

TE
AM
FL
Y

Team-Fly®

Page i

C
The Complete Reference

Fourth Edition

Page ii

ABOUT THE AUTHOR

Herbert Schildt is the world's leading programming author. He is an authority on the C and C++
languages, a master Windows programmer, and an expert on Java. His programming books have
sold more that 2.5 million copies worldwide and have been translated into all major foreign
languages. He is the author of numerous bestsellers, including C++: The Complete Reference,
Teach Yourself C, Teach Yourself C++, C++ from the Ground Up, Windows 2000 Programming
from the Ground Up, and Java: The Complete Reference. Schildt holds a master's degree in
computer science from the University of Illinois. He can be reached at his consulting office at (217)
586-4683.

Page iii

C
The Complete Reference

Fourth Edition

Herbert Schildt

Page iv

Copyright © 2000 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United
States of America. Except as permitted under the United States Copyright Act of 1976, no part of
this publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of the publisher.

0-07-213295-7

The material in this eBook also appears in the print version of this title: 0-07-212124-6.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the
benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. For more information, please contact George
Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (''McGraw-Hill") and its
licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as
permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it
without McGraw-Hill's prior consent. You may use the work for your own noncommercial and
personal use; any other use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED "AS IS". McGRAW-HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for
the content of any information accessed through the work. Under no circumstances shall McGraw-
Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or
similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or
cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0-07-213295-7

Page v

CONTENTS

Preface xxiii

Part I
Foundational C

1
An Overview of C

3

A Brief History of C 4

C Is a Middle-Level Language 5

C Is a Structured Language 6

C Is a Programmer's Language 8

Compilers Vs. Interpreters 9

The Form of a C Program 10

The Library and Linking 11

Separate Compilation 12

Compiling a C Program 13

C's Memory Map 13

C Vs. C++ 14

Review of Terms 15

Page vi

2
Expressions

17

The Basic Data Types 18

Modifying the Basic Types 18

Identifier Names 20

Variables 21

Where Variables Are Declared 21

Local Variables 22

Formal Parameters 25

Global Variables 26

The Four C Scopes 27

Type Qualifiers 28

const 28

volatile 30

Storage Class Specifiers 30

extern 31

static Variables 33

register Variables 35

Variable Initializations 36

Constants 37

Hexadecimal and Octal Constants 38

String Constants 38

Backslash Character Constants 39

Operators 40

The Assignment Operator 40

Arithmetic Operators 43

The Increment and Decrement Operators 44

Relational and Logical Operators 46

Bitwise Operators 48

The ? Operator 53

The & and * Pointer Operators 53

The Compile-Time Operator sizeof 55

The Comma Operator 56

The Dot (.) and Arrow (–>) Operators 56

The [] and () Operators 57

Precedence Summary 58

Expressions 58

Order of Evaluation 58

Type Conversion in Expressions 59

Casts 60

Spacing and Parentheses 61

3
Statements

63

True and False in C 64

Page vii

Selection Statements 64

if 64

Nested ifs 66

The if-else-if Ladder 67

The ? Alternative 69

The Conditional Expression 72

switch 72

Nested switch Statements 75

Iteration Statements 76

The for Loop 76

for Loop Variations 77

The Infinite Loop 82

for Loops with No Bodies 82

Declaring Variables within a for Loop 83

The while Loop 83

The do-while Loop 86

Jump Statements 87

The return Statement 87

The goto Statement 88

The break Statement 89

The exit() Function 90

The continue Statement 91

Expression Statements 93

Block Statements 93

4
Arrays and Strings

95

Single-Dimension Arrays 96

Generating a Pointer to an Array 97

Passing Single-Dimension Arrays to Functions 98

Strings 99

Two-Dimensional Arrays 101

Arrays of Strings 106

Multidimensional Arrays 107

Indexing Pointers 108

Array Initialization 110

Unsized Array Initializations 112

Variable-Length Arrays 113

A Tic-Tac-Toe Example 114

5
Pointers

119

What Are Pointers? 120

Pointer Variables 121

The Pointer Operators 121

Page viii

Pointer Expressions 122

Pointer Assignments 122

Pointer Conversions 123

Pointer Arithmetic 124

Pointer Comparisons 126

Pointers and Arrays 128

Arrays of Pointers 129

Multiple Indirection 130

Initializing Pointers 131

Pointers to Functions 134

C's Dynamic Allocation Functions 138

Dynamically Allocated Arrays 140

restrict-Qualified Pointers 142

Problems with Pointers 143

6
Functions

147

The General Form of a Function 148

Understanding the Scope of a Function 148

Function Arguments 149

Call by Value, Call by Reference 149

Creating a Call by Reference 150

Calling Functions with Arrays 152

argc and argv— Arguments to main() 155

TE
AM
FL
Y

Team-Fly®

The return Statement 158

Returning from a Function 158

Returning Values 160

Returning Pointers 162

Functions of Type void 163

What Does main() Return? 164

Recursion 164

Function Prototypes 166

Old-Style Function Declarations 168

Standard Library Function Prototypes 169

Declaring Variable Length Parameter Lists 169

The ''Implicit int" Rule 170

Old-Style Vs. Modern Function Parameter Declarations 171

The inline Keyword 172

7
Structures, Unions, Enumerations, and typedef

173

Structures 174

Accessing Structure Members 176

Structure Assignments 177

Page ix

Arrays of Structures 178

A Mailing List Example 178

Passing Structures to Functions 186

Passing Structure Members to Functions 186

Passing Entire Structures to Functions 187

Structure Pointers 188

Declaring a Structure Pointer 189

Using Structure Pointers 189

Arrays and Structures within Structures 192

Unions 193

Bit-Fields 195

Enumerations 198

An Important Difference between C and C++ 200

Using sizeof to Ensure Portability 201

typedef 203

8
Console I/O

205

Reading and Writing Characters 206

A Problem with getchar() 207

Alternatives to getchar() 208

Reading and Writing Strings 209

Formatted Console I/O 212

printf() 212

Printing Characters 213

Printing Numbers 214

Displaying an Address 215

The %n Specifier 216

Format Modifiers 216

The Minimum Field Width Specifier 216

The Precision Specifier 218

Justifying Output 219

Handling Other Data Types 219

The * and # Modifiers 220

scanf() 221

Format Specifiers 221

Inputting Numbers 221

Inputting Unsigned Integers 223

Reading Individual Characters Using scanf
()

223

Reading Strings 223

Inputting an Address 224

The %n Specifier 224

Using a Scanset 224

Discarding Unwanted White Space 225

Page x

Non-White-Space Characters in the Control String 226

You Must Pass scanf() Addresses 226

Format Modifiers 226

Suppressing Input 227

9
File I/O

229

C vs. C++ File I/O 230

Standard C Vs. Unix File I/O 230

Streams and Files 230

Streams 231

Files 231

File System Basics 232

The File Pointer 232

Opening a File 232

Closing a File 235

Writing a Character 235

Reading a Character 236

Using fopen(), getc(), putc(), and fclose() 236

Using feof() 238

Working with Strings: fputs() and fgets() 239

rewind() 240

ferror() 241

Erasing Files 243

Flushing a Stream 244

fread() and fwrite() 245

Using fread() and fwrite() 245

fseek() and Random-Access 253

fprintf() and fscanf() 254

The Standard Streams 256

The Console I/O Connection 257

Using freopen() to Redirect the Standard Streams 258

10
The Preprocessor and Comments

261

The Preprocessor 262

#define 262

Defining Function-like Macros 264

#error 265

#include 265

Conditional Compilation Directives 266

#if, #else, #elif, and #endif 266

#ifdef and #ifndef 269

#undef 270

Using defined 270

#line 271

Page xi

#pragma 272

The # and ## Preprocessor Operators 272

Predefined Macro Names 273

Comments 274

Single-Line Comments 275

Part II
The C99 Standard

11
C99

279

C89 Vs. C99: An Overview 280

Features Added 280

Features Removed 281

Features Changed 281

restrict-Qualified Pointers 282

inline 282

New Built-in Data Types 284

_Bool 284

_Complex and _Imaginary 284

The long long Integer Types 285

Array Enhancements 285

Variable-Length Arrays 285

Use of Type Qualifiers in an Array Declaration 286

Single-Line Comments 286

Interspersed Code and Declarations 286

Preprocessor Changes 287

Variable Argument Lists 287

The _Pragma Operator 288

Built-in Pragmas 288

Additional Built-in Macros 289

Declaring Variables within a for Loop 289

Compound Literals 290

Flexible Array Structure Members 291

Designated Initializers 291

Additions to the printf() and scanf() Family of Functions 292

New Libraries in C99 293

The _ _func_ _ Predefined Identifier 293

Increased Translation Limits 294

Implicit int No Longer Supported 294

Implicit Function Declarations Have Been Removed 296

Restrictions on return 296

Extended Integer Types 297

Changes to the Integer Promotion Rules 297

Page xii

Part III
The C Standard Library

12
Linking, Libraries, and Headers

301

The Linker 302

Separate Compilation 302

Relocatable Vs. Absolute Code 303

Linking with Overlays 303

Linking with DLLs 304

The C Standard Library 305

Library Files Vs. Object Files 305

Headers 305

Macros in Headers 307

Redefinition of Library Functions 308

13
I/O Functions

309

clearerr 310

fclose 312

feof 313

ferror 313

fflush 314

fgetc 315

fgetpos 316

fgets 317

fopen 318

fprintf 320

fputc 321

fputs 321

fread 322

freopen 323

fscanf 324

fseek 325

fsetpos 326

ftell 327

fwrite 328

getc 329

getchar 330

gets 331

perror 332

printf 332

Format Modifiers for printf() Added by C99 335

putc 336

putchar 337

puts 337

Page xiii

remove 338

rename 339

rewind 340

scanf 340

Format Modifiers for scanf() Added by C99 344

setbuf 345

setvbuf 345

snprintf 346

sprintf 347

sscanf 347

tmpfile 348

tmpnam 349

ungetc 350

vprintf, vfprintf, vsprintf, and vsnprintf 351

vscanf, vfscanf, and vsscanf 352

14
String and Character Functions

353

isalnum 354

isalpha 355

isblank 356

iscntrl 357

isdigit 358

isgraph 358

TE
AM
FL
Y

Team-Fly®

islower 359

isprint 360

ispunct 361

isspace 362

isupper 362

isxdigit 363

memchr 364

memcmp 365

memcpy 366

memmove 367

memset 368

strcat 368

strchr 369

strcmp 370

strcoll 371

strcpy 372

strcspn 372

strerror 373

strlen 373

strncat 374

strncmp 375

strncpy 376

Page xiv

strpbrk 377

strrchr 377

strspn 378

strstr 379

strtok 380

strxfrm 381

tolower 381

toupper 382

15
Mathematical Functions

383

acos 386

acosh 387

asin 387

asinh 388

atan 388

atanh 389

atan2 390

cbrt 391

ceil 391

copysign 392

cos 392

cosh 393

erf 394

erfc 394

exp 395

exp2 395

expm1 395

fabs 396

fdim 397

floor 397

fma 398

fmax 398

fmin 398

fmod 399

frexp 399

hypot 400

ilogb 400

ldexp 401

lgamma 402

llrint 402

llround 402

log 403

log1p 404

Page xv

log10 404

log2 405

logb 405

lrint 406

lround 406

modf 406

nan 407

nearbyint 407

nextafter 408

nexttoward 408

pow 409

remainder 409

remquo 410

rint 410

round 411

scalbln 411

scalbn 412

sin 412

sinh 413

sqrt 414

tan 414

tanh 415

tgamma 416

trunc 416

16
Time, Date, and Localization Functions

417

asctime 418

clock 419

ctime 420

difftime 421

gmtime 422

localeconv 423

localtime 425

mktime 426

setlocale 427

strftime 428

time 431

17
Dynamic Allocation Functions

433

calloc 434

free 435

malloc 436

realloc 437

Page xvi

18
Utility Functions

439

abort 440

abs 441

assert 441

atexit 442

atof 443

atoi 444

atol 445

atoll 446

bsearch 446

div 448

exit 449

_Exit 450

getenv 450

labs 451

llabs 451

ldiv 452

lldiv 453

longjmp 453

mblen 454

mbstowcs 455

mbtowc 456

qsort 456

raise 458

rand 459

setjmp 459

signal 460

srand 460

strtod 461

strtof 463

strtol 463

strtold 464

strtoll 465

strtoul 465

strtoull 466

system 467

va_arg, va_copy, va_start, and va_end 467

wcstombs 469

wctomb 470

19
Wide-Character Functions

471

Wide-Character Classification Functions 472

Wide-Character I/O Functions 474

Wide-Character String Functions 477

Page xvii

Wide-Character String Conversion Functions 478

Wide-Character Array Functions 479

Multibyte/Wide-Character Conversion Functions 480

20
Library Features Added by C99

483

The Complex Library 484

The Floating-Point Environment Library 488

The <stdint.h> Header 488

Integer Format Conversion Functions 490

Type-Generic Math Macros 490

The <stdbool.h> Header 493

Part IV
Algorithms and Applications

21
Sorting and Searching

497

Sorting 498

Classes of Sorting Algorithms 498

Judging Sorting Algorithms 499

The Bubble Sort 500

Sorting by Selection 504

Sorting by Insertion 505

Improved Sorts 506

The Shell Sort 506

The Quicksort 508

Choosing a Sort 511

Sorting Other Data Structures 511

Sorting Strings 512

Sorting Structures 513

Sorting Random-Access Disk Files 515

Searching 518

Searching Methods 519

The Sequential Search 519

The Binary Search 519

22
Queues, Stacks, Linked Lists, and Trees

521

Queues 522

The Circular Queue 528

Stacks 531

Linked Lists 536

Singly Linked Lists 536

Doubly Linked Lists 541

A Mailing List Example 546

Binary Trees 553

Page xviii

23
Sparse Arrays

563

Understanding the Need for Sparse Arrays 564

The Linked-List Sparse Array 565

Analysis of the Linked-List Approach 568

The Binary-Tree Approach to Sparse Arrays 569

Analysis of the Binary-Tree Approach 571

The Pointer-Array Approach to Sparse Arrays 572

Analysis of the Pointer-Array Approach 575

Hashing 575

Analysis of Hashing 579

Choosing an Approach 580

24
Expression Parsing and Evaluation

581

Expressions 582

Dissecting an Expression 584

Expression Parsing 586

A Simple Expression Parser 588

Adding Variables to the Parser 595

Syntax Checking in a Recursive-Descent Parser 604

25
AI-Based Problem Solving

605

Representation and Terminology 606

Combinatorial Explosions 608

TE
AM
FL
Y

Team-Fly®

Search Techniques 610

Evaluating a Search 610

A Graphic Representation 611

The Depth-First Search 613

Analysis of the Depth-First Search 624

The Breadth-First Search 625

Analysis of the Breadth-First Search 626

Adding Heuristics 626

The Hill-Climbing Search 628

Analysis of Hill Climbing 635

The Least-Cost Search 635

Analysis of the Least-Cost Search 636

Choosing a Search Technique 636

Finding Multiple Solutions 637

Path Removal 638

Node Removal 639

Finding the ''Optimal" Solution 645

Back to the Lost Keys 652

Page xix

Part V
Software Development Using C

26
Building a Windows 2000 Skeleton

659

Windows 2000 Programming Perspective 660

The Desktop Model 661

The Mouse 661

Icons, Bitmaps, and Graphics 661

Menus, Controls, and Dialog Boxes 661

The Win32 Application Programming Interface 662

Components of a Window 662

How Windows and Your Program Interact 663

Some Windows 2000 Application Basics 664

WinMain() 664

The Window Procedure 664

Window Classes 665

The Message Loop 665

Windows Data Types 665

A Windows 2000 Skeleton 666

Defining the Window Class 669

Creating a Window 672

The Message Loop 674

The Window Function 675

Definition File No Longer Needed 676

Naming Conventions 676

27
Software Engineering Using C

679

Top-Down Design 680

Outlining Your Program 680

Choosing a Data Structure 682

Bulletproof Functions 682

Using MAKE 685

Using Macros in MAKE 689

Using an Integrated Development Environment 689

28
Efficiency, Porting, and Debugging

691

Efficiency 692

The Increment and Decrement Operators 692

Using Register Variables 693

Pointers Vs. Array Indexing 694

Use of Functions 694

Page xx

Porting Programs 698

Using #define 698

Operating-System Dependencies 699

Differences in Data Sizes 699

Debugging 700

Order-of-Evaluation Errors 700

Pointer Problems 701

Interpreting Syntax Errors 703

One-Off Errors 704

Boundary Errors 705

Function Prototype Omissions 706

Argument Errors 708

Stack Overruns 708

Using a Debugger 708

Debugging Theory in General 709

Part VI
A C Interpreter

29
A C Interpreter

713

The Practical Importance of Interpreters 714

The Little C Specifications 715

Some Little C Restrictions 716

Interpreting a Structured Language 718

An Informal Theory of C 719

C Expressions 720

Evaluating Expressions 721

The Expression Parser 722

Reducing the Source Code to Its Components 723

The Little C Recursive-Descent Parser 730

The Little C Interpreter 744

The Interpreter Prescan 745

The main() Function 748

The interp_block() Function 749

Handling Local Variables 766

Calling User-Defined Functions 767

Assigning Values to Variables 771

Executing an if Statement 772

Processing a while Loop 773

Processing a do-while Loop 774

The for Loop 775

The Little C Library Functions 776

Compiling and Linking the Little C Interpreter 780

Page xxi

Demonstrating Little C 780

Improving Little C 785

Expanding Little C 786

Adding New C Features 786

Adding Ancillary Features 787

Index 789

Page xxiii

PREFACE

This is the fourth edition of C: The Complete Reference. In the years since the third edition was
prepared, much has happened in the programming world. The Internet and the World Wide Web
became an integral part of the computing landscape, Java was invented, and C++ was standardized.
At the same time, a new standard for C, called C99, was created. Although C99 did not grab many
headlines, it is still one of the most important computing events of the past five years. In the onrush
of events, it is easy to focus only on the new, overlooking the sturdy foundation upon which the
future is built. C is such a foundation. Much of the world's code runs on C. It is the language upon
which C++ was built, and its syntax formed the basis for Java. However, if C were simply a starting
point for other languages, it would be an interesting, but dead, language. Fortunately for us
programmers, this is not the case. C is as vital today as when it was first invented. As you will see,
the C99 standard contains new and innovative constructs that once again put C at the forefront of
language development. Although C's progeny (C++ and Java) are certainly important, C has a
staying power that no other computer language can claim.

The creation of the C99 standard was driven forward by some of computing's foremost language
experts, including Rex Jaeschke, Jim Thomas, Tom MacDonald, and John Benito. As a member of
the standardization committee, I watched the progress of the emerging standard, following the
debates and arguments surrounding each new

Page 1

PART I—
FOUNDATIONAL C

This book divides its description of the C language into two parts. Part One discusses those features
of C defined by the original, 1989 ANSI standard for C (commonly referred to as C89), along with
those additions contained in Amendment 1, adopted in 1995. At the time of this writing, this is the
version of C that is in widespread use and is the version of C that compilers are currently capable of
compiling. It is also the version of C that forms the foundation upon which C++ was built,

Page 2

which is commonly referred to as the C subset of C++. Part Two describes the features added by the
new C 1999 standard (C99). Part Two also details the few differences between C89 and C99. For the
most part, the new 1999 standard incorporates the entire 1989 standard, adding features but not
fundamentally changing the character of the language. Thus, C89 is both the foundation for C99 and
the basis for C++.

