snprintf(char * restrict buf, size_t num
const char * restrict format, ...)

The snprintf() function was added by C99.

The snprintf() function isidentical to sprintf() except that a maximum of num-1 characters will
be stored into the array pointed to by buf. On completion, this array is null terminated. Thus,
snprintf() allowsyou to prevent buf from being overrun.

Related Functions

printf(), sprintf(), and fsprintf()

Page 347

sprintf

#i ncl ude <stdio. h>
int sprintf (char *buf, const char *format, . . .);

The sprintf() function isidentical to printf() except that the output is put into the array pointed to
by buf instead of being written to the stdout. The array pointed to by buf is null terminated. See
printf for details.

In C99, buf and format are qualified by restrict.
Thereturn value is equal to the number of characters actually placed into the array.

It isimportant to understand that sprintf() provides no bounds checking on the array pointed to by
buf. This means that the array will be overrun if the output generated by sprintf() is greater than the
array can hold. See snprintf for an alternative.

Example

After this code fragment executes, str holdsone 2 3:

char str[80];

sprintf(str,"% % %", "one", 2, '3");

Related Functions

printf() and fsprintf()

sscanf

#i ncl ude <stdi o. h>
i nt sscanf(const char *puf, const char *format, ...);

The sscanf() function isidentical to scanf() except that datais read from the array pointed to by
buf rather than stdin. See scanf for details.

In C99, buf and format are qualified by restrict.

The return value is equal to the number of variables that were actually assigned values. This number
does not include fields that were skipped through the use of the * format command modifier. A
value of zero means that no fields were assigned, and EOF indicates that an error occurred prior to
the first assignment.

Example

This program prints the message hello 1 on the screen:

{

#i ncl ude <stdi o. h>

i nt mai n(voi d)

char str[80];
int i;

sscanf("hello 1 2 3 4 5", "%%", str, &);

printf(''% %", str, i);

return O;

Related Functions

scanf() and fscanf()

tmpfile

#i ncl ude <stdi o. h>
FILE *tnpfil e(void);

Page 348

The tmpfile() function opens atemporary binary file for read/write operations and returns a pointer
to the stream. The function automatically uses a unique filename to avoid conflicts with existing
files.

The tmpfile(') function returns a null pointer on failure; otherwise it returns a pointer to the

Stream.

The temporary file created by tmpfile() isautomatically removed when the file is closed or when
the program terminates.

You can open TMP_MAX temporary files (up to the limit set by FOPEN_MAX).

Example

The following fragment creates a temporary working file:

FILE *t enp;

Page 349

if((temp=tnpfile())==NULL) {
printf ("' Cannot open tenporary work file.\n");
exit(1l);

}

Related Function

tmpnam()

tmpnam

#i ncl ude <stdio. h>
char *tnpnanm(char *nane);

The tmpnam() function generates a unique filename and stores it in the array pointed to by name.
Thisarray must be at least L _tmpnam characterslong. (L _tmpnam isdefined in <stdio.h>.) The
main purpose of tmpnam() is to generate atemporary filename that is different from any other file
in the current disk directory.

The function can becalled upto TMP_MAX times. TMP_MAX isdefined in <stdio.h>, and it will
be at least 25. Each time tmpnam() iscalled, it will generate a new temporary filename.

A pointer to name is returned on success; otherwise a null pointer isreturned. If nameis null, the
temporary filenameis held in a static array owned by tmpnam(), and a pointer to thisarray is
returned. Thisarray will be overwritten by a subsequent call.

Example

This program displays three unique temporary filenames:

#i ncl ude <stdio. h>

i nt mai n(voi d)
{

char nane[40];
int i;

for(i=0; i<3; i++) {
t npnam(nane) ;
printf("% ", name);

}

Page 350

return O;

Related Function
tmpfile()

ungetc

#i ncl ude <stdi o. h>
int ungetc(int ch, FILE *stream;

The ungetc() function returns the character specified by the low-order byte of ch to the input stream
stream. This character will then be obtained by the next read operation on stream. A call to fflush(),
fseek(), or rewind() undoes an ungetc() operation and discards the character.

A one-character pushback is guaranteed; however, some implementations will accept more.
Y ou may not unget an EOF.

A call to ungetc() clearsthe end-of -file flag associated with the specified stream. The value of the
file position indicator for atext stream is undefined until al pushed-back characters are read, in
which case it will be the same as it was prior to the first ungetc() call. For binary streams, each
ungetc() call decrements the file position indicator.

Thereturn value is equal to ch on success and EOF on failure.
Example

This function reads words from the input stream pointed to by fp. The terminating character is
returned to the stream for later use. For example, given the input count/10, thefirst call to
read_word() returns count and putsthe "/" back into the input stream.

void read_word(FILE *fp, char *token)

whi | e(i sal pha(*token=getc(fp))) token++;
unget c(*t oken, fp);
}

Related Function

getc()

Page 351

vprintf, vfprintf, vsprintf, and vsnprintf

#i ncl ude <stdarg. h>
#i ncl ude <stdio. h>
int vprintf(char *format, va_list arg_ptr);
int viprintf(FILE *stream const char *format,

va_list arg_ptr);
int vsprintf(char *puf, const char *format,

va_list arg_ptr);
int vsnprintf(char * restrict buf, size_t num

const char * restrict format, va_list arg ptr);

The functions vprintf(), vfprintf(), vsprintf(), and vsnprintf() are functionally equivalent to
printf(), fprintf(), sprintf(), and snprintf(), respectively, except that the argument list has been
replaced by a pointer to alist of arguments. This pointer must be of type va_list, which is defined in
the header <stdarg.h>.

In C99, buf and format are qualified by restrict. The vsnprintf() function was added by C99.
Example

This code fragment shows how to set up acall to vprintf(). Thecal to va_start() createsa
variable-length argument pointer to the start of the argument list. This pointer must be used in the
cal to vprintf(). The call to va_end() clears the variable-length argument pointer.

#i ncl ude <stdi o. h>
#i ncl ude <stdarg. h>

void print_nessage(char *format, ...);

i nt mai n(voi d)

{
print_message('' Cannot open file %.", "test");
return O,

}

void print_nessage(char *format, ...)

{

va_list ptr; /* get an arg ptr */

/* initialize ptr to point to the first argunent after the

Page 352

format string
*/
va_start(ptr, format);

/* print out nmessage */
vprintf(format, ptr);

va_end(ptr);

Related Functions

vscanf(), vfscanf(), vsscanf(), va arg(), va _start(), andva_end
()

vscanf, vfscanf, and vsscanf

#i ncl ude <stdarg. h>

#i ncl ude <stdio. h>

int vscanf(char * restrict format, va_list arg ptr);

int viscanf(FILE * restrict stream const char * restrict format,
va_list arg_ptr);

int vsscanf(char * restrict buf, const char * restrict format,
va_list arg _ptr);

These functions were added by C99.

The functions vscanf(), vfscanf(), and vsscanf() are functionally equivalent to scanf(), fscanf(),
and sscanf(), respectively, except that the argument list has been replaced by a pointer to alist of
arguments. This pointer must be of type va_list, which is defined in the header <stdarg.h>.

Related Functions

vprintf(), vfprintf(), vsprintf(), va arg(), va start(), and va _end()

Page 353

Chapter 14—
String and Character Functions

Page 354

The standard function library has arich and varied set of string- and character-handling functions.
The string functions operate on null -terminated arrays of characters and require the header
<string.h>. The character functions use the header <ctype.h>.

Because C has no bounds checking on array operations, it is the programmer’'s responsibility to
prevent an array overflow. Neglecting to do so may cause your program to crash.

In C, aprintable character is one that can be displayed on aterminal. In ASCII environments, these
are the characters between a space (0x20) and tilde (OxFE). Control characters have values between
0 and 0x1F, and DEL (0x7F) in ASCII environments.

For historical reasons, the arguments to the character functions are integers, but only the low-order
byte is used; the character functions automatically convert their arguments to unsigned char . Of
course, you are free to call these functions with character arguments because characters are
automatically elevated to integers at the time of the call.

The header <string.h> definesthe size t type, which isthe result of the sizeof operator and is some
form of unsigned integer.

This chapter describes only those functions that operate on characters of type char. These are the
functions originally defined by Standard C, and they are, by far, the most widely used and
supported. Wide-character functions that operate on characters of typewchar t are discussed in
Chapter 19.

C99 adds the restrict qualifier to certain parameters of severa functions originally defined by C89.
When thisis the case, the function will be shown using its C89 prototype (which is also the
prototype used by C++), but the restrict-qualified parameters will be pointed out in the function's
description.

isalnum

#i ncl ude <ctype. h>
int isalnum(int ch);

The isalnum(') function returns nonzero if its argument is either a letter of the alphabet or adigit. If
the character is not a phanumeric, zero is returned.

Example

This program checks each character read from stdin and reports all alphanumeric characters:

#i ncl ude <ctype. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
char ch;
for(;;) {
ch = getc(stdin);
if(ch ==".") break;
i f(isalnunm(ch)) printf(''% is al phanunmeric\n", ch);
}
return O;
}

Related Functions

isalpha(), isentrl(), isdigit(), isgraph(), isprint(), ispunct(), and isspace()

isalpha

#i ncl ude <ctype. h>
i nt isal pha(int ch);

Page 355

The isalpha() function returns nonzero if chisaletter of the alphabet; otherwise zero is returned.
What constitutes a letter of the alphabet may vary from language to language. For English, these are

the upper- and lowercase letters A through Z.
Example

This program checks each character read from stdin and reports all

#i ncl ude <ctype. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

{

char ch;

for(;;) {
ch = getchar();
if(ch ==".") break;

Page 356

}

i f(isalpha(ch)) printf("% is a letter\n", ch);

return O;

Related Functions

isalnum(), iscntrl(), isdigit(), isgraph(), isprint(), isounct(), and isspace()

isblank

#i ncl ude <ctype. h>
int isblank(int ch);

The isblank () function was added by C99.

The isblank () function returns nonzero if ch is a character for which isspace() returnstrue and is
used to separate words. Thus, for English, the blank characters are space and horizontal tab.

Example

This program checks each character read from stdin and reports the number of characters that
Separate words:

#i ncl ude <ctype. h>
#i ncl ude <stdio. h>

int main(void)

{

char ch;

for(;;) {

ch = getchar ()

if(ch == "'.") break;

i f(isblank(ch)) printf(’
}

return O;

% is a word separator\n", ch);

Related Functions

Page 357

isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), ispunct(), and isspace()

iscntrl

#i ncl ude <ctype. h>
int iscntrl(int ch);

The iscntrl(') function returns nonzero if ch isacontrol character, which in ASCII environmentsisa
value between zero and Ox1F, or equal to 0x7F (DEL). Otherwise zero is returned.

Example

This program checks each character read from stdin and reports all control characters:

#i ncl ude <ctype. h>
#i ncl ude <stdio. h>
i nt mai n(voi d)
{
char ch;
for(;;) {
ch = getchar();
if(ch =="'.") break;
if(iscntrl(ch)) printf(’
}
return O;
}

% is a control char\n", ch);

Related Functions

isalnum(), isalpha(), isdigit(), isgraph(), isprint(), ispunct(), and isspace()

isdigit

#i ncl ude <ctype. h>
int isdigit(int ch);

Page 358

The isdigit() function returns nonzero if ch isadigit, that is, O through 9. Otherwise zero is

returned.

Example

This program checks each character read from stdin and reports all digits:

#i ncl ude <ctype. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)

{

char ch;

for(;;) {
ch = getchar();
if(ch ==".") break;

}

return O;

}

if(isdigit(ch)) printf("

% is a digit\n", ch);

Related Functions

isalnum(), isalpha(), iscntrl(), isgraph(), isprint(), ispunct(), and isspace()

isgraph

#i ncl ude <ctype. h>
int isgraph(int ch);

The isgraph() function returns nonzero if ch is any printable character other than a space; otherwise
zero is returned. For ASCII environments, printable characters are in the range 0x 21 through Ox7E.

Example

Page 359

This program checks each character read from stdin and reports al printable characters:

#i ncl ude <ctype. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)

{
char ch;
for(;;) {
ch = getchar();
i f(isgraph(ch)) printf('"% is printable\n",
if(ch =="'.") break;
}
return O;
}

ch);

Related Functions

isalnum(), isalpha(), iscntrl(), isdigit(), isprint(), ispunct(), and isspace()

is ower

#i ncl ude <ctype. h>
int islower(int ch);

The islower (') function returns nonzero if ch isalowercase letter; otherwise zero is returned.

Example

This program checks each character read from stdin and reports all lowercase letters.

#i ncl ude <ctype. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

{

Page 360

char ch;

for(;;) {
ch = getchar();
if(ch =="'.") break;
if(islower(ch)) printf('"'% is |owercase\n", ch);

}

return O;

Related Function
isupper ()

isprint

#i ncl ude <ctype. h>
int isprint(int ch);

Theisprint() function returns nonzero if ch is a printable character, including a space; otherwise
zero isreturned. In ASCII environments, printable characters are in the range 0x20 through Ox7E.

Example

This program checks each character read from stdin and reports al printable characters:

#i ncl ude <ctype. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)
{

char ch;

for(;;) {
ch = getchar();
if(isprint(ch)) printf("% is printable\n",ch);
if(ch ==".") break;

}

Page 361

return O;

Related Functions

isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), ispunct(), and isspace()

ispunct

#i ncl ude <ctype. h>
int ispunct(int ch);

The ispunct() function returns nonzero if ch is a punctuation character; otherwise zero is returned.
The term "punctuation,” as defined by this function, includes all printing characters that are neither

a phanumeric nor a space.

Example

This program checks each character read from stdin and reports all punctuation:

#i ncl ude <ctype. h>
#i ncl ude <stdio. h>

int main (void)
char ch;

for(;;) {
ch = getchar();

i f(ispunct(ch)) printf("% is punctuation\n",
if(ch ==".") break;

}

return O,

}

ch);

Related Functions

isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), and isspace()

Page 362

isspace

#i ncl ude <ctype. h>
int isspace(int ch);

The isspace() function returns nonzero if ch is a white-space character, including space, horizontal
tab, vertical tab, formfeed, carriage return, or newline character; otherwise zero is returned.

Example

This program checks each character read from stdin and reports all white-space characters:

#i ncl ude <ctype. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)

{

char ch;

for(;;) {

ch = getchar();

i f(isspace(ch)) printf('"% is white space\n", ch);
if(ch =="'.") break;

}

return O;

Related Functions
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), and ispunct()

isupper

#i ncl ude <ctype. h>
int isupper(int ch);

The isupper () function returns nonzero if ch is an uppercase letter; otherwise zero is returned.

Example

This program checks each character read from stdin and reports all uppercase letters:

#i ncl ude <ctype. h>
#i ncl ude <stdio. h>

int main (void)

{
char ch;0
for(;;) {
ch = getchar();
if(ch ==".") break;

c i s uppercase\n", ch);

}

return O;

}

i f(isupper(ch)) printf(’

"%

Related Function

islower ()

isxdigit

#i ncl ude <ctype. h>
int isxdigit(int ch);

Page 363

The isxdigit(') function returns nonzero if ch is a hexadecimal digit; otherwise zero is returned. A

hexadecimal digit will be in one of these ranges. A-F, a—f, or 0-9.

Example

This program checks each character read from stdin and reports all hexadecimal diqits:

#i ncl ude <ctype. h>
#incl ude <stdio. h>

i nt mai n(voi d)

{

Page 364

char ch;
for(;;) {
ch = getchar();
if(ch == ".") break;
if(isxdigit(ch)) printf(''% is hexadecimal digit\n", ch);
}
return O,

Related Functions
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), ispunct(), and isspace()

memchr

#i ncl ude <string. h>
voi d *menchr(const void *puffer, int ch, size_t count);

The memchr () function searches the array pointed to by buffer for the first occurrence of chin the
first count characters.

The memchr () function returns a pointer to the first occurrence of ch in buffer, or it returns a null
pointer if ch isnot found.

Example

This program printsisatest on the
screen:

#i ncl ude <stdio. h>
#i ncl ude <string. h>

i nt mai n(voi d)
{

char *p;

p = menchr("this is a test", ' ', 14);
printf(p);

return O;

Page 365
Related Functions

memcpy() and isspace()

memcmp

#i ncl ude <string. h>
int mencnp(const void *bufl, const void *buf2, size_t count);

The memcmp() function compares the first count characters of the arrays pointed to by bufl and
buf2.

The memcmp() function returns an integer that is interpreted as indicated here:

Value Meaning

Lessthan zero bufl is less than buf2
Zera bufl is equal to buf2
Greater than zerc bufl is greater than buf2
Example

This program shows the outcome of a comparison of its two command line
arguments:

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <stdlib. h>

int main(int argc, char *argv[])
{

int outcone, len, |1, 12;

i f(argc!=3) {
printf (''lncorrect number of argunents.");
exit(1l);
}
/
I strlen(Cargv[1]);
I strlen(argv(2]);
len =11 <12 ?11:12;

find the length of shortest string */

*
1
2
e

Page 366

outcome = mencnp(argv[l], argv[2], |en);

if(!outconme) printf('"Equal");

el se if(outcome<0) printf("First less than second.");
else printf("First greater than second.");

return O;

Related Functions

memchr (), memcpy(), and strcmp()

memcpy

#i ncl ude <string. h>
void *mencpy(void *to, const void *from size_t count);

The memcpy() function copies count characters from the array pointed to by frominto the array
pointed to by to. If the arrays overlap, the behavior of memcopy() is undefined.

In C99, to and from are qualified by restrict.
The memcpy() function returns a pointer to to.
Example

This program copies the contents of bufl into buf2 and displays the result:

#i ncl ude <stdio. h>
#i ncl ude <string. h>

#def i ne Sl ZE 80
i nt mai n(voi d)
char buf 1[SI ZE], buf 2[SI ZE] ;
strcpy(bufl, "Wen, in the course of . . .");
mencpy(buf2, bufl, SIZE);
printf (buf2);

return O;

Page 367

Related Function

memmove()

memmove

#i ncl ude <string. h>
void *memmove(void *to, const void *from size_t count);

The memmove() function copies count characters from the array pointed to by from into the array
pointed to by to. If the arrays overlap, the copy will take place correctly, placing the correct contents
into to but leaving from modified.

The memmove() function returns a pointer to to.

Example

This program shifts the contents of str down 10 places and displays the result:

#i ncl ude <stdio. h>
#i ncl ude <string. h>

#defi ne Sl ZE 80

i nt mai n(voi d)

{
char str[SIZE], *p;

strcpy(str, "Wen, in the course of . . .");
p = str + 10;

memmove(str, p, SIZE);
printf('"result after shift: %", str);

return O;

Related Function

memcpy()

Page 368

memset

#i ncl ude <string. h>
void *menmset (void *buf, int ch, size_t count);

The memset() function copies the low-order byte of ch into the first count characters of the array
pointed to by buf. It returns buf.

The most common use of memset() isto initialize aregion of memory to some known value.
Example

Thisfragment initializes to null the first 100 bytes of the array pointed to by buf. Then it setsthe
first 10 bytesto X and displays the string X X XXXXXXXX .

menset (buf, '"\0', 100);
menset (buf, ' X, 10);
printf(buf);

Related Functions

memcmp(), memcpy(), and memmove()

strcat

#i ncl ude <string. h>
char *strcat(char *stri1, const char *str2);

The strcat() function concatenates a copy of str2 to strl and terminates str1 with anull. The null
terminator originally ending strl is overwritten by the first character of str2. The string str2 is
untouched by the operation. If the arrays overlap, the behavior of strcat() is undefined.

In C99, strl1 and str2 are qualified by restrict.
The strcat(') function returns strl.

Remember, no bounds checking takes place, so it is the programmer's responsibility to ensure that
strl islarge enough to hold both its original contents and those of str2.

Page 369

Example

This program appends the first string read from stdin to the second. For example, assuming the user
enters hello and ther e, the program prints ther ehellc.

#i ncl ude <stdi o. h>
#i ncl ude <string. h>

i nt mai n(voi d)
char s1[80], s2[80];

gets (sl);
gets (s2);

strcat(s2, sl);
printf(s2);

return O;

Related Functions

strchr(), stremp(), and strepy()

strchr

#i ncl ude <string. h>
char *strchr(const char *str, int ch);

The strchr (') function returns a pointer to the first occurrence of the low-order byte of ch in the
string pointed to by str. If no match isfound, anull pointer is returned.