In a book such as this Complete Reference, dividing the C language into two pieces— the C89
foundation and the C99-specific features— achieves three major benefits:

• The dividing line between the C89 and the C99 versions of C is clearly delineated. When
maintaining legacy code for environments in which C99-compatible compilers are not available, an
understanding of where C89 ends and C99 begins is important. It is a frustrating experience to plan
a solution around a feature, only to find that the feature is not supported by the compiler!

• Readers already familiar with C89 can easily find the new features added by C99. Many readers—
especially those who have an earlier edition of this book— already know C89. Covering those
features of C99 in their own section makes it easier for the experienced programmer to quickly find
information about C99 without having to ''wade through" reams of information that he or she
already knows. Of course, throughout Part One, any minor incompatibilities between C89 and C99
are noted and new features from C99 are mentioned where appropriate.

• By separately discussing the C89 standard, it is possible to clearly define the version of C that
forms the C subset of C++. This is important if you want to be able to write C programs that can be
compiled by C++ compilers. It is also important if you are planning to move on to C++, or work in
both environments.

In the final analysis, understanding the difference between C89 and C99 is simply part of being a
top-notch professional C programmer.

Part One is organized as follows. Chapter 1 provides an overview of C. Chapter 2 examines C's
built-in data types, variables, operators, and expressions. Next, Chapter 3 presents program control
statements. Chapter 4 discusses arrays and strings. Chapter 5 looks at pointers. Chapter 6 deals with
functions, and Chapter 7 discusses structures, unions, and user-defined types. Chapter 8 examines
console I/O. Chapter 9 covers file I/O, and Chapter 10 discusses the C preprocessor and comments.

Page 3

Chapter 1—
An Overview of C

TE
AM
FL
Y

Team-Fly®

Page 4

The purpose of this chapter is to present an overview of the C programming language, its origins, its
uses, and its underlying philosophy. This chapter is mainly for newcomers to C.

A Brief History of C

C was invented and first implemented by Dennis Ritchie on a DEC PDP-11 that used the Unix
operating system. C is the result of a development process that started with an older language called
BCPL. BCPL was developed by Martin Richards, and it influenced a language called B, which was
invented by Ken Thompson. B led to the development of C in the 1970s.

For many years, the de facto standard for C was the version supplied with the Unix operating
system. It was first described in The C Programming Language by Brian Kernighan and Dennis
Ritchie (Englewood Cliffs, N.J.: Prentice-Hall, 1978). In the summer of 1983 a committee was
established to create an ANSI (American National Standards Institute) standard that would define
the C language. The standardization process took six years (much longer than anyone reasonably
expected).

The ANSI C standard was finally adopted in December 1989, with the first copies becoming
available in early 1990. The standard was also adopted by ISO (International Standards
Organization), and the resulting standard was typically referred to as ANSI/ISO Standard C. In
1995, Amendment 1 to the C standard was adopted, which, among other things, added several new
library functions. The 1989 standard for C, along with Amendment 1, became a base document for
Standard C++, defining the C subset of C++. The version of C defined by the 1989 standard is
commonly referred to as C89.

During the 1990s, the development of the C++ standard consumed most programmers' attention.
However, work on C continued quietly along, with a new standard for C being developed. The end
result was the 1999 standard for C, usually referred to as C99. In general, C99 retained nearly all of
the features of C89. Thus, C is still C! The C99 standardization committee focused on two main
areas: the addition of several numeric libraries and the development of some special-use, but highly
innovative, new features, such as variable-length arrays and the restrict pointer qualifier. These
innovations have once again put C at the forefront of computer language development.

As explained in the part opener, Part One of this book describes the foundation of C, which is the
version defined by the 1989 standard. This is the version of C in widest use, it is currently accepted
by all C compilers, and it forms the basis for C++. Thus, if you want to write C code that can be
compiled by a legacy compiler, for example, you will want to restrict that code to the features
described in Part One. Part Two will examine the features added by C99.

Page 5

C Is a Middle-Level Language

C is often called a middle-level computer language. This does not mean that C is less powerful,
harder to use, or less developed than a high-level language such as BASIC or Pascal, nor does it
imply that C has the cumbersome nature of assembly language (and its associated troubles). Rather,
C is thought of as a middle-level language because it combines the best elements of high-level
languages with the control and flexibility of assembly language. Table 1-1 shows how C fits into the
spectrum of computer languages.

As a middle-level language, C allows the manipulation of bits, bytes, and addresses— the basic
elements with which the computer functions. Despite this fact, C code is also very portable.
Portability means that it is easy to adapt software written for one type of computer or operating
system to another type. For example, if you can easily convert a program written for DOS so that it
runs under Windows 2000, that program is portable.

High level Ada
Modula-2
Pascal
COBOL
FORTRAN
BASIC

Middle level Java
C++
C
FORTH
Macro-assembler

Low level Assembler

Table 1 -1. C's Place in the World of Programming Languages

Page 6

All high-level programming languages support the concept of data types. A data type defines a set
of values that a variable can store along with a set of operations that can be performed on that
variable. Common data types are integer, character, and floating-point. Although C has several built-
in data types, it is not a strongly typed language, as are Pascal and Ada. C permits almost all type
conversions. For example, you may freely intermix character and integer types in an expression.

Unlike most high-level languages, C specifies almost no run-time error checking. For example, no
check is performed to ensure that array boundaries are not overrun. These types of checks are the
responsibility of the programmer.

In the same vein, C does not demand strict type compatibility between a parameter and an argument.
As you may know from your other programming experience, a high-level computer language will
typically require that the type of an argument be (more or less) exactly the same type as the
parameter that will receive the argument. Such is not the case for C. Instead, C allows an argument
to be of any type so long as it can be reasonably converted into the type of the parameter. Further, C
provides all of the automatic conversions to accomplish this.

C is special in that it allows the direct manipulation of bits, bytes, words, and pointers. This makes it
well suited for system-level programming, where these operations are common.

Another important aspect of C is that it has only a small number of keywords, which are the
commands that make up the C language. For example, C89 defined 32 keywords, and C99 adds only
5 more. High-level languages typically have many more keywords. As a comparison, consider that
most versions of BASIC have well over 100 keywords!

C Is a Structured Language

In your previous programming experience, you may have heard the term block-structured applied to
a computer language. Although the term block-structured language does not strictly apply to C, C is
commonly referred to simply as a structured language. It has many similarities to other structured
languages, such as ALGOL, Pascal, and Modula-2.

NOTE

The reason that C is not , technically , a block-structured language is that block-
structured languages permit procedures or functions to be declared inside other
procedures or functions. However, since C does not allow the creation of functions
within functions, it cannot formally be called block-structured.

The distinguishing feature of a structured language is compartmentalization of code and data. This is
the ability of a language to section off and hide from the rest of the program all information and
instructions necessary to perform a specific task. One way that you achieve compartmentalization is
by using subroutines that employ local (temporary) variables. By using local variables, you can
write subroutines so that the

Page 7

events that occur within them cause no side effects in other parts of the program. This capability
makes it very easy for your C programs to share sections of code. If you develop compartmentalized
functions, you need to know only what a function does, not how it does it. Remember, excessive use
of global variables (variables known throughout the entire program) may allow bugs to creep into a
program by allowing unwanted side effects. (Anyone who has programmed in standard BASIC is
well aware of this problem.)

A structured language offers a variety of programming possibilities. For example, structured
languages typically support several loop constructs, such as while, do-while, and for. In a structured
language, the use of goto is either prohibited or discouraged and is not the common form of program
control (as is the case in standard BASIC and traditional FORTRAN, for example). A structured
language allows you to place statements anywhere on a line and does not require a strict field
concept (as some older FORTRANs do).

Here are some examples of structured and nonstructured languages:

Nonstructured Structured

FORTRAN Pascal

BASIC Ada

COBOL C++

C

Java

Modula-2

Structured languages tend to be of more recent creation. In fact, a mark of an old computer language
is that it is nonstructured. Today, few programmers would consider using a nonstructured language
for serious, new programs.

NOTE

New versions of many older languages have attempted to add structured elements.
BASIC is an example. However , the shortcomings of these languages can never be
fully mitigated because they were not designed along structured design principles
from the beginning.

C's main structural component is the function— C's stand-alone subroutine. In C, functions are the
building blocks in which all program activity occurs. They allow you to define and code
individually the separate tasks in a program, thus allowing your programs to be modular. After you
have created a function, you can rely on it to work properly in various situations without creating
side effects in other parts of the program. Being able to create stand-alone functions is extremely
important in larger projects where one programmer's code must not accidentally affect another's.

Page 8

Another way to structure and compartmentalize code in C is through the use of blocks of code. A
code block is a logically connected group of program statements that is treated as a unit. In C, you
create a code block by placing a sequence of statements between opening and closing curly braces.
In this example,

if (x < 10) {
 printf(''Too low, try again.\n");
 scanf("%d", &x);
}

the two statements after the if and between the curly braces are both executed if x is less than 10.
These two statements together with the braces represent a code block. They are a logical unit: One
of the statements cannot execute without the other executing also. Code blocks allow many
algorithms to be implemented with clarity, elegance, and efficiency. Moreover, they help the
programmer better conceptualize the true nature of the algorithm being implemented.

C Is a Programmer's Language

Surprisingly, not all computer programming languages are for programmers. Consider the classic
examples of nonprogrammer languages, COBOL and BASIC. COBOL was designed not to better
the programmer's lot, not to improve the reliability of the code produced, and not even to improve
the speed with which code can be written. Rather, COBOL was designed, in part, to enable
nonprogrammers to read and presumably (however unlikely) to understand the program. BASIC was
created essentially to allow nonprogrammers to program a computer to solve relatively simple
problems.

In contrast, C was created, influenced, and field-tested by working programmers. The end result is
that C gives the programmer what the programmer wants: few restrictions, few complaints, block
structure, stand-alone functions, and a compact set of keywords. By using C, you can nearly achieve
the efficiency of assembly code combined with the structure of Pascal or Modula-2. It is no wonder
that C has become the universal language of programmers around the world.

The fact that C can often be used in place of assembly language was a major factor in its initial
success. Assembly language uses a symbolic representation of the actual binary code that the
computer executes directly. Each assembly-language operation maps into a single task for the
computer to perform. Although assembly language gives programmers the potential to accomplish
tasks with maximum flexibility and efficiency, it is notoriously difficult to work with when
developing and debugging a program. Furthermore, since assembly language is unstructured, the
final program tends to be spaghetti code— a tangled mess of jumps, calls, and indexes. This lack of
structure makes assembly-language programs difficult to read, enhance, and maintain. Perhaps more
important, assembly-language routines are not portable between machines with different CPUs.

Page 9

Initially, C was used for systems programming. A systems program forms a portion of the operating
system of the computer or its support utilities, such as editors, compilers, linkers, and the like. As C
grew in popularity, many programmers began to use it to program all tasks because of its portability
and efficiency— and because they liked it! At the time of its creation, C was a much longed-for,
dramatic improvement in programming languages. In the years that have since elapsed, C has
proven that it is up to any task.

With the advent of C++, some programmers thought that C as a distinct language would cease to
exist. Such is not the case. First, not all programs require the application of the object-oriented
programming features provided by C++. For example, applications such as embedded systems are
still typically programmed in C. Second, much of the world still runs on C code, and those programs
will continue to be enhanced and maintained. Third, as the new C99 standard shows, C is still a
venue in which leading-edge innovation is taking place. While it is undeniably true that C will
always be remembered as forming the foundation for C++, it will also be known as one of the
world's great programming languages on its own.

Compilers vs. Interpreters

It is important to understand that a computer language defines the nature of a program and not the
way that the program will be executed. There are two general methods by which a program can be
executed. It can be compiled, or it can be interpreted. Although programs written in any computer
language can be compiled or interpreted, some languages are designed more for one form of
execution than the other. For example, Java was designed to be interpreted, and C was designed to
be compiled. However, in the case of C, it is important to understand that it was specifically
optimized as a compiled language. Although C interpreters have been written and are available in
some environments (especially as debugging aids or experimental platforms like the interpreter
developed in Part Six of this book), C was developed with compilation in mind. Therefore, you will
almost certainly be using a C compiler and not a C interpreter when developing your C programs.
Since the difference between a compiler and interpreter may not be clear to all readers, the following
brief description will clarify matters.

In its simplest form, an interpreter reads the source code of your program one line at a time,
performing the specific instructions contained in that line. This is the way earlier versions of BASIC
worked. In languages such as Java, a program's source code is first converted into an intermediary
form that is then interpreted. In either case, a run-time interpreter is still required to be present to
execute the program.

A compiler reads the entire program and converts it into object code, which is a translation of the
program's source code into a form that the computer can execute directly. Object code is also
referred to as binary code or machine code. Once the program is compiled, a line of source code is
no longer meaningful in the execution of your program.

Page 10

In general, an interpreted program runs slower than a compiled program. Remember, a compiler
converts a program's source code into object code that a computer can execute directly. Therefore,
compilation is a one-time cost, while interpretation incurs an overhead each time a program is run.

The Form of a C Program

Table 1-2 lists the 32 keywords defined by the C89 standard. These are also the C keywords that
form the C subset of C++. Table 1-3 shows the keywords added by C99. The keywords, combined
with the formal C syntax, form the C programming language.

In addition to the standard keywords, many compilers add nonstandard keywords that better exploit
their operating environment. For example, several compilers include keywords to manage the
memory organization of the 8086 family of processors, to support interlanguage programming, and
to access interrupts. Here is a list of some commonly used extended keywords:

asm _ds huge pascal

cdecl _es interrupt _ss

_cs far near

Your compiler may also support other extensions that help it take better advantage of its specific
environment.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Table 1 -2. Keywords Defined by C89

Page 11

_Bool _Imaginary restrict

_Complex inline
Table 1 -3. Keywords Added by C99

In C, uppercase and lowercase characters are different: else is a keyword; ELSE is not. You may not
use a keyword for any purpose other than as a keyword in a C program— that is, you may not use it
as a variable or function name.

All C programs consist of one or more functions. As a general rule, the only function that must be
present is called main(), which is the first function called when program execution begins. In well -
written C code, main() contains what is, in essence, an outline of what the program does. The
outline is composed of function calls. Although main() is not a keyword, treat it as if it were. For
example, don't try to use main as the name of a variable because you will probably confuse the
compiler.

The general form of a C program is illustrated in Figure 1-1, where f1() through fN() represent
user-defined functions.

The Library and Linking

Technically speaking, you can create a useful, functional C program that consists solely of
statements involving only the C keywords. However, this is quite rare because C does not provide
keywords that perform such things as input/output (I/O) operations, high-level mathematical
computations, or character handling. As a result, most programs include calls to various functions
contained in C's standard library.

All C compilers come with a standard library of functions that perform most commonly needed
tasks. Standard C specifies a minimal set of functions that will be supported by all compilers.
However, your compiler will probably contain many other functions. For example, the standard
library does not define any graphics functions, but your compiler will probably include some.

When you call a library function, the C compiler ''remembers" its name. Later, the linker combines
the code you wrote with the object code already found in the standard library. This process is called
linking. Some compilers have their own linker, while others use the standard linker supplied by your
operating system.

The functions in the library are in relocatable format. This means that the memory addresses for the
various machine-code instructions have not been absolutely defined— only offset information has
been kept. When your program links with the functions in the standard library, these memory offsets
are used to create the actual addresses used. Several technical manuals and books explain this
process in more

Page 12

Global declarations

int main(parameter list)
{
 statement sequence
}

return-type f1(parameter list)
{
 statement sequence
}

return-type f2(parameter list)
{
 statement sequence
}
.
.
.
return-type fN(parameter list)
{
 statement sequence
}

Figure 1-1
The general form of a C program

detail. However, you do not need any further explanation of the actual relocation process to program
in C.

Many of the functions that you will need as you write programs are in the standard library. They act
as building blocks that you combine. If you write a function that you will use again and again, you
can put it into a library, too.

Separate Compilation

Most short C programs are completely contained within one source file. However, as a program's
length grows, so does its compile time (and long compile times make for short tempers). Thus, C
allows a program to be spread across two or more files, and it

Page 13

lets you compile each file separately. Once you have compiled all files, they are linked, along with
any library routines, to form the complete object code. The advantage of separate compilation is that
if you change the code of one file, you do not need to recompile the entire program. On all but the
most simple projects, this saves a substantial amount of time. Separate compilation also allows
multiple programmers to more easily work together on a single project, and it provides a means of
organizing the code for a large project. (Strategies for separate compilation are discussed in Part
Five of this book.)

Compiling a C Program

Creating an executable form of your C program consists of these three steps:

1. Creating your program

2. Compiling your program

3. Linking your program with whatever functions are needed from the library

Today, most compilers supply integrated programming environments that include an editor. Most
also include stand-alone compilers. For stand-alone versions, you must have a separate editor to
create your program. In either case, be careful: Compilers only accept standard text files for input.
For example, your compiler will not accept files created by certain word processors because they
contain control codes and nonprinting characters.

The exact method you use to compile your program will depend upon what compiler you are using.
Also, how linking is accomplished will vary between compilers and environments; for example, it
may be included as part of the compiler or as a stand-alone application. Consult your compiler's
documentation for details.

C's Memory Map

A compiled C program creates and uses four logically distinct regions of memory. The first region is
the memory that actually holds the program's executable code. The next region is memory where
global variables are stored. The remaining two regions are the stack and the heap. The stack is used
for a great many things while your program executes. It holds the return addresses of function calls,
arguments to functions, and local variables. It will also save the current state of the CPU. The heap
is a region of free memory that your program can use via C's dynamic memory allocation functions.

Although the exact physical layout of each of the four regions of memory differs among CPU types
and C implementations, the diagram in Figure 1-2 shows conceptually how your C programs appear
in memory.

TE
AM
FL
Y

Team-Fly®

Page 14

Figure 1-2
Conceptualized memory

map of a C program

C vs. C++

Before concluding this chapter, a few words about C++ are in order. Newcomers are sometimes
confused about what C++ is and how it differs from C. In short, C++ is an object-oriented
programming language that was built upon the foundation of C. In general terms, C is a subset of
C++, or conversely, C++ is a superset of C.

In general, you can use a C++ compiler to compile a C program. In fact, today most compilers
handle both C and C++ programs. Thus, most programmers will use a C++ compiler to compile
their C code! However, since C++ was built upon the 1989 C standard, you must restrict your C
code to the features defined by that standard (which are the features described in Part One of this
book).

There is one thing that you must be careful about when using a C++ compiler to compile a C
program: the file extension. By convention, C programs use the .C extension. C++ programs
use .CPP. Don't accidentally give your C program a .CPP extension. Differences between the two
languages might prevent a valid C program from being compiled as if it were a C++ program. By
specifying the .C extension, you are telling the C++ compiler to perform a ''C compile."

NOTE

For a complete description of the C++ language, see C++: The Complete
Reference, by Herbert Schildt (Berkeley , CA: Osborne/McGraw-Hill).

Page 15

Review of Terms

The terms that follow will be used frequently throughout the remainder of this reference. You
should be completely familiar with them.

• Source code The text of a program that a user can read, commonly thought of as the program. The
source code is input into the C compiler.

• Object code Translation of the source code of a program into machine code, which the computer
can read and execute directly. Object code is the input to the linker.

• Linker A program that links separately compiled modules into one program. It also combines the
functions in the Standard C library with the code that you wrote. The output of the linker is an
executable program.

• Library The file containing the standard functions that your program can use. These functions
include all I/O operations as well as other useful routines.

• Compile time The time during which your program is being compiled.

• Run time The time during which your program is executing.

Page 17

Chapter 2—
Expressions

Page 18

This chapter examines the most fundamental element of the C language: the expression. Expressions
in C are substantially more flexible and powerful than in many other computer languages.
Expressions are formed from these atomic elements: data and operators. Data may be represented by
variables, constants, or values returned by functions. C supports several different types of data. It
also provides a wide variety of operators.

The Basic Data Types

C89 defines five foundational data types: character, integer, floating-point, double floating-point,
and valueless. These are declared using char, int, float, double, and void, respectively. These types
form the basis for several other types. The size and range of these data types may vary among
processor types and compilers. However, in all cases an object of type char is 1 byte. The size of an
int is usually the same as the word length of the execution environment of the program. For most
16-bit environments, such as DOS or Windows 3.1, an int is 16 bits. For most 32-bit environments,
such as Windows 95/98/NT/2000, an int is 32 bits. However, you cannot make assumptions about
the size of an integer if you want your programs to be portable to the widest range of environments.
It is important to understand that C stipulates only the minimal range of each data type, not its size
in bytes.

NOTE

To the five basic data types defined by C89 , C99 adds three more: _Bool,
_Complex, and _Imaginary. They are described in Part Two.

The exact format of floating-point values will depend upon how they are implemented. Variables of
type char are generally used to hold values defined by the ASCII character set. Values outside that
range may be handled differently by different compilers.

The range of float and double will depend upon the method used to represent the floating-point
numbers. Standard C specifies that the minimum range for a floating-point value is 1E–37 to 1E+37.
The minimum number of digits of precision for each floating-point type is shown in Table 2-1.

The type void either explicitly declares a function as returning no value or creates generic pointers.
Both of these uses are discussed in subsequent chapters.

Modifying the Basic Types

Except type void, the basic data types may have various modifiers preceding them. A type modifier
alters the meaning of the base type to more precisely fit a specific need. The list of modifiers is
shown here:

Page 19

signed
unsigned
long
short

The int base type can be modified by signed, short, long, and unsigned. The char type can be
modified by unsigned and signed. You may also apply long to double. (C99 also allows long to
modify long, thus creating long long. See Part Two for details.) Table 2-1 shows all valid data type
combinations supported by C, along with their minimal ranges and typical bit widths. Remember,
the table shows the minimum range that these types will have, not their typical range. For example,
on computers that use two's complement arithmetic (which is nearly all), an integer will have a
range of at least 32,767 to –32,768.

Type
Typical Size in
Bits Minimal Range

char 8 –127 to 127

unsigned char 8 0 to 255

signed char 8 –127 to 127

int 16 or 32 –32,767 to 32,767

unsigned int 16 or 32 0 to 65,535

signed int 16 or 32 Same as int

short int 16 –32,767 to 32,767

unsigned short int 16 0 to 65,535

signed short int 16 Same as short int

long int 32 –2,147,483,647 to 2,147,483,647

long long int 64 –(263 – 1) to 263 – 1 (Added by C99)

signed long int 32 Same as long int

unsigned long int 32 0 to 4,294,967,295

unsigned long long int 64 264 – 1 (Added by C99)

float 32 1E–37 to 1E+37 with six digits of precision

double 64 1E–37 to 1E+37 with ten digits of precision

long double 80 1E–37 to 1E+37 with ten digits of precision

Table 2 -1. All Data Types Defined by the C Standard

Page 20

The use of signed on integers is allowed, but it is redundant because the default integer declaration
assumes a signed number. The most important use of signed is to modify char in implementations
in which char is unsigned by default.

Signed and unsigned integers differ in the way that the high-order bit of the integer is interpreted. If
you specify a signed integer, the compiler generates code that assumes the high-order bit of an
integer is to be used as a sign flag. If the sign flag is 0, the number is positive; if it is 1, the number
is negative.

In general, negative numbers are represented using the two's complement approach, which reverses
all bits in the number (except the sign flag), adds 1 to this number, and sets the sign flag to 1.

Signed integers are important for a great many algorithms, but they only have half the absolute
magnitude of their unsigned relatives. For example, here is 32,767 in binary:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

If the high-order bit were set to 1, the number would be interpreted as –1. However, if you declare
this to be an unsigned int, the number becomes 65,535 when the high-order bit is set to 1.

When a type modifier is used by itself (that is, when it does not precede a basic type), then int is
assumed. Thus, the following sets of type specifiers are equivalent:

Specifier Same As

signed signed int

unsigned unsigned int

long long int

short short int

Although the int is implied, it is common practice today to specify the int anyway.

Identifier Names

In C, the names of variables, functions, labels, and various other user-defined items are called
identifiers. The length of these identifiers can vary from one to several characters. The first character
must be a letter or an underscore, and subsequent characters must be either letters, digits, or
underscores. Here are some correct and incorrect identifier names:

Correct Incorrect

count 1count

test23 hi!there

high_balance high . . . balance

Page 21

In C, identifiers may be of any length. However, not all characters will necessarily be significant. C
defines two kinds of identifiers: external and internal. An external identifier will be involved in an
external link process. These identifiers, called external names, include function names and global
variable names that are shared between source files. If the identifier is not used in an external link
process, then it is internal. This type of identifier is called an internal name and includes the names
of local variables, for example. In C89, at least the first 6 characters of an external identifier and at
least the first 31 characters of an internal identifier will be significant. C99 has increased these
values. In C99, an external identifier has at least 31 significant characters, and an internal identifier
has at least 63 significant characters. As a point of interest, in C++, at least the first 1,024 characters
of an identifier are significant. These differences may be important if you are converting a program
from C89 to C99, or from C to C++.

In an identifier, upper- and lowercase are treated as distinct. Hence, count , Count, and COUNT are
three separate identifiers.

An identifier cannot be the same as a C keyword and should not have the same name as functions
that are in the C library.

Variables

As you probably know, a variable is a named location in memory that is used to hold a value that
can be modified by the program. All variables must be declared before they can be used. The
general form of a declaration is

type variable_list;

Here, type must be a valid data type plus any modifiers, and variable_list may consist of one or
more identifier names separated by commas. Here are some declarations:

int i, j, l;
short int si;
unsigned int ui;
double balance, profit, loss;

Remember, in C the name of a variable has nothing to do with its type.

Where Variables Are Declared

Variables can be declared in three places: inside functions, in the definition of function parameters,
and outside of all functions. These positions correspond to local variables, formal parameters, and
global variables, respectively.

Page 22

Local Variables

Variables that are declared inside a function are called local variables. In some C literature, these
variables are referred to as automatic variables. This book uses the more common term local
variable. Local variables can be used only by statements that are inside the block in which the
variables are declared. In other words, local variables are not known outside their own code block.
Remember, a block of code begins with an opening curly brace and terminates with a closing curly
brace.

Local variables exist only while the block of code in which they are declared is executing. That is, a
local variable is created upon entry into its block and destroyed upon exit. Furthermore, a variable
declared within one code block has no bearing on or relationship to another variable with the same
name declared within a different code block.

The most common code block in which local variables are declared is the function. For example,
consider the following two functions:

void func1(void)
{
 int x;

 x = 10;
}

void func2(void)
{
 int x;

 x = -199;
}

The integer variable x is declared twice, once in func1() and once in func2(). The x in func1() has
no bearing on or relationship to the x in func2(). As explained, this is because each x is known only
to the code within the block in which it is declared.

The C language contains the keyword auto, which you can use to declare local variables. However,
since all nonglobal variables are, by default, assumed to be auto, this keyword is virtually never
used. Hence, the examples in this book will not use it.

For reasons of convenience and tradition, most programmers declare all the variables used by a
function immediately after the function's opening curly brace and before any other statements.
However, you may declare local variables within any code block. The block defined by a function is
simply a special case. For example:

Page 23

void f(void)
{
 int t;

 scanf("%d%*c", &t);

 if(t==l) {
 char s[80]; /* this is created only upon
 entry into this block */
 printf(''Enter name:");
 gets(s);
 /* do something . . . */
 }

 /* s not known here */
}

Here, the local variable s is created upon entry into the if code block and destroyed upon exit.
Furthermore, s is known only within the if block and cannot be referenced elsewhere— even in other
parts of the function that contains it.

Declaring variables within the block of code that uses them helps prevent unwanted side effects.
Since the variable does not exist outside the block in which it is declared, it cannot be accidentally
altered by other code.

When a variable declared within an inner block has the same name as a variable declared by an
enclosing block, the variable in the inner block hides the variable in the outer block. Consider the
following:

#include <stdio.h>

int main(void)
{
 int x;

 x = 10;

 if(x == 10) {
 int x; /* this x hides the outer x */

 x = 99;
 printf("Inner x: %d\n", x);
 }

Page 24

 printf("Outer x: %d\n", x);

 return 0;
}

The program displays this output:

Inner x: 99
Outer x: 10

In this example, the x that is declared within the if block hides the outer x. Thus, the inner x and the
outer x are two separate and distinct objects. Once that block ends, the outer x once again becomes
visible.

In C89, you must declare all local variables at the start of a block, prior to any ''action" statements.
For example, the following function is in error if compiled by a C89-compatible compiler.

/* This function is in error if compiled as
 a C89 program.
*/
void f(void)
{
 int i;

 i = 10;

 int j; /* this line will cause an error */

 j = 20;
}

However, in C99 (and in C++), this function is perfectly valid because you can declare local
variables at any point within a block, prior to their first use.

Because local variables are created and destroyed with each entry and exit from the block in which
they are declared, their content is lost once the block is left. This is especially important to
remember when calling a function. When a function is called, its local variables are created, and
upon its return they are destroyed. This means that local variables cannot retain their values between
calls. (However, you can direct the compiler to retain their values by using the static modifier.)

Unless otherwise specified, local variables are stored on the stack. The fact that the stack is a
dynamic and changing region of memory explains why local variables cannot, in general, hold their
values between function calls.

TE
AM
FL
Y

Team-Fly®

Page 25

You can initialize a local variable to some known value. This value will be assigned to the variable
each time the block of code in which it is declared is entered. For example, the following program
prints the number 10 ten times:

#include <stdio.h>

void f(void);

int main(void)
{
 int i;

 for(i=0; i<10; i++) f();

 return 0;
}

void f(void)
{
 int j = 10;

 printf("%d ", j);

 j++; /* this line has no lasting effect */
}

Formal Parameters

If a function is to use arguments, it must declare variables that will accept the values of the
arguments. These variables are called the formal parameters of the function. They behave like any
other local variables inside the function. As shown in the following program fragment, their
declarations occur after the function name and inside parentheses.

/* Return 1 if c is part of string s; 0 otherwise */
int is_in(char *s, char c)
{
 while(*s)
 if(*s==c) return 1;
 else s++;

 return 0;
}

Page 26

The function is_in() has two parameters: s and c. This function returns 1 if the character specified in
c is contained within the string s, 0 if it is not.

Even though the formal parameters receive the value of the arguments passed to the function, they
otherwise act like ''normal" local variables. For example, you can make assignments to a parameter
or use one in any allowable expression. Keep in mind that, as local variables, they are also dynamic
and are destroyed upon exit from the function.

Global Variables

Unlike local variables, global variables are known throughout the program and may be used by any
piece of code. Also, they will hold their value throughout the program's execution. You create global
variables by declaring them outside of any function. Any expression may access them, regardless of
what block of code that expression is in.

In the following program, the variable count has been declared outside of all functions. Although its
declaration occurs before the main() function, you could have placed it anywhere before its first use
as long as it was not in a function. However, it is usually best to declare global variables at the top of
the program.

#include <stdio.h>
int count; /* count is global */

void func1(void);
void func2(void);

int main(void)
{
 count = 100;
 func1();

 return 0;
}

void func1(void)
{
 int temp;

 temp = count;
 func2();
 printf("count is %
d", count); /* will print 100 */
}

void func2(void)

Page 27

{
 int count;

 for(count=l; count<10; count++)
 putchar('.');
}

Look closely at this program. Notice that although neither main() nor func1() has declared the
variable count , both may use it. func2(), however, has declared a local variable called count . When
func2() refers to count , it refers to only its local variable, not the global one. If a global variable
and a local variable have the same name, all references to that variable name inside the code block
in which the local variable is declared will refer to that local variable and have no effect on the
global variable.

Storage for global variables is in a fixed region of memory set aside for this purpose by the
compiler. Global variables are helpful when many functions in your program use the same data. You
should avoid using unnecessary global variables, however. They take up memory the entire time
your program is executing, not just when they are needed. In addition, using a global where a local
variable will do makes a function less general because it relies on something that must be defined
outside itself. Finally, using a large number of global variables can lead to program errors because
of unknown and unwanted side effects. A major problem in developing large programs is the
accidental changing of a variable's value because it was used elsewhere in the program. This can
happen in C if you use too many global variables in your programs.

The Four C Scopes

In the preceding discussion (and throughout the remainder of this book) the terms local and global
are used to describe in a general way the difference between identifiers that are declared within a
block and those declared outside all blocks. However, these two broad categories are more finely
subdivided by C. Standard C defines four scopes that determine the visibility of an identifier. They
are summarized here:

Scope Meaning

File scope Starts at the beginning of the file (also called a translation
unit) and ends with the end of the file. It refers only to those
identifiers that are declared outside of all functions. File scope
identifiers are visible throughout the entire file. Variables that
have file scope are global.

Page 28

Scope Meaning

Block scope Begins with the opening { of a block and ends with its
associated closing }. However, block scope also extends to
function parameters in a function definition. That is, function
parameters are included in a function's block scope. Variables
with block scope are local to their block.

Function prototype
scope

Identifiers declared in a function prototype; visible within the
prototype.

Function scope Begins with the opening { of a function and ends with its
closing }. Function scope applies only to labels. A label is
used as the target of a goto statement, and that label must be
within the same function as the goto.

For the most part, this book will continue to use the more general categories of local and global.
However, when a more finely grained distinction is required, one or more of the preceding scopes
will be explicitly used.

Type Qualifiers

C defines type qualifiers that control how variables may be accessed or modified. C89 defines two
of these qualifiers: const and volatile. (C99 adds a third, called restrict, which is described in Part
Two.) The type qualifiers must precede the type names that they qualify.

const

Variables of type const may not be changed by your program. (A const variable can be given an
initial value, however.) The compiler is free to place variables of this type into read-only memory
(ROM). For example,

const int a=10;

creates an integer variable called a with an initial value of 10 that your program may not modify.
However, you can use the variable a in other types of expressions. A const variable will receive its
value either from an explicit initialization or by some hardware-dependent means.

The const qualifier can be used to prevent the object pointed to by an argument to a function from
being modified by that function. That is, when a pointer is passed to a function, that function can
modify the actual object pointed to by the pointer. However, if the pointer is specified as const in
the parameter declaration, the function code won't be able to modify what it points to. For example,
the sp_to_dash() function in the

Page 29

following program prints a dash for each space in its string argument. That is, the string ''this is a
test" will be printed as "this-is-a-test". The use of const in the parameter declaration ensures that the
code inside the function cannot modify the object pointed to by the parameter.

#include <stdio.h>

void sp_to_dash(const char *str);

int main(void)
{
 sp_to_dash("this is a test");

 return 0;
}

void sp_to_dash(const char *str)
{
 while(*str) {
 if(*str== ' ') printf("%c", '-');
 else printf("%c", *str);
 str++;
 }
}

If you had written sp_to_dash() in such a way that the string would be modified, it would not
compile. For example, if you had coded sp_to_dash() as follows, you would receive a compile-
time error:

/* This is wrong. */
void sp_to_dash(const char *str)
{
 while(*str) {
 if(*str==' ') *str = '-'; /* can't do this; str is const */
 printf("%c", *str);
 str++;
 }
}

Many functions in the standard library use const in their parameter declarations. For example, the
strlen() function has this prototype:

size_t strlen(const char *str);

Page 30

Specifying str as const ensures that strlen() will not modify the string pointed to by str. In general,
when a standard library function has no need to modify an object pointed to by a calling argument, it
is declared as const.

You can also use const to verify that your program does not modify a variable. Remember, a
variable of type const can be modified by something outside your program. For example, a
hardware device may set its value. However, by declaring a variable as const, you can prove that
any changes to that variable occur because of external events.

volatile

The modifier volatile tells the compiler that a variable's value may be changed in ways not explicitly
specified by the program. For example, a global variable's address may be passed to the operating
system's clock routine and used to hold the system time. In this situation, the contents of the variable
are altered without any explicit assignment statements in the program. This is important because
most C compilers automatically optimize certain expressions by assuming that a variable's content is
unchanging if it does not occur on the left side of an assignment statement; thus, it might not be
reexamined each time it is referenced. Also, some compilers change the order of evaluation of an
expression during the compilation process. The volatile modifier prevents these changes.

You can use const and volatile together. For example, if 0x30 is assumed to be the value of a port
that is changed by external conditions only, the following declaration would prevent any possibility
of accidental side effects:

const volatile char *port = (const volatile char *) 0x30;

Storage Class Specifiers

C supports four storage class specifiers:

extern
static
register
auto

These specifiers tell the compiler how to store the subsequent variable. The general form of a
variable declaration that uses one is shown here:

storage_specifier type var_name;

Notice that the storage specifier precedes the rest of the variable declaration.

NOTE

Both C89 and C99 state that typedef is a storage class specifier for the purposes of
syntactic convenience, but it is not a storage class specifier in the common meaning
of the term. typedef is examined later in this book.

Page 31

extern

Before examining extern, a brief description of C linkage is in order. C defines three categories of
linkage: external, internal, and none. In general, functions and global variables have external
linkage. This means they are available to all files that constitute a program. File scope objects
declared as static (described in the next section) have internal linkage. These are known only within
the file in which they are declared. Local variables have no linkage and are therefore known only
within their own block.

The principal use of extern is to specify that an object is declared with external linkage elsewhere in
the program. To understand why this is important, it is necessary to understand the difference
between a declaration and a definition. A declaration declares the name and type of an object. A
definition causes storage to be allocated for the object. The same object may have many
declarations, but there can be only one definition.

In most cases, variable declarations are also definitions. However, by preceding a variable name
with the extern specifier, you can declare a variable without defining it. Thus, when you need to
refer to a variable that is defined in another part of your program, you can declare that variable using
extern.

Here is an example that uses extern. Notice that the global variables first and last are declared after
main().

#include <stdio.h>

int main(void)
{
 extern int first, last; /* use global vars */

 printf("%d %d", first, last);

 return 0;
}

/* global definition of first and last */
int first = 10, last = 20;

This program outputs 10 20 because the global variables first and last used by the printf()
statement are initialized to these values. Because the extern declaration tells the compiler that first
and last are declared elsewhere (in this case, later in the same file), the program can be compiled
without error even though first and last are used prior to their definition.

It is important to understand that the extern variable declarations as shown in the preceding program
are necessary only because first and last had not yet been declared prior to their use in main(). Had
their declarations occurred prior to main(), there

Page 32

would have been no need for the extern statement. Remember, if the compiler finds a variable that
has not been declared within the current block, the compiler checks whether it matches any of the
variables declared within enclosing blocks. If it does not, the compiler then checks the global
variables. If a match is found, the compiler assumes that is the variable being referenced. The extern
specifier is needed when you want to use a variable that is declared later in the file.

As mentioned, extern allows you to declare a variable without defining it. However, if you give that
variable an initialization, the extern declaration becomes a definition. This is important because, as
stated earlier, an object can have multiple declarations, but only one definition.