Example

This program printsthe string isa test:

#i ncl ude <stdio. h>
#i ncl ude <string. h>

Page 370

i nt mai n(voi d)

{

char *p;

p = strchr("this is a test", ' ');
printf(p);

return O;

}

Related Functions

strpbrk(), strspn(), strstr('), and strtok()

strcmp

#i ncl ude <string. h>
int strcnp(const char *stri1, const char *str2);

The stremp() function lexicographically compares two strings and returns an integer based on the
outcome as shown here:

Value Meaning

Less than zero strl islessthan str2
Zera strl isequal to str2
Greater than zerc strl is greater than str2
Example

Y ou can use the following function as a password-verification routine. It returns zero on failure and
1 on success.

i nt password(voi d)
char s[80];

printf("Enter password: ");
gets(s);

Page 371

if(strcnp(s, "pass")) {
printf('"lInvalid Password\n");
return O,

}

return 1;

}

Related Functions

strchr(), strepy(), and strnecmp()

strcoll

#i ncl ude <string. h>
int strcoll(const char *stri1, const char *str2);

The strcall() function compares the string pointed to by strl with the one pointed to by str2. The
comparison is performed in accordance with the locale specified using the setlocale() function. (See
setlocale() for details.)

The strcoll() function returns an integer that is interpreted as indicated here:

Value Meaning

Lessthan zero strl islessthan str2
Zera strl isequal to str2
Greater than zerc strl is greater than str2
Example

This code fragment prints Equal on the screen:

if(strcoll("hi", "hi")) printf("Equal");

Related Functions

memcmp() and stremp()

Page 372

strcpy

#i ncl ude <string. h>
char *strcpy(char *stri1, const char *str2);

The strcpy() function copies the contents of str2 into strl. str2 must be a pointer to anull -
terminated string. The strcpy() function returns a pointer to strl.

In C99, str1 and str2 are qualified by restrict.
If strl and str2 overlap, the behavior of strcpy() is undefined.
Example

The following code fragment copies hello into string str:

char str[80];
strcpy
(str, ""hello");

Related Functions

memcpy(), strchr (), stremp(), and stremp()

strcspn

#i ncl ude <string. h>
size_t strcspn(const char *str1, const char *str2);

The strcspn(') function returns the length of the initial substring of the string pointed to by strl that
is made up of only those characters not contained in the string pointed to by str2. Stated differently,
strespn() returns the index of the first character in the string pointed to by str1 that matches any of
the charactersin the string pointed to by str2.

Example

The following program prints the number 8:

#i ncl ude <string. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)

{

int |en;

Page 373

len = strcspn(“this is a test", "ab");
printf('" %", len);

return O;

}

Related Functions

~— strrchr(), strpbrk(), strstr(), and strtok()

strerror

#i ncl ude <string. h>
char *strerror(int errnum;

The strerror () function returns a pointer to an implementation-defined string associated with the
value of errnum. Under no circumstances should you modify the string.

Example

This code fragment prints an implementation-defined error message on the screen:

printf(strerror(10));

strlen

#i ncl ude <string. h>
size_t strlen(const char *str);

The strlen() function returns the length of the null-terminated string pointed to by str. The null
terminator is not counted.

Example

The following code fragment prints 5 on the screen:

printf("%", strlien("hello"));

Page 374
Related Functions

memcpy(), strchr(), stremp(), and strncmp()

strncat

#i ncl ude <string. h>
char *strncat(char *str1, const char *str2, size_t count);

The strncat() function concatenates not more than count characters of the string pointed to by str2
to the string pointed to by strl and terminates str1 with anull. The null terminator originally ending
strl is overwritten by the first character of str2. The string str2 is untouched by the operation. If the
strings overlap, the behavior is undefined.

In C99, strl1 and str2 are qualified by restrict.
The strncat() function returns strl.

Remember that no bounds checking takes place, so it is the programmer's responsibility to ensure
that strl islarge enough to hold both its original contents and also those of str2.

Example

This program appends the first string read from stdin to the second and prevents an array overflow
from occurring to sl. For example, assuming the user enters hello and ther e, the program prints
therehellc.

#i ncl ude <stdio. h>
#i ncl ude <string. h>

i nt mai n(voi d)

char s1[80], s2[80];
unsi gned int |en;

gets(sl);
gets(s2);

/* conmpute how many chars will actually fit */
len = 79-strlen(s2);

Page 375

strncat (s2, s1, len);
printf(s2);

return O;

}

Related Functions

strcat(), strnchr(), strncmp(), and strncpy()

strncmp

#i ncl ude <string. h>
int strncnp(const char *stri1, const char *str2, size_t count);

The strncmp() function lexicographically compares not more than count characters from the two
null -terminated strings and returns an integer based on the outcome, as shown here:

Value Meaning

Less than zero strl islessthan str2
Zerq drlisequal to str2
Greater than zerc strl is greater than str2

If there are less than count characters in either string, the comparison ends when the first null is
encountered.

Example

The following function compares the first eight characters of two command line arguments and
reportsif they are equal:

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <stdlib. h>

int main(int argc, char *argv[])

Page 376

{
i f(argc!=3) {
printf(''Incorrect nunber of arguments.");
exit(1l);
}
if(!'strncnp(argv[1l], argv[2], 8))
printf("The strings are the same.\n");
return O,
}

Related Functions

stremp(), strchr(), and strncpy()

strncpy

#i ncl ude <string. h>
char *strncpy(char *str1, const char *str2, size_t count);

The strnecpy() function copies up to count characters from the string pointed to by str2 into the
array pointed to by strl. str2 must be a pointer to a null-terminated string.

In C99, strl1 and str2 are qualified by restrict.
If strl and str2 overlap, the behavior of strncpy() isundefined.

If the string pointed to by str2 has less than count characters, nulls will be appended to the end of
strl until count characters have been copied.

Alternatively, if the string pointed to by str2 islonger than count characters, the resultant array
pointed to by str1 will not be null terminated.

The strnepy() function returns a pointer to strl.
Example

The following code fragment copies at most 79 characters of strl into str2, thus ensuring that no
array boundary overflow occurs.

char str1[128], str2[80];

gets(strl);
strncpy(str2, strl, 79);

Page 377

Related Functions

memcpy(), strchr (), strncat(), and strncmp()

strpbrk

#i ncl ude <string. h>
char *strpbrk(const char *str1, const char *str2);

The strpbrk() function returns a pointer to the first character in the string pointed to by str1 that
matches any character in the string pointed to by str2. The null terminators are not included. If there
are no matches, anull pointer is returned.

Example

This program prints the message sisatest on the screen:

#i ncl ude <stdio. h>
#i ncl ude <string. h>

int main (void)

{

char *p;

p = strpbrk("this is a test", " absj");
printf (p);

return O;

}

Related Functions

strspn(), strrchr(), strstr(), and strtok()

strrchr

#i ncl ude <string. h>
char *strrchr(const char *str, int ch);

Page 378

The strrchr () function returns a pointer to the last occurrence of the low-order byte of chin the
string pointed to by str. If no match isfound, anull pointer is returned.

Example

This program printsthe string isa test:

#i ncl ude <string. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)
{

char *p;

p = strrchr("this is atest", "i');
printf(p);

return O;

}

Related Functions

strpbrk(), strspn(), strstr('), and strtok()

strspn

#i ncl ude <string. h>
size_t strspn(const char *stri1, const char *str2);

The strspn() function returns the length of the initial substring of the string pointed to by strl that is
made up of only those characters contained in the string pointed to by str2. Stated differently, strspn
() returnsthe index of thefirst character in the string pointed to by str1 that does not match any of
the characters in the string pointed to by str2.

Example

This program prints 8:

#i ncl ude <string. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)

{

int |en;

len = strspn("this is a test", "siht
printf('" %", len);

return O;

}

")

Related Functions

strpbrk(), strrchr(), strstr('), and strtok()

strstr

#i ncl ude <string. h>

char *strstr(const char *strl1, const char *str2);

Page 379

The strstr() function returns a pointer to the first occurrence in the string pointed to by strl of the

string pointed to by str2. It returns anull pointer if no match isfound.

Example

This program displays the message isis a test:

#i ncl ude <string. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)
{

char *p;

p = strstr("this is a test", "is");
printf(p);

return O;

}

Page 380
Related Functions

strchr(), strespn(), strpbrk(), strspn(), strtok(), and strrchr()

strtok

#i ncl ude <string. h>
char *strtok(char *strl1, const char *str2);

The strtok() function returns a pointer to the next token in the string pointed to by strl. The
characters making up the string pointed to by str2 are the delimiters that determine the token. A null
pointer is returned when there is no token to return.

In C99, str1 and str2 are qualified by restrict.

To tokenize a string, the first call to strtok() must have str1 point to the string being tokenized.
Subsequent calls must use anull pointer for strl. In this way the entire string can be reduced to its
tokens.

It is possible to use a different set of delimitersfor each call to strtok

().
Example

This program tokenizes the string "The summer soldier, the sunshine patriot,” with spaces and
commas being the delimiters. The output is

The | summer | soldier | the | sunshine | patriot

#i ncl ude <stdio. h>
#i ncl ude <string. h>

i nt mai n(voi d)

{

char *p;

p = strtok("The sumer soldier, the sunshine patriot”, " ");
printf(p);
do {
p = strtok('\0", ", "),
if(p) printf("| %", p);
} while(p);

return O;

Page 381
Related Functions

strchr(), strespn(), strpbrk(), strrchr(), and strspn()

strxfrm

#i ncl ude <string. h>
size_ t strxfrm(char *str1, const char *str2, size_t count);

The strxfrm(') function transforms the string pointed to by str2 so that it can be used by the strcmp
(1) function and puts the result into the string pointed to by str1. After the transformation, the
outcome of a strcmp() using strl and a strcoll() using the original string pointed to by str2 will be
the same. Not more than count characters are written to the array pointed to by strl.

In C99, strl1 and str2 are qualified by restrict.
The strxfrm() function returns the length of the transformed string.
Example

The following line transforms the first 10 characters of the string pointed to by s2 and puts the result
in the string pointed to by sl.

strxfrm(sl, s2, 10);

Related Function

streoall()

tolower

#i ncl ude <ctype. h>
int tolower(int ch);

The tolower () function returns the lowercase equivalent of ch if chisaletter; otherwise chis
returned unchanged.

Page 382
Example

This code fragment displays q:

putchar(tolower('Q));

Related Function
toupper()

toupper

#i ncl ude <ctype. h>
int toupper(int ch);

The toupper () function returns the uppercase equivalent of ch if chisaletter; otherwise chis
returned unchanged.

Example

This code displaysA:

put char (toupper('a'));

Related Function

tolower ()

Page 383

Chapter 15—
M athematical Functions

Page 384

C99 has greatly increased the size of the C mathematical library. The C89 standard defined just 22
mathematical functions. C99 has more than tripled this number. Expanding the usability of C for
numeric processing was one of the primary goals of the C99 committee. It is safe to say that they
succeeded!

All the math functions require the header <math.h>. In addition to declaring the math functions, this
header defines one or more macros. For C89, the only macro defined by <math.h> isHUGE_VAL,
which isa doublevalue indicating that an overflow has occurred. C99 defines several more,
including

HUGE VALF A float version of HUGE VAL
HUGE_VALL A long double version of HUGE_VAL
INFINITY A value representing infinity
math_errhandling Contains either MATH_ERRNO and/or

MATH ERREXCEPT
MATH_ERRNO erno used to report errors
MATH_ERREXCEPT Floating-point exception raised to report errors

NAN Not a number

C99 defines several function-like macros that classify avalue. They are shown here.

int fpclassify(fpval) Returns FP_INFINITE, FP_NAN, FP_NORMAL,
FP_SUBNORMAL , or FP_ZERO, depending upon the
value in fpval . These macros are defined by <math.h>.

int isfinite(fpval) Returns nonzero if fpval isfinite.

int isinf(fpval) Returns nonzero if fpval isinfinite.

int isnan(fpval) Returns nonzero if fpval isnot a number.

int isnormal (fpval) Returns nonzero if fpval isanormal value.

int signbit(fpval) Re;urns nonzero if fpval isnegative (that is, itssign bit is
set).

C99 defines the following comparison macros. For each, a and b must be floating-point types.

int isgreater(a, b) Returns nonzero if a is greater than b.

int isgreaterequal (a, b) Returns nonzero if a is greater than or equal to b.

intisess(a, b) Returns nonzero if aisless than b.

Page 385

int islessequal(a, b) Returns nonzero if a isless than or equal to b.
int idlessgreater(a, b) Returns nonzero if a is greater than or less than b.
int isunordered(a, b) Returns 1 if a and b are unordered relative to each other; zero

isreturned if a and b are ordered.

The reason for these macros is that they gracefully handle values that are not numbers, without
causing afloating-point exception.

The macros EDOM and ERANGE are also used by the math functions. These macros are defined
in the header <errno.h>.

C89 and C99 handle errors somewhat differently. For C89, if an argument to a math function is not
in the domain for which it is defined, an implementation-defined value is returned, and the built-in
global integer variable errno is set equal to EDOM . For C99, adomain error aso causes an
implementation-defined value to be returned. However, the value of math_errhandling determines
what other actions take place. If math_errhandling contains MATH_ERRNO, then the built-in
global integer variable errnois set equal to EDOM . If math_errhandling contains

MATH ERREXCEPT, afloating-point exception is raised.

For C89, if afunction produces aresult that is too large to be represented, an overflow occurs. This
causes the function to return HUGE_VAL, and errno is set to ERANGE, indicating arange error.
If an underflow happens, the function returns zero and sets errno to ERANGE. For C99, an
overflow error also causes the function to return HUGE_V AL, and an underflow also causes the
function to return zero. Then, if math_errhandling contains MATH_ERRNO, errno isset to
ERANGE, indicating arange error. If math_errhandling contains MATH_ERREXCEPT, a
floating-point exception is raised.

In C89, the mathematical functions are specified as operating on values of type double and
returning double values. C99 added float and long double versions of these functions, which use
the f and 1 suffixes, respectively. For example, C89 defines sin() as shown here:

" double sin(double arq);
C99 keepsain() and adds sinf() and sinl(), shown next.

__ float sinf(float arg);

long double sinl(long double arg);

The operation of al three functions is the same except for the data upon which they operate. The
addition of thef and 1 math functions allows you to use the version that precisely fits the data upon
which you are operating.

Page 386

Since C99 has added so many new functions, it will be helpful to list those functions that are

supported by C89. They are shown here:

acos cos fmod
asin cosh frexp
atan exp |dexp
atan2 fabs log

cel floor log10

modf tan
pow tanh
sin

sinh

sort

Furthermore, as just explained, only the doubleversion of these functions is supported by

C89.

One last point: Throughout, all angles arein radians.

acos

#i ncl ude <math. h>

fl oat acosf(float arg);

doubl e acos(doubl e arg);

| ong doubl e acosl (I ong double arg);

acosf() and acodl() were added by C99.

The acos() family of functions returns the arc cosine of arg. The argument must be in the range—1

to 1; otherwise adomain error will occur.

Example

This program prints the arc cosines of the values—1 through 1, in increments of one

tenth:

#i ncl ude <math. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)
doubl e val = -1.0;

do {

Page 387

printf("Arc cosine of % is %.\n", val, acos(val));
val += 0.1,
} while(val <=1.0);

return O;

}

Related Functions

asin(), atan(), atan2(), sin(), coy), tan(), sinh()), cosh(), and tanh()

acosh

#i ncl ude <math. h>

fl oat acoshf (float arg);

doubl e acosh(doubl e arg);

| ong doubl e acoshl (I ong doubl e arg);

acosh(), acoshf(), and acoshl() were added by C99.

The acosh() family of functions returns the arc hyperbolic cosine of arg. The argument must be
Zero or greater; otherwise adomain error will occur.

Related Functions
asinh(), atanh(), sinh(), cosh(), and tanh()

asn

#i ncl ude <math. h>

float asinf(float arg);

doubl e asin(double arg);

| ong doubl e asinl (long double arg);

asinf(') and asinl() were added by C99.

The asin() family of functions returns the arc sine of arg. The argument must be in the range—1 to
1; otherwise adomain error will occur.

Example

This program prints the arc sines of the values -1 through 1, in increments of one tenth:

#i ncl ude <math. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
doubl e val = -1.0;

do {
printf('"Arc sine of % is %.\n", val, asin(val));
val += 0.1;

} while(val <=1.0);

return O;

Related Functions

acog(), atan(), atan2(), sin(), cos(), tan(), snh('), cosh(), and tanh()

asinh

#i ncl ude <math. h>

fl oat asinhf(float arg);

doubl e asi nh(doubl e arg);

| ong doubl e asinhl (I ong double arg);

asinh(), asinhf(), and asinhl() were added by C99.

The asinh() family of functions returns the arc hyperbolic sine of arg.
Related Functions

acosh(), atanh(), sinh('), cosh(), and tanh()

atan

#i ncl ude <math. h>
float atanf(float arg);

Page 388

Page 389

doubl e atan(doubl e arg);
| ong doubl e atanl (1 ong double arg);

atanf() and atanl() were added by C99.

The atan(') family of functions returns the arc tangent of arg.
Example

This program prints the arc tangents of the values -1 through 1, in increments of one tenth:

#i ncl ude <mat h. h>
#i ncl ude <stdi o. h>

int main (void)
doubl e val = -1.0;

do {
printf('"Arc tangent of % is %.\n", val, atan(val));
val += 0.1;

} while(val <=1.0);

return O;

}

Related Functions
asn(), acog(), atan2(), tan(), cos(), sin(), sinh(), cosh(), and tanh()

atanh

#i ncl ude <math. h>

float atanhf(float arg);

doubl e atanh(doubl e arg);

| ong doubl e atanhl (I ong double arg);

atanh(), atanhf(), and atanhl() were added by C99.

The atanh(') family of functions returns the arc hyperbolic tangent of arg. This argument must be in
the range—1 to 1; otherwise adomain error will occur. If arg equals 1 or —1, arange error is

possible.

Page 390

Related Functions
acosh(), asinh(), sinh(), cosh('), and tanh()

atan?

#i ncl ude <mat h. h>

float atan2f(float a, float b);

doubl e atan2(doubl e a, double b);

| ong doubl e atan21(l ong double a, |ong double b);

atan2f() and atan21() were added by C99.

The atan2() family of functions returns the arc tangent of a/b. The functions use the signs of its
arguments to compute the quadrant of the return value.

Example

This program prints the arc tangents of y, from -1 through 1, in increments of one tenth:

#i ncl ude <mat h. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)
doubl e val = -1.0;

do {
printf('"Atan2 of % is %.\n", val, atan2(val,1.0));
val += 0.1;

} while(val <=1.0);

return O;

}

Related Functions
asin(), acog(), atan(), tan(), cos(), sin(), sinh(), cosh(), and tanh()

Page 391

cbrt

#i ncl ude <mat h. h>

float cbrtf(float num;

doubl e cbrt (double num;

| ong double cbrtl(long double num;

cbrt(), cbrtf(), and cbrtl() were added by C99.
The cbrt() family of functions returns the cube root of nurr.
Example

This code fragment prints 2 on the screen:

printf("%", cbrt(8));

Related Function
sart()

cell

#i ncl ude <mat h. h>

float ceilf(float num;

doubl e ceil (double num;

| ong double ceill(long double num;

cellf() and ceill() were added by C99.

The ceil() family of functions returns the smallest integer (represented as a floating-point value) not
less than num For example, given 1.02, ceil() would return 2.0. Given —-1.02, ceil() would return —
1

Example

This code fragment prints 10 on the screen:

printf("%", ceil(9.9));

Page 392

Related Functions
floor () and fmod()

copysign

#i ncl ude <math. h>

float copysignf(float val, float signval);

doubl e copysi gn(doubl e val, double signval);

| ong doubl e copysignl (I ong double val, |ong double signval);

copysign(), copysignf(), and copysignl() were added by C99.

The copysign() family of functions gives val the same sign as the value passed in signval, and
return the result. Thus, the value returned has a magnitude equal to val, but with the same sign as
that of signval .