An important use of extern relates to multiple-file programs. C allows a program to be spread across
two or more files, compiled separately, and then linked together. When this is the case, there must
be some way of telling all the files about the global variables required by the program. The best (and
most portable) way to do this is to declare all of your global variables in one file and use extern
declarations in the other, as in Figure 2-1.

In File 2, the global variable list was copied from File 1, and the extern specifier was added to the
declarations. The extern specifier tells the compiler that the variable types and names that follow it
have been defined elsewhere. In other words, extern lets the compiler know what the types and
names are for these global variables without

File One File Two

int x, y;
char ch;
int main(void)
{
 /* . . . */
}

void func1(void)
{
 x = 123;
}

extern int x, y;
extern char ch;
void func22(void)
{
 x = y / 10;
}

void func23(void)
{
 y = 10;
}

Figure 2-1
Using global variables in separately compiled modules

Page 33

actually creating storage for them again. When the linker links the two modules, all references to the
external variables are resolved.

One last point: In real-world, multiple-file programs, extern declarations are normally contained in
a header file that is simply included with each source code file. This is both easier and less error
prone than manually duplicating extern declarations in each file.

NOTE

extern can also be applied to a function declaration, but doing so is redundant.

static Variables

Variables declared as static are permanent variables within their own function or file. Unlike global
variables, they are not known outside their function or file, but they maintain their values between
calls. This feature makes them useful when you write generalized functions and function libraries
that other programmers may use. The static modifier has different effects upon local variables and
global variables.

static Local Variables

When you apply the static modifier to a local variable, the compiler creates permanent storage for it,
much as it creates storage for a global variable. The key difference between a static local variable
and a global variable is that the static local variable remains known only to the block in which it is
declared. In simple terms, a static local variable is a local variable that retains its value between
function calls.

static local variables are very important to the creation of stand-alone functions because several
types of routines must preserve a value between calls. If static variables were not allowed, globals
would have to be used, opening the door to possible side effects. An example of a function that
benefits from a static local variable is a number -series generator that produces a new value based on
the previous one. You could use a global variable to hold this value. However, each time the
function is used in a program, you would have to declare that global variable and make sure it did
not conflict with any other global variables already in place. The better solution is to declare the
variable that holds the generated number to be static, as shown here:

int series(void)
{
 static int series_num;

 series_num = series_num+23;
 return series_num;
}

In this example, the variable series_num stays in existence between function calls, instead of
coming and going the way a normal local variable would. This means that

Page 34

each call to series() can produce a new member of the series based on the preceding number
without declaring that variable globally.

You can give a static local variable an initialization value. This value is assigned only once, at
program start-up— not each time the block of code is entered, as with normal local variables. For
example, this version of series() initializes series_num to 100:

int series(void)
{
 static int series_num = 100;

 series_num = series_num+23;
 return series_num;
}

As the function now stands, the series will always begin with the value 123. While this is acceptable
for some applications, most series generators need to let the user specify the starting point. One way
to give series_num a user-specified value is to make series_num a global variable and then let the
user set its value. However, not defining series_num as global was the point of making it static.
This leads to the second use of static.

static Global Variables

Applying the specifier static to a global variable instructs the compiler to create a global variable
known only to the file in which it is declared. Thus, a static global variable has internal linkage (as
described under the extern statement). This means that even though the variable is global, routines
in other files have no knowledge of it and cannot alter its contents directly, keeping it free from side
effects. For the few situations where a local static cannot do the job, you can create a small file that
contains only the functions that need the global static variable, separately compile that file, and use
it without fear of side effects.

To illustrate a global static, the series generator example from the previous section is recoded so
that a seed value initializes the series through a call to a second function called series_start(). The
entire file containing series(), series_start(), and series_num is shown here:

/* This must all be in one file - preferably by itself. */

static int series_num;
void series_start(int seed);
int series(void);

int series(void)
{

TE
AM
FL
Y

Team-Fly®

Page 35

 series_num = series_num+23;
 return series_num;
}

/* initialize series_num */
void series_start(int seed)
{
 series_num = seed;
}

Calling series_start() with some known integer value initializes the series generator. After that,
calls to series() generate the next element in the series.

To review: The names of local static variables are known only to the block of code in which they are
declared; the names of global static variables are known only to the file in which they reside. If you
place the series() and series_start() functions in a library, you can use the functions but cannot
reference the variable series_num, which is hidden from the rest of the code in your program. In
fact, you can even declare and use another variable called series_num in your program (in another
file, of course). In essence, the static modifier permits variables that are known only to the functions
that need them, without unwanted side effects.

By using static variables, you can hide portions of your program from other portions. This can be a
tremendous advantage when you are trying to manage a very large and complex program.

register Variables

The register storage specifier originally applied only to variables of type int, char, or pointer types.
However, in Standard C, register's definition has been broadened so that it can be applied to any
type of variable.

Originally, the register specifier requested that the compiler keep the value of a variable in a
register of the CPU rather than in memory, where normal variables are stored. This meant that
operations on a register variable could occur much faster than on a normal variable because the
register variable was actually held in the CPU and did not require a memory access to determine or
modify its value.

Today, the definition of register has been greatly expanded, and it now may be applied to any type
of variable. Both C89 and C99 simply state that ''access to the object be as fast as possible." In
practice, characters and integers are still stored in registers in the CPU. Larger objects, such as
arrays, obviously cannot be stored in a register, but they may still receive preferential treatment by
the compiler. Depending upon the implementation of the C compiler and its operating environment,
register variables may be handled in any way deemed fit by the compiler's implementor. In fact, it is
technically permissible

Page 36

for a compiler to ignore the register specifier altogether and treat variables modified by it as if they
were ''normal" variables, but this is seldom done in practice.

You can only apply the register specifier to local variables and to the formal parameters in a
function. Global register variables are not allowed. Here is an example that uses register variables.
This function computes the result of Me for integers.

int int pwr(register int m, register int e)
{
 register int temp;

 temp = 1;

 for(; e; e--) temp = temp * m;
 return temp;
}

In this example, e, m, and temp are declared as register variables because they are all used within
the loop. The fact that register variables are optimized for speed makes them ideal for control of or
use in loops. Generally, register variables are used where they will do the most good, which is often
in places where many references will be made to the same variable. This is important because you
can declare any number of variables as being of type register, but not all will receive the same
access speed optimization.

The number of register variables optimized for speed allowed within any one code block is
determined by both the environment and the specific implementation of C. You don't have to worry
about declaring too many register variables because the compiler automatically transforms register
variables into nonregister variables when the limit is reached. (This ensures portability of code
across a broad line of processors.)

Usually at least two register variables of type char or int can actually be held in the registers of the
CPU. Because environments vary widely, consult your compiler's user manual to determine whether
you can apply any other types of optimization options.

In C, you cannot obtain the address of a register variable by using the & operator (discussed later in
this chapter). This makes sense because a register variable may be stored in a register of the CPU,
which is not usually addressable.

Although the description of register has been broadened beyond its traditional meaning, in practice
it still generally has a significant effect only with integer and character types. Thus, you should
probably not count on substantial speed improvements for other variable types.

Variable Initializations

You can give variables a value as you declare them by placing an equal sign and a constant after the
variable name. The general form of initialization is

type variable_name = constant;

Page 37

Some examples are

char ch = 'a';
int first = 0;
double balance = 123.23;

Global and static local variables are initialized only at the start of the program. Local variables
(excluding static local variables) are initialized each time the block in which they are declared is
entered. Local variables that are not initialized have unknown values before the first assignment is
made to them. Uninitialized global and static local variables are automatically set to zero.

Constants

Constants refer to fixed values that the program may not alter. Constants can be of any of the basic
data types. The way each constant is represented depends upon its type. Constants are also called
literals.

Character constants are enclosed between single quotes. For example, 'a' and '%' are both character
constants. C defines both multibyte characters, which consist of one or more bytes, and wide
characters (which are usually 16 bits long). Multibyte and wide characters are used primarily to
represent languages that have large character sets. To specify a multibyte character, enclose the
characters within single quotes, for example, 'xy'. To specify a wide character constant, precede the
character with an L. For example:

wchar_t wc;
wc = L'A';

Here, wc is assigned the wide-character constant equivalent of A. The type of wide characters is
wchar_t, which is defined in the <stddef.h> header file, and is not a built-in type.

Integer constants are specified as numbers without fractional components. For example, 10 and –100
are integer constants. Floating-point constants require the decimal point followed by the number's
fractional component. For example, 11.123 is a floating-point constant. C also allows you to use
scientific notation for floating-point numbers.

By default, the compiler fits a numeric constant into the smallest compatible data type that will hold
it. Therefore, assuming 16-bit integers, 10 is int by default, but 103,000 is a long int. Even though
the value 10 could fit into a character type, the compiler will not cross type boundaries. The only
exception to the smallest type rule is floating-point constants, which are assumed to be doubles.

For most programs you will write, the compiler defaults are adequate. However, you can specify
precisely the type of numeric constant you want by using a suffix. For

Page 38

floating-point types, if you follow the number with an F, the number is treated as a float. If you
follow it with an L, the number becomes a long double. For integer types, the U suffix stands for
unsigned and the L for long. The type suffixes are not case dependent, and you can use lowercase,
if you like. For example, both F and f specify a float constant. Here are some examples:

Data Type Constant Examples

int 1 123 21000 –234

long int 35000L –34L

unsigned int 10000U 987u 40000U

float 123.23F 4.34e–3f

double 123.23 1.0 –0.9876324

long double 1001.2L

C99 also allows you to specify a long long integer constant by specifying the suffix LL (or 11).

Hexadecimal and Octal Constants

It is sometimes easier to use a number system based on 8 or 16 rather than 10. The number system
based on 8 is called octal and uses the digits 0 through 7. In octal, the number 10 is the same as 8 in
decimal. The base 16 number system is called hexadecimal and uses the digits 0 through 9 plus the
letters A through F, which stand for 10, 11, 12, 13, 14, and 15, respectively. For example, the
hexadecimal number 10 is 16 in decimal. Because these two number systems are used frequently, C
allows you to specify integer constants in hexadecimal or octal instead of decimal. A hexadecimal
constant must consist of a Ox followed by the constant in hexadecimal form. An octal constant
begins with a 0. Here are some examples:

int hex = 0x80;
int oct = 012;

/* 128 in decimal */
/* 10 in decimal */

String Constants

C supports another type of constant: the string. A string is a set of characters enclosed in double
quotes. For example, ''this is a test" is a string. You have seen examples of strings in some of the
printf() statements in the sample programs. Although C allows you to define string constants, it
does not formally have a string data type.

You must not confuse strings with characters. A single character constant is enclosed in single
quotes, as in 'a'. However, "a" is a string containing only one letter.

Page 39

Backslash Character Constants

Enclosing character constants in single quotes works for most printing characters. A few, however,
such as the carriage return, can't be. For this reason, C includes the special backslash character
constants, shown in Table 2-2, so that you may easily enter these special characters as constants.
These are also referred to as escape sequences. You should use the backslash codes instead of their
ASCII equivalents to help ensure portability.

For example, the following program outputs a new line and a tab and then prints the string This is a
test.

#include <stdio.h>

int main(void)
{
 printf(''\n\tThis is a test.");

 return 0;
}

Code Meaning

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\" Double quote

\' Single quote

\ \ Backslash

\v Vertical tab

\a Alert

\? Question mark

\N Octal constant (where N is an octal constant)

\xN Hexadecimal constant (where N is a hexadecimal constant)

Table 2 -2. Backslash Codes

Page 40

Operators

C is very rich in built-in operators. In fact, it places more significance on operators than do most
other computer languages. There are four main classes of operators: arithmetic, relational , logical,
and bitwise. In addition, there are some special operators, such as the assignment operator, for
particular tasks.

The Assignment Operator

You can use the assignment operator within any valid expression. This is not the case with most
computer languages (including Pascal, BASIC, and FORTRAN), which treat the assignment
operator as a special case statement. The general form of the assignment operator is

variable_name = expression;

where an expression may be as simple as a single constant or as complex as you require. C uses a
single equal sign to indicate assignment (unlike Pascal or Modula-2, which use the := construct).
The target, or left part, of the assignment must be an object, such as a variable, that can receive a
value.

Frequently in literature on C and in compiler error messages you will see these two terms: lvalue
and rvalue. Simply put, an lvalue is an object. If that object can occur on the left side of an
assignment statement, it is called a modifiable lvalue. Thus, for all practical purposes, a modifiable
lvalue means ''variable." The term rvalue refers to expressions on the right side of an assignment and
simply means the value of an expression.

Type Conversion in Assignments

When variables of one type are mixed with variables of another type, a type conversion will occur.
In an assignment statement, the type conversion rule is easy: The value of the right side (expression
side) of the assignment is converted to the type of the left side (target variable), as illustrated here:

int x;
char ch;
float f;

void func(void)
{

 ch = x;
 x = f;
 f = ch;
 f = x;
}

/* line 1 */
/* line 2 */
/* line 3 */
/* line 4 */

Page 41

In line 1, the left high-order bits of the integer variable x are lopped off, leaving ch with the lower 8
bits. If x were between 255 and 0, ch and x would have identical values. Otherwise, the value of ch
would reflect only the lower-order bits of x. In line 2, x will receive the nonfractional part of f. In
line 3, f will convert the 8-bit integer value stored in ch to the same value in the floating-point
format. This also happens in line 4, except that f will convert an integer value into floating-point
format.

When converting from integers to characters and long integers to integers, the appropriate amount of
high-order bits will be removed. In many 16-bit environments, this means that 8 bits will be lost
when going from an integer to a character, and 16 bits will be lost when going from a long integer to
an integer. For 32-bit environments, 24 bits will be lost when converting from an integer to a
character, and 16 bits will be lost when converting from an integer to a short integer.

Table 2-3 summarizes several common assignment type conversions. Remember that the conversion
of an int to a float, or a float to a double, and so on, does not add any precision or accuracy. These
kinds of conversions only change the form in which

Target Type Expression Type Possible Info Loss

signed char char If value > 127, target is
negative

char short int High-order 8 bits

char int (16 bits) High-order 8 bits

char int (32 bits) High-order 24 bits

char long int High-order 24 bits

short int int (16 bits) None

short int int (32 bits) High-order 16 bits

int (16 bits) long int High-order 16 bits

int (32 bits) long int None

long int (32 bits) long long int (64 bits) High-order 32 bits (applies to
C99 only)

int float Fractional part and possibly
more

float double Precision, result rounded

double long double Precision, result rounded

Table 2 -3. Outcome of Common Type Conversions

Page 42

the value is represented. In addition, some compilers always treat a char variable as positive, no
matter what value it has, when converting it to an int or float . Other compilers treat char variable
values greater than 127 as negative numbers when converting. Generally speaking, you should use
char variables for characters and use ints, short ints, or signed chars when needed to avoid
possible portability problems.

To use Table 2-3 to make a conversion not shown, simply convert one type at a time until you
finish. For example, to convert from double to int, first convert from double to float and then from
float to int.

Multiple Assignments

You can assign many variables the same value by using multiple assignments in a single statement.
For example, this program fragment assigns x, y, and z the value 0:

x = y = z = 0;

In professional programs, variables are frequently assigned common values using this method.

Compound Assignments

There is a variation on the assignment statement, called compound assignment, that simplifies the
coding of a certain type of assignment operations. For example,

x = x+10;

can be written as

x += 10;

The operator += tells the compiler to assign to x the value of x plus 10.

Compound assignment operators exist for all the binary operators (those that require two operands).
In general, statements like

var = var operator expression

can be rewritten as

var operator = expression

Page 43

For another example,

x = x-100;

is the same as

x -= 100;

Because compound assignment is more compact than the corresponding = equivalent, compound
assignment is also sometimes referred to as shorthand assignment. Compound assignment is widely
used in professionally written C programs; you should be familiar with it.

Arithmetic Operators

Table 2-4 lists C's arithmetic operators. The operators +, –, *, and / work as they do in most other
computer languages. You can apply them to almost any built-in data type. When you apply / to an
integer or character, any remainder will be truncated. For example, 5/2 will equal 2 in integer
division.

The modulus operator % also works in C as it does in other languages, yielding the remainder of an
integer division. However, you cannot use it on floating-point types. The following code fragment
illustrates %:

int x, y;

x = 5;
y = 2;

printf("%d ", x/y); /* will display 2 */
printf(''%d ", x%y); /* will display 1, the remainder of
 the integer division */

x = 1;
y = 2;

printf("%d %d", x/y, x%y); /* will display 0 1 */

The last line prints a 0 and a 1 because 1/2 in integer division is 0 with a remainder of 1.

Page 44

Operator Action

– Subtraction, also unary minus

+ Addition

* Multiplication

/ Division

% Modulus

–– Decrement

++ Increment

Table 2 -4. Arithmetic Operators

The unary minus multiplies its operand by –1. That is, any number preceded by a minus sign
switches its sign.

The Increment and Decrement Operators

C includes two useful operators that simplify two common operations. These are the increment and
decrement operators, ++ and – –. The operator ++ adds 1 to its operand, and – – subtracts 1. In other
words:

x = x+1;

is the same as

++x;

and

x = X–1;

is the same as

x––;

TE
AM
FL
Y

Team-Fly®

Page 45

Both the increment and decrement operators may either precede (prefix) or follow (postfix) the
operand. For example,

x = x+1;

can be written

++x;

or

x++;

There is, however, a difference between the prefix and postfix forms when you use these operators
in a larger expression. When an increment or decrement operator precedes its operand, the
increment or decrement operation is performed before obtaining the value of the operand for use in
the expression. If the operator follows its operand, the value of the operand is obtained before
incrementing or decrementing it. For instance,

x = 10;
y = ++x;

sets y to 11. However, if you write the code as

x = 10;
y = x++;

y is set to 10. Either way, x is set to 11; the difference is in when it
happens.

Most C compilers produce very fast, efficient object code for increment and decrement operations—
code that is better than that generated by using the equivalent assignment statement. For this reason,
you should use the increment and decrement operators when you can.

Here is the precedence of the arithmetic operators:

Highest ++ – –

– (unary minus)

* / %

Lowest + –

Page 46

Operators on the same level of precedence are evaluated by the compiler from left to right. Of
course, you can use parentheses to alter the order of evaluation. C treats parentheses in the same way
as virtually all other computer languages. Parentheses force an operation, or set of operations, to
have a higher level of precedence.

Relational and Logical Operators

In the term relational operator, relational refers to the relationships that values can have with one
another. In the term logical operator, logical refers to the ways these relationships can be connected.
Because the relational and logical operators often work together, they are discussed together here.

The idea of true and false underlies the concepts of relational and logical operators. In C, true is any
value other than zero. False is zero. Expressions that use relational or logical operators return 0 for
false and 1 for true.

NOTE

Like C89, C99 defines true as nonzero and false as zero. However, C99 also defines
the _Bool data type, which can hold the values 1 and 0. See Part Two for details.

Table 2-5 shows the relational and logical operators. The truth table for the logical operators is
shown here using 1's and 0's.

p q p && q p || q !p

0 0 0 0 1

0 1 0 1 1

1 1 1 1 0

1 0 0 1 0

Both the relational and logical operators are lower in precedence than the arithmetic operators. That
is, an expression like 10 > 1+12 is evaluated as if it were written 10 > (1+12). Of course, the result is
false.

You can combine several operations into one expression, as shown here:

10>5 && !(10<9) | | 3<=4

In this case, the result is true.

Although C does not contain an exclusive OR (XOR) logical operator, you can easily create a
function that performs this task by using the other logical operators. The outcome of an XOR
operation is true if and only if one operand (but not both) is true. The following program contains
the function xor(), which returns the outcome of an exclusive OR operation performed on its two
arguments.

#include <stdio.h>

Page 47

int xor(int a, int b);

int main (void)
{
 printf(''%d", xor(1, 0));
 printf("%d", xor(1, 1));
 printf("%d", xor(0, 1));
 printf("%d", xor(0, 0));

 return 0;
}

/* Perform a logical XOR operation using the
 two arguments. */
int xor(int a, int b)
{
 return (a || b)&& !(a && b);
}

 Relational Operators

Operator Action

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

= = Equal

!= Not equal

 Logical Operators

Operator Action

&& AND

| | OR

! NOT

Table 2 -5. Relational and Logical Operators

The following table shows the relative precedence of the relational and logical operators:

As with arithmetic expressions, you can use parentheses to alter the natural order of evaluation in a
relational and/or logical expression. For example,

is false. However, when you add parentheses to the same expression, as shown here, the result is
true.

Remember, all relational and logical expressions produce a result of either 1 or 0. Therefore, the
following program fragment is not only correct, but will print the number 1.

Unlike many other languages, C supports a full complement of bitwise operators. Since C was
designed to take the place of assembly language for most programming tasks, it needed to be able to
support many operations that can be done in assembler, including operations on bits. Bitwise
operation refers to testing, setting, or shifting the actual bits in a byte or word, which correspond to
the standard char and int data types and variants.

Page 48

Highest !

> >= < <=
= = !=
&&

Lowest | |

!0&&0 | | 0

!(0 && 0) | | 0

int x;

x = 100;
printf(''%d", x>10);

Bitwise Operators

Page 49

You cannot use bitwise operations on float , double, long double, void , or other more complex
types. Table 2-6 lists the operators that apply to bitwise operations. These operations are applied to
the individual bits of the operands.

The bitwise AND, OR, and NOT (one's complement) are governed by the same truth table as their
logical equivalents, except that they work bit by bit. The exclusive OR has the truth table shown
here:

p q p ^q

0 0 0

1 0 1

1 1 0

0 1 1

As the table indicates, the outcome of an XOR is true only if exactly one of the operands is true;
otherwise, it is false.

Bitwise operations most often find application in device drivers— such as modem programs, disk
file routines, and printer routines— because the bitwise operations can be used to mask off certain
bits, such as parity. (The parity bit confirms that the rest of the bits in the byte are unchanged. It is
often the high-order bit in each byte.)

Operator Action

& AND

| OR

^ Exclusive OR (XOR)

~ One's complement (NOT)

>> Shift right

<< Shift left

Table 2 -6. Bitwise Operators

Page 50

Think of the bitwise AND as a way to clear a bit. That is, any bit that is 0 in either operand causes
the corresponding bit in the outcome to be set to 0. For example, the following function reads a
character from the modem port and resets the parity bit to 0:

char get_char_from_modem(void)
{
 char ch;

 ch = read_modem(); /* get a character from the
 modem port */
 return(ch & 127);
}

Parity is often indicated by the eighth bit, which is set to 0 by ANDing it with a byte that has bits 1
through 7 set to 1 and bit 8 set to 0. The expression ch & 127 means to AND together the bits in ch
with the bits that make up the number 127. The net result is that the eighth bit of ch is set to 0. In the
following example, assume that ch had received the character A and had the parity bit set:

The bitwise OR, as the reverse of AND, can be used to set a bit. Any bit that is set to 1 in either
operand causes the corresponding bit in the outcome to be set to 1. For example, the following is
128 | 3:

An exclusive OR, usually abbreviated XOR, will set a bit on, if and only if the bits being compared
are different. For example, 127 ^120 is

Page 51

Remember, relational and logical operators always produce a result that is either true or false,
whereas the similar bitwise operations may produce any arbitrary value in accordance with the
specific operation. In other words, bitwise operations may produce values other than 0 or 1, while
logical operators will always evaluate to 0 or 1.

The bit-shift operators, >> and <<, move all bits in a variable to the right or left as specified. The
general form of the shift-right statement is

variable >> number of bit positions

The general form of the shift-left statement is

variable << number of bit positions

As bits are shifted off one end, zeroes are brought in the other end. (In the case of a signed, negative
integer, a right shift will cause a 1 to be brought in so that the sign bit is preserved.) Remember, a
shift is not a rotate. That is, the bits shifted off one end do not come back around to the other. The
bits shifted off are lost.

Bit-shift operations can be very useful when you are decoding input from an external device, such as
a D/A converter, and reading status information. The bitwise shift operators can also quickly
multiply and divide integers. A shift right effectively divides a number by 2 and a shift left
multiplies it by 2, as shown in Table 2-7. The following program illustrates the shift operators:

/* A bit shift example. */
#include <stdio.h>

int main(void)
{
 unsigned int i;
 int j;

 i = 1;

 /* left shifts */
 for(j=0; j<4; j++) {
 i = i << 1; /* left shift i by 1, which
 is same as a multiply by 2 */
 printf(''Left shift %d: %d\n", j, i);
 }

 /* right shifts */
 for(j=0; j<4; j++) {
 i = i >> 1; /* right shift i by 1, which

Page 52

 is same as a division by 2 */
 printf(''Right shift %d: %d\n", j, i);
 }

 return 0;
}

The one's complement operator, ~, reverses the state of each bit in its operand. That is, all 1's are set
to 0, and all 0's are set to 1.

The bitwise operators are often used in cipher routines. If you want to make a disk file appear
unreadable, perform some bitwise manipulations on it. One of the simplest methods is to
complement each byte by using the one's complement to reverse each bit in the byte, as is shown
here:

Notice that a sequence of two complements in a row always produces the original number. Hence,
the first complement represents the coded version of that byte. The second complement decodes the
byte to its original value.

unsigned char x;
x as each statement

executes value of x

 x = 7; 00000111 7

 x = x<<l; 00001110 14

 x = x<<3; 01110000 112

 x = x<<2; 11000000 192

 x = x>>l; 01100000 96

 x = x>>2; 00011000 24

Each left shift multiplies by 2. Notice that information has been lost after x<<2 because a bit was
shifted off the end.

Each right shift divides by 2. Notice that subsequent divisions do not bring back any lost bits.

Table 2 -7. Multiplication and Division with Shift Operators

Page 53

You could use the encode() function shown here to encode a character.

/* A simple cipher function. */
char encode(char ch)
{
 return(~ch); /* complement it */
}

Of course, a file encoded using encode() would be very easy to crack!

The ? Operator

C contains a powerful and convenient operator that replaces certain statements of the if-then-else
form. The ternary operator ? takes the general form

Exp1 ? Exp2: Exp3;

where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the
colon.

The ? operator works like this: Exp1 is evaluated. If it is true, Exp2 is evaluated and becomes the
value of the expression. If Exp1 is false, Exp3 is evaluated, and its value becomes the value of the
expression. For example, in

x = 10;

y = x>9 ? 100 : 200;

y is assigned the value 100. If x had been less than 9, y would have received the value 200. The
same code written using the if-else statement is

x = 10;

if(x>9) y = 100;
else y = 200;

The ? operator will be discussed more fully in Chapter 3 in relationship to the other conditional
statements.

The & and * Pointer Operators

A pointer is the memory address of an object. A pointer variable is a variable that is specifically
declared to hold a pointer to an object of its specified type. Pointers are one of C's most powerful
features, and they are used for a wide variety of purposes. For example, they can provide a fast
means of referencing array elements. They allow

Page 54

functions to modify their calling parameters. They support linked lists, binary trees, and other
dynamic data structures. Chapter 5 is devoted exclusively to pointers. This chapter briefly covers the
two operators that are used to manipulate pointers.

The first pointer operator is &, a unary operator that returns the memory address of its operand.
(Remember, a unary operator requires only one operand.) For example,

m = &count;

places into m the memory address of the variable count . This address is the computer's internal
location of the variable. It has nothing to do with the value of count . You can think of & as meaning
''the address of." Therefore, the preceding assignment statement means "m receives the address of
count ."

To better understand this assignment, assume that the variable count is at memory location 2000.
Also assume that count has a value of 100. Then, after the previous assignment, m will have the
value 2000.

The second pointer operator is *, which is the complement of &. The * is a unary operator that
returns the value of the object located at the address that follows it. For example, if m contains the
memory address of the variable count ,

q = *m;

places the value of count into q. Now q has the value 100 because 100 is stored at location 2000,
the memory address that was stored in m. Think of * as meaning "at address." In this case, you
could read the statement as "q receives the value at address m."

Unfortunately, the multiplication symbol and the "at address" symbol are the same, and the symbol
for the bitwise AND and the "address of" symbol are the same. These operators have no relationship
to each other. Both & and * have a higher precedence than all other arithmetic operators except the
unary minus, with which they share equal precedence.

Variables that will hold pointers must be declared as such, by putting * in front of the variable name.
This indicates to the compiler that it will hold a pointer to that type of variable. For example, to
declare ch as a pointer to a character, write

char *ch;

It is important to understand that ch is not a character but a pointer to a character— there is a big
difference. The type of data that a pointer points to, in this case char, is called the base type of the
pointer. The pointer variable itself is a variable that holds the address to an object of the base type.
Thus, a character pointer (or any type of pointer) is of sufficient size to hold an address as defined
by the architecture of the host computer. It is the base type that determines what that address
contains.

TE
AM
FL
Y

Team-Fly®

Page 55

You can mix both pointer and nonpointer variables in the same declaration statement. For example,

int x, *y, count;

declares x and count as integer types and y as a pointer to an integer type.

The following program uses * and & operators to put the value 10 into a variable called target. As
expected, this program displays the value 10 on the screen.

#include <stdio.h>

int main(void)
{
 int target, source;
 int *m;

 source = 10;
 m = &source;
 target = *m;

 printf("%d", target);

 return 0;
}

The Compile-Time Operator sizeof

sizeof is a unary compile-time operator that returns the length, in bytes, of the variable or
parenthesized type specifier that it precedes. For example, assuming that integers are 4 bytes and
doubles are 8 bytes, this fragment will display 8 4.

double f;

printf("%d ", sizeof f);
printf(''%d", sizeof(int));

Remember, to compute the size of a type, you must enclose the type name in parentheses. This is not
necessary for variable names, although there is no harm done if you do so.

C defines (using typedef) a special type called size_t, which corresponds loosely to an unsigned
integer. Technically, the value returned by sizeof is of type size_t . For all

Page 56

practical purposes, however, you can think of it (and use it) as if it were an unsigned integer value.

sizeof primarily helps to generate portable code that depends upon the size of the built-in data types.
For example, imagine a database program that needs to store six integer values per record. If you
want to port the database program to a variety of computers, you must not assume the size of an
integer, but must determine its actual length using sizeof. This being the case, you could use the
following routine to write a record to a disk file:

/* Write 6 integers to a disk file. */
void put_rec(int rec[6], FILE *fp)
{
 int len;

 len = fwrite(rec, sizeof(int)*6, 1, fp);
 if(len != 1) printf(''Write Error");
}

Coded as shown, put_rec() compiles and runs correctly in any environment, including those that
use 16- and 32-bit integers.

One final point: sizeof is evaluated at compile time, and the value it produces is treated as a constant
within your program.

The Comma Operator

The comma operator strings together several expressions. The left side of the comma operator is
always evaluated as void. This means that the expression on the right side becomes the value of the
total comma-separated expression. For example,

x = (y=3, y+1);

first assigns y the value 3 and then assigns x the value 4. The parentheses are necessary because the
comma operator has a lower precedence than the assignment operator.

Essentially, the comma causes a sequence of operations. When you use it on the right side of an
assignment statement, the value assigned is the value of the last expression of the comma-separated
list.

The comma operator has somewhat the same meaning as the word "and" in English, as used in the
phrase "do this and this and this."

The Dot (.) and Arrow (–>) Operators

In C, the . (dot) and the –> (arrow) operators access individual elements of structures and unions.
Structures and unions are compound data types that may be referenced under a single name. (See
Chapter 7 for a discussion of structures and unions.)

Page 57

The dot operator is used when working with a structure or union directly. The arrow operator is used
with a pointer to a structure or union. For example, given the fragment,

struct employee
{
 char name[80];
 int age;
 float wage;
} emp;

struct employee *p = &emp; /* address of emp into p */

you would write the following code to assign the value 123.23 to the wage member of structure
variable emp:

emp.wage = 123.23;

However, the same assignment using a pointer to emp would be

p->wage = 123.23;

The [] and () Operators

Parentheses are operators that increase the precedence of the operations inside them. Square
brackets perform array indexing (arrays are discussed fully in Chapter 4). Given an array, the
expression within square brackets provides an index into that array. For example,

#include <stdio.h>
char s[80];

int main(void)
{
 s[3] = 'X';
 printf(''%c", s
[3]);

 return 0;
}

first assigns the value 'X' to the fourth element (remember, all arrays begin at 0) of array s, and then
prints that element.

Page 58

Precedence Summary

Table 2-8 lists the precedence of all operators defined by C. Note that all operators, except the unary
operators and ?, associate from left to right. The unary operators (*, &, –) and ? associate from right
to left.

Expressions

Operators, constants, functions, and variables are the constituents of expressions. An expression in C
is any valid combination of these elements. Because most expressions tend to follow the general
rules of algebra, they are often taken for granted. However, a few aspects of expressions relate
specifically to C.

Order of Evaluation

C does not specify the order in which the subexpressions of an expression are evaluated. This leaves
the compiler free to rearrange an expression to produce more

Highest () [] –>.

 ! ~ ++ – – – (type) * & sizeof

 * / %

 + –

 << >>

 < <= > >=

 == !=

 &

 ^

 |

 &&

 | |

 ?:

 = += –= *= /= etc.

Lowest ,

Table 2 -8. Precedence of C Operators

Page 59

optimal code. However, it also means that your code should never rely upon the order in which
subexpressions are evaluated. For example, the expression

x = f1() + f2();

does not ensure that f1() will be called before f2().

Type Conversion in Expressions

When constants and variables of different types are mixed in an expression, they are all converted to
the same type. The compiler converts all operands up to the type of the largest operand, which is
called type promotion. First, all char and short int values are automatically elevated to int. This
process is called integral promotion. (In C99, an integer promotion may also result in a conversion
to unsigned int .) Once this step has been completed, all other conversions are done operation by
operation, as described in the following type conversion algorithm:

IF an operand is a long double
THEN the second is converted to long double
ELSE IF an operand is a double
THEN the second is converted to double
ELSE IF an operand is a float
THEN the second is converted to float
ELSE IF an operand is an unsigned long
THEN the second is converted to unsigned long
ELSE IF an operand is long
THEN the second is converted to long
ELSE IF an operand is unsigned int
THEN the second is converted to unsigned int

There is one additional special case: If one operand is long and the other is unsigned int, and if the
value of the unsigned int cannot be represented by a long, both operands are converted to unsigned
long.

NOTE

See Part Two for a description of the C99 integer promotion rules.

Once these conversion rules have been applied, each pair of operands is of the same type, and the
result of each operation is the same as the type of both operands.

For example, consider the type conversions that occur in Figure 2-2. First, the character ch is
converted to an integer. Then the outcome of ch/i is converted to a double because f*d is double.
The outcome of f+i is float, because f is a float. The final result is double.

Page 60

Figure 2-2
A type conversion example

Casts

You can force an expression to be of a specific type by using a cast. The general form of a cast is

(type) expression

where type is a valid data type. For example, to cause the expression x/2 to evaluate to type float ,
write

(float) x/2

Casts are technically operators. As an operator, a cast is unary and has the same precedence as any
other unary operator.

Casts can be very useful. For example, suppose you want to use an integer for loop control, yet to
perform computation on it requires a fractional part, as in the following program:

#include <stdio.h>

int main(void) /* print i and i/2 with fractions */
{
 int i;

 for(i=l; i<=100; ++i)
 printf(''%d / 2 is: %f\n", i, (float) i /2);

Page 61

 return 0;

}

Without the cast (float), only an integer division would have been performed. The cast ensures that
the fractional part of the answer is displayed.

Spacing and Parentheses

You can add tabs and spaces to expressions to make them easier to read. For example, the following
two expressions are the same:

x=10/y~(127/x);

x = 10 / y ~(127/x);

Redundant or additional parentheses do not cause errors or slow down the execution of an
expression. You should use parentheses to clarify the exact order of evaluation, both for yourself
and for others. For example, which of the following two expressions is easier to read?

x = y/3-34*temp+127;

x = (y/3) - (34*temp) + 127;

Page 63

Chapter 3—
Statements

Page 64

In the most general sense, a statement is a part of your program that can be executed. That is, a
statement specifies an action. C categorizes statements into these groups:

• Selection

• Iteration

• Jump

• Label

• Expression

• Block

Included in the selection statements are if and switch. (The term conditional statement is often used
in place of selection statement.) The iteration statements are while, for, and do-while. These are
also commonly called loop statements. The jump statements are break, continue, goto, and return.
The label statements include the case and default statements (discussed along with the switch
statement) and the label statement itself (discussed with goto). Expression statements are statements
composed of a valid expression. Block statements are simply blocks of code. (A block begins with a
{ and ends with a }.) Block statements are also referred to as compound statements.

Since many statements rely upon the outcome of some conditional test, let's begin by reviewing the
concepts of true and false.

True and False in C

Many C statements rely upon a conditional expression that determines what course of action is to be
taken. A conditional expression evaluates to either a true or false value. In C, true is any nonzero
value, including negative numbers. A false value is 0. This approach to true and false allows a wide
range of routines to be coded extremely efficiently.

Selection Statements

C supports two selection statements: if and switch. In addition, the ? operator is an alternative to if
in certain circumstances.

if

The general form of the if statement
is

if (expression) statement;
else statement;

where a statement may consist of a single statement, a block of statements, or nothing (in the case of
empty statements). The else clause is optional.

Page 65

If expression evaluates to true (anything other than 0), the statement or block that forms the target of
if is executed; otherwise, the statement or block that is the target of else will be executed, if it exists.
Remember, only the code associated with if or the code associated with else executes, never both.

The conditional statement controlling if must produce a scalar result. A scalar is either an integer,
character, pointer, or floating-point type. (In C99, _Bool is also a scalar type and may also be used
in an if expression.) It is rare to use a floating-point number to control a conditional statement
because this slows execution time considerably. It takes several instructions to perform a floating-
point operation. It takes relatively few instructions to perform an integer or character operation.

The following program contains an example of if. The program plays a very simple version of the
''guess the magic number" game. It prints the message ** Right ** when the player guesses the
magic number. It generates the magic number using the standard random number generator rand(),
which returns an arbitrary number between 0 and RAND_MAX (which defines an integer value that
is 32,767 or larger). The rand() function requires the header <stdlib.h>.

/* Magic number program #1. */
#include <stdio.h>
#include <stdlib.h>

int main (void)
{
 int magic; /* magic number */
 int guess; /* user's guess */

 magic = rand(); /* generate the magic number */

 printf("Guess the magic number: ");
 scanf("%d", &guess);

 if(guess == magic) printf("** Right **");

 return 0;
}

Taking the magic number program further, the next version illustrates the use of the else statement
to print a message in response to the wrong number.