Related Function
faby()

CoSs

#i ncl ude <math. h>

float cosf(float arg);

doubl e cos(doubl e arg);

| ong doubl e cosl (1 ong double arg);

cosf() and cod () were added by C99.
The cog() family of functions returns the cosine of arg. The value of arg must bein radians.
Example

This program prints the cosines of the values —1 through 1, in increments of one tenth:

#i ncl ude <mat h. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)
doubl e val = -1.0;

do {

(val));

val += 0.1;
} while(val <=1.0);

return O;

}

printf('' Cosine of % is %.\n",

val ,

cos

Related Functions

asn(), acog(), atan2(), atan(), tan(), sin(), sinh(), cos(), and tanh()

cosh

#i ncl ude <math. h>

fl oat coshf(float arg);

doubl e cosh(doubl e arg);

l ong doubl e coshl (I ong double arg);

coshf() and coshl() were added by C99.

The cosh() family of functions returns the hyperbolic cosine of arg.

Example

Page 393

The following program prints the hyperbolic cosines of the values —1 through 1, in increments of

one tenth:

#i ncl ude <math. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

doubl e val = -1.0;

do {

Page 394

printf("Hyperbolic cosine of % is % .\n", val, cosh(val));
val += 0.1,
} while(val <=1.0);

return O;

}

Related Functions

asin(), acog(), atan2(), atan(), tan(), sin(), and tanh()

ef

#i ncl ude <mat h. h>

float erff(float arg);

doubl e erf(double arg);

| ong doubl e erfl (I ong double arg);

ef(), erff(), and erfl() were added by C99.
The erf()) family of functions returns the error function of arg.
Related Function

erfc()

erfc

#i ncl ude <mat h. h>

float erfcf(float arg);

doubl e erfc(double arg);

|l ong doubl e erfcl(long double arg);

erfc(), erfcf(), and erfcl() were added by C99.

The erfc() family of functions returns the complementary error function of arg.
Related Function

erf()

Page 395

exp

#i ncl ude <math. h>

float expf(float arg);

doubl e exp(doubl e arg);

l ong doubl e expl (I ong double arg);

expf() and expl() were added by C99.
The exp() family of functions returns the natural logarithm e raised to the arg power.
Example

This fragment displays the value of e (rounded to 2.718282):

printf("Value of e to the first: %.", exp(1.0));

Related Functions

exp2() and log()

exp2

#i ncl ude <math. h>

float exp2f(float arg);

doubl e exp2(doubl e arg);

| ong doubl e exp2l (I ong double arg);

exp2(), exp2f(), and exp2l() were added by C99.
The exp2() family of functions returns 2 raised to the arg power.
Related Functions

exp() and log()

expml

#i ncl ude <mat h. h>
fl oat expmif (float arg);

doubl e expmi(doubl e arg);

|l ong doubl e expnil (I ong doubl e arg);

expm1(), expm1f(), and expm1l() were added by C99.

Page 396

The expm1() family of functions returns the natural logarithm e raised to the arg power, minus 1.

That is, it returns eag — 1.
Related Functions

exp() andlog()

fabs

#i ncl ude <mat h. h>

float fabsf(float num;

doubl e fabs(double num;

| ong doubl e fabsl (I ong double num;

fabsf() and fabsl() were added by C99.

The fabs(') family of functions returns the absolute value of nurr.

Example

This program prints 1.0 1.0 on the screen:

#i ncl ude <mat h. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)
{
printf('"od. 1f %d.1f", fabs(1.0),

return O;

}

fabs(-1.0));

Related Function
abs()

Page 397

fdim

#i ncl ude <mat h. h>

float fdinf(float a, float b);

doubl e fdi m(doubl e a, double b);

| ong double fdim (long double a, |ong double b);

fdim(), fdimf(), and fdiml(') were defined by C99.

The fdim() family of functions returns zero if a isless than or equal to b. Otherwise, the result of a
- bisreturned.

Related Functions

remainder () and remquo()

floor

#i ncl ude <mat h. h>

float floorf(float num;

doubl e fl oor (double num;

| ong double floorl(long double num;

floorf() and floorl() were added by C99.

The floor () family of functions returns the largest integer (represented as a floating-point value) not
greater than num. For example, given 1.02, floor () would return 1.0. Given —1.02, floor () would
return —-2.0.

Example

This code fragment prints 10 on the screen:

printf("%", floor(10.9));

Related Functions

ceil() and fmod()

Page 398

fma

#i ncl ude <mat h. h>

float fmaf(float a, float b, float c);

doubl e fma(doubl e a, double b, double c);

[ong doubl e fmal (1 ong double a, |ong double b, |ong double c);

fma(), fmaf(), and fmal() were defined by C99.

The fma() family of functions returnsthe value of a* b + c¢. Rounding takes place only once, after
the entire operation has been completed.

Related Functions

round(), Iround(), and llround()

fmax

#i ncl ude <mat h. h>

float frmaxf(float a, float b);

doubl e fnmax(doubl e a, double b);

| ong doubl e fnmaxl (I ong double a, |ong double b);

fmax(), fmaxf(), and fmaxI() were defined by C99.
The fmax() family of functions returns the greater of a and b.
Related Function

fmin()

fmin

#i ncl ude <mat h. h>

float frminf(float a, float b);

doubl e fmi n(doubl e a, double b);

| ong double fminl(long double a, long double b);

fmin(), fminf(), and fminl() were defined by C99.

The fmin() family of functions returns the lesser of a and b.

Page 399

Related Function

fmax()

fmod

#i ncl ude <mat h. h>

float frnodf (float a, float b);

doubl e fnod(doubl e a, double b);

| ong doubl e fnodl (I ong double a, |ong double b);

fmodf() and fmodl() were added by C99.
The fmod() family of functions returns the remainder of a/b.
Example

The following program prints 1.0 on the screen, which is the remainder of 10/3:

#i ncl ude <math. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
printf('"%.1f", frod(10.0, 3.0));

return O;

}

Related Functions
ceil(), floor (), and fabs()

frexp

#i ncl ude <mat h. h>

float frexpf(float num int *exp);

doubl e frexp(double num int *exp);

| ong doubl e frexpl (1 ong double num int *exp);

frexpf() and frexpl() were added by C99.

Page 400

The frexp() family of functions decomposes the number num into a mantissain the range 0.5 to less
than 1, and an integer exponent such that num = mantissa* 2e®. The mantissais returned by the
function, and the exponent is stored at the variable pointed to by exp.

Example

This code fragment prints 0.625 for the mantissa and 4 for the exponent:

int e;
doubl e f;

f = frexp(10.0, &e);
printf('"% %", f, e);

Related Function
Idexp()

hypot

#i ncl ude <mat h. h>

float hypotf(float sidel, float side2);

doubl e hypot (doubl e sidel, double side2);

| ong doubl e hypotl (1 ong doubl e sidel, |ong double side2);

hypot(), hypotf(), and hypotl() were added by C99.

The hypot() family of functions returns the length of the hypotenuse given the lengths of the two
opposing sides. That is, the functions return the square root of the sum of the squares of sidel and
sde?.

Related Function

sart()

ilogb

#i ncl ude <mat h. h>
int ilogbf(float num;

Page 401

int ilogb(double num;
int ilogbl(long double num;

ilogb(), ilogbf(), and ilogbl() were added by C99.
The ilogb() family of functions returns the exponent of nun. Thisvalueisreturned asan int value.

Related Function
logb()

ldexp

#i ncl ude <mat h. h>

float |dexpf(float num int exp);

doubl e | dexp(doubl e num int exp);

 ong doubl e | dexpl (I ong doubl e num int exp);

Idexpf() and Idexpl() were added by C99.
The Idexp() family of functions returns the value of nun * 2o,
Example

This program displays the number 4:

#i ncl ude <math. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
printf('"%", |dexp
(1,2));

return O;

}

Related Functions

frexp() and modf()

Page 402

l[gamma

#i ncl ude <math. h>

fl oat | gammaf (float arg);

doubl e | ganmme(doubl e arg);

l ong doubl e | gammal (| ong double arg);

l[gamma(), lgammaf(), and lgammal() were added by C99.

The lgamma() family of functions computes the absolute value of the gamma of arg and returns its
natural logarithm.

Related Function

tgamma()

[Irint

#i ncl ude <math. h>

long long int Ilrintf(float arg);

long long int Ilrint(double arg);

long long int Ilrintl(long double arg);

lrint(), rintf(), and lIrintl() were added by C99.
The llrint() family of functions returns the value of arg rounded to the nearest long long integer.
Related Functions

Irint() and rint()

[Iround

#i ncl ude <math. h>

long long int I|lroundf(float arg);

long long int Ilround(double arg);

long long int Ilroundl (long double arg);

[Iround(), llroundf(), and llroundI() were added by C99.

Page 403

The llround() family of functions returns the value of arg rounded to the nearest long long integer.
Values precisely between two values, such as 3.5, are rounded up.

Related Functions

Iround(') and round()

log

#i ncl ude <mat h. h>

float |ogf(float num;

doubl e | og(double num;

| ong doubl e | ogl (long double num;

logf() and logl() were added by C99.

The log() family of functions returns the natural logarithm for num. A domain error occurs if numis
negative. If nurr is zero, arange error is possible.

Example

The following program prints the natural logarithms for the numbers 1 through 10:

#i ncl ude <mat h. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)
doubl e val = 1.0;

do {
printf('"% %\n", val, log(val));
val ++;

} while (val <11.0);

return O;

}

Related Functions
log10() and log2()

Page 404

loglp

#i ncl ude <mat h. h>

float |oglpf(float num;

doubl e | oglp(double num;

| ong doubl e | oglpl (I ong double num;

loglp(), loglpf(), and loglpl() were added by C99.

The loglp() family of functions returns the natural logarithm for num+1. A domain error occurs if
nurr isnegative. If nur is—1, arange error is possible.

Related Function
loa()

log10

#i ncl ude <mat h. h>

float |0gl10f(float num;

doubl e | 0g10(doubl e num;

| ong doubl e | 0g101(long double num;

log10f() and log10I() were added by C99.

Thelogl0() family of functions returns the base 10 logarithm for num A domain error occurs if
nurr isnegative. If nun is zero, arange error is possible.

Example

This program prints the base 10 logarithms for the numbers 1 through 10:

#i ncl ude <math. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)
double val = 1.0;
do {

printf('"% %\n", val, |oglO(val));
val ++;

Page 405

} while (val <11.0);

return O;

}

Related Functions
log() and loo2()

log2

#i ncl ude <math. h>

float |og2f(float num;

doubl e | 0og2(doubl e num;

| ong doubl e I og2l (I ong double num;

log2(), log2f(), and log2l() were added by C99.

The log2(') family of functions returns the base 2 logarithm for num. A domain error occurs if num
is negative. If nurr is zero, arange error is possible.

Related Functions

log() and log10()

logb

#i ncl ude <mat h. h>

float |ogbf(float num;

doubl e | ogb(doubl e num;

| ong doubl e | ogbl (I ong double num;

logb(), logbf(), and logbl() were added by C99.

The logb() family of functions returns the exponent of num Thisvalue is returned as a floating-
point integer value. A domain error is possible when nurr is zero.

Related Function

ilogb()

Page 406

[rint

#i ncl ude <math. h>

long int Irintf(float arg);

long int Irint(double arg);

long int Irintl(long double arg);

Irint(), Irintf(), and Irintl() were added by C909.
The Irint() family of functions returns the value of arg rounded to the nearest long integer.
Related Functions

lIrint() and rint()

Iround

#i ncl ude <mat h. h>

long int |roundf(float arg);

long int |round(double arg);

long int Iroundl (long double arg);

Iround(), Iroundf(), and Iroundl() were added by C99.

The Iround() family of functions returns the value of arg rounded to the nearest long integer.
Values precisely between two values, such as 3.5, are rounded up.

Related Functions

lIround() and round()

modf

#i ncl ude <mat h. h>

float nodff(float num float *i);

doubl e nodf (doubl e num double *j);

| ong doubl e nodfl (1 ong doubl e num |ong double *j);

modff() and modfl() were added by C99.

Page 407

The modf() family of functions decomposes num into itsinteger and fractiona parts. The functions
return the fractional portion and place the integer part in the variable pointed to by i.

Example

This code fragment displays 10 and 0.123:

doubl e i;
doubl e f;

f = nodf (10.123, &);
printf('""% %",i , f);

Related Functions

frexp() and ldexp()

nan

#i ncl ude <math. h>

fl oat nanf(const char *content);
doubl e nan(const char *content);

| ong doubl e nanl (const char *content);

nan(), nanf(), and nanl() were defined by C99.

The nan() family of functions returns avalue that is not a number and that contains the string
pointed to by content.

Related Function

isnan()

near byint

#i ncl ude <math. h>

fl oat nearbyintf(float arg);

doubl e near byi nt (doubl e arg);

| ong doubl e nearbyintl (long double arg);

near byint(), nearbyintf(), and near byintl() were added by C99.

Page 408

The nearbyint() family of functions returns the value of arg rounded to the nearest integer.
However, the number is returned as a floating-point value.

Related Functions

rint() and round()

nextafter

#i ncl ude <mat h. h>

float nextafterf(float from float towards);

doubl e nextafter(double from double towards);

| ong doubl e nextafterl (long double from |ong double towards);

nextafter (), nextafterf(), and nextafterl() were defined by
C99.

The nextafter () family of functions returns the next value after from that is closer to towards.
Related Function

nexttoward()

nexttoward

#i ncl ude <mat h. h>

fl oat nexttowardf (float from |ong double towards);

doubl e nexttoward(double from |ong double towards);

| ong doubl e nexttowardl (I ong double from |ong double towards);

nexttoward(), nexttowardf(), and nexttowardI() were defined by C99.

The nexttoward() family of functions returns the next value after fromthat is closer to towards.
They are the same as the nextafter () family except that towards isalong double for all three
functions.

Related Function

nextafter ()

pow

#i ncl ude <math. h>
fl oat powf (float base, float exp);

| ong doubl e pow (I ong doubl e base,

doubl e pow(doubl e base, double exp);

| ong doubl e exp);

powf() and powl() were added by C99.

Page 409

The pow() family of functions returns base raised to the exp power (base®®). A domain error may
occur if base is zero and exp is less than or equal to zero. It will also happen if base is negative and
exp isnot an integer. A range error is possible.

Example

The following program prints the first ten powers of 10:

#i ncl ude <mat h. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)
double x = 10.0, y = 0.0;

do {

printf('"9%\n", pow(x, y));
y++;
} while(y<11.0);

return O;

}

Related Functions
exp(), log(), and sart()

remainder

#i ncl ude <mat h. h>
float remainderf(float a, float h)

Page 410

doubl e remai nder (doubl e a, double b);
| ong doubl e remnai nderl (1 ong doubl e a, | ong double b);

remainder (), remainderf(), and remainder|() were added by C99.
The remainder () family of functions returns the remainder of a/b.
Related Function

remquo()

remquo

#i ncl ude <math. h>

fl oat remquof (float a, float b, int *quo);

doubl e renguo(doubl e a, double b, int *quo);

l ong doubl e remguol (I ong double a, |ong double b, int *quo);

remquo(), remquof(), and remquol() were added by C99.

The remquo() family of functions returns the remainder of a/b. On return, the integer pointed to by
quo will contain the quotient.

Related Function

remainder ()

rint

#incl ude <mat h. h>

float rintf(float arg);

doubl e rint(double arg);

l ong double rintl(long double arg);

rint(), rintf(), and rintl() were added by C99.

The rint() family of functions returns the value of arg rounded to the nearest integer. However, the

number is returned as a floating-point value. It is possible that a floating-point exception will be
raised.

Page 411

Related Functions

near byint() and round()

round

#i ncl ude <math. h>

float roundf(float arg);

doubl e round(doubl e arg);

l ong doubl e roundl (I ong double arg);

round(), roundf(), and roundl() were added by C99.

The round() family of functions returns the value of arg rounded to the nearest integer. However,
the number is returned as a floating-point value. Values precisely between two values, such as 3.5,
are rounded up.

Related Function

Iround() and llIround()

scalbln

#i ncl ude <mat h. h>

float scal bl nf(float val, long int exp);

doubl e scal bl n(doubl e val, long int exp);

| ong doubl e scal bl nl (1 ong double val, long int exp);

scalbin(), scalbinf(), and scalblnl() were added by C99.

The scalbln() family of functions returns the product of val and FLT_RADI X raised to the exp
power, that is,

~ val * FLT RADIX®®?

Themacro FLT_RADI X isdefined in <float.h>, and its value is the radix of exponent
representation.

Related Function
scalbn()

Page 412

scalbn

#i ncl ude <mat h. h>

fl oat scal bnf(float val, int exp);

doubl e scal bn(doubl e val, int exp);

l ong doubl e scal bnl (I ong double val, int exp);

scalbn(), scalbnf(), and scalbnl() were added by C99.

The scalbn(') family of functions returns the product of val and FLT_RADI X raised to the exp
power, that is,

~ val * FLT_RADIX®®

Themacro FLT_RADIX isdefined in <float.h>, and its value is the radix of exponent
representation.

Related Function
scalbin()

dn

#i ncl ude <mat h. h>

float sinf(float arg);

doubl e sin(double arg);

| ong doubl e sinl(long double arg);

sinf() and sinl() were added by C99.
The sin() family of functions returns the sine of arg. The value of arg must bein radians.
Example

This program prints the sines of the values —1 through 1, in increments of one tenth:

#i ncl ude <mat h. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

doubl e val = -1.0;
do {

val += 0.1,
} while(val <=1.0);

return O;

}

printf("Sine of % is %.\n", val,

sin(val));

Related Functions

asin(), acoy(), atan2(), atan(), tan(), cos(), sinh(), cosh(), and tanh()

sinh

#i ncl ude <mat h. h>

float sinhf(float arg);

doubl e sinh(doubl e arg);

| ong doubl e sinhl (long double arg);

sinhf() and sinhl() were added by C99.

The sinh(') family of functions returns the hyperbolic sine of arg.

Example

Page 413

This program prints the hyperbolic sines of the values —1 through 1, in increments of one tenth:

#i ncl ude <mat h. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)
doubl e val = -1.0;
do {

val += 0.1;
} while(val <=1.0);

return O;

printf(''Hyperbolic sine of % is %.\n", val,

sinh(val));

Page 414
Related Functions

asn(), acoy(), atan2(), atan(), tan(), cos(), tanh(), cosh(), and sin()

sort

#i ncl ude <mat h. h>

float sqrtf(float num;

doubl e sqrt (double num;

| ong double sqrtl(long double num;

sqrtf() and sgrtl() were added by C99.

The sgrt() family of functions returns the square root of hum If they are called with a negative
argument, adomain error will occur.

Example

This code fragment prints 4 on the screen:

printf("%", sqrt(16.0));

Related Functions
exp(), log(), and pow()

tan

#i ncl ude <mat h. h>

float tanf(float arg);

doubl e tan(double arg);

| ong doubl e tanl (I ong double arg);

tanf() and tanl() were added by C99.
The tan() family of functions returns the tangent of arg. The value of arg must be in radians.
Example

This program prints the tangent of the values —1 through 1, in increments of one
tenth:

#i ncl ude <math. h>
#i ncl ude <stdi o. h>

int main (void)
doubl e val = -1.0;
do {
printf('' Tangent of % is %.\n", val, tan(val));
val += 0.1;

} while(val <=1.0);

return O;

}

Related Functions

acog(), asin(), atan(), atan2(), coy(), sin(), sinh(), cosh(), and tanh()

tanh

#i ncl ude <math. h>

float tanhf(float arg);

doubl e tanh(doubl e arg);

| ong doubl e tanhl (1 ong doubl e arg);

tanhf() and tanhl() were added by C99.
The tanh() family of functions returns the hyperbolic tangent of arg.

Example

Page 415

This program prints the hyperbolic tangent of the values—1 through 1, in increments of one tenth:

#i ncl ude <mat h. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

doubl e val = -1.0;

do {

val += 0.1;
} while(val <=1.0);

return O;

}

printf('" Hyperbolic tangent of % is % .\n", val, tanh(val));

Related Functions

acog(), asin(), atan(), atan2(), coy(), sin(), cosh(), sinh(), and tan

tgamma

#i ncl ude <math. h>

float tgammaf(float arg);

doubl e tgamm(doubl e arg);

| ong doubl e tgammal (1 ong doubl e arg);

tgamma(), tgammaf(), and tgammal() were added by C99.
The tgamma() family of functions returns the gamma function of arg.
Related Function

l[gamma()

trunc

#i ncl ude <mat h. h>

float truncf(float arg);

doubl e trunc(double arg);

l ong doubl e truncl (long double arg);

trunc(), truncf(), and truncl() were added by C99.
The trunc() family of functions returns the truncated value of arg.
Related Function

near byint()

Page 416

Page 417

Chapter 16—
Time, Date, and L ocalization Functions

Page 418

The standard function library defines several functions that deal with the date and time. It also
defines functions that handle the geopolitical information associated with a program. These
functions are described here.

The time and date functions require the header <time.h>. This header defines three time-related
types: clock _t, time t, and tm. Thetypes clock _t and time _t are capable of representing the system
time and date as some sort of integer. Thisis called the calendar time The structure type tm holds
the date and time broken down into its elements. The tm structure contains the following members:

int tmsec; [/* seconds, 0-60 */

int tmmn; /* mnutes, 0-59 */

int tmhour; /* hours, 0-23 */

int tmnday; /* day of the nmonth, 1-31 */

int tmnon; /* nonths since Jan, 0-11 */

int tmyear; /* years from 1900 */

int tmwday; /* days since Sunday, 0-6 */

int tmyday; /* days since Jan 1, 0-365 */

int tmisdst /* Daylight Saving Tine indicator */

Thevaue of tm_isdst will be positive if daylight saving timeisin effect, zero if it isnot in effect,
and negative if there is no information available. This form of the time and date is called the broken-
down time.

In addition, <time.h> defines the macro CLOCK S PER_SEC, which is the number of system
clock ticks per second.

The geopoalitical environmental functions require the header <locale.h>. It defines the structure
Iconv, which is described under the function localeconv().

asctime

#i ncl ude <tinme. h>
char *asctinme(const struct tm *ptr);

The asctime() function returns a pointer to a string that contains the information stored in the
structure pointed to by ptr converted into the following form:

~ day month date hours; minutes: seconds year\n\0

For example:

Fri Apr 15 12:05:34 2005

Page 419

The structure pointed to by ptr is usually obtained from either localtime() or gmtime().

The buffer used by asctime() to hold the formatted output string is a statically allocated character
array and is overwritten each time the function is called. If you wish to save the contents of the
string, you must copy it elsewhere.

Example

This program displays the local time defined by the system:

#i ncl ude <tinme. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

{

struct tm *ptr;
time_t It;

[t = time(NULL);
ptr = localtine(&t);
printf(asctime(ptr));

return O;

Related Functions

localtime(), gmtime(), time(), and ctime()

clock

#i ncl ude <tinme. h>
clock _t clock(void);

The clock() function returns a value that approximates the amount of time the calling program has
been running. To transform this value into seconds, divide it by CLOCKS PER_SEC. A value of —
lisreturned if the timeis not available.

Page 420
Example

The following function displays the current execution time, in seconds, for the program calling it:

voi d el apsed_time(void)

{
}

printf('"Elapsed tinme: % secs.\n", clock()/CLOCKS_PER_SEC)

Related Functions

time(), asctime(), and ctime()

ctime

#i ncl ude <time. h>
char *ctine(const time_t *time);

The ctime() function returns a pointer to a string of the form
~ day month year hours: minutes: seconds year\n\O
given a pointer to the calendar time. The calendar time is often obtained through a call to time().

The buffer used by ctime() to hold the formatted output string is a statically alocated character
array and is overwritten each time the function is called. If you wish to save the contents of the
string, it is necessary to copy it elsewhere.

Example

This program displays the local time defined by the system:

#i ncl ude <tinme. h>
#i ncl ude <stdi o. h>

{int main(void)

{

time t It;

It = time(NULL);

printf(ctime(&t));

return O;

}

Related Functions

localtime(), gmtime(), time(), and asctime()

difftime

#i ncl ude <tine. h>
double difftime(time_t tinme2, tinme_t tinel);

Page 421

The difftime() function returns the difference, in seconds, between timel and time2—that is, time2 —

timel.

Example

This program times the number of seconds that it takes for the empty for loop to go from O to

5,000,000:

#i ncl ude <tine. h>
#i ncl ude <stdi o. h>

int main(void)
{
time_t start, end;
vol atile long unsigned t;

start = time(NULL);

for(t=0; t<5000000; t++)

end = time(NULL);

printf(''Loop used % seconds.\n", difftinme(end,

return O;

start));

Related Functions
localtime(), gmtime(), time(), and asctime()

gmtime

#i ncl ude <tinme. h>

struct tm*gntime(const time t *tine);

Page 422

The gmtime() function returns a pointer to the broken-down form of time in the form of atm

structure. Thetimeis represented in Coordinated Universal Time (UTC), which is essentially

Greenwich mean time. The time pointer is usually obtained through a call to time(). If the system

does not support Coordinated Universal Time, NULL isreturned.

The structure used by gmtime() to hold the broken-down time is statically allocated and is

overwritten each time the function is called. If you wish to save the contents of the structure, you

must copy it elsewhere.

Example

This program prints both the local time and the UTC of the system:

#i ncl ude <tine. h>
#i ncl ude <stdi o. h>

/* Print local and UTC tinme. */

i nt mai n(voi d)

{
struct tm *local, *gm
time t t;

t = tinme(NULL);

local = localtinme(&);
printf(''Local tine and date:
gm= gnmtine(&);
printf (" Coordinated Universa

return O;

asctinme(local));

Time and date: %",

asctinme(gm);

Related Functions

localtime(), time(), and asctime()

|ocaleconv

struct

#i ncl ude <l ocal e. h>
| conv *| ocal econv(void);

Page 423

The localeconv() function returns a pointer to a structure of type lconv, which contains a variety of

geopolitical environmental information relating to the way numbers are formatted. The [conv

structure contains the following members.

char
char
char
char
char
char
char
char
char

char

char

char

char

char

*deci mal _poi nt;

*t housands_sep;
*groupi ng;
*int_curr_synbol;
*currency_synbol
*nmon_deci mal _poi nt;
*nmon_t housands_sep;
*on_gr oupi ng;
*positive_sign;
*negati ve_sign;

int_frac_digits;

frac_digits;

p_cs_precedes;

p_sep_by_ space;

I
s
s
s
s
s
s
s
s
I

/*

/*

/*

/*

Deci mal point character

for nonmonetary val ues. */
Thousands separ at or

for nonmonetary val ues. */

Speci fies grouping for
nonmonetary val ues. */

I nternational currency synbol. */
Local currency synbol. */

Deci mal point character for

nmonet ary val ues. */

Thousands separator for

nmonet ary val ues. */

Speci fies grouping for

nonetary val ues. */

Positive val ue indicator for
nonetary val ues. */

Negati ve val ue indicator for
nmonet ary val ues. */

Nunber of digits displayed to the
ri ght of the decinmal point for
nonet ary val ues di spl ayed using

i nternational format. */

Nunber of digits displayed to the
right of the deciml point for
nonet ary val ues di spl ayed using

| ocal format. */

1 if currency synbol precedes
positive value, 0 if currency
synmbol follows value. */

1if currency symbol is
separated from val ue by a space
0 otherwise. In C99, contains a
val ue that indicates separation. */

Page 424

char n_cs_precedes; /* 1 if currency synbol precedes
a negative value, 0 if currency
symbol follows value. */

char n_sep_by_space; /* 1 if currency synbol is
separated from a negative
val ue by a space, 0 if
currency synbol follows val ue.
In C99, contains a value that
i ndi cates separation. */

char p_sign_posn; /* I ndicates position of
positive val ue synbol. */
char n_sign_posn; /* Indicates position of

negati ve val ue synbol. */

/* The follow ng nenbers were added by C99. */
char p_cs_precedes; /* 1 if currency synbol precedes
positive value, 0 if currency
synmbol follows value. Applies to
internationally formatted val ues. */
char _p_sep_by_space; /* Indicates the separation between the
currency synbol, sign, and a positive val ue.
Applies to internationally formatted val ues. */
char _n_cs_precedes; /* 1 if currency synbol precedes
a negative value, 0 if currency
synmbol follows value. Applies to
internationally formatted val ues. */
char _n_sep_by_ space; /* Indicates the separation between the
currency synbol, sign, and a negative val ue.
Applies to internationally formatted val ues. */
char _p_sign_posn; /* I ndicates position of
positive value synbol. Applies to
internationally formatted val ues. */
char _n_sign_posn; /* I ndicates position of
negati ve val ue synbol. Applies to
internationally formatted val ues. */

Page 425

The localeconv() function returns a pointer to the Iconv structure. Y ou must not alter the contents
of this structure. Refer to your compiler's documentation for implementation-specific information
relating to the lconv structure.

Example

The following program displays the decimal point character used by the current locale:

#i ncl ude <stdi o. h>
#i ncl ude <l ocal e. h>

int main (void)
{
struct |conv Ic;
lc = *l ocal econv();

printf("Decinml synbol is: %\n", |c.decinml _point);

return O;

}

Related Function
setlocale()

localtime

#i ncl ude <tinme. h>
struct tm *localtine(const time_t *tine);

The localtime(') function returns a pointer to the broken-down form of timein the form of atm
structure. The timeis represented in local time. The time pointer is usually obtained through a call to

time().

The structure used by localtime() to hold the broken-down time is statically allocated and is
overwritten each time the function is called. If you wish to save the contents of the structure, you
must copy it el sewhere.

Example

Page 426

This program prints both the local time and the Coordinated Universal Time (UTC) of the system:

#i ncl ude <tine. h>
#i ncl ude <stdi o. h>

/* Print local and UTC tinme. */

i nt mai n(voi d)

{
struct tm *| ocal
time t t;

t = tinme(NULL);

local = localtinme(&);

printf(''Local tine and date: %\n", asctinme(local));
| ocal = gntime(&t);

printf("UTC tinme and date: %\n", asctinme(local));

return O;

Related Functions

gmtime(), time(), and asctime()

mktime

#i ncl ude <tine. h>
time_t nktime(struct tm*tijne);

The mktime() function returns the calendar-time equivalent of the broken-down time found in the
structure pointed to by time. The elements tm_wday and tm_yday are set by the function, so they

need not be defined at the time of the call.

If mktime() cannot represent the information as avalid calendar time, -1 is returned.

Example

This program tells you the day of the week for January 3, 2005:

Page 427

#i ncl ude <tine. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

{

struct tmt;
time_t t_of day;

.tmyear = 2005-1900;
.tmnmon = 0;

t

t ;

t.tmnday = 3;

t.tmhour = 0; /* hour, mn, sec don't matter */
t.tmnin = 0; /* as long as they don't cause a */
t.tmsec = 1; /* new day to occur */

t.tmisdst = 0O;

t_of _day = nktime(&t);
printf(ctinme(& _of day));

return O;

Related Functions

time(), gmtime(), asctime(), and ctime()

setlocale

#i ncl ude <l ocal e. h>
char *setlocale(int type, const char *|ocale);

The setlocale() function allows certain parameters that are sensitive to the geopolitical environment
of aprogram's execution to be queried or set. If localeis null, setlocale() returns a pointer to the
current localization string. Otherwise, setlocale() attempts to use the string specified by locale to set
the locale parameters as specified by type. To specify the standard C locale, use the string "C". To
specify the native environment, use the null string "". Refer to your compiler's documentation for the
localization strings that it supports.

At the time of the call, type must be one of the following macros (defined in <locale.h>):

— LC ALL
LC_COLLATE

Page 428

LC_CTYPE

—_LC_MONETARY
LC_NUMERIC
LC_TIME

LC_ALL refersto all localization categories. LC_COLLATE affects the operation of the strcoll()
function. LC_CTYPE dtersthe way the character functionswork. LC_MONETARY determines
the monetary format. LC_NUMERIC changes the decimal -point character for formatted
input/output functions. Finally, LC_TIME determines the behavior of the strftime() function.

The setlocale() function returns a pointer to a string associated with thetype parameter.
Example

This program displays the current local e setting:

#i ncl ude <l ocal e. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)
{
printf(setlocale(LC_ALL, ""'"));

return O;

}

Related Functions
—localeconv(), time(), streoll(), and strftime()

Strftime

#i ncl ude <tine. h>
size_t strftime(char *str, size_t maxsize, const char *fnt
const struct tm*tijne);

The strftime() function stores time and date information, along with other information, into the
string pointed to by str according to the format commands found in the string pointed to by fmt and
using the broken-down time pointed to by time. A maximum of maxsize characters will be placed
into str.

In C99, &r, fmt, and time are qualified by restrict.

Page

The strftime() function works alittle like sprintf() in that it recognizes a set of format commands tt
begin with the percent sign (%), and it stores its formatted output into a string. The format commands
are used to specify the exact way various time and date information is represented in str. Any other
characters found in the format string are placed into str unchanged. The time and date displayed are it
local time. The format commands are shown in the table below. Notice that many of the commands a
case sengitive.

The strftime() function returns the number of characters stored in the string pointed to by str or zero
an error occurs.

Command Replaced By

%83 Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%cC Standard date and time string

%C Last two digits of year

%d Day of month as a decimal (1-31)

%D month/day/year (added by C99)

%e Day of month as adecimal (1-31) in atwo-character field (added by C99)
% year-month-day (added by C99)

%0 Last two digits of year using aweek-based year (added by C99)
%G The year using aweek-based year (added by C99)

%h Abbreviated month name (added by C99)

%H Hour (C-23)

%l Hour (1-12)

% Day of year as adecimal (1-366)

%m Month as decimal (1-12)

%M Minute as decimal (0-59)

%n A newline (added by C99)
%p Locale's equivalent of AM or PM
%r 12-hour time (added by C99)

%R hh:mm (added by C99)

Command
%S
%ot
%T
%u
%U
%V
Yow
%W
%X
%X
%y
%Y
%z
%Z

%%

Replaced By

Second as decimal (0-60)

Horizontal tab (added by C99)

hh:mm:ss (added by C99)

Day of week; Monday isfirst day of week (0-53) (added by C99)
Week of year, Sunday being first day (0-53)

Week of year using aweek-based year (added by C99)
Weekday as a decimal (0-6, Sunday being 0)

Week of year, Monday being first day (C-53)
Standard date string

Standard time string

Y ear in decimal without century (0-99)

Y ear including century as decimal

Offset from UTC (added by C99)

Time zone name

The percent sign

Page

C99 dlows certain of the strftime() format commands to be modified by E or O. The E can modify
C,x,X,y,Y,d, e and H. The O can modify I, m, M, S, u, U, V, w, W, and y. These modifiers caus

an alternative representation of the time and/or date to be displayed. Consult your compiler's

documentation for details.

A week-based year is used by the % g, % G, and % V format commands. With this representation,

Monday isthefirst day of the week, and the first week of ayear must include January 4.

Example

Assuming that Itime points to a structure that contains 10:00:00 AM, the following program prints|t

now 10 AM:

#i ncl ude <tine. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

{

struct tm *ptr;
time_t It;

char str[80];

[t = tinme(NULL);

ptr = localtinme(&t);
printf(str);

return O;

strftine(str, 100, "It is now % %p."

ptr);

Related Functions

time(), localtime(), and gmtime()

Time

#i ncl ude <ti nme. h>
time t time(time_t *tine);

Page 431

The time() function returns the current calendar time of the system. If the system hasno time, -1 is

returned.

The time() function can be called either with anull pointer or with a pointer to a variable of type

time t. If thelatter is used, the variable will also be assigned the calendar time.

Example

This program displays the local time defined by the system:

#i ncl ude <tine. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)

{
struct tm *ptr,;
time_t It;

Page 432

[t = time(NULL);
ptr = localtinme(&t);
printf(asctime(ptr));

return O;

Related Functions

localtime(), gmtime(), strftime(), and ctime()

Page 433

Chapter 17—
Dynamic Allocation Functions

Page 434

This chapter describes C's dynamic allocation functions. At their core aremalloc() and freg(). Each
time malloc() iscalled, aportion of the remaining free memory is allocated. Each timefreg() is
called, memory is returned to the system. The region of free memory from which memory is
alocated is called the heap. The prototypes for the dynamic allocation functions arein <stdlib.h>.

NOTE

An overview of dynamic allocation is found in Chapter 5.

Standard C defines four dynamic allocation functions that all compilers will supply: calloc(),
malloc(), free(), and realloc(). However, your compiler will almost certainly contain several
nonstandard variants on these functions to accommodate various options and environmental
differences. For example, special allocation functions are supplied by compilers that produce code
for the segmented memory model of the 8086. Y ou will want to refer to your compiler's
documentation for details and descriptions of additional allocation functions.

calloc

#i ncl ude <stdlib. h>
void *cal loc(size t num size_ t size);

The calloc() function allocates memory the size of whichisequal to num* size. That is, calloc()
allocates sufficient memory for an array of numobjects of size size. All bitsin the allocated memory
areinitially set to zero.

The calloc() function returns a pointer to the first byte of the alocated region. If there is not enough
memory to satisfy the request, a null pointer is returned. It is aways important to verify that the
return value is not null before attempting to useit.

Example

This function returns a pointer to adynamically allocated array of 100 floats:

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

float *get_mem(void)
{

float *p;

p = calloc(100, sizeof(float));
if(tp) {

printf("Allocation Error\n");
exit(l);
}

return p;

}

Related Functions

free()), malloc(), and realloc()

free

#i ncl ude <stdlib. h>
void free(void *ptr);

Page 435

The freg() function returns the memory pointed to by ptr to the heap. This makes the memory

available for future allocation.

It isimperative that free() only be called with a pointer that was previously allocated using one of
the dynamic allocation system's functions. Using an invalid pointer in the call most likely will
destroy the memory management mechanism and possibly cause a system crash. If you pass anull

pointer, free() performs no operation.

Example

This program allocates room for the strings entered by the user and then frees the memory:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
char *str[100];
int i;

for(i=0; i<100; i++) {
if((str[i] = malloc(128))==NULL) {
printf ('""Allocation Error\n");
exit (1);
}

gets(str[i]);

/* now free the nmenory */
for(i=0; i<100; i++) free(str[i]);

return O;

Related Functions

calloc(), malloc(), and realloc()

malloc

#i ncl ude <stdlib. h>
void *mal | oc(size_t size);

Page 436

The malloc() function returns a pointer to the first byte of aregion of memory of size size that has
been allocated from the heap. If there isinsufficient memory in the heap to satisfy the request,
malloc() returns anull pointer. It is aways important to verify that the return value is not null
before attempting to use it. Attempting to use a null pointer will usually result in a system crash.

Example

This function allocates sufficient memory to hold structures of type addr:

struct
char
char
char
char
char

b

struct

{

addr {
nane[40] ;
street[40];
city[40];
state[3];
zi p[10] ;

addr *get_struct(void)

struct addr *p;

if((p = mall oc(sizeof (struct addr)))==NULL) {

Page 437

printf("Allocation Error\n");
exit(l);
}

return p;

}

Related Functions
freg(), realloc(), and calloc()

realloc

#include <stdlib. h>
void *realloc(void *ptr, size_t size);

The precise operation of realloc() differs slightly between C89 and C99, although the net effect is
the same. For C89, realloc() changes the size of the previoudly allocated memory pointed to by ptr
to that specified by size. The value of size can be greater or less than the original. A pointer to the
memory block is returned because it may be necessary for realloc() to move the block in order to
changeits size. If this occurs, the contents of the old block (up to size bytes) are copied into the new
block.

For C99, the block of memory pointed to by ptr isfreed, and a new block is allocated. The new
block contains the same contents as the original block (up to the length passed in size). A pointer to
the new block isreturned. It is permissible, however, for the new block and the old block to begin at
the same address. That is, the pointer returned by realloc() might be the same as the one passed in

ptr.

If ptr isnull, realloc() ssmply allocates size bytes of memory and returns a pointer to it. If Sizeis
zero, the memory pointed to by ptr isfreed.

If there is not enough free memory in the heap to allocate size bytes, anull pointer is returned, and
the original block is left unchanged.

Example

This program first allocates 17 characters, copies the string "Thisis 16 chars' into them, and then
uses realloc() to increase the size to 18 in order to place a period at the end.

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <string. h>

Page 438

i nt mai n(voi d)

{

char *p;

p = malloc(17);

if(tp) {
printf('"Allocation Error\n");
exit(l);

}

strcpy(p, "This is 16 chars");

p = realloc(p, 18);

if(tp) {
printf("Allocation Error\n");
exit(l);

}

strcat(p, ".");

printf(p);

free(p);

return O;

Related Functions
freg(), malloc(), and calloc()

Page 439

Chapter 18—
Utility Functions

Page 440

The standard function library defines several utility functions. They include various conversions,
variable-length argument processing, sorting and searching, and random number generation. Many
of the functions covered here require the use of the header <stdlib.h>. In this header are declared
the types div_t and Idiv_t, which are the types of the values returned by div() and Idiv(),
respectively. C99 adds the lIdiv_t type and the Ildiv() function. Also declared are the types size t
and wchar _t. The following macros are aso defined:

Macro Meaning

MB_CUR MAX Maximum length (in bytes) of a multibyte character

NULL A null pointer

RAND MAX The maximum value that can be returned by the rand() function

EXIT_FAILURE The value returned to the calling processif program termination is
unsuccessful

EXIT SUCCESS The value returned to the calling process if program termination is
successful

If afunction requires a header other than <stdlib.h>, that function description will discuss it.

abort

#i ncl ude <stdlib. h>
voi d abort (void);

The abort(') function causes immediate abnormal termination of a program. Generally, no files are
flushed. In environments that support it, abort() will return an implementation-defined value to the
calling process (usually the operating system) indicating failure.