/* Magic number program #2. */
#include <stdio.h>
#include <stdlib.h>

TE
AM
FL
Y

Team-Fly®

Page 66

int main(void)
{
 int magic; /* magic number */
 int guess; /* user's guess */

 magic = rand(); /* generate the magic number */

 printf("Guess the magic number: ");
 scanf(''%d", &guess);

 if(guess == magic) printf("** Right **");
 else printf("Wrong");

 return 0;
}

Nested ifs

A nested if is an if that is the target of another if or else. Nested ifs are very common in
programming. In a nested if, an else statement always refers to the nearest if statement that is within
the same block as the else and that is not already associated with an else. For example:

if(i)
{
 if(j) dosomething1();
 if(k) dosomething2(); /* this if */
 else dosomething3(); /* is associated with this else */
}
else dosomething4(); /* associated with if(i) */

As noted, the final else is not associated with if(j) because it is not in the same block. Rather, the
final else is associated with if(i). Also, the inner else is associated with if(k), which is the nearest if.

C89 specifies that at least 15 levels of nesting must be supported by the compiler. C99 raises this
limit to 127. In practice, most compilers allow substantially more levels. However, nesting beyond a
few levels is seldom necessary, and excessive nesting can quickly confuse the meaning of an
algorithm.

You can use a nested if to further improve the magic number program by providing the player with
feedback about a wrong guess.

Page 67

/* Magic number program #3. */
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int magic; /* magic number */
 int guess; /* user's guess */

 magic = rand(); /* get a random number */

 printf("Guess the magic number: ");
 scanf(''%d", &guess);

 if (guess == magic) {
 printf ("** Right **");
 printf(" %d is the magic number\n", magic);
 }
 else {
 printf("Wrong, ");
 if(guess > magic) printf("too high\n"); /* nested if */
 else printf("too low\n");
 }

 return 0;
}

The if-else-if Ladder

A common programming construct is the if-else-if ladder, sometimes called the if-else-if staircase
because of its appearance. Its general form is

if (expression) statement;
else
 if (expression) statement;
 else
 if (expression) statement;
 .
 .
 .
 else statement;

Page 68

The conditions are evaluated from the top downward. As soon as a true condition is found, the
statement associated with it is executed and the rest of the ladder is bypassed. If none of the
conditions are true, the final else is executed. That is, if all other conditional tests fail, the last else
statement is performed. If the final else is not present, no action takes place if all other conditions
are false.

Although the indentation of the preceding if-else-if ladder is technically correct, it can lead to overly
deep indentation. For this reason, the if-else-if ladder is usually indented like this:

if (expression)
 statement;
else if (expression)
 statement;
else if (expression)
 statement;
.
.
.
else
 statement;

Using an if-else-if ladder, the magic number program becomes

/* Magic number program #4. */
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int magic; /* magic number */
 int guess; /* user's guess */

 magic = rand(); /* generate the magic number */

 printf("Guess the magic number: ");
 scanf(''%d", &guess);

 if(guess == magic) {
 printf("** Right ** ");
 printf("%d is the magic number", magic);
 }
 else if(guess > magic)
 printf("Wrong, too high");

Page 69

 else printf("Wrong, too low");

 return 0;
}

The ? Alternative

You can use the ? operator to replace if-else statements of the general form:

if (condition) var = expression;
else var = expression;

The ? is called a ternary operator because it requires three operands. It takes the general form

Exp1 ? Exp2 : Exp3

where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the
colon.

The value of a ? expression is determined as follows: Exp1 is evaluated. If it is true, Exp2 is
evaluated and becomes the value of the entire ? expression. If Exp1 is false, then Exp3 is evaluated
and its value becomes the value of the expression. For example, consider

x = 10;
y = x>9 ? 100 : 200;

In this example, y is assigned the value 100. If x had been less than 9, y would have received the
value 200. The same code written with the if-else statement would be

x = 10;
if(x>9) y = 100;
else y = 200;

The following program uses the ? operator to square an integer value entered by the user. However,
this program preserves the sign (10 squared is 100 and –10 squared is –100).

#include <stdio.h>

int main(void)
{
 int isqrd, i;

Page 70

 printf("Enter a number: ");
 scanf(''%d", &i);

 isqrd = i>0 ? i*i : -(i*i);

 printf("%d squared is %d", i, isqrd);

 return 0;
}

The use of the ? operator to replace if-else statements is not restricted to assignments only.
Remember, all functions (except those declared as void) return a value. Thus, you can use one or
more function calls in a ? expression. When the function's name is encountered, the function is
executed so that its return value can be determined. Therefore, you can execute one or more function
calls using the ? operator by placing the calls in the expressions that form the ?'s operands. Here is
an example:

#include <stdio.h>

int f1(int n);
int f2(void);

int main(void)
{
 int t;

 printf("Enter a number: ");
 scanf("%d", &t);

 /* print proper message */
 t ? f1(t) + f2() : printf("zero entered.");
 printf("\n");

 return 0;
}

int f1(int n)
{
 printf("%d ", n);
 return 0;
}

Page 71

int f2(void)
{
 printf(''entered ");
 return 0;
}

The program first prompts the user for a value. Entering 0 causes the printf() function to be called,
which displays the message zero entered. If you enter any other number, both f1() and f2()
execute. Note that the value of the ? expression is discarded in this example. You don't need to
assign it to anything.

One other point: It is permissible for a compiler to rearrange the order of evaluation of an expression
in an attempt to optimize the object code. In the preceding example, this could cause the calls to the
f1() and f2() functions in the ? expression to execute in an unexpected sequence.

Using the ? operator, you can rewrite the magic number program yet again.

/* Magic number program #5. */
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int magic;
 int guess;

 magic = rand(); /* generate the magic number */

 printf("Guess the magic number: ");
 scanf("%d", &guess);

 if(guess == magic) {
 printf("** Right ** ");
 printf("%d is the magic number", magic);
 }
 else
 guess > magic ? printf("High") : printf("Low");

 return 0;
}

Here, the ? operator displays the proper message based on the outcome of the test guess > magic.

Page 72

The Conditional Expression

Sometimes newcomers to C are confused by the fact that you can use any valid expression to control
the if or the ? operator. That is, you are not restricted to expressions involving the relational and
logical operators (as is the case in languages like BASIC or Pascal). The expression must simply
evaluate to either a true or false (zero or nonzero) value. For example, the following program reads
two integers from the keyboard and displays the quotient. It uses an if statement, controlled by the
second number, to avoid a divide-by-zero error.

/* Divide the first number by the second. */

#include <stdio.h>

int main(void)
{
 int a, b;

 printf("Enter two numbers: ");
 scanf(''%d%d", &a, &b);

 if(b) printf("%d\n", a/b);
 else printf("Cannot divide by zero.\n");

 return 0;
}

This approach works because if b is 0, the condition controlling the if is false, and the else executes.
Otherwise, the condition is true (nonzero), and the division takes place.

One other point: Writing the if statement in the preceding example as shown here

if(b != 0) printf("%d\n", a/b);

is redundant, potentially inefficient, and is considered bad style. Since the value of b alone is
sufficient to control the if, there is no need to test it against 0.

switch

C has a built-in multiple-branch selection statement, called switch, which successively tests the
value of an expression against a list of integer or character constants. When a match is found, the
statements associated with that constant are executed. The general form of the switch statement is

Page 73

switch (expression) {
 case constant1:
 statement sequence
 break;
 case constant2:
 statement sequence
 break;
 case constant3:
 statement sequence
 break;
 .
 .
 .
 default
 statement sequence
}

The expression must evaluate to an integer type. Thus, you can use character or integer values, but
floating-point expressions, for example, are not allowed. The value of expression is tested against
the values, one after another, of the constants specified in the case statements. When a match is
found, the statement sequence associated with that case is executed until the break statement or the
end of the switch statement is reached. The default statement is executed if no matches are found.
The default is optional, and if it is not present, no action takes place if all matches fail.

C89 specifies that a switch can have at least 257 case statements. C99 requires that at least 1,023
case statements be supported. In practice, you will usually want to limit the number of case
statements to a smaller amount for efficiency. Although case is a label statement, it cannot exist by
itself, outside of a switch.

The break statement is one of C's jump statements. You can use it in loops as well as in the switch
statement (see the section ''Iteration Statements"). When break is encountered in a switch, program
execution "jumps" to the line of code following the switch statement.

There are three important things to know about the switch statement:

• The switch differs from the if in that switch can only test for equality, whereas if can evaluate any
type of relational or logical expression.

• No two case constants in the same switch can have identical values. Of course, a switch statement
enclosed by an outer switch may have case constants that are in common.

• If character constants are used in the switch statement, they are automatically converted to integers
(as is specified by C's type conversion rules).

Page 74

The switch statement is often used to process keyboard commands, such as menu selection. As
shown here, the function menu() displays a menu for a spelling-checker program and calls the
proper procedures:

void menu(void)
{
 char ch;

 printf("1. Check Spelling\n");
 printf(''2. Correct Spelling Errors\n");
 printf("3. Display Spelling Errors\n");
 printf("Strike Any Other Key to Skip\n");
 printf(" Enter your choice: ");

 ch = getchar(); /* read the selection from the keyboard */

 switch(ch) {
 case '1':
 check_spelling ();
 break;
 case '2':
 correct_errors ();
 break;
 case '3':
 display_errors ();
 break;
 default :
 printf
("No option selected");
 }
}

Technically, the break statements inside the switch statement are optional. They terminate the
statement sequence associated with each constant. If the break statement is omitted, execution will
continue on into the next case 's statements until either a break or the end of the switch is reached.
For example, the following function uses the "drop through" nature of the cases to simplify the code
for a device-driver input handler:

/* Process a value */
void inp_handler(int i)
{
 int flag;

Page 75

 flag = -1;

 switch(i) {
 case 1: /* These cases have common */
 case 2: /* statement sequences. */
 case 3:
 flag = 0;
 break;
 case 4:
 flag = 1;
 case 5:
 error(flag);
 break;
 default:
 process(i);
 }
}

This example illustrates two aspects of switch. First, you can have case statements that have no
statement sequence associated with them. When this occurs, execution simply drops through to the
next case. In this example, the first three cases all execute the same statements, which are

flag = 0;
break;

Second, execution of one statement sequence continues into the next case if no break statement is
present. If i matches 4, flag is set to 1, and because there is no break statement at the end of that
case, execution continues and the call to error(flag) is executed. If i had matched 5, error(flag)
would have been called with a flag value of –1 (rather than 1).

The fact that cases can run together when no break is present prevents the unnecessary duplication
of statements, resulting in more efficient code.

Nested switch Statements

You can have a switch as part of the statement sequence of an outer switch. Even if the case
constants of the inner and outer switch contain common values, no conflicts arise. For example, the
following code fragment is perfectly acceptable:

switch(x) {
 case 1:

TE
AM
FL
Y

Team-Fly®

Page 76

 switch(y) {
 case 0: printf(''Divide by zero error.\n");
 break;
 case 1: process(x, y);
 break;
 }
 break;
 case 2:
 .
 .
 .

Iteration Statements

In C, and all other modern programming languages, iteration statements (also called loops) allow a
set of instructions to be repeatedly executed until a certain condition is reached. This condition may
be predetermined (as in the for loop) or open ended (as in the while and do-while loops).

The for Loop

The general design of the for loop is reflected in some form or another in all procedural
programming languages. However, in C, it provides unexpected flexibility and power.

The general form of the for statement is

for (initialization; condition; increment) statement ;

The for loop allows many variations, but its most common form works like this: The initialization is
an assignment statement that is used to set the loop control variable. The condition is a relational
expression that determines when the loop exits. The increment defines how the loop control variable
changes each time the loop is repeated. You must separate these three major sections by semicolons.
The for loop continues to execute as long as the condition is true. Once the condition becomes false,
program execution resumes on the statement following the for.

In the following program, a for loop is used to print the numbers 1 through 100 on the screen:

#include <stdio.h>

int main(void)
{
 int x;

Page 77

 for(x=1; x <= 100; x++) printf("%d ", x);

 return 0;
}

In the loop, x is initially set to 1 and then compared with 100. Since x is less than 100, printf() is
called and the loop iterates. This causes x to be increased by 1 and again tested to see if it is still less
than or equal to 100. If it is, printf() is called. This process repeats until x is greater than 100, at
which point the loop terminates. In this example, x is the loop control variable, which is changed
and checked each time the loop repeats.

The following example is a for loop that iterates a block of statements:

for(x=100; x != 65; x -= 5) {
 z = x*x;
 printf(''The square of %d, %d", x, z);
}

Both the squaring of x and the call to printf() are executed until x equals 65. Note that the loop is
negative running: x is initialized to 100, and 5 is subtracted from it each time the loop repeats.

In for loops, the conditional test is always performed at the top of the loop. This means that the code
inside the loop may not be executed at all if the condition is false to begin with. For example, in

x = 10;
for(y=10; y != x; ++y) printf("%d", y);
printf("%d", y); /* this is the only printf()
 statement that will execute */

the loop will never execute because x and y are equal when the loop is entered. Because this causes
the conditional expression to evaluate to false, neither the body of the loop nor the increment portion
of the loop executes. Thus, y still has the value 10, and the only output produced by the fragment is
the number 10 printed once on the screen.

for Loop Variations

The previous discussion described the most common form of the for loop. However, several
variations of the for are allowed that increase its power, flexibility, and applicability to certain
programming situations.

One of the most common variations uses the comma operator to allow two or more variables to
control the loop. (Remember, the comma operator strings together a number of expressions in a "do
this and this" fashion. See Chapter 2.) For example, the

Page 78

variables x and y control the following loop, and both are initialized inside the for statement:

for(x=0, y=0; x+y < 10; ++x) {
 y = getchar();
 y = y - '0'; /* subtract the ASCII code for 0 from y */
 .
 .
 .
}

Commas separate the two initialization statements. Each time the loop repeats, x is incremented and
y's value is set by keyboard input. Both x and y must be at the correct value for the loop to
terminate. Even though y's value is set by keyboard input, y must be initialized to 0 so that its value
is defined before the first evaluation of the conditional expression. (If y's value was not set, it could
by chance contain the value 10, making the conditional test false and preventing the loop from
executing.)

The converge() function shown next demonstrates multiple loop control variables in action. The
converge() function copies the contents of one string into another by moving characters from both
ends, converging in the middle.

/* Demonstrate multiple loop control variables. */
#include <stdio.h>
#include <string.h>

void converge(char *targ, char *src);

int main(void)
{
 char target[80] = ''XXXXXXXXXXXXXXXXXXXXXXXXXXXXX";

 converge(target, "This is a test of converge
().");
 printf("Final string: %s\n", target);

 return 0;
}

/* This function copies one string into another.
 It copies characters to both the ends,
 converging at the middle. */
void converge(char *targ, char *src)
{

Page 79

 int i, j;

 printf("%s\n", targ);
 for(i=0, j=strlen(src); i<=j; i++, j--) {
 targ[i] = src[i];
 targ[j] = src[j];
 printf(''%s\n", targ);
 }
}

Here is the output produced by the
program:

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ThXXXXXXXXXXXXXXXXXXXXXXXXXX.
ThiXXXXXXXXXXXXXXXXXXXXXXXX).
ThisXXXXXXXXXXXXXXXXXXXXXX().
This XXXXXXXXXXXXXXXXXXXXe().
This iXXXXXXXXXXXXXXXXXXge().
This isXXXXXXXXXXXXXXXXrge().
This is XXXXXXXXXXXXXXerge().
This is aXXXXXXXXXXXXverge().
This is a XXXXXXXXXXnverge().
This is a tXXXXXXXXonverge().
This is a teXXXXXXconverge().
This is a tesXXXX converge().
This is a testXXf converge()
This is a test of converge()
Final string: This is a test of converge().

In converge(), the for loop uses two loop control variables, i and j, to index the string from
opposite ends. As the loop iterates, i is increased and j is decreased. The loop stops when i is greater
than j, thus ensuring that all characters are copied.

The conditional expression does not have to involve testing the loop control variable against some
target value. In fact, the condition may be any relational or logical statement. This means that you
can test for several possible terminating conditions. For example, you could use the following
function to log a user onto a remote system. The user has three tries to enter the password. The loop
terminates when the three tries are used up, or when the user enters the correct password.

void sign_on(void)
{

Page 80

 char str[20];
 int x;

 for(x=0; x<3 && strcmp(str, "password"); ++x) {
 printf(''Enter password please:");
 gets(str);
 }

 if(x == 3) return;
 /* else log user in . . . */
}

This function uses strcmp(), the standard library function that compares two strings and returns 0 if
they match.

Remember, each of the three sections of the for loop may consist of any valid expression. The
expressions need not actually have anything to do with what the sections are generally used for.
With this in mind, consider the following example:

#include <stdio.h>

int sqrnum(int num);
int readnum(void);
int prompt(void);

int main(void)
{
 int t;

 for(prompt(); t=readnum(); prompt())
 sqrnum(t);

 return 0;
}

int prompt (void)
{
 printf("Enter a number: ");
 return 0;
}

int readnum (void)

Page 81

{
 int t;

 scanf("%d", &t);
 return t;
}

int sqrnum(int num)
{
 printf(''%d\n", num*num);
 return num*num;
}

Look closely at the for loop in main(). Notice that each part of the for loop is composed of function
calls that prompt the user and read a number entered from the keyboard. If the number entered is 0,
the loop terminates because the conditional expression will be false. Otherwise, the number is
squared. Thus, this for loop uses the initialization and increment portions in a nontraditional but
completely valid manner.

Another interesting trait of the for loop is that pieces of the loop definition need not be there. In fact,
there need not be an expression present for any of the sections— the expressions are optional. For
example, this loop will run until the user enters 123:

for(x=0; x != 123;) scanf("%d", &x);

Notice that the increment portion of the for definition is blank. This means that each time the loop
repeats, x is tested to see if it equals 123, but no further action takes place. If you type 123 at the
keyboard, however, the loop condition becomes false and the loop terminates.

The initialization of the loop control variable can occur outside the for statement. This most
frequently happens when the initial condition of the loop control variable must be computed by
some complicated means, as in this example:

gets(s); /* read a string into s */
if(*s) x = strlen(s); /* get the string's length */
else x = 10;

for(; x < 10;) {
 printf("%d", x);
 ++x;
}

Page 82

The initialization section has been left blank, and x is initialized before the loop is entered.

The Infinite Loop

Although you can use any loop statement to create an infinite loop, for is traditionally used for this
purpose. Since none of the three expressions that form the for loop are required, you can make an
endless loop by leaving the conditional expression empty, as here:

for(; ;) printf("This loop will run forever.\n");

When the conditional expression is absent, it is assumed to be true. You may have an initialization
and increment expression, but C programmers more commonly use the for(;;) construct to signify
an infinite loop.

Actually, the for(;;) construct does not guarantee an infinite loop because a break statement,
encountered anywhere inside the body of a loop, causes immediate termination. (break is discussed
in detail later in this chapter.) Program control then resumes at the code following the loop, as
shown here:

ch = '\0';

for(; ;) {
 ch = getchar(); /* get a character */
 if(ch == 'A') break; /* exit the loop */
}

printf("you typed an A");

This loop will run until the user types an A at the keyboard.

for Loops with No Bodies

A statement may be empty. This means that the body of the for loop (or any other loop) may also be
empty. You can use this fact to simplify the coding of certain algorithms and to create time delay
loops.

Removing spaces from an input stream is a common programming task. For example, a database
program may allow a query such as ''show all balances less than 400." The database needs to have
each word fed to it separately, without leading spaces. That is, the database input processor
recognizes "show" but not "show". The following loop shows one way to accomplish this. It
advances past leading spaces in the string pointed to by str.

Page 83

for(; *str == ' '; str++) ;

As you can see, this loop has no body— and no need for one either.

Time delay loops are sometimes useful. The following code shows how to create one by using for:

for(t=0; t < SOME_VALUE; t++) ;

The only purpose of this loop is to eat up time. Be aware, however, that some compilers will
optimize such a time delay loop out of existence, since (as far as the compiler is concerned) it has no
effect! So, you might not always get the time delay you expect.