Example

In this program, the program terminates if the user entersan A:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

Page 441

i nt mai n(voi d)

{
for (;;)

i f(getchar()=="A") abort();

return O;

}

Related Function

exit() and atexit()

abs

#i ncl ude <stdlib. h>
int abs(int num;

The abg() function returns the absolute value of nurr.
Example

This function converts a user-entered number into its absolute value;

i nt get_abs(void)

{
char nuni 80];

gets(num ;
return abs(atoi (num);

}

Related Function

fabg()

assert

#i ncl ude <assert. h>
voi d assert(int exp);

Page 442

The assert() macro, defined in its header <assert.h>, writes error information to stderr and then
aborts program execution if the expression exp evaluates to zero. Otherwise, assert() does nothing.
Although the exact output is implementation defined, many compilers use a message similar to this:

~ Assertion failed: <expression>, file <file>, line <linenum>
For C99, the message will aso include the name of the function that contained assert().

The assert() macro is generally used to help verify that a program is operating correctly, with the
expression being devised in such away that it evaluates to true only when no errors have taken
place.

It is not necessary to remove theassert() statements from the source code once a program is
debugged because if the macro NDEBUG is defined (as anything), the assert() macroswill be
ignored.

Example

This code fragment tests whether the data read from a serial port isan ASCII character (that is, it
does not use the seventh bit):

[* .0 %
ch = read_port();
assert(!(ch & 128)); /* check bit 7 */

Related Function

abort()

atexit

#i ncl ude <stdlib. h>
int atexit(void (*func)(void));

The atexit() function causes the function pointed to by func to be called upon normal program
termination. The atexit() function returns zero if the function is successfully registered as a
termination function and nonzero otherwise.

At least 32 termination functions can be registered, and they will be called in the reverse order of
their registration.

Example

This program printsHello Ther e on the screen when it terminates:

Page 443

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

voi d done(void);
i nt mai n(voi d)
if (atexit(done)) printf('"Error in atexit().");

return O;

}

voi d done(voi d)

{
}

printf("Hello There");

Related Functions
exit() and abort()

atof

#i ncl ude <stdlib. h>
doubl e atof (const char *str);

The atof() function converts the string pointed to by str into adoublevalue. The string must
contain avalid floating-point number. If thisis not the case, the returned value is undefined.

The number can be terminated by any character that cannot be part of avalid floating-point number.
This includes white space, punctuation (other than periods), and characters other than E or e. This
meansthat if atof() iscaled with "100.00HELLQO", the value 100.00 will be returned.

Example

This program reads two floating-point numbers and displays their sum:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

Page 444

i nt mai n(voi d)
{
char nuni[80], nun®[80];
printf("Enter first: ");
gets(numt);
printf('"Enter second: ");
gets(nun?);
printf("The sumis: %f.", atof(numl) + atof(nun?));
return O;
}

Related Functions

atoi() and atol()

atoi

#i ncl ude <stdlib. h>
int atoi(const char *str);

The atoi() function converts the string pointed to by str into an int value. The string must contain a
valid integer number. If thisis not the case, the returned value is undefined.

The number can be terminated by any character that cannot be part of an integer number. This
includes white space, punctuation, and characters. This meansthat if atoi() is called with "123.23",
the integer value 123 will be returned, and the ".23" isignored.

Example

The following program reads two integers and displays their sum:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
char numi[80], nung[80];

gets (numl);
printf(''Enter second:
gets(nun?);

return O;

printf("Enter first: ");

")

printf("The sumis: %."

at oi (numl) +at oi (nun?));

Related Functions

atof() and atol()

atol

#i ncl ude <stdlib. h>

long int atol (const char *str);

Page 445

The atol() function converts the string pointed to by str into along int value. The string must

contain avalid integer number. If thisis not the case, the returned value is undefined.

The number can be terminated by any character that cannot be part of an integer number. This
includes white space, punctuation, and characters. This meansthat if atol() is called with "123.23",

the long integer value 123L will be returned, and the ".23" isignored.

Example

This program reads two long integers and displays their sum:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)

{

gets(numt);
printf("Enter second:

char nuni[80], nunR[80];

printf("Enter first: ");

")

Page 446

gets(nun?);
printf('" The sumis: %d.", atol (numl)+ato
(nun2));

return O;

}

Related Functions

atof(), atoi(), and atoll()

atoll

#i nclude <stdlib. h>
long long int atoll (const char *str);

atoll(') was added by C99.

The atoll() function converts the string pointed to by str into along long int value. It is otherwise
similar to atoll().

Related Functions

atof(), atoi(), and atol()

bsearch

#i ncl ude <stdlib. h>
void *bsearch(const void *key, const void *buf,
size_t num size_t size,
int (*conpare)(const void *, const void *));

The bsear ch() function performs a binary search on the sorted array pointed to by buf and returns a
pointer to the first member that matches the key pointed to by key. The number of elementsin the
array is specified by nurr, and the size (in bytes) of each element is described by size.

The function pointed to by compare is used to compare an element of the array with the key. The
form of the compare function must be as follows:

~int func_name(const void *argl, const void *arg?2);

It must return values as described in the following table:

Comparison Value Returned
argl islessthan arg2 Lessthan zero
argl isequa to arg2 Zera

argl is greater than arg?2 Greater than zerc

Page 447

The array must be sorted in ascending order with the lowest address containing the lowest element.

If the array does not contain the key, anull pointer is returned.

Example

The following program reads a character entered at the keyboard and determines whether it belongs

to the al phabet:

#i ncl ude <stdlib. h>
#i ncl ude <ctype. h>
#i ncl ude <stdi o. h>

char *al pha = "abcdef ghij kl mopqgr st uvwyz";
int comp(const void *ch, const void *s);

i nt mai n(voi d)

{

char ch;
char *p;

printf("Enter a character: ");
ch = getchar();
ch = tol ower(ch);

if(p) printf('" % is in al phabet\n", *p);
else printf("is not in al phabet\n");

return O;

}

/* Conpare two characters. */
int conmp(const void *ch, const void *s)

{

p = (char *) bsearch(&ch, al pha, 26, 1, conp);

return *(char *)ch — *(char *)s;

}

Related Function
gsort()

div

#i ncl ude <stdlib. h>
div_t div(int nunerator, int denom nator);

Page 448

The div() function returns the quotient and the remainder of the operation numerator/denominator

in astructure of typediv t.

The structure type div_t has these two fields:

int quot; /* quotient */
int rem /* remainder */

Example

This program displays the quotient and remainder of 10/3:

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)
{
div_t n;
n = div(10, 3);
printf("Quotient and renmai nder: %l %l.\n", n.quot,

return O;

n.rem;

Page 449
Related Functions
Idiv() and lldiv()

exit

#i nclude <:stdlib. h>
void exit(int exit_code);

The exit() function causes immediate, normal termination of a program. This means that
termination functions registered by atexit() are called, and any open files are flushed and closed.

The value of exit_codeis passed to the calling process—usually the operating system—if the
environment supportsit. By convention, if the value of exit_code is zero, or EXIT_SUCCESS,
normal program termination is assumed. A nonzero value, or EXIT_FAILURE, isused to indicate
an implementation-defined error.

Example

This function performs menu selection for amailing list program. If Q is selected, the program is
terminated.

i nt menu(voi d)

{

char choice

do {
printf(''Enter nanes (E)\n");
printf("Delete nane (D)\n");
printf("Print (P)\n");
printf("Quit (Q\n");
choi ce = getchar();

} while(!strchr("EDPQ', toupper(choice)));

if(choice=="Q) exit(0);

return choice;

Page 450

Related Functions
atexit(), abort() and _Exit()

_Exit

#i ncl ude <stdlib. h>
void _Exit(int exit code);

_Exit() was added by C99.

The Exit() functionissimilar to exit() except for the following:
 No calls to termination functions registered by atexit() are made.
* No callsto signal handlersregistered by signal() are made.

» Open files are not necessarily flushed or closed.

Related Functions

atexit(), abort() and exit()

getenv

#i ncl ude <stdlib. h>
char *getenv(const char *nane);

The getenv() function returns a pointer to environmental information associated with the string
pointed to by name in the implementation-defined environmental information table. The string must
not be changed by your code.

The environment of a program may include such things as path names and devices online. The exact
nature of this dataisimplementation defined. Y ou will need to refer to your compiler's
documentation for details.

If acall is madeto getenv() with an argument that does not match any of the environment data, a
null pointer is returned.

Example

Assuming that a specific compiler maintains environmental information about the devices connected
to the system, the following fragment returns a pointer to the list of devices:

Page 451

char *p
[* ... (/
p = getevn(''DEVICES");

Related Function

system()

labs

#i ncl ude <stdlib. h>
long int labs(long int num;

The labs() function returns the absolute value of nurr.

Example

This function converts the number entered at the keyboard into its absolute
vaue:

long int get | abs()
{

char nuni 80];
gets(nun);

return | abs(atol (num);

}

Related Functions
aby() and labs()

[labs

#i ncl ude <stdlib. h>
long long int Ilabs(long long int num;

llabs() was added by C99.

Page 452

The llabs() function returns the absolute value of num. It issimilar to labs() except that it operates
on values of type long longint.

Related Functions
abs() and labs()

ldiv

#i ncl ude <stdlib. h>
ldiv_t lIdiv(long int nunmerator, long int denoni nator);

The Idiv(') function returns the quotient and remainder of the operation numerator/denominator in
an ldiv_t structure.

The structure type Idiv_t has these two fields:

long int quot; /* quotient */
long int rem /* remainder */

Example

This program displays the quotient and remainder of 10/3:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)
{
Idiv_t n;
n = Idiv(1i0L, 3L);
printf("Quotient and remainder: %d %d.\n", n.quot, n.ren);

return O;

}

Related Functions
div() and lIdiv()

Page 453

lldiv

#i ncl ude <stdlib. h>
[Idiv_t Ildiv(long long int nunmerator, long long int denom nator);

lIdiv() was added by C99.

The Ildiv() function returns the quotient and remainder of the operation numerator/denominator in
anlldiv_t structure. It issimilar to Idiv() except that it operates on long long integers.

The structure type lldiv t has these two fields;

long long int quot; /* quotient */
long long int rem [/* renai nder */

Related Functions
div() and Idiv()

longimp

#i ncl ude <setj np. h>
void | ongj np(j np_buf envbuf, int status);

The longjmp() function causes program execution to resume at the point of the last call to setjmp
(). Thus, longimp() and setjmp() provide a means of jumping between functions. Notice that the
header <setjmp.h> isrequired.

The longjmp() function operates by resetting the stack to the state as described in envbuf, which
must have been set by a prior call to setjmp(). This causes program execution to resume at the
statement following the setjmp() invocation. That is, the computer is "tricked" into thinking that it
never |eft the function that called setjmp(). (As asomewhat graphic explanation, the longjmp()
function "warps" across time and (memory) space to a previous point in your program without
having to perform the normal function return process.)

The buffer evnbufisof type jmp_buf, which is defined in the header <setjmp.h>. Again, the buffer
must have been set through a call to setjmp() prior to caling longi mp().

The value of status becomes the return value of setjmp() and is used to determine where the long
jump came from. The only value that is not allowed is zero. Zero is returned by setjmp() whenitis
actually called directly by your program, not indirectly through the execution of longjmp().

Page 454

By far the most common use of longjmp() isto return from a deeply nested set of routines when an

€rror occurs.
Example

This program prints1 2 3:

#i ncl ude <setjnp. h>
#i ncl ude <stdi o. h>

j mp_buf ebuf;
void f2(void);

i nt mai n(voi d)

{
int i;

printf("1 ");
i = setjmp(ebuf);
if(i == 0) {
f2();
printf('"This will not

}
printf("od", i);

return O;

}

void f2(void)
{
printf("2 ");
| ongj mp(ebuf, 3);

be printed.");

Related Function

setjmp()

mblen

#i ncl ude <stdlib. h>
i nt nmblen(const char *str,

size_t size);

Page 455

The mblen() function returns the length (in bytes) of a multibyte character pointed to by str. Only
the first size number of characters are examined. It returns—1 on error.

If str isnull, then mblen() returns nonzero if multibyte characters have state-dependent encodings.
If they do not, zero is returned.

Example

This statement displays the length of the multibyte character pointed to by mb:

printf("%d", nblen(nb, 2));

Related Functions

mbtowc() and wctomb()

mbstowcs

#i ncl ude <stdlib. h>
size_t mbstowcs(wchar _t *out, const char *in, size_t size),

The mbstowcs() function converts the multibyte string pointed to by in into a wide-character string
and puts that result in the array pointed to by out. Only size number of bytes will be stored in out.

In C99, out and in are qualified by
restrict.

The mbstowcs() function returns the number of multibyte characters that are converted. If an error
occurs, the function returns-1.

Example

This statement converts the first four characters in the multibyte string pointed to by mb and puts
theresultin str:

mbst owcs(str, nb, 4);

Page 456
Related Functions

wcestombs() and mbtowc()

mbtowc

#i ncl ude <stdlib. h>
int mbtowc(wchar _t *out, const char *in, size_t size);

The mbtowc() function converts the multibyte character in the array pointed to by in into its wide-
character equivalent and puts that result in the object pointed to by out. Only size number of
characters will be examined.

In C99, out and in are qualified by
restrict.

This function returns the number of bytesthat are put into out. If an error occurs, —1 isreturned. If in
is null, then mbtowc() returns nonzero if multibyte characters have state-dependent encodings. If
they do not, zero is returned.

Example

This statement converts the multibyte character in mbstr into its equivalent wide character and puts
the result in the array pointed to by widenorm. (Only the first 2 bytes of mbstr are examined.)

nmbt owc(wi denorm nbstr, 2);

Related Functions

mblen() and wctomb()

gsort

#i ncl ude <stdlib. h>
void gsort(void *buf, size_t num size_t size,
int (*conpare) (const void *, const void *));

The gsort() function sorts the array pointed to by buf using a Quicksort (developed by C. A. R.
Hoare). Quicksort is generally considered the best general-purpose sorting algorithm. The number of
elementsin the array is specified by num, and the size (in bytes) of each element is described by
Sze.

Page 457

The function pointed to by compare is used to compare two elements of the array. The form of the

compare function must be as follows:
~int func_name(const void *argl, const void *arg?2);

It must return values as described here:

Comparison Value Returned
argl islessthan arg2 Lessthan zero
argl isequa to arg2 Zera

argl is greater than arg2 Greater than zerg

The array is sorted into ascending order with the lowest address containing the lowest element.

Example

This program sorts alist of integers and displays the result:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

int nunf 10] = {
1, 3, 6, 5 8, 7, 9, 6, 2, 0
1

int comp(const void *, const void *);

int main (void)
{

int i;

printf("Oiginal array: ");

gsort(num 10, sizeof(int), conp);

printf("Sorted array: ");
for(i=0; i<10; i++) printf("% ", nunfi]);

return O;

for(i=0; i<10; i++) printf('"9% ", nunii]);

}

i nt conmp(const

{
}

return *(int

/* conpare the integers */

void *i, const void *j)

*Yio- *(int *)j;

Related Function
bsearch()

raise

#i ncl ude <signal . h>
int raise(int signal);

The raise() function sends the specified by signal to the executing program. It returns zero if
successful; otherwise it returns nonzero. It uses the header <signal.h>.

The following signals are defined by Standard C. Of course, your compiler is free to provide

additional signals.

Macro
SIGABRT
SIGFPE
SIGILL
SIGINT
SIGSEGV

SIGTERM

Related Function
signal()

Meaning

Termination error
Floating-point error
Bad instruction

User pressed CTRL-C
[llegal memory access

Terminate program

Page 458

Page 459

rand

#i ncl ude <stdlib. h>
int rand(void);

The rand() function generates a sequence of pseudorandom numbers. Each time it is called, an
integer between zero and RAND _MAX isreturned. RAND MAX will be at least 32,767.

Example

The following program displays 10 pseudorandom
numbers:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)
{

int i;

for(i=0; i<10; i++)
printf(""% ", rand());

return O;

}

Related Function

srand()

setjmp

#i ncl ude <setj np. h>
int setjnp(jnp_buf envbuf);

The setjmp() macro saves the contents of the system stack in the buffer envbuf for later use by
longimp(). It uses the header <setimp.h>.

Page 460

The setjmp() macro returns zero upon invocation. However, longjmp() passes an argument to
setjmp(), and it is this value (always nonzero) that will appear to be the value of setjmp() after a
call to longjmp() has occurred.

See longjmg for additional information.

Related Function

longjmp()

signal

#i ncl ude <signal . h>
void (*signal (int signal, void (*func) (int))) (int);

The signal (') function registers the function pointed to by func as a handler for the signal specified
by signal. That is, the function pointed to by func will be called when signal is received by your
program. The header <signal.h> isrequired.

The value of func can be the address of a signal handler function or one of the following macros,
defined in <signal.h>:

Macro Meaning
SIG DFL Use default signal handling.
SIG IGN Ignore the signal.

If afunction addressis used, the specified handler will be executed when its signal is received.
Check your compiler's documentation for additional details.

On success, signal() returns the address of the previously defined function for the specified signal.
Onerror, SIG ERR (defined in <signal.h>) isreturned.

Related Function
raise()

srand

#i ncl ude <stdlib. h>
voi d srand(unsigned int seed);

Page 461

The srand() function sets a starting point for the sequence generated by rand(). (Therand()
function returns pseudorandom numbers.)

srand() is often used to allow multiple program runs to use different sequences of pseudorandom
numbers by specifying different starting points. Conversely, you can also use srand() to generate
the same pseudorandom sequence over and over again by calling it with the same seed before
starting the sequence.

Example

This program uses the system time to randomly initialize therand() function by using srand():

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <tine. h>

/* Seed rand() with the systemtine
and display the first 10 nunbers.

*/
i nt mai n(voi d)
{
int i, stime;
long |tine;

/* get the current calendar tinme */
[time = time(NULL);

stime = (unsigned) Itine/2;
srand(stinme);

for(i=0; i<10; i++) printf("% ", rand());

return O;

Related Function

rand()

strtod

#include <stdlib. h>
doubl e strtod(const char *start, char **end);

Page 462

The strtod() function converts the string representation of a number stored in the string pointed to
by start into adouble and returns the result.

In C99, gtart and end are qualified by restrict.

The strtod() function works as follows. First, any white space in the string pointed to by start is
stripped. Next, each character that makes up the number isread. Any character that cannot be part of
afloating-point number will cause this process to stop. This includes white space, punctuation (other
than periods), and characters other than E or e. Finally, end is set to point to the remainder, if any, of
the original string. Thismeansthat if strtod() iscalled with " 100.00 Pliers', the value 100.00 will
be returned, and end will point to the space that precedes "Pliers”.

If overflow occurs, either HUGE_VAL or -HUGE_VAL (indicating positive or negative overflow)
isreturned, and the global variable errnois set to ERANGE, indicating arange error. If underflow
occurs, the function returns zero, and the global variable errnoisset to ERANGE. If start does not
point to a number, no conversion takes place and zero is returned.

Example

This program reads floating-point numbers from a character array:

#i ncl ude <stdlib. h>
#i ncl ude <ctype. h>
#i ncl ude <stdi o. h>

i nt mai n(voi d)
{
char *end, *start = "100.00 pliers 200.00 hamers";

end = start;
while(*start) {
printf("%, ", strtod(start, &end));
printf("Remainder: %\n" ,end);
start = end;
/* nove past the non-digits */
while(!isdigit(*start) && *start) start++;
}

return O;

The output i<

Page 463

100. 00000C, Rermi nder: pliers 200.00 hamers
200. 000000, Remmi nder: hammers

Related Functions

atof(), strtold(), and strtof()

strtof

#i ncl ude <stdlib. h>
| ong double strtof(const char * restrict start,
char restrict ** restrict end);

strtof() was added by C99.