Declaring Variables within a for Loop

In C99 and C++, but not C89, it is possible to declare a variable within the initialization portion of a
for loop. A variable so declared has its scope limited to the block of code controlled by that
statement. That is, a variable declared within a for loop will be local to that loop.

Here is an example that declares a variable within the initialization portion of a for loop:

/*
 Here, i is local to for loop; j is known outside loop.

 *** This example is invalid for C89. ***
*/
int j;
for(int i = 0; i<10; i++)
 j = i * i;

/* i = 10; *** Error ***-- i not known here! */

Here, i is declared within the initialization portion of the for and is used to control the loop. Outside
the loop, i is unknown.

Since a loop control variable is often needed only by that loop, the declaration of a variable in the
initialization portion of the for is becoming common practice. Remember, however, that this is not
supported by C89.

The while Loop

The second loop available in C is the while loop. Its general form is

while(condition) statement;

Page 84

where statement is either an empty statement, a single statement, or a block of statements. The
condition may be any expression, and true is any nonzero value. The loop iterates while the
condition is true. When the condition becomes false, program control passes to the line of code
immediately following the loop.

The following example shows a keyboard input routine that simply loops until the user types
A:

char wait_for_char(void)
{
 char ch;

 ch = '\0'; /* initialize ch */
 while(ch != 'A') ch = getchar();
 return ch;
}

First, ch is initialized to null. As a local variable, its value is not known when wait_for_char() is
executed. The while loop then checks to see if ch is not equal to A. Because ch was initialized to
null, the test is true and the loop begins. Each time you press a key, the condition is tested again.
Once you enter an A, the condition becomes false because ch equals A, and the loop terminates.

Like for loops, while loops check the test condition at the top of the loop, which means that the
body of the loop will not execute if the condition is false to begin with. This feature may eliminate
the need to perform a separate conditional test before the loop. The pad() function provides a good
illustration of this. It adds spaces to the end of a string to fill the string to a predefined length. If the
string is already at the desired length, no spaces are added.

#include <stdio.h>
#include <string.h>

void pad(char *s, int length);

int main(void)
{

 char str[80];

 strcpy(str, "this is a test");
 pad(str, 40);
 printf(''%d", strlen(str));

 return 0;

Page 85

}

/* Add spaces to the end of a string. */
void pad(char *s, int length)
{
 int l;

 l = strlen(s); /* find out how long it is */

 while(l < length) {
 s[l] = ' '; /* insert a space */
 l++;
 }
 s[l]= '\0'; /* strings need to be terminated in a null */
}

The two arguments of pad() are s, a pointer to the string to lengthen, and length, the number of
characters that s should have. If the length of string s is already equal to or greater than length, the
code inside the while loop does not execute. If s is shorter than length, pad() adds the required
number of spaces. The strlen() function, part of the standard library, returns the length of the string.

In cases in which any one of several separate conditions can terminate a while loop, often a single
loop-control variable forms the conditional expression. The value of this variable is set at various
points throughout the loop. In this example

void func1(void)
{
 int working;

 working = 1; /* i.e., true */

 while (working) {
 working = process1();
 if (working)
 working = process2();
 if (working)
 working = process3();
 }
}

any of the three routines may return false and cause the loop to exit.

TE
AM
FL
Y

Team-Fly®

Page 86

There need not be any statements in the body of the while loop. For example,

while((ch=getchar()) != 'A') ;

will simply loop until the user types A. If you feel uncomfortable putting the assignment inside the
while conditional expression, remember that the equal sign is just an operator that evaluates to the
value of the right-hand operand.

The do-while Loop

Unlike for and while loops, which test the loop condition at the top of the loop, the do-while loop
checks its condition at the bottom of the loop. This means that a do-while loop always executes at
least once. The general form of the do-while loop is

do {
 statement;
} while(condition);

Although the curly braces are not necessary when only one statement is present, they are usually
used to avoid confusion (to you, not the compiler) with the while. The do-while loop iterates until
condition becomes false.

The following do-while loop will read numbers from the keyboard until it finds a number less than
or equal to 100:

do {
 scanf(''%d", &num);
} while(num > 100);

Perhaps the most common use of the do-while loop is in a menu selection function. When the user
enters a valid response, it is returned as the value of the function. Invalid responses cause a
reprompt. The following code shows an improved version of the spelling-checker menu shown
earlier in this chapter:

void menu(void)
{
 char ch;

 printf("1. Check Spelling\n");
 printf("2. Correct Spelling Errors\n");
 printf("3. Display Spelling Errors\n");
 printf(" Enter your choice: ");

Page 87

 do {
 ch = getchar(); /* read the selection from
 the keyboard */

 switch(ch) {
 case '1':
 check_spelling();
 break;
 case '2':
 correct_errors();
 break;
 case '3':
 display_errors();
 break;
 }
 } while(ch!='1' && ch!='2' && ch!='3');
}

Here, the do-while loop is a good choice because you will always want a menu function to execute
at least once. After the options have been displayed, the program will loop until a valid option is
selected.

Jump Statements

C has four statements that perform an unconditional branch: return, goto, break, and continue. Of
these, you can use return and goto anywhere inside a function. You can use the break and
continue statements in conjunction with any of the loop statements. As discussed earlier in this
chapter, you can also use break with switch.

The return Statement

The return statement is used to return from a function. It is categorized as a jump statement because
it causes execution to return (jump back) to the point at which the call to the function was made. A
return may or may not have a value associated with it. A return with a value can be used only in a
function with a non-void return type. In this case, the value associated with return becomes the
return value of the function. A return without a value is used to return from a void function.

Technically, in C89, a return statement in a non-void function does not have to return a value. If no
return value is specified, a garbage value is returned. However, in C99, a return statement in a non-
void function must return a value. (This is also true for C++.) Of course, even for C89, if a function
is declared as returning a value, it is good practice to actually return one!

Page 88

The general form of the return statement is

return expression;

The expression is present only if the function is declared as returning a value. In this case, the value
of expression will become the return value of the function.

You can use as many return statements as you like within a function. However, the function will
stop executing as soon as it encounters the first return. The } that ends a function also causes the
function to return. It is the same as a return without any specified value. If this occurs within a non-
void function, then the return value of the function is undefined.

A function declared as void cannot contain a return statement that specifies a value. Since a void
function has no return value, it makes sense that no return statement within a void function can
return a value.

See Chapter 6 for more information on return.

The goto Statement

Since C has a rich set of control structures and allows additional control using break and continue,
there is little need for goto. Most programmers' chief concern about the goto is its tendency to
render programs unreadable. Nevertheless, although the goto statement fell out of favor some years
ago, it occasionally has it uses. While there are no programming situations that require goto, it is a
convenience, which, if used wisely, can be a benefit in a narrow set of programming situations, such
as jumping out of a set of deeply nested loops. The goto is not used in this book outside of this
section.

The goto statement requires a label for operation. (A label is a valid identifier followed by a colon.)
Furthermore, the label must be in the same function as the goto that uses it— you cannot jump
between functions. The general form of the goto statement is

goto label;
.
.
.
label:

where label is any valid label either before or after goto. For example, you could create a loop from
1 to 100 using the goto and a label, as shown here:

x = 1;
loop1:
 x++;
 if(x <= 100) goto loop1;

Page 89

The break Statement

The break statement has two uses. You can use it to terminate a case in the switch statement
(covered in the section on switch earlier in this chapter). You can also use it to force immediate
termination of a loop, bypassing the normal loop conditional test.

When the break statement is encountered inside a loop, the loop is immediately terminated, and
program control resumes at the next statement following the loop. For example,

#include <stdio.h>

int main (void)
{
 int t;

 for(t=0; t < 100; t++) {
 printf(''%d ", t);
 if(t == 10) break;
 }

 return 0;
}

prints the numbers 0 through 10 on the screen. Then the loop terminates because break causes
immediate exit from the loop, overriding the conditional test t<100.

Programmers often use the break statement in loops in which a special condition can cause
immediate termination. For example, here a keypress can stop the execution of the look_up()
function:

void look_up(char *name)
{
 do {
 /* look up names . . . */
 if(kbhit()) break;
 } while(!found);
 /* process match */
}

The kbhit() function returns 0 if you do not press a key. Otherwise, it returns a nonzero value.
Because of the wide differences between computing environments, Standard C does not define
kbhit(), but you will almost certainly have it (or one with a slightly different name) supplied with
your compiler.

Page 90

A break causes an exit from only the innermost loop. For example,

for(t=0; t < 100; ++t) {
 count = 1;
 for(;;) {
 printf(''%d ", count);
 count++;
 if(count == 10) break;
 }
}

prints the numbers 1 through 9 on the screen 100 times. Each time the compiler encounters break,
control is passed back to the outer for loop.

A break used in a switch statement will affect only that switch. It does not affect any loop the
switch happens to be in.

The exit() Function

Although exit() is not a program control statement, a short digression that discusses it is in order at
this time. Just as you can break out of a loop, you can break out of a program by using the standard
library function exit(). This function causes immediate termination of the entire program, forcing a
return to the operating system. In effect, the exit() function acts as if it were breaking out of the
entire program.

The general form of the exit() function is

void exit(int return_code);

The value of return_code is returned to the calling process, which is usually the operating system.
Zero is commonly used as a return code to indicate normal program termination. Other arguments
are used to indicate some sort of error. You can also use the macros EXIT_SUCCESS and
EXIT_FAILURE for return_code. The exit() function requires the header <stdlib.h>.

Programmers frequently use exit() when a mandatory condition for program execution is not
satisfied. For example, imagine a virtual-reality computer game that requires a special graphics
adapter. The main() function of this game might look like this,

#include <stdlib.h>

int main(void)
{
 if(!virtual_graphics()) exit(1);
 play();

Page 91

 /* . . .*/
}
/**/

where virtual_graphics() is some function that returns true if the virtual-reality graphics adapter is
present. If the adapter is not in the system, virtual_graphics() returns false and the program
terminates.

As another example, this version of menu() uses exit() to quit the program and return to the
operating system:

void menu(void)
{
 char ch;

 printf("1. Check Spelling\n");
 printf(''2. Correct Spelling Errors\n");
 printf("3. Display Spelling Errors\n");
 printf("4. Quit\n");
 printf(" Enter your choice: ");

 do {
 ch = getchar(); /* read the selection from
 the keyboard */
 switch(ch) {
 case '1':
 check_spelling();
 break;
 case '2':
 correct_errors();
 break;
 case '3':
 display_errors();
 break;
 case '4':
 exit(0); /* return to OS */
 }
 } while(ch!='1' && ch!='2' && ch!='3');
 }

The continue Statement

The continue statement works somewhat like the break statement. Instead of forcing termination,
however, continue forces the next iteration of the loop to take place,

Page 92

skipping any code in between. For the for loop, continue causes the increment and then the
conditional test portions of the loop to execute. For the while and do-while loops, program control
passes to the conditional tests. For example, the following program counts the number of spaces
contained in the string entered by the user:

/* Count spaces */
#include <stdio.h>

int main(void)
{
 char s[80], *str;
 int space;

 printf("Enter a string: ");
 gets(s);
 str = s;

 for(space=0; *str; str++) {
 if(*str != ' ') continue;
 space++;
 }
 printf(''%d spaces\n", space);

 return 0;
}

Each character is tested to see if it is a space. If it is not, the continue statement forces the for to
iterate again. If the character is a space, space is incremented.

The following example shows how you can use continue to expedite the exit from a loop by forcing
the conditional test to be performed sooner:

void code(void)
{
 char done, ch;

 done = 0;
 while(!done) {
 ch = getchar();
 if(ch == '$') {
 done = 1;
 continue;
 }

Page 93

 putchar(ch+1); /* shift the alphabet one position higher */
 }
}

This function codes a message by shifting all characters you type one letter higher. For example, an
A becomes a B. The function will terminate when you type a $. After a $ has been input, no further
output will occur because the conditional test, brought into effect by continue, will find done to be
true and will cause the loop to exit.

Expression Statements

Chapter 2 covers expressions thoroughly. However, a few special points are mentioned here.
Remember, an expression statement is simply a valid expression followed by a semicolon, as in

func(); /* a function call */
a = b+c; /* an assignment statement */
b+f(); /* a valid, but strange statement */
; /* an empty statement */

The first expression statement executes a function call. The second is an assignment. The third
expression, though strange, is still evaluated by the compiler because the function f() may perform
some necessary task. The final example shows that a statement can be empty (sometimes called a
null statement).

Block Statements

Block statements are simply groups of related statements that are treated as a unit. The statements
that make up a block are logically bound together. Block statements are also called compound
statements. A block is begun with a { and terminated by its matching }. Programmers use block
statements most commonly to create a multistatement target for some other statement, such as if.
However, you may place a block statement anywhere you would put any other statement. For
example, this is perfectly valid (although unusual) C code:

#include <stdio.h>

int main(void)
{

Page 94

 int i;

 { /* a free-standing block statement */
 i = 120;
 printf(''%d", i);
 }

 return 0;
}

Page 95

Chapter 4—
Arrays and Strings

TE
AM
FL
Y

Team-Fly®

Page 96

An array is a collection of variables of the same type that are referred to through a common name.
A specific element in an array is accessed by an index. In C, all arrays consist of contiguous
memory locations. The lowest address corresponds to the first element and the highest address to the
last element. Arrays can have from one to several dimensions. The most common array is the string,
which is simply an array of characters terminated by a null.

Arrays and pointers are closely related; a discussion of one usually refers to the other. This chapter
focuses on arrays, while Chapter 5 looks closely at pointers. You should read both to understand
fully these important constructs.

Single-Dimension Arrays

The general form for declaring a single-dimension array is

type var_name[size];

Like other variables, arrays must be explicitly declared so that the compiler can allocate space for
them in memory. Here, type declares the base type of the array, which is the type of each element in
the array, and size defines how many elements the array will hold. For example, to declare a 100-
element array called balance of type double, use this statement:

double balance[100];

In C89, the size of an array must be specified using a constant expression. Thus, in C89, the size of
an array is fixed at compile time. (C99 allows arrays whose sizes are determined at run time. They
are briefly described later in this chapter and examined in detail in Part Two.)

An element is accessed by indexing the array name. This is done by placing the index of the element
within square brackets after the name of the array. For example,

balance[3] = 12.23;

assigns element number 3 in balance the value 12.23.

In C, all arrays have 0 as the index of their first element. Therefore, when you write

char p[10];

you are declaring a character array that has 10 elements, p[0] through p[9]. For example, the
following program loads an integer array with the numbers 0 through 99:

Page 97

#include <stdio.h>

int main(void)
{
 int x[100]; /* this declares a 100-integer array */
 int t;

 /* load x with values 0 through 99 */
 for(t=0; t<100; ++t) x[t] = t;

 /* display contents of x */
 for(t=0; t<100; ++t) printf(''%d ", x[t]);

 return 0;
}

The amount of storage required to hold an array is directly related to its type and size. For a single-
dimension array, the total size in bytes is computed as shown here:

total bytes = sizeof(base type) × length of array

C has no bounds checking on arrays. You could overwrite either end of an array and write into some
other variable's data or even into the program's code. As the programmer, it is your job to provide
bounds checking where needed. For example, this code will compile without error, but it is incorrect
because the for loop will cause the array count to be overrun.

int count[10], i;

/* this causes count to be overrun */
for(i=0; i<100; i++) count[i] = i;

Single-dimension arrays are essentially lists that are stored in contiguous memory locations in index
order. For example, Figure 4-1 shows how array a appears in memory if it starts at memory location
1000 and is declared as shown here:

char a[7];

Generating a Pointer to an Array

You can generate a pointer to the first element of an array by simply specifying the array name,
without any index. For example, given

int sample[10];

Page 98

Element a[0] a[1] a[2] a[3] a[4] a[5] a[6]

Address 1000 1001 1002 1003 1004 1005 1006

Figure 4-1
A seven-element character array beginning at location 1000

you can generate a pointer to the first element by using the name sample. Thus, the following
program fragment assigns p the address of the first element of sample:

int *p;
int sample[10];

p = sample;

You can also specify the address of the first element of an array by using the & operator. For
example, sample and &sample[0] both produce the same results. However, in professionally
written C code, you will almost never see &sample[0].

Passing Single-Dimension Arrays to Functions

In C, you cannot pass an entire array as an argument to a function. You can, however, pass a pointer
to an array by specifying the array's name without an index. For example, the following program
fragment passes the address of i to func1():

int main(void)
{
 int i[10];

 func1(i);

 /* . . . */
}

If a function receives a pointer to a single-dimension array, you can declare its formal parameter in
one of three ways: as a pointer, as a sized array, or as an unsized array. For example, to receive i, a
function called func1() can be declared as

void func1(int *x) /* pointer */
{

Page 99

 /* . . . */
}

or

void func1(int x[10]) /* sized array */
{
 /* . . . */
}

or finally as

void func1 (int x[]) /* unsized array */
{
 /* . . . */
}

All three declaration methods produce similar results because each tells the compiler that an integer
pointer is going to be received. The first declaration actually uses a pointer. The second employs the
standard array declaration. In the final version, a modified version of an array declaration simply
specifies that an array of type int of some length is to be received. As you can see, the length of the
array doesn't matter as far as the function is concerned because C performs no bounds checking. In
fact, as far as the compiler is concerned,

void func1(int x[32])
{
 /* . . . */
}

also works because the compiler generates code that instructs func1() to receive a pointer— it does
not actually create a 32-element array.

Strings

By far the most common use for the one-dimensional array is as a character string. In C, a string is a
null-terminated character array. (A null is zero.) Thus, a string contains the characters that make up
the string followed by a null. The null-terminated string is the only type of string defined by C.

Page 100

NOTE

C++ also defines a string class, called string, which provides an object-oriented
approach to string handling, but it is not supported by C.

When declaring a character array that will hold a string, you need to declare it to be one character
longer than the largest string that it will hold. For example, to declare an array str that can hold a
10-character string, you would write

char str[11];

Specifying 11 for the size makes room for the null at the end of the string.

When you use a quoted string constant in your program, you are also creating a null-terminated
string. A string constant is a list of characters enclosed in double quotes. For example:

''hello there"

You do not need to add the null to the end of string constants manually— the compiler does this for
you automatically.

C supports a wide range of functions that manipulate strings. The most common are listed here:

Name Function

strcpy(s1, s2) Copies s2 into s1

strcat(s1, s2) Concatenates s2 onto the end of s1

strlen(s1) Returns the length of s1

strcmp(s1,
s2)

Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater
than 0 if s1>s2

strchr(s1, ch) Returns a pointer to the first occurrence of ch in s1

strstr(s1, s2) Returns a pointer to the first occurrence of s2 in s1

These functions use the standard header <string.h>. The following program illustrates the use of
these string functions:

#include <stdio.h>
#include <string.h>

int main(void)
{
 char s1[80], s2[80];

 gets(s1);

Page 101

 gets (s2);

 printf("lengths: %d %d\n", strlen(s1), strlen(s2));

 if(!strcmp(s1, s2)) printf("The strings are equal\n");

 strcat(s1, s2);
 printf (''%s\n", s1);

 strcpy(s1, "This is a test.\n");
 printf(s1);
 if(strchr("hello", 'e')) printf("e is in hello\n");
 if(strstr("hi there", "hi")) printf("found hi");

 return 0;
}

If you run this program and enter the strings "hello" and "hello", the output is

lengths: 5 5
The strings are equal
hellohello
This is a test.
e is in hello
found hi

Remember, strcmp() returns false if the strings are equal. Be sure to use the logical ! operator to
reverse the condition, as just shown, if you are testing for equality.