The strtof() function issimilar to strtod() except that it returns a float value. If overflow occurs,
then either HUGE_VALF or -HUGE_VALF isreturned, and the global variable errnoisset to
ERANGE, indicating arange error. If start does not point to a number, no conversion takes place
and zero isreturned.

Related Functions
atof(), strtod(), and strtold()

strtol

#i ncl ude <stdlib. h>
long int strtol (const char *start, char **end, int radix);

The strtol() function converts the string representation of a number stored in the string pointed to
by start into along int and returns the result. The base of the number is determined by radix. If
radix is zero, the base is determined by the rules that govern constant specification. If radix is other
than zero, it must be in the range 2 through 36.

In C99, start and end are qualified by restrict.

The strtol() function works as follows. First, any white space in the string pointed to by start is
stripped. Next, each character that makes up the number isread. Any character that cannot be part of
along integer number will cause this process to stop. This includes white space, punctuation, and
characters. Finally, end is set to point to the remainder, if any, of the original string. This means that
if strtol() iscaled with" 100 Pliers’, the value 100L will be returned, and end will point to the
space that precedes "Pliers’.

Page 464

If the result cannot be represented by along int, LONG_MAX or LONG_MIN isreturned, and the
global errnoisset to ERANGE, indicating arange error. If start does not point to a number, no
conversion takes place and zero is returned.

Example

This function reads base 10 numbers from standard input and returns their long equivalent:

long int read_l ong(void)

{
char start[80], *end;

printf("Enter a nunber: ");
gets(start);
return strtol (start, &end, 10);

}

Related Functions

atol () and strtoll()

strtold

#i ncl ude <stdlib. h>
| ong double strtold(const char * restrict start,
char restrict ** restrict end);

strtold() was added by C99.

The strtold() functionissimilar to strtod() except that it returns a long double value. If overflow
occurs, then either HUGE_VALL or -HUGE_VALL isreturned, and the global variableerrno is
set to ERANGE, indicating arange error. If start does not point to a number, no conversion takes
place and zero is returned.

Related Functions
atof(), strtod(), and strtof()

Page 465

strtoll

#i ncl ude <stdlib. h>
long long int strtoll(const char * restrict start,
char ** restrict end, int radix);

strtoll() was added by C99.

The strtoll() function is similar to strtol() except that it returns a long long int. If the result cannot
be represented by along integer, LLONG_MAX or LLONG_MIN isreturned, and the global
errnoisset to ERANGE, indicating arange error. If start does not point to a number, no
conversion takes place and zero is returned.

Related Functions

atol() and strto()

strtoul

#i ncl ude <stdlib. h>
unsi gned long int strtoul (const char *start, char **end,
int radix);

The strtoul() function converts the string representation of a number stored in the string pointed to
by start into an unsigned long int and returns the result. The base of the number is determined by
radix. If radix is zero, the base is determined by the rules that govern constant specification. If the
radix is specified, it must be in the range 2 through 36.

In C99, start and end are qualified by restrict.

The strtoul() function works as follows. First, any white space in the string pointed to by start is
stripped. Next, each character that makes up the number isread. Any character that cannot be part of
an unsigned integer number will cause this process to stop. This includes white space, punctuation,
and characters. Finaly, end is set to point to the remainder, if any, of the original string. This means
that if strtoul() iscalled with "100 Fliers’, the value 100L will be returned, and end will point to the
space that precedes "Pliers'.

Page 466

If the result cannot be represented as an unsigned long integer, ULONG_MAX isreturned and the
global variable errnoisset to ERANGE, indicating arange error. If start does not point to a
number, no conversion takes place and zero is returned.

Example

This function reads unsigned base 16 (hexadecimal) numbers from standard input and returns their
unsigned long equivalent:

unsi gned long int read_unsigned_| ong(voi d)

{
char start[80], *end;

printf("Enter a hex numnber: ");
gets(start);
return strtoul (start, &end, 16);

}

Related Functions

strtol() and strtoull()

strtoull

#i ncl ude <stdlib. h>
unsi gned long long int strtoull (const char *restrict start, char
**restrict end, int radix);

strtoull() was added by C99.

The strtoull(') function issimilar to strtoul() except that it returns an unsigned long long int. If the
result cannot be represented as an unsigned long integer, ULLONG_MAX isreturned and the
global variable errnoisset to ERANGE. If start does not point to a number, no conversion takes
place and zero is returned.

Related Functions

strtol() and strtoul()

Page 467

system

#i ncl ude <stdlib. h>
int system(const char *str);

The system(') function passes the string pointed to by str as a command to the command processor
of the operating system.

If system() iscalled with anull pointer, it will return nonzero if acommand processor is present;
otherwise, it will return zero. (C code executed in unhosted environments will not have accessto a
command processor.) The return value of system() isimplementation defined, but typically, zerois
returned if the command was successfully executed, and a nonzero return value indicates an error.

Example

Using the Windows operating system, this program displays the contents of the current working
directory:

#i ncl ude <stdlib. h>

i nt mai n(voi d)

{
}

return system('"'dir");

Related Function

exit()

va arg, va copy, va start, and va end

#i ncl ude <stdarg. h>

type va_arg(va_list argptr, type);

void va_copy(va_list target, va_list source);
void va_end(va_list argptr);

void va_start (va_list argptr, last_parm;

va copy() was added by C99.

Page 468

Theva arg(), va start(), and va_end() macros work together to allow avariable number of
arguments to be passed to a function. The most common example of afunction that takes avariable
number of argumentsis printf(). Thetype va list isdefined by <stdarg.h>.

The general procedure for creating a function that can take a variable number of argumentsis as
follows. The function must have at least one known parameter, but may have more, prior to the
variable parameter list. The rightmost known parameter is called the last_ parm. The name of last_
parm is used as the second parameter in acall to va_start(). Before any of the variable-length
parameters can be accessed, the argument pointer argptr must be initialized through a call to
va_start(). After that, parameters are returned via callsto va_arg(), with type being the type of the
next parameter. Finally, once all the parameters have been read, and prior to returning from the
function, acall to va_end() must be made to ensure that the stack is properly restored. If va_end()
isnot called, aprogram crash isvery likely.

The va _copy() macro copies the argument list in source to target.
Example
This program uses sum_series() to return the sum of a series of numbers. The first argument

contains a count of the number of argumentsto follow. In this example, the program sums the first
five elements of the series:

The output displayed is 0.968750.

#i ncl ude <stdi o. h>
#i ncl ude <stdarg. h>

doubl e sum series(int num ...);

/* Variable | ength argunent exanple - suma series. */
i nt mai n(voi d)

doubl e d;

d = sumseries(5, 0.5, 0.25, 0.125, 0.0625, 0.03125);

printf("Sum of series is %.\n", d);

return O;

}

doubl e sum series(int num

{

doubl e sun=0.0, t
va_list argptr;

/* initialize argptr */
va_start(argptr, num;

/* sumthe series */
for(; num num-) {

sum += t;

}

/* do orderly shutdown */
va_end(argptr);
return sum

-)

t = va_arg(argptr, double); /* get next argunment */

Related Function

vprintf()

wcstombs

#i ncl ude <stdlib. h>
size_t wcstonbs(char *out,

const wchar _t *jn,

size_t size);

Page 469

The westombs() function converts the wide-character array pointed to by in into its multibyte

equivalent and puts the result in the array pointed to by out. Only the first size bytes of in are
converted. Conversion stops before that if the null terminator is encountered.

In C99, out and in are qualified by
restrict.

If successful, westombs() returns the number of bytes written. On failure, -1 is returned.

Page 470
Related Functions

wctomb() and mbstowcs()

wctomb

#include <stdlib. h>
int wetonb(char *out, wchar_t in);

The wctomb() function converts the wide character in in into its multibyte equivalent and puts the

result in the object pointed to by out. The array pointed to by out must be at least MB_CUR_MAX
characterslong.

If successful, wetomb(') returns the number of bytes contained in the multibyte character. On
failure, -1 isreturned.

If out isnull, wctomb() returns nonzero if the multibyte character has state-dependent encodings; it
returns zero otherwise.

Related Functions

wcestombs() and mbtowc()

Page 471

Chapter 19—
Wide-Character Functions

Page 472

In 1995 a number of wide-character functions were added to C89. These functions were also
incorporated into C99. The wide-character functions operate on characters of typewchar _t, which
are 16 bits. For the most part these functions parallel their char equivalents. For example, the
function iswspace() isthe wide-character version of isspace(). In general, the wide-character
functions use the same names as their char equivalents, except that a"w" is added.

The wide-character functions use two headers: <wchar.h> and <wctype.h>. The header
<wctype.h> defines the types wint_t, wctrans t, and wctype_t. Many of the wide-character
functions receive awide character as a parameter. The type of this parameter is wint_t. It is capable
of holding awide character. The use of thewint_t type in the wide-character functions parallels the
use of int in the char-based functions. The types wctrans t and wctype t are the types of objects
used to represent a character mapping (character translation) and the classification of a character,
respectively. Also defined is the wide-character EOF mark, which is defined as WEOF.

In addition to defining win_t, the header <wchar .h> defines the typeswchar _t, size t, and
mbstate t. Thewchar _t type creates a wide-character object, and size t isthe type of vaue
returned by sizeof . The mbstate t type describes an object that holds the state of a multibyte to
wide-character conversion. The <wchar.h> header also defines the macros NULL , WEOF,
WCHAR_MAX, and WCHAR_MIN. The last two define the maximum and minimum value that
can be held in an object of type wchar t.

Since most of the wide-character functions smply parallel their char equivalents and are not
frequently used by most C programmers, only a brief description of these functionsis provided.

Wide-Character Classification Functions

The header <wctype.h> provides the prototypes for the wide-character functions that support
character classification. These functions categorize wide characters as to their type or convert the
case of acharacter. Table 19-1 lists these functions along with their char equivalents, which are
described in Chapter 14.

Function char Equivalent

int iswalnum(wint_t ch) isalnum()

int iswalpha(wint_t ch) isalpha()

int iswblank(wint_t ch) isblank() (added by C99)
Table19-1. Wide-Character Classification Functions and Their char Equivalents

(table continued on next page)

Page 473

(continued)
Function char Equivalent
int iswentrl(wint_t ch) iscntrl()
int iswdigit(wint_t ch) isdigit()
int iswgraph(wint_t ch) isgraph()
int iswlower(wint_t ch) islower()
int iswprint(wint_t ch) isprint()
int iswpunct(wint_tc) ispunct()
int iswspace(wint_t ch) isspace()
int iswupper(wint_t ch) isupper()
int iswxdigit(wint_t ch) isxdigit()
wint_t towlower(wint_t ch) tolower()
wint_t towupper(wintt ch) toupper()
Table19-1. Wide-Character Classification Functions and Their char Equivalents

In addition to the functions shown in Table 19-1, <wctype.h> defines the following functions,
which provide an open-ended means of classifying characters.

___wetype t wetype(const char *attr);
int iswctype(wint_t ch, wctype t attr_ob);

The function wctype() returns avalue that can be passed to the attr_ob parameter to iswctype().
The string pointed to by attr specifies a property that a character must have. This value can then be
used to determine whether ch is a character that has that property. If it has the property, iswctype()
returns nonzero. Otherwise, it returns zero. The following property strings are defined for all
execution environments:

anum digit print upper
apha graph punct xdigit
cntrl lower space

For C99, the string "blank" is also defined.

Page 474

The following fragment demonstrates the wctype() and iswctype() functions:

wctype_t X;
X = wetype("space");

i f(iswctype(L' ', X))
printf(''Is a space.\n");

Thisdisplays"ls aspace.”

The functionswctrans() and towctrans() are also defined in <wctype.h>. They are shown here:
~wectrans_t wctrans(const char * mapping);

~wint_t towctrans(wint_t ch, wctrans t mapping_ob);

The function wctrans() returns avalue that can be passed as the mapping_ob parameter to
towctrans(). The string pointed to by mapping specifies a mapping of one character to another.
This value can then be used by iswctrans() to map ch. The mapped value is returned. The following
mapping strings are supported in al execution environments:

tolower toupper

The following sequence demonstrateswectrans() and towctrang():

wetrans_t x;
X = wetrans("tol oner");

wchar _t ch = towctrans(L'W, x);
printf("%", (char) ch);

This displays alowercase w.

Wide-Character 1/0 Functions

Severa of the I/O functions described in Chapter 13 have wide-character implementations. These
functions are shown in Table 19-2. The wide-character 1/O functions use the header <wchar.h>.
Notice that swprintf() and vswprintf() require an additional parameter not needed by their char
equivaents.

Page 475

In addition to those shown in the table, the following wide-character 1/O function has been added:

~int fwide(FILE *strearr, int how);

FILE * stream)

Function char Equivalent
win_t fgetwc(FILE * stream) fgetc()
wchar_t *fgetws(wchar_t *gr, int num, foets()

In C99, gr and stream are qualified by restrict.

wint_t fputwc(wchar_t ch, FILE *stream)

fputc()

int fputws(const wchar_t * ar, FILE *stream)

fputs()
In C99, gr and stream are qualified by restrict.

int fwprintf(FILE *stream,
const wchar_t *fmt, . . .)

fprintf()

In C99, stream and fmt are qualified by restrict.

int fwscanf(FILE * stream,
const wchar_t * fmt, .. .)

fscanf()

In C99, stream and fmt are qualified by restrict.

const wchar_t *fmt, ..)

wint_t getwc(FILE * stream) getc()
wint_t getwchar(void) getchar()
wint_t putwc(wchar_t ch, FILE *stream) putc()
wint_t putwchar(wchar_t ch) putchar()
int swprintf(wchar_t * gr, size t num, sprintf()

Note the addition of the parameter num, which limits the

number of characters
written to gtr .
In C99, gr and fmt are qualified by restrict.

int swscanf(const wchar_t * &,
const wchar_t *fmt, . . .)

sscanf()
In C99, gr and fmt are qualified by restrict.

Table19-2. Wide-Character 1/0 Functions and Their char Equivalents

(table continued on next page)

Page 476

(continued)
Function char Equivalent
wint_t ungetwc(wint_t ch, FILE *stream) ungetc()
int vfwprintf(FILE * stream, vfprintf()
const wchar_t *fmt, va_list arg) In C99, g&r and fmt are qualified
by restrict.

int vfwscanf(FILE * restrict stream,
const wchar_t * restrict fmt,
va list arg);

vfscanf() (added by C99)

int vswprintf(wchar_t *str, size_t num,
const wchar_t *fmt, va list arg)

vsprintf()

Note the addition of the parameter num, which limits
the number of characters

written to str.

In C99, &r and fmt are qualified by restrict.

int vswscanf(const wchar_t * restrict g,
const wchar_t * restrict fmt,
va_list arg);

vsscanf() (added by C99)

int vwprintf(const wchar_t *fmt, va_list arg)

vprintf()
In C99, str and fmt are qualified by restrict.

int vwscanf(const wchar_t * restrict fit,
va list arg);

vscanf() (added by C99)

int wprintf(const wchar_t *fmt, . . .)

printf()
In C99, fmt is qualified by restrict.

int wscanf(const wchar_t *fmt, . .)

scanf()
In C99, fmt is qualified by restrict.

Table19-2. Wide-Character 1/0 Functions and Their char Equivalents

If howis positive, fwide() makes streama wide-character stream. If howis negative, fwide()
makes streaminto achar stream. If how is zero, streamis unaffected. If the stream has already been
oriented to either wide or normal characters, it will not be changed. The function returns positive if
the stream uses wide characters, negative if

Page 477

the stream uses chars, and zero if the stream has not yet been oriented. A stream'’s orientation is also

determined by itsfirst use.

Wide-Character String Functions

There are wide-character versions of the string manipulation functions described in Chapter 14.
These are shown in Table 19-3. They use the header <wchar.h>. Note that wecstok() requires an
additional parameter not used by its char equivalent.

Function

char Equivalent

wchar_t *wcscat(wchar_t * strl,
const wchar_t *str2)

strcat()
In C99, strl and str2 are qualified by
restrict.

const wchar_t * str2)

wchar_t *weschr(const wchar_t * &r, strchr()
wchar_t ch)

int wescmp(const wchar_t *strl, stremp()
const wchar_t * str2)

int wescoll(const wehar_t * strl, strcoll()
const wchar_t *str2)

size_t wesespn(const wehar_t * strl, strespn()

const wchar_t *str2)
wchar_t *wescpy(wchar_t * strl, strepy()

In C99, strl and str2 are qualified by
restrict.

size t weslen(const wchar_t * gr)

strlen()

wchar_t *wcsncpy(wchar_t * strl,
const wchar_t str2,
size t num)

strncpy()
In C99, strl and str2 are qualified by

restrict.

wchar_t *wcsncat(wchar_t strl,
const wchar_t str2,
size t num)

strncat()
In C99, strl and str2 are qualified by
restrict.

int wesnemp(const wchar_t * strl,
const wchar_t *str2,
size_t num)

strncmp()

Table 19-3. Wide-Character Sring Functions and Their char Equivalents

(table continued on next page)

(continued)
Function char Equivalent
wchar_t *wcspbrk(const wchar_t *strl, strpbrk()
const wchar_t *str2)
wchar_t *wcsrchr(const wchar_t *str, strrchr()
wchar_t ch)
size_t wesspn(const wehar_t *strl, strspn()
const wchar_t *str2)
wchar_t *wcstok(wchar_t *str1, strtok()

const wchar_t*str2,
wchar_t **endptr)

Here, endptr is a pointer that holds
information necessary to continue the
tokenizing process.

In C99, strl, str2, and endptr are qualified
by restrict.

const wchar_t *str2,
size_t num)

wchar_t *wcsstr(const wchar_t stri, strstr()
const wchar_t *str2)
size t wesxfrm(wcehar_t *strl, strxfrm(')

In C99, strland str2 are qualified by
restrict.

Table 19-3. Wide-Character Sring Functions and Their char Equivalents

Wide-Character String Conversion Functions

Page 478

The functions shown in Table 19-4 provide wide-character versions of the standard numeric and
time conversion functions. These functions use the header <wchar.h>.

Function

size t wesftime(wchar_t *str, size t max,
const wchar_t *fnt,
const struct tm *ptr)

double wcstod(const wchar_t *start, wchar_t **end);

char Equivalent
stritime()

In C99 str,fmt, and ptr are qualified by restrict.

strtod()

In C99 start and end are qualified by restrict.

Table 19-4. Wide-Character Conversion Functions and Their char Equivalents

(table continued on next page)

(continued)

float westof (const wchar_t * restrict start,
wchar_t ** restrict end);

strtof() (added by C99)

long double wcstold(const wchar_t * restrict start,
wchar_t ** restrict end);

strtold() (added by C99)

long int westol (const wchar_t *start,
wchar_t **end,

strtol ()
In C99 start and end are

const wchar_t * restrict start,
wchar_t ** restrict end,
int radix)

int radix) qualified by restrict.
long long int westoll(const wchar_t * restrict start, strtoll()
wchar_t ** restrict end, (added by C99)
int radix)
unsigned long int westoul (strtoul ()

In C99 start and end are
qualified by restrict.

unsigned long long int westoul I
const wchar_t *start,
wchar_t **end,
int radix)

strtoull() (added by C99)

Table 19-4. Wide-Character Conversion Functions and Their char Equivalents

Wide-Character Array Functions

Page 479

The standard character array—manipulation functions, such as memcpy(), also have wide-character

equivalents. They are shown in Table 19-5. These functions use the header <wchar .h>.

const wchar_t *str2, size t num)

Function char Equivalent

wchar_t *wmemchr(const wchar_t *str, memchr()
wchar_t ch, size t num)

int wmemcmp(const wchar_t *strl, memcmp()

Table 19-5. Wide-Character Array Functions and Their char Equivalents

(table continued on next page)

Page 480

(continued)
Function char Equivalent
wchar_t *wmemcpy(wchar_t *strl, memcpy()
const wchar_t *str2, In C99 strl and str2 are
size_t num) qualified by restrict.
wchar_t *wmemmove(wchar_t *strl, memmove()
const wchar_t *str2,
size t num)
wchar_t *wmemset(wchar_t *str, wchar_t ch, memset()
size t num)
Table 19-5. Wide-Character Array Functions and Their char Equivalents

Multibyte/Wide-Character Conversion Functions

The standard function library supplies various functions that support conversions between multibyte
and wide characters. These functions are shown in Table 19-6. They use the header <wchar.h>.
Many of these functions are restartableversions of the norma multibyte functions. The restartable
version utilizes the state information passed to it in a parameter of type mbstate t. If this parameter
isnull, the function will provide its own mbstate t object.

Function Description

win_t btowc(int ch) Converts ch into its wide-character equivalent
and returns the result. Returns WEOF on error or
if ch isnot a one-byte, multibyte character.

Table 19-6. Wide-Character/Multibyte Conversion Functions

(table continued on next page)

(continued)

Function

Description

size_t mbrlen(const char *str, size t num,
mbstate t *state)

Restartable version of mblen() as described by
state. Returns a positive value that indicates the
length of the next multibyte character. Zero is
returned if the next character isnull. A negative
valueisreturned if an error occurs.

In C99, gr and state are qualified by restrict.

size_t mbrtowc(wchar_t *out,
const char *in,
size t num,
mbstate t *state)

Restartable version of mbtowc() as described by
state. Returns a positive value that indicates the
length of the next multibyte character. Zero is
returned if the next character is null. A value of —
lisreturned if an error occurs and the macro
EILSEQ isassigned toerrno. If the conversion
isincomplete, -2 is returned.

In C99, out, in, and state are qualified by
restrict.

int mbsinit(const mbstate t *state)

Returns true if state represents an initial
conversion state.

size t mbsrtowcs(wchar_t * out,
const char **in,
size t num,
mbstate t state)

Restartable version of mbstowcs() as described
by state. Also, mbsrtowcs() differsfrom
mbstowcs() in that in is an indirect pointer to
the source array. If an error occurs, the macro
EILSEQ isassignedtoerrno.

In C99, out, in, and state are qualified by
restrict.

size t wertomb(char *out, wchar_t ch,
mbstate t *state)

Restartable version of wctomb() as described by
state. If an error occurs, the macroEILSEQ is
assigned to errno.

In C99, out and state are qualified by restrict.

Table 19-6. Wide-Character/Multibyte Conversion Functions

(table continued on next page)

Page 481

(continued)

Function

Description

size t wesrtombs(char * out,
const wchar_t**in,
size t num,
mbstate t *state)

Restartable version of wcstombs() as described
by state. Also, wesrtombs() differsfrom
wcestombs() in thatin isan indirect pointer to
the source array. If an error occurs, the macro
EILSEQ isassignedtoerrno.

In C99, out, in, and state are qualified by
restrict.

int wctob(wint_t ch)

Converts ch into its one-byte,
multibyte equivalent. It returnsEOF
onfailure.

Table 19-6. Wide-Character/Multibyte Conversion Functions

Page 482

Page 483

Chapter 20—
Library Features Added by C99

Page 484

The C99 standard increased the size of the C library two ways. First, it added functions to headers
previously defined by C89. For example, significant additions were made to the mathematics library
supported by the <math.h> header. These additional functions were covered in the preceding
chapters. Second, new categories of functions, ranging from support for complex arithmetic to type-
generic macros, were created, along with new headers to support them. These new library elements
are described in this chapter.

The Complex Library

C99 adds complex arithmetic capabilitiesto C. The complex library is supported by the
<complex.h> header. The following macros are defined:

Macro ExpandsTo
complex _Complex
imaginary Imaginary
Complex 1 (const float Complex) i
_Imaginary | (const float _Imaginary) i

I _Imaginary_| (or _Complex_| if imaginary types are not supported)

Here, i represents the imaginary value, which is the square root of —1. Support for imaginary typesis
optional.

_Complex and _Imaginary, rather than complex and imaginary, were specified as keywords by
C99 because many existing C89 programs had already defined their own custom complex data types
using the names complex and imaginary. By using the keywords _Complex and _I maginary, C99
avoids breaking preexisting code. For new programs, however, it is best to include <complex.h>
and then use the complex and imaginary macros.

NOTE

C++ defines the complex class, which, of course, provides a different way of
performing complex math.

The complex math functions are shown in Table 20-1. Notice that float complex, double complex,
and long double complex versions of each function are defined. The float complex version uses the
suffix f, and the long double complex version uses the suffix 1. Also, angles arein radians.

Function

float cabsf(float complex arg);
double cabs(double complex arg);
long double cabsl(long double complex arg);

float complex cacosf(float complex arg);
double complex cacos(double complex arg);
long double complex cacosl (long double complex arg);

float complex cacoshf(float complex arg);
double complex cacosh(double complex arg);
long double complex cacoshl(long double complex arg);

float cargf(float complex arg);
double carg(double complex arg);
long double cargl(long double complex arg);

float complex casinf(float complex arg);
double complex casin(double complex arg);
long double complex casinl(long double complex arg);

float complex casinhf(float complex arg);
double complex casinh(double complex arg);
long double complex casinhl(long double complex arg);

float complex catanf(float complex arg);
double complex catan(double complex arg);
long double complex catanl (long double complex arg);

float complex catanhf(float complex arg);
double complex catanh(double complex arg);
long double complex catanhl (long double complex arg);

Table20-1. The Complex Math Functions

(table continued on next page)

Page 485

Description

Returns the complex absolute value of arg

Returns the complex arc cosine of arg

Returns the complex arc hyperbolic cosine of arg

Returns the phase angle of arg

Returns the complex arc sine of arg

Returns the complex arc hyperbolic sine of arg

Returns the complex arc tangent of arg

Returns the complex arc hyperbolic tangent of arg

(continued)

Page 486

Function

Description

float complex ccosf(float complex arg);
double complex ccos(double complex arg);
long double complex ccosl(long double complex arg);

Returns the complex cosine of arg

float complex ccoshf(float complex arg);
double complex ccosh(double complex arg);
long double complex ccoshl(long double complex arg);

Returns the complex hyperbolic cosine of arg

float complex cexpf(float complex arg);
double complex cexp(double complex arg);
long double complex cexpl(long double complex arQ);

Returns the complex value e¥9, where e is the natural
logarithm base

float cimagf(float complex arg);
double cimag(double complex arg);
long double cimagl (long double complex arg);

Returns the imaginary part of arg

float complex clogf(float complex arg);
double complex clog(double complex arg);
long double complex clogl(long double complex arg);

Returns the complex natural logarithm of arg

float complex conjf(float complex arg);
double complex conj(double complex arg);
long double complex conjl(long double complex arg);

Returns the complex conjugate of arg

float complex cpowf(float complex a,
long double complex b);

Returns the complex value of ab

double complex cpow(double complex a,
double complex b);

long double complex cpowl(long double complex a,
long double complex b);

Table 20-1. The Complex Math Functions

(table continued on next page)

(continued)

Page 487

Function

Description

float complex cprojf(float complex arg);
double complex cproj(double complex arg);
long double complex cprojl(long double complex arg);

Returns the projection of arg onto the Riemann sphere

float crealf(float complex arg);
double creal (double complex arg);
long double creall(long double complex arg);

Returnsthereal part of arg

float complex csinf(float complex arg);
double complex csin(double complex arg);
long double complex csinl(long double complex arg);

Returns the complex sine of arg

float complex csinhf(float complex arg);
double complex csinh(double complex arg);
long double complex csinhl(long double complex arg);

Returns the complex hyperbolic sine of arg

float complex csgrtf(float complex arg);
double complex csgrt(double complex arg);
long double complex csqgrtl(long double complex arg);

Returns the complex square root of arg

float complex ctanf(float complex arg);
double complex ctan(double complex arg);
long double complex ctanl(long double complex arg);

Returns the complex tangent of arg

float complex ctanhf(float complex arg);
double complex ctanh(double complex arg);
long double complex ctanhl(long double complex arg);

Returns the complex hyperbolic tangent of arg

Table 20-1. The Complex Math Functions

Page 488

The Floating-Point Environment Library

In the header <fenv.h>, C99 declares functions that access the floating-point environment. These
functions are shown in Table 20-2. The <fenv.h> header also defines the types fenv_t and
fexcept_t, which represent the floating-point environment and the floating-point status flags,
respectively. The macro FE_DFL_ENV specifies a pointer to the default floating-point
environment defined at the start of program execution.

The following floating-point exception macros are defined:

FE_DIVBYZERO FE_INEXACT FW_INVALID

FE OVERFLOW FE UNDERFLOW FE ALL EXCEPT

Any combination of these macros can be stored in an int object by ORing them together.

The following rounding-direction macros are defined:

FE DOWNWARD FE TONEAREST FE TOWARDZERO FE UPWARD

These macros indicate the method that is used to round values.

In order for the floating-point environment flags to be tested, the pragma FENV_ACCESS must be
set to the on position. Whether floating-point flag accessis on or off by default isimplementation-
defined.

The <stdint.h> Header

The C99 header <stdint.h> does not declare any functions, but it does define alarge number of
integer types and macros. The integer types are used to declare integers of known sizes, or integers
that manifest a specified trait.

Macros of the form intN_t specify an integer with N bits. For example, int16 t specifies a 16-bit
signed integer. Macros of the formuintN_t specify an unsigned integer with N bits. For example,
uint32_t specifies a 32-bit unsigned integer. Macros with the values 8, 16, 32, and 64 for N will be
availablein al environments that offer integersin these widths.

Macros of theform int_leastN_t specify an integer with at least N bits. Macros of the form
uint_leastN_t specify an unsigned integer with at least N bits. Macros with the values 8, 16, 32, and
64 for Nwill be available in all environments. For example, int_least16 t isavalid type.

Macros of theform int_fastN _t specify the fastest integer type that has at least N bits. Macros of the
form uint_fastN_t specify the fastest unsigned integer type that has at least N bits. Macros with the
values 8, 16, 32, and 64 for N will be availablein all environments. For example, int_fast32 t is
validin all settings.

Page 489

Function

Description

void feclearexcept(int ex);

Clears the exceptions specified by ex.

void fegetexceptflag(fexcept_t * fptr,
int ex);

The state of the floating-point exception flags specified by
ex are stored in the variable pointed to by fptr.

void feraiseexcept(int ex);

Raises the exceptions specified by ex.

void fesetexceptflag(const fexcept_t * fptr,
int ex);

Sets the floating -point status flags specified by ex to the
state of the flags in the object pointed to by fptr.

int fetestexcept(int ex);

Bitwise ORs the exceptions specified in ex with the
current floating -point status flags and returns the result.

int fegetround(void);

Returns a value that indicates the current rounding
direction.

int fesetround(int direction);

Sets the current rounding direction to that specified by
direction. A return value of zero indicates success.

void fegetenv(fenv_t *envptr);

The object pointed to by envptr receives the floating-point
environment.

int feholdexcept(fenv_t *envptr);

Causes nonstop floating-point exception handling to be
used. It also stores the floating-point environment in the
variable pointed to by envptr and clears the status flags. It
returns zero if successful.

void fesetenv(const fenv_t * envptr);

Sets the floating -point environment to that pointed to by
envptr, but does not raise floating-point exceptions. This
object must have been obtained by calling either fegetenv
() or feholdexcept().

void feupdateenv(const fenv_t * envptr);

Sets the floating -point environment to that pointed to by
envptr. It first saves any current exceptions and then raises
these exceptions after the environment pointed to by
envptr has been set. The object pointed to by envptr must
have been obtained by calling either fegetenv() or
feholdexcept().

Table 20-2. Floatin-Point Environment Functions

Page 490

The type intmax_t specifies a maximum-sized signed integer, and the type uintmax_t specifiesa
maximum-sized unsigned integer.

Also defined are the intptr_t and uintptr_t types. These can be used to create integers that can hold
pointers. These types are optional.

<stdint.h> defines several functionlike macros that expand into constants of a specified integer
type. These macros have the following general forms,

~ INTN_C(value)
~ UINTN_C(value)

where N is the bit-width of the desired type. Each macro creates a constant that has at least N bits
containing the specified value.

Also defined are the macros
~ INTMAX_C(value)
~ UINTMAX C(value)

These create maximum-width constants of the specified value.

Integer Format Conversion
Functions

C99 adds afew specialized integer format conversion functions that allow you to convert to and
from greatest-width integers. The header that supports these functions is<inttypes.h>, which
includes <stdint.h>. The <inttypes.h> header defines one type: the structure imaxdiv_t, which
holds the value returned by the imaxdiv() function. The integer conversion functions are shown in
Table 20-3.

<inttypes.h> aso defines many macros that can be used in calls to the printf() and scanf() family
of functions, to specify various integer conversions. The printf() macros begin with PRI, and the
scanf() macros begin with SCN. These prefixes are then followed by a conversion specifier, such as
d or u, and then atype name, such as N, MAX, PTR, FASTN, or LEASTN, where N specifiesthe
number of bits. Consult your compiler's documentation for a precise list of conversion macros
supported.

Type-Generic Math Macros

As described in Chapter 15, C99 defines three versions for most mathematical functions: one for
float, one for double and one for long double parameters. For example, C99 defines these
functions for the sine operation:

" double sin(double arg);
~ float sinf(float arg);

" long double sinl(long double arg);

Page 491

Function Description

intmax_t imaxabs(intmax_t arg); Returns the absol ute value of arg.

imaxdiv_t imaxdiv(intmax_t numerator, Returns animaxdiv_t structure that contains the outcome
intmax_t denominator); of numerator / denominator. The quotient isin the quot

field, and the remainder isin the rem field. Both quot and
rem areof typeintmax_t.

intmax_t strtoimax(const char * restrict start, The greatest-width integer version of strtol().
char ** restrict end,
int base);

uintmax_t strtoumax(const char * restrict start, The greatest-width integer version of strtoul().
char ** restrict end,
int base);

intmax_t wcstoimax(const char * restrict start, The greatest-width integer version of wcstol().
char ** restrict end,
int base);

uintmax_t wcstoumax(const char * restrict start, The greatest-width integer version of wcstoul().
char ** restrict end,
int base);

Table 20-3. Greatest-Width Integer Conversion Functions

Page 492

The operation of all three functions is the same, except for the data upon which they operate. In all
cases, the double version is the original function defined by C89. Thefloat and long double
versions were added by C99. As explained in Chapter 15, thefloat versions use the f suffix, and
long double versions use the | suffix. By providing three different functions, C99 enables you to call
the one that most precisely fits the circumstances. As described earlier in this chapter, the complex
math functions also provide three versions of each function, for the same reason.

As useful as the three versions of the math and complex functions are, they are not particularly
convenient. First, you have to remember to specify the proper suffix for the datayou are passing.
Thisis both tedious and error prone. Second, if you change the type of data being passed to one of
these functions during project development, you will need to remember to change the suffix as
well—again, tedious and error prone. To address these (and other) issues, C99 defines a set of type-
generic macros that can be used in place of the math or complex functions. These macros
automatically tranglate into the proper function based upon the type of the argument. The type-
generic macros are defined in <tgmath.h>, which automatically includes <math.h> and
<complex.h>.

The type-generic macros use the same names as the double version of the math or complex
functions to which they trandate. (These are aso the same names defined by C89.) Thus, the type-
generic macro for sin(), sinf(), and sinl() is sin(). The type-generic macro for csin(), csinf(), and
csinl() isalso sin(). As explained, the proper function is called based upon the argument. For
example, given

| ong doubl e | dbl

float conplex fcnpl x;
then,

cos (ldbl)

trandates intc

cosl (1dbl)

and

cos(fcnpl x)

trandates intc

ccosf (fcnpl x)

Page 493

Asthese examplesillustrate, the use of type-generic macros offers the programmer convenience
without loss of performance, precision, or portability.

The <stdbool.h> Header

C99 adds the header <stdbool.h>, which supportsthe Bool datatype. Although it does not define
any functions, it does define these four macros:

Macro ExpandsTo
bool _Bool

true 1

false 0

___bool_true fase are defined 1

The reason that C99 specified _Bool rather than bool as akeyword is that many existing C programs
had already defined their own custom versions of bool. By defining the Boolean type as _Bool, C99
avoids breaking this preexisting code. The same reasoning goes for true and false However, for
new programs, it is best to include <stdbool.h> and then use the booal, true, and false macros. One
advantage of doing so isthat it allows you to create code that is compatible with C++.

Page 495

PART IV—
ALGORITHMSAND APPLICATIONS

The purpose of Part Four isto show how C can be applied to a wide range of programming tasks. In
the process, many useful algorithms and applications that illustrate several aspects of the C language
are presented. Many examples contained Part Four can be used as starting points for your own C

proj ects.

Page 497

Chapter 21—
Sorting and Sear ching

Page 498

In the world of computers, sorting and searching are two of the most fundamental and extensively
analyzed tasks. Sorting and searching routines are used in amost all database programs as well asin
compilers, interpreters, and operating systems. This chapter introduces the basics of sorting and
searching. Asyou will see, they illustrate several important C programming techniques. Since the
point of sorting datais generally to make searching that data easier and faster, sorting is discussed
first.

Sorting

Sorting is the process of arranging a set of similar information into an increasing or decreasing
order. Sorting is one of the most intellectually pleasing categories of algorithms because the process
is so well defined. Sorting algorithms have also been extensively analyzed and are well understood.
Unfortunately, because sorting is so well understood, it is sometimes taken for granted. When data
needs to be sorted, many programmers simply use the standard gsort() function provided by the C
standard library. However, different approaches to sorting have different characteristics. Although
some sorts may be better than others on average, no sort is perfect for all situations. Therefore, a
useful addition to any programmer's toolbox is awide variety of sorts.

Before starting, it will be useful to explain briefly why qsort() is not the answer to all sorting tasks.
First, you cannot apply a generalized function like gsort() to every situation. For example, it will
only sort arrays in memory. It can't sort data stored in alinked list, for example. Second, gsort() is
parameterized so that it can operate on awide variety of data, but this causesit to run more slowly
than would an equivalent sort that operates on only one type of data. Finally, as you will see,
although the quicksort algorithm used by gsort() is very effective in the general case, it may not be
the best sort for specialized situations.

There are two general categories of sorting algorithms. algorithms that sort random-access objects,
such as arrays or random-access disk files, and algorithms that sort sequential objects, such as disk
or tape files, or linked lists. This chapter is concerned only with the first category, because it is most
relevant to the average programmer.

Most often when information is sorted, only a portion of the information is used as the sort key. The
key isthat part of the data that determines which item comes before another. Thus, the key isused in
comparisons, but when an exchange is made, the entire data structure is swapped. For example, in a
mailing list the postal code might be used as the key, but the entire address is sorted. For the sake of
simplicity, the next few examples will sort character arrays, in which the key and the data are the
same. Later, you will see how to adapt these methods to sort any type of data structure.

Classes of Sorting Algorithms
There are three general methods for sorting arrays:

» Exchange

Page 499
* Selection

¢ |nsertion

To understand these three methods, imagine a deck of cards. To sort the cards by using exchange,
spread them on atable, face up, and then exchange out-of-order cards until the deck is ordered.
Using selection, spread the cards on the table, select the card of lowest value, take it out of the deck,
and hold it in your hand. Then, from the remaining cards on the table, select the lowest card and
place it behind the one already in your hand. This process continues until all the cards are in your
hand. The cards in your hand will be sorted when you finish the process. To sort the cards by using
insertion, hold all the cardsin your hand. Place one card at atime on the table, alwaysinserting it in
the correct position. The deck will be sorted when you have no cards in your hand.

Judging Sorting Algorithms

There are many different sorting algorithms. They all have some merit, but the general criteriafor
judging a sorting algorithm are

» How fast can it sort information in an average case?
* How fast areits best and worst cases?

* Doesit exhibit natural or unnatural behavior?

* Does it rearrange elements with equal keys?

Look closely at these criterianow. Clearly, how fast a particular algorithm sortsis of great concern.
The speed with which an array can be sorted is directly related to the number of comparisons and
the number of exchanges that take place, with exchanges taking more time. A comparison occurs
when one array element is compared to another; an exchange happens when two elements are
swapped. The run times of some sort routines increase exponentially, while others increase
logarithmically relative to the number of items being sorted.

The best- and worst-case run times are important if you expect to encounter one of these situations
frequently. Often a sort has a good average case but a terrible worst case.

A sort is said to exhibit natural behavior if it works least when the list is aready in order, works
harder asthe list becomes less ordered, and works hardest when alist isin inverse order. How hard a
sort works is based on the number of comparisons and exchanges that it makes.

To understand why rearranging elements with equal keys may be important, imagine a database
such asamailing list, which is sorted on a main key and a subkey. The main sort key is the postal
code, and within postal codes, the last name is the subkey. When a new address is added to the list
and the list is re-sorted, you do not want the subkeys (that is, the last names within postal codes) to
be rearranged. To guarantee that this doesn't happen, a sort must not exchange keys of equal value.

Page 500

The discussion that follows first examines the representative sorts from each category and then
analyzes the efficiency of each. Later, you'll see improved sorting methods.

The Bubble Sort

The most well-known (and infamous) sort is the bubble sort. Its popularity is derived from its catchy
name and its simplicity. However, for general - purpose sorting, it is one of the worst sorts ever
conceived.

The bubble sort is an exchange sort. It involves the repeated comparison and, if necessary, the
exchange of adjacent elements. The elements are like bubblesin atank of water—each seeks its own
level. A smple form of the bubble sort is shown here:

[* The Bubble Sort. */

voi d bubbl e(char *itens, int count)

{
register int a, b;
regi ster char t;

for(a=1l; a < count; ++a)
for(b=count-1; b >= a; --b) {
if(items[b-1] > items[b]) {
/* exchange el ements */
t = itens[b-1];
items[b-1] = itens[b];
items[b] =t;
}
}

}

Here, itemsis apointer to the character array to be sorted, and count is the number of elementsin
the array. The bubble sort is driven by two Ioops. Given that there are count elementsin the array,
the outer loop causes the array to be scanned count—1 times. This ensures that, in the worst case,
every element isin its proper position when the function terminates. The inner loop actually
performs the comparisons and exchanges. (A slightly improved version of the bubble sort terminates
if no exchanges occur, but this adds another comparison in each pass through the inner loop.)

Y ou can use this version of the bubble sort to sort a character array into ascending order. For
example, the following short program sorts a string entered by the user:

Page 501

/* Sort Driver */

#i ncl ude <string. h>
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

voi d bubbl e(char *itens, int count);

int main (void)
{
char s[255];

printf("Enter a string:");

gets(s);

bubbl e(s, strlen(s));

printf('" The sorted string is: %.\n", s);

return O;

To see how the bubble sort works, assume that the array to be sorted is dcab. Each passis shown
here:

Initial dcab
Pass 1 adch
Pass 2 abdc
Pass 3 abcd

In analyzing any sort, it is useful to have an idea about how many comparisons and exchanges will
be performed for the best, average, and worst case. Because compiler optimizations, differencesin
processors, and implementation details can affect the characteristics of the executable code, we
won't worry about precise values for these quantities. Instead, we will concentrate on the general
efficiency of each algorithm.

With the bubble sort, the number of comparisons is always the same because the two for loops
repeat the specified number of times whether the list isinitialy ordered or not. This means that the
bubble sort always performs

— 1/2(n>n)

Page 502

comparisons, where n is the number of elementsto be sorted. Thisformulais derived from the fact
that the outer loop executes n—1 times and the inner loop executes an average of n/2 times.
Multiplied together, these numbers result in the preceding formula.

Notice the nzterm in the preceding formula. The bubble sort is said to be an n-squared algorithm
because its execution time is proportional to the square of the number of elementsthat it is sorting.
Frankly, an n-squared algorithm is ineffective when applied to alarge number of elements because
execution time grows exponentially relative to the number of elements being sorted. Figure 21-1
shows how execution time increases relative to the size of the array.

For the bubble sort, the number of exchangesis zero for the best case—an aready sorted list.
However, the number of exchanges for the average- and worst-case exchanges are also on the order
of n-squared.

Execution Time ——»

s

Figure 21-1
Execution time of an n2 sort
inrelation to array size

Page 503

Y ou can make slight improvements to the bubble sort in an attempt to speed it up. For example, the
bubble sort has one peculiarity: An out-of -order element at the large end (such as "a" in thedcab
example) goesto its proper position in one pass, but a misplaced element in the small end (such as
"d") rises very slowly to its proper place. This suggests an improvement to the bubble sort. Instead
of always reading the array in the same direction, aternate passes could reverse direction. In this
way, greatly out-of-place elements travel quickly to their correct position. This version of the bubble
sort is called the shaker sort, because it imparts the effect of a shaking motion to the array. The code

that follows shows how

a shaker sort can be implemented.

/* The Shaker Sort.
voi d shaker(char *i

{

register int a;
i nt exchange;
char t;

do {
exchange 0;
for(a=count-1;
if(items[a-1]

}
} whil e(exchange)
}

t = items[a-1];
items[a-1] = itens[a];
items[a] = t;
exchange = 1;
}
}
for(a=1l; a < count; ++a) {
if(items[a-1] > itens[a]) {
t =items[a-1];
items[a-1] = itens[a];
items[a] = t;
exchange = 1;
}

*/

tenms, int count)

a>0; --a) {
> itens[a]) {

; /* sort until no exchanges take place */

Although the shaker sort improves the bubble sort, it still executes on the order of an n-sgquared
algorithm. Thisis because the number of comparisons has not been changed and the number of
exchanges has been reduced by only arelatively small constant. The shaker sort is better than the
bubble sort, but better sorts exist.

Page 504

Sorting by Selection

A selection sort selects the element with the lowest value and exchanges it with the first element.
Then, from the remaining n—1 elements, the element with the smallest key is found and exchanged
with the second element, and so forth. The exchanges continue to the last two elements. For
example, if the selection method were used on the array dcab, each pass would look like this:

Initial dcab
Pass 1 acdb
Pass 2 abdc
Pass 3 abcd

The code that follows shows the basic salection sort.

/* The Sel ection Sort. */

voi d select(char *itens, int count)

{
register int a, b, c;
i nt exchange;
char t;

for(a=0; a < count-1; ++a) {
exchange = 0;
c = a;
t = itens[a];
for(b=a+l; b < count; ++b) {
if(items[b] < t) {

c = b;

t = itens[b];

exchange = 1;
}

}

i f (exchange) ({
items[c] = itens[a];
items[a] =t;

}

}

}

Page 505

Unfortunately, as with the bubble sort, the outer loop executes n—1 times and the inner |loop averages
n/2 times. As aresult, the selection sort requires

— 1/2(n%n)

comparisons. Thus, thisis an n-squared algorithm, which makes it too slow for sorting alarge
number of items. Although the number of comparisons for both the bubble sort and the selection sort
is the same, the number of exchanges in the average case isfar less for the selection sort.

Sorting by Insertion

The insertion sort isthe third and last of the simple sorting algorithms. It initially sorts the first two
members of the array. Next, the algorithm inserts the third member into its sorted position in relation
to the first two members. Then it inserts the fourth element into the list of three elements. The
process continues until all elements have been sorted. For example, given the array dcab, each pass
of the insertion sort is shown here:

Initial dcab
Pass 1 cdab
Pass 2 acdb
Pass 3 abcd

The code for aversion of the insertion sort is shown next.

/* The Insertion Sort. */
void insert (char *itens, int count)

{

register int a, b;
char t;

for(a=1; a < count; ++a) {

t = itens[a];
for(b=a-1; (b >= 0) & & (t < items[b]): b--)
items[b+1] itens[b];

items[b+l] = t_;
}

}

Page 506

Unlike the bubble and selection sorts, the number of comparisons that occur during an insertion sort
depends upon how thelist isinitially ordered. If thelist isin order, the number of comparisonsis n—
1; otherwise, its performance is on the order of n-squared.

In general, for worst cases the insertion sort is as bad as the bubble sort and selection sort, and for
average casesit isonly dightly better. However, the insertion sort does have two advantages. First,
it behaves naturally. That is, it works the least when the array is already sorted and the hardest when
the array is sorted in inverse order. This makes the insertion sort excellent for liststhat are amost in
order. The second advantage is that it leaves the order of equal keys the same. This meansthat if a
list is sorted by two keys, it remains sorted for both keys after an insertion sort.

Even though the number of comparisons may be fairly low for certain sets of data, the array must be
shifted over each time an element is placed in its proper location. As aresult, the number of moves
can be significant.

Improved Sorts

All of the agorithmsin the preceding sections have the fatal flaw of executing in n-squared time.
For large amounts of data, this makes the sorts very slow. In fact, at some point, the sorts would be
too slow to use. Unfortunately, horror stories of "the sort that took three days" are often real. When a
sort takes too long, it is usually the fault of the underlying algorithm. However, the first responseis
often "let's hand optimize," perhaps by using assembly language. Although manual optimization
does sometimes speed up aroutine by a constant factor, if the underlying algorithm is inefficient, the
sort will be slow no matter how optimal the coding. Remember: When aroutine is running relative
to n2, increasing the speed of the code or the computer only causes a small improvement because the
rate at which the run timeisincreasing is exponential. (In essence, the nzcurvein Figure 21-1is
shifted to the right slightly, but is otherwise unchanged.) The rule of thumb isthat if the underlying
algorithm is too slow, no amount of hand optimizations will make it fast enough. The solution isto
use a better sorting algorithm.

Two excellent sorts are described here. Thefirst isthe Shell sort. The second, the quicksort, is
usually considered the best sorting routine. Both of these improved sorts are substantially better in
their general performance than any of the simple sorts shown earlier.

The Shell Sort

The Shell sort is named after itsinventor, D. L. Shell. However, the name probably stuck because its
method of operation is often described in terms of seashells piled upon one another. The general
sorting method is derived from the insertion sort and is based on diminishing increments. Consider
the diagram in Figure 21-2. First, al elementsthat are three positions apart are sorted. Then, all
elements that are two positions apart are sorted. Finally, all elements adjacent to each other are
sorted.

pass 1 f d a e b
~ >

pass 2 :\“\‘; a f _::Tf..’f

S~ ST S S
pass 3 a b C e d

A e NP A e g
result a b c d e

Figure 21-2
The Shell sort

Page 507

It is not easy to see that this method yields good results, or in fact that it even sortsthe array. But it
does. Each sorting passinvolves relatively few elements, or elements that are already in reasonable
order; so the Shell sort is efficient, and each pass increases order.

The exact sequence for the increments can be changed. The only rule is that the last increment must

be 1. For example, the sequence

95321

workswell and is used in the Shell sort shown here. Avoid sequences that are powers of 2—for
mathematically complex reasons, they reduce the efficiency of the sorting algorithm (but the sort

still works).

/* The Shell Sort. */
voi d shell (char *itens, int count)

{
register int i, j, gap, k;
char x, a[5];

for(k=0; k < 5; k++) {

gap = a[k];
for(i=gap; i < count; ++i) {
X = items[i];

for(j=i-gap; (x <items[j]) && (]

a[0]=9; a[1]=5; a[2]=3; a[3]=2; a[4]-=1,

>= 0);

j =] -gap)

Page 508

items[j +gap] = items[j];
itens[j+gap] = x;
}
}
}

Y ou may have noticed that the inner for loop has two test conditions. The comparison x<items]j] is
obviously necessary for the sorting process. The test j>=0 keeps the sort from overrunning the
boundary of the array items. These extra checks will degrade the performance of the Shell sort to
some extent.

Slightly different versions of the sort employ special array elements called sentinels, which are not
actually part of the array to be sorted. Sentinels hold special termination values that indicate the least
and greatest possible element. In this way, the bounds checks are unnecessary. However, using
sentinels requires a specific knowledge of the data, which limits the generality of the sort function.

The Shell sort presents some very difficult mathematical problems that are far beyond the scope of
thisdiscussion. Take it on faith that execution time s proportional to

n1.2

for sorting n elements. Thisis a significant improvement over the n-squared sorts. To understand
how great the improvement is, see Figure 21-3, which graphs both an n? and an n'? sort. However,
before getting too excited about the Shell sort, you should know that the quicksort is even better.

The Quicksort

The quicksort, invented and named by C. A. R. Hoare, is superior to al othersin thisbook, and itis
generally considered the best general -purpose sorting algorithm currently available. It is based on
the exchange sort—surprising in light of the terrible performance of the bubble sort!

The quicksort is built on the idea of partitions. The general procedure isto select avalue, called the
comparand, and then to partition the array into two sections. All elements greater than or equal to
the partition value are put on one side, and those less than the value are put on the other. This
process is then repeated for each remaining section until the array is sorted. For example, given the
array fedacb and using the value d as the comparand, the first pass of the quicksort would rearrange
the array asfollows:

Initial fedach

Passl bcadef

Execution Time ————

Page 509

———— =

Figure 21-3
The n?2 amd n2 curves

=2

This processis then repeated for each section—that is, bca and def. Asyou can see, the processis
essentially recursive in nature, and, indeed, the cleanest implementation of quicksortisasa

recursive function.

Y ou can select the comparand value in two ways. Y ou can either choose it at random, or you can
select it by averaging asmall set of values taken from the array. For optimal sorting, you should
select avaluethat is precisely in the middle of the range of values. However, thisis not easy to do
for most sets of data. In the worst case, the value chosen is at one extremity. Even in this case,

however, quicksort still

Page 510

performs correctly. The following version of quicksort selects the middle element of the array as the

comparand:

/* Quicksort setup function. */
voi d quick(char *items, int count)

{

}

/* The Quicksort. */
void gs(char *items, int left, int right)

{

gs(items, 0, count-1);

register int i, j;
char x, vy;

[
X

left; j = right;
items[(left+right)/2];

do {
while((itens[i] < Xx) && (i < right)) i++;
while((x <items[j]) && (j > left)) j--;

if(<=17j) |
y = itens[i];
items[i] itens[j];
items[j] =vy;
e I

}
}owhile(i <=j);

if(left <j) qgs(itens, left, j);
if(i <right) gs(itenms, i, right);

In this version, the function quick() sets up acall to the main sorting function qs(). This enables
the same common interface of itemsand count to be maintained, but it is not essential because q5()

could have been called directly by using three arguments.

Deriving the number of comparisons and exchanges that quicksort performs requires mathematics

beyond the scope of this book. However, the average number of comparisons i<

~ nlogn

Page 511
and the average number of exchanges is approximately
~ n6logn
These numbers are significantly lower than those provided by any of the previous sorts.

Y ou should be aware of one particularly problematic aspect of quicksort. If the comparand value for
each partition is the largest value, quicksort degenerates into "slowsort” with an n-squared run time.
Therefore, be careful when you choose a method of defining the value of the comparand. The
method is frequently determined by the datathat you are sorting. For example, in very large mailing
lists, in which the sorting is often by postal code, the selection is simple because the postal codes are
fairly evenly distributed—and a simple algebraic function can determine a suitable comparand.
However, in other databases, a random selection is often a better choice. A common and fairly
effective method is to sample three elements from a partition and take the middle value.

Choosing a Sort

Every programmer should have a wide selection of sorts from which to choose. Although quicksort
isthe optimal sort for the average case, it will not be the best sort in all cases. For example, when
only very small lists are sorted (with, say, lessthan 100 items), the overhead created by quicksort's
recursive calls may offset the benefits of its superior agorithm. In rare cases like this, one of the
simpler sorts—perhaps even the bubble sort—may be quicker. Also, if you know that alist is
aready nearly ordered or if you don't want like keys to be exchanged, then one of the other sorts
may out-perform quicksort. The point is that just because quicksort is the best general - purpose
sorting algorithm does not mean that you cannot do better with another approach in special
situations.

Sorting Other Data Structures

Until now, we have been sorting only arrays of characters. Obviously, arrays of any of the built-in
data types can be sorted by simply changing the data types of the parameters and variables to the
sort function. Generally, however, compound data types, such as strings, or groupings of
information, such as structures, need to be sorted. Most sorting involves a key and information
linked to that key. To change the algorithms to accommodate a key, you need to alter the
comparison section, the exchange section, or both. The algorithm itself remains unchanged.

Because quicksort is one of the best general -purpose routines available at thistime, it isused in the
following examples. However, the same techniques apply to any of the sorts described earlier.

Page 512

Sorting Strings

Sorting strings is a common programming task. By far, strings are easiest to sort when they are
contained in astring table. A string tableis simply an array of strings. And an array of stringsisa
two-dimensional character array in which the number of stringsin the table is determined by the size
of the left dimension and the maximum length of each string is determined by the size of the right
dimension. (Refer to Chapter 4 for information about arrays of strings.) The string version of
quicksort that follows accepts an array of strings in which each string is up to ten characters long.
(You can change this length if you want.) This version sorts the strings in dictionary order.

/* A Quicksort for strings. */
void quick_string(char itens[][10], int count)

{

}

void gs_string(char itens[][10], int left, int right)
{

gs_string(itenms, 0, count-1);

register int i, j;
char *x;
char tenp[10];

[
X

left; j = right;
items[(left+right)/2];

do {

while((strcrmp(itens[i],x) < 0) & (i < right)) i++;
while((strcrmp(itens[j],x) > 0) && (j > left)) j--;
if(<=17J) |

strcpy(temp, itens[i]);

strcpy(items[i], items[j]);

strcpy(itens[j], tenp);

e

}
} owhile(i <=7j);

if(left <j) gs_string(itens, left, j);
if(i <right) gs_string(items, i, right);

Notice that the comparison step has been changed to use the function strcmp(). The function
returns a negative number if the first string is lexicographically less than the second, zero if the
strings are equal, and a positive number if the first string is

Page 513

lexicographically greater than the second. Also notice that when two strings must be swapped, three
calsto strepy() are required.

Be aware that strcmp() slows down the sort for two reasons. First, it involves afunction call, which
always takes time. Second, strcmp() itself performs several comparisons to determine the
relationship of the two strings. In the first case, if speed is absolutely critical, place the code for
stremp() inlineinside the routine by duplicating the strcmp() code. In the second case, thereis no
way to avoid comparing the strings since, by definition, thisis what the task involves. The same line
of reasoning also applies to the strcpy() function. The use of strepy() to exchange two strings
involves a function call and a character-by-character exchange of the two strings—both of which
add time. The overhead of the function call could be eliminated through the use of in-line code.

However, the fact that exchanging two strings means exchanging their individual characters (one by
one) cannot be altered.

Hereisasimple main() function that demonstrates quick_string():

#i ncl ude <stdio. h>
#i ncl ude <string. h>

void quick_string(char itens[][10], int count);
void gs_string(char itens[][10], int left, int right);

char str[][10] = { "one"
"two",
"three",
"four"

int main(void)

{
int i;
qui ck_string(str, 4);
for(i=0; i<4; i++) printf("% ", str[i]);

return O;

}

Sorting Structures

Most application programs that require a sort probably need to have a collection of data sorted. For
example, mailing lists, inventory databases, and employee records al contain collections of data. As
you know, in C programs collections of data are typically stored in structures. Although a structure
will generally contain severa

Page 514

members, it will usually be sorted on the basis of only one member, which is used as the sort key.
Aside from the selection of the key, the techniques used to sort other types of data also apply to
sorting structures.

To see an example of sorting structures, let's use a structure, called addr ess, that is capable of
holding a mailing address. Such a structure could be used by amailing list program. The address
structure is shown here:

struct address {
char nane[40];
char street[40];
char city[20];
char state[3];
char zip[1l1];

b

Since it isreasonable to arrange amailing list as an array of structures, assume for this example that
the sort routine will sort an array of structures of type addr ess. Such aroutine is shown here. It sorts

the addresses by postal code.

/* A Quicksort for structures of type address. */

voi d quick_struct(struct address itens[], int count)
{
gqs_struct(itens, 0,count-1);
}
void gs_struct(struct address itens[], int left, int right)
{
register int i, j;
char *x;

struct address tenp;

left; j = right;
itens[(left+right)/2].zip;

i
X

do {
while((strcnmp(itens[i].zip,x) <0) & (i < right)) i++;
while((strcrmp(itens[j].zip,x) >0) && (j > left)) j--;

if(io<=17j) {
tenp = itens[i];
items[i] = itenms[|];

itenms[j] t enp;

Page 515
i+ -
}
} while(i <=j);
if(left <j) gqs_struct(itenms, left, j);

if(i <right) gs_struct(itens, i, right)
}

Sorting Random-Access Disk Files

There are two types of disk files: sequential and random access. If either type of disk fileis small
enough, it may be read into memory, and the array-sorting routines presented earlier will be able to
sort it. However, many disk files are too large to be sorted easily in memory and require special
techniques. Most database applications use random-access disk files. This section shows one way
random-access disk files may be sorted.

Random-access disk files have two major advantages over sequential disk files. First, they are easy
to maintain. Y ou can update information without having to copy the entire list. Second, they can be
treated as avery large array on disk, which greatly simplifies sorting.

Treating a random-access file as an array means that you can use the quicksort with just afew
modifications. Instead of indexing an array, the disk version of the quicksort must use fseek() to
seek to the appropriate records on the disk.

In reality, each sorting situation differsin relation to the exact d