Two-Dimensional Arrays

C supports multidimensional arrays. The simplest form of the multidimensional array is the two-
dimensional array. A two-dimensional array is, essentially, an array of one-dimensional arrays. To
declare a two-dimensional integer array d of size 10,20, you would write

int d[10][20];

Pay careful attention to the declaration. Some other computer languages use commas to separate the
array dimensions; C places each dimension in its own set of brackets.

Page 102

Similarly, to access point 1,2 of array d, you would use

d[1] [2]

The following example loads a two-dimensional array with the numbers 1 through 12 and prints
them row by row.

#include <stdio.h>

int main(void)
{
 int t, i, num[3][4];

 for(t=0; t<3; ++t)
 for(i=0; i<4; ++i)
 num[t][i] = (t*4)+i+1;

 /* now print them out */
 for(t=0; t<3; ++t) {
 for(i=0; i<4; ++i)
 printf(''%3d ", num[t] [i]);
 printf("\n");
 }

 return 0;
}

In this example, num[0][0] has the value 1, num[0][1] the value 2, num[0][2] the value 3, and so
on. The value of num[2][3] will be 12. You can visualize the num array as shown here:

Two-dimensional arrays are stored in a row-column matrix, where the left index indicates the row
and the right indicates the column. This means that the rightmost index changes faster than the
leftmost when accessing the elements in the array in the

Page 103

order in which they are actually stored in memory. See Figure 4-2 for a graphic representation of a
two-dimensional array in memory.

In the case of a two-dimensional array, the following formula yields the number of bytes of memory
needed to hold it:

bytes = size of 1st index × size of 2nd index × sizeof(base type)

Therefore, assuming 4-byte integers, an integer array with dimensions 10,5 would have

10 × 5 × 4

or 200 bytes allocated.

When a two-dimensional array is used as an argument to a function, only a pointer to the first
element is actually passed. However, the parameter receiving a two-dimensional array must define
at least the size of the rightmost dimension. (You can specify the left dimension if you like, but it is
not necessary.) The rightmost dimension is needed because the compiler needs to know the length of
each row if it is to index the array correctly. For example, a function that receives a two-dimensional
integer array with dimensions 10,10 can be declared like this:

void func1(int x[] [10])
{
 /* . . . */
}

The compiler needs to know the size of the right dimension in order to correctly execute expressions
such as

x[2] [4]

Figure 4-2
A two-dimensional array

Page 104

inside the function. If the length of a row is not known, the compiler cannot determine where the
next row begins.

The following program uses a two-dimensional array to store the numeric grade for each student in a
teacher's classes. The program assumes that the teacher has three classes and a maximum of 30
students per class. Notice the way the array grade is accessed by each of the functions.

/* A simple student grades database. */
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>

#define CLASSES 3
#define GRADES 30

int grade[CLASSES] [GRADES];

void enter_grades(void);
int get_grade(int num);
void disp_grades(int g[][GRADES]);

int main(void)
{
 char ch, str[80];

 for(;;)
 do {
 printf(''(E)nter grades\n");
 printf("(R)eport grades\n");
 printf(" (Q)uit\n");
 gets(str);
 ch = toupper(*str);
 } while(ch!='E' && ch!='R' && ch!='Q');

 switch(ch) {
 case 'E':
 enter_grades();
 break;
 case 'R':
 disp_grades(grade);
 break;

Page 105

 case 'Q':
 exit (0);
 }
 }

 return 0;
}

/* Enter the student's grades. */
void enter_grades(void)
{
 int t, i;

 for(t=0; t<CLASSES; t++) {
 printf(''Class # %d:\n", t+1);
 for(i=0; i<GRADES; ++i)
 grade[t][i] = get_grade(i);
 }
}

/* Read a grade. */
int get_grade(int num)
{
 char s[80];

 printf("Enter grade for student # %d:\n", num+1);
 gets(s);
 return(atoi(s));
}

/* Display grades. */
void disp_grades(int g[][GRADES])
{
 int t, i;

 for(t=0; t<CLASSES; ++t) {
 printf("Class # %d:\n", t+1);
 for(i=0; i<GRADES; ++i)
 printf("Student #%d is %d\n", i+1, g[t][i]);
 }
}

TE
AM
FL
Y

Team-Fly®

Page 106

Arrays of Strings

It is not uncommon in programming to use an array of strings. For example, the input processor to a
database may verify user commands against an array of valid commands. To create an array of
strings, use a two-dimensional character array. The size of the left dimension determines the number
of strings, and the size of the right dimension specifies the maximum length of each string. The
following declares an array of 30 strings, each with a maximum length of 79 characters:

char str_array[30][80];

It is easy to access an individual string: You simply specify only the left index. For example, the
following statement calls gets() with the third string in str_array.

gets(str_array[2]);

The preceding statement is functionally equivalent to

gets(&str_array[2][0]);

but the first of the two forms is much more common in professionally written C code.

To understand better how string arrays work, study the following short program, which uses a string
array as the basis for a very simple text editor.

/* A very simple text editor. */
#include <stdio.h>

#define MAX 100
#define LEN 80

char text[MAX][LEN];

int main(void)
{
 register int t, i, j;

 printf("Enter an empty line to quit.\n");

 for(t=0; t<MAX; t++) {
 printf(''%d: ", t);
 gets(text[t]);

Page 107

 if(!*text[t]) break; /* quit on blank line */
 }

 for(i=0; i<t; i++) {
 for(j=0; text[i][j]; j++) putchar(text[i][j]);
 putchar('\n');
 }

 return 0;
}

This program inputs lines of text until a blank line is entered. Then it redisplays each line one
character at a time.

Multidimensional Arrays

C allows arrays of more than two dimensions. The general form of a multidimensional array
declaration is

type name[Size1][Size2][Size3] . . .[SizeN];

Arrays of more than three dimensions are not often used because of the amount of memory they
require. For example, a four-dimensional character array with dimensions 10,6,9,4 requires

10 * 6 *9 *4

or 2,160 bytes. If the array held 2-byte integers, 4,320 bytes would be needed. If the array held
doubles (assuming 8 bytes per double), 17,280 bytes would be required. The storage required
increases exponentially with the number of dimensions. For example, if a fifth dimension of size 10
was added to the preceding array, then 172,800 bytes would be required.

In multidimensional arrays, it takes the computer time to compute each index. This means that
accessing an element in a multidimensional array can be slower than accessing an element in a
single-dimension array.

When passing multidimensional arrays into functions, you must declare all but the leftmost
dimension. For example, if you declare array m as

int m[4][3][6][5];

Page 108

a function, func1(), that receives m, would look like

void func1(int d[][3][6][5])
{
 /* . . . */
}

Of course, you can include the first dimension if you like.

Indexing Pointers

Pointers and arrays are closely related. As you know, an array name without an index is a pointer to
the first element in the array. For example, consider the following array:

char p[10];

The following statements are identical:

p
&p[0]

Put another way,

p == &p[0]

evaluates to true because the address of the first element of an array is the same as the address of the
array.

As stated, an array name without an index generates a pointer. Conversely, a pointer can be indexed
as if it were declared to be an array. For example, consider this program fragment:

int *p, i[10];
p = i;
p[5] = 100; /* assign using index */
(p+5) = 100; / assign using pointer arithmetic */

Both assignment statements place the value 100 in the sixth element of i. The first statement indexes
p; the second uses pointer arithmetic. Either way, the result is the same. (Chapter 5 discusses
pointers and pointer arithmetic.)

Page 109

This same concept also applies to arrays of two or more dimensions. For example, assuming that a is
a 10-by-10 integer array, these two statements are equivalent:

a
&a[0] [0]

Furthermore, the 0,4 element of a may be referenced two ways: either by array indexing, a[0][4] , or
by the pointer, *((int *)a+4). Similarly, element 1,2 is either a[1][2] or *((int *)a+12). In general,
for any two-dimensional array:

a[j][k] is equivalent to *((base type *)a+(j*row length)
+k)

The cast of the pointer to the array into a pointer of its base type is necessary in order for the pointer
arithmetic to operate properly. Pointers are sometimes used to access arrays because pointer
arithmetic is often faster than array indexing.

A two-dimensional array can be reduced to a pointer to an array of one-dimensional arrays.
Therefore, using a separate pointer variable is one easy way to use pointers to access elements
within a row of a two-dimensional array. The following function illustrates this technique. It will
print the contents of the specified row for the global integer array num.

int num[10] [10];

/* . . . */

void pr_row(int j)
{
 int *p, t;

 p = (int *) &num[j] [0]; /* get address of first
 element in row j */

 for(t=0; t<10; ++t) printf("%d ", *(p+t));
}

You can generalize this routine by making the calling arguments the row, the row length, and a
pointer to the first array element, as shown here:

void pr_row(int j, int row_dimension, int *p)
{
 int t;

Page 109

This same concept also applies to arrays of two or more dimensions. For example, assuming that a is
a 10-by-10 integer array, these two statements are equivalent:

a
&a[0] [0]

Furthermore, the 0,4 element of a may be referenced two ways: either by array indexing, a[0][4] , or
by the pointer, *((int *)a+4). Similarly, element 1,2 is either a[1][2] or *((int *)a+12). In general,
for any two-dimensional array:

a[j][k] is equivalent to *((base type *)a+(j*row length)
+k)

The cast of the pointer to the array into a pointer of its base type is necessary in order for the pointer
arithmetic to operate properly. Pointers are sometimes used to access arrays because pointer
arithmetic is often faster than array indexing.

A two-dimensional array can be reduced to a pointer to an array of one-dimensional arrays.
Therefore, using a separate pointer variable is one easy way to use pointers to access elements
within a row of a two-dimensional array. The following function illustrates this technique. It will
print the contents of the specified row for the global integer array num.

int num[10] [10];

/* . . . */

void pr_row(int j)
{
 int *p, t;

 p = (int *) &num[j] [0]; /* get address of first
 element in row j */

 for(t=0; t<10; ++t) printf("%d ", *(p+t));
}

You can generalize this routine by making the calling arguments the row, the row length, and a
pointer to the first array element, as shown here:

void pr_row(int j, int row_dimension, int *p)
{
 int t;

Page 111

Character arrays that hold strings allow a shorthand initialization that takes the form:

char array_name[size] = ''string";

For example, this code fragment initializes str to the phrase "I like C":

char str[9] = "I like C";

This is the same as writing

char str[9] = {'I', ' ', 'l', 'i', 'k', 'e',' ', 'C', '\0'};

Because strings end with a null, you must make sure that the array you declare is long enough to
include the null. This is why str is nine characters long even though "I like C" is only eight. When
you use the string constant, the compiler automatically supplies the null terminator.

Multidimensional arrays are initialized the same as single-dimension ones. For example, the
following initializes sqrs with the numbers 1 through 10 and their squares.

int sqrs[10] [2] = {
 1, 1,
 2, 4,
 3, 9,
 4, 16,
 5, 25,
 6, 36,
 7, 49,
 8, 64,
 9, 81,
 10, 100
};

When initializing a multidimensional array, you may add braces around the initializers for each
dimension. This is called subaggregate grouping. For example, here is another way to write the
preceding declaration:

int sqrs[10] [2] = {
 {1, 1},
 {2, 4},
 {3, 9},

Page 112

 {4, 16},
 {5, 25},
 {6, 36},
 {7, 49},
 {8, 64},
 {9, 81},
 {10, 100}
};

When using subaggregate grouping, if you don't supply enough initializers for a given group, the
remaining members will be set to zero, automatically.

Unsized Array Initializations

Imagine that you are using array initialization to build a table of error messages, as shown here:

char e1[12] = "Read error\n";
char e2[13] = ''Write error\n";
char e3[18] = "Cannot open file\n";

As you might guess, it is tedious to count the characters in each message manually to determine the
correct array dimension. Fortunately, you can let the compiler automatically calculate the
dimensions of the arrays. If, in an array initialization statement, the size of the array is not specified,
the compiler automatically creates an array big enough to hold all the initializers present. This is
called an unsized array. Using this approach, the message table becomes

char e1[] = "Read error\n";
char e2[] = "Write error\n";
char e3[] = "Cannot open file\n";

Given these initializations, this statement

printf("%s has length %d\n", e2, sizeof e2)

will print

Write error
 has length 13

Page 113

Besides being less tedious, unsized array initialization allows you to change any of the messages
without fear of using incorrect array dimensions.

Unsized array initializations are not restricted to one-dimensional arrays. For multidimensional
arrays, you must specify all but the leftmost dimension. (The other dimensions are needed to allow
the compiler to index the array properly.) In this way, you can build tables of varying lengths, and
the compiler automatically allocates enough storage for them. For example, the declaration of sqrs
as an unsized array is shown here:

int sqrs[] [2] = {
 {1, 1),
 {2, 4},
 {3, 9},
 {4, 16},
 {5, 25},
 {6, 36},
 {7, 49},
 {8, 64},
 {9, 81},
 {10, 100}
};

The advantage of this declaration over the sized version is that you may lengthen or shorten the table
without changing the array dimensions.

Variable-Length Arrays

As explained earlier, in C89 array dimensions must be declared using constant expressions. Thus, in
C89 the size of an array is fixed at compile time. However, this is not the case for C99, which adds a
powerful new feature to arrays: variable length. In C99, you can declare an array whose dimensions
are specified by any valid expression, including those whose value is known only at run time. This is
called a variable-length array. However, only local arrays (that is, those with block scope or
prototype scope) can be of variable length. Here is an example of a variable-length array:

void f(int dim)
{
 char str[dim]; /* a variable-length character array */

 /* . . . */
}

Page 114

Here, the size of str is determined by the value passed to f() in dim. Thus, each call to f() can result
in str being created with a different length.

One major reason for the addition of variable-length arrays to C99 is to support numeric processing.
Of course, it is a feature that has widespread applicability. But remember, variable-length arrays are
not supported by C89 (or by C++). We will look more closely at variable-length arrays in Part Two.

A Tic-Tac-Toe Example

The longer example that follows illustrates many of the ways that you can manipulate arrays with C.
This section develops a simple tic-tac-toe program. Two-dimensional arrays are commonly used to
simulate board game matrices.

The computer plays a very simple game. When it is the computer's turn, it uses
get_computer_move() to scan the matrix, looking for an unoccupied cell. When it finds one, it puts
an O there. If it cannot find an empty location, it reports a draw game and exits. The
get_player_move() function asks you where you want to place an X. The upper-left corner is
location 1,1; the lower-right corner is 3,3.

The matrix array is initialized to contain spaces. Each move made by the player or the computer
changes a space into either an X or an O. This makes it easy to display the matrix on the screen.

Each time a move has been made, the program calls the check() function. This function returns a
space if there is no winner yet, an X if you have won, or an O if the computer has won. It scans the
rows, the columns, and then the diagonals, looking for one that contains either all X's or all O's.

The disp_matrix() function displays the current state of the game. Notice how initializing the
matrix with spaces simplified this function.

The routines in this example all access the matrix array differently. Study them to make sure you
understand each array operation.

/* A simple Tic Tac Toe game. */
#include <stdio.h>
#include <stdlib.h>

char matrix[3][3]; /* the tic tac toe matrix */

char check(void);
void init_matrix(void);
void get_player_move(void);
void get_computer_move(void);
void disp_matrix(void);

int main(void)

Page 115

{
 char done;

 printf("This is the game of Tic Tac Toe.\n");
 printf(''You will be playing against the computer.\n");

 done = ' ';
 init_matrix();

 do {
 disp_matrix();
 get_player_move();
 done = check(); /* see if winner */
 if(done!= ' ') break; /* winner!*/
 get_computer_move ();
 done = check(); /* see if winner */
 } while(done== ' ');

 if(done=='X') printf("You won!\n");
 else printf("I won!!!!\n");
 disp_matrix(); /* show final positions */

 return 0;
}

/* Initialize the matrix. */
void init_matrix(void)
{
 int i, j;

 for(i=0; i<3; i++)
 for(j=0; j<3; j++) matrix[i][j] = ' ';
}

/* Get a player's move. */
void get_player_move (void)
{
 int x, y;

 printf("Enter X,Y coordinates for your move: ");
 scanf("%d%*c%d", &x, &y);

TE
AM
FL
Y

Team-Fly®

Page 116

 x--; y--;

 if(matrix[x][y]!= ' '){
 printf(''Invalid move, try again.\n");
 get_player_move();
 }
 else matrix[x][y] = 'X';
}

/* Get a move from the computer. */
void get_computer_move(void)
{
 int i, j;
 for(i=0; i<3; i++){
 for(j=0; j<3; j++)
 if(matrix[i][j]==' ') break;
 if(matrix[i][j]==' ') break;
 }

 if(i*j==9) {
 printf("draw\n");
 exit(0);
 }
 else
 matrix[i][j] = 'O';
}

/* Display the matrix on the screen. */
void disp_matrix(void)
{
 int t;

 for(t=0; t<3; t++) {
 printf(" %c | %c | %c ",matrix[t][0],
 matrix[t][1], matrix [t][2]);
 if(t!=2) printf("\n---|---|---\n");
 }
 printf ("\n");
}

/* See if there is a winner. */
char check(void)

Page 117

{
 int i;

 for(i=0; i<3; i++) /* check rows */
 if(matrix[i][0]==matrix[i][1] &&
 matrix[i][0]==matrix[i][2]) return matrix[i][0];

 for(i=0; i<3; i++) /* check columns */
 if(matrix[0][i]==matrix[1][i] &&
 matrix[0][i]==matrix[2][i]) return matrix[0] [i];

 /* test diagonals */
 if(matrix[0] [0]==matrix[1]
[1] &&
 matrix[1][1]==matrix[2][2])
 return matrix[0][0];

 if(matrix[0] [2]==matrix[1]
[1] &&
 matrix[1] [1]==matrix[2][0])
 return matrix[0][2];

 return ' ';
}

Page 119

Chapter 5—
Pointers

Page 120

The correct understanding and use of pointers is crucial to successful C programming. There are
several reasons for this: First, pointers provide the means by which functions can modify their
calling arguments. Second, pointers support dynamic allocation. Third, pointers can improve the
efficiency of certain routines. Finally, pointers provide support for dynamic data structures, such as
binary trees and linked lists.

Pointers are one of the strongest but also one of the most dangerous features in C. For example, a
pointer containing an invalid value can cause your program to crash. Perhaps worse, it is easy to use
pointers incorrectly, causing bugs that are very difficult to find. Because of their importance and
their potential for abuse, this chapter examines the subject of pointers in detail.

What Are Pointers?

A pointer is a variable that holds a memory address. This address is the location of another object
(typically another variable) in memory. For example, if one variable contains the address of another
variable, the first variable is said to point to the second. Figure 5-1 illustrates this situation.

Figure 5-1
One variable points

to another

Page 121

Pointer Variables

If a variable is going to be a pointer, it must be declared as such. A pointer declaration consists of a
base type, an *, and the variable name. The general form for declaring a pointer variable is

type *name;

where type is the base type of the pointer and may be any valid type. The name of the pointer
variable is specified by name.

The base type of the pointer defines the type of object to which the pointer will point. Technically,
any type of pointer can point anywhere in memory. However, all pointer operations are done relative
to the pointer's base type. For example, when you declare a pointer to be of type int *, the compiler
assumes that any address that it holds points to an integer— whether it actually does or not. (That is,
an int * pointer always ''thinks" that it points to an int object, no matter what that piece of memory
actually contains.) Therefore, when you declare a pointer, you must make sure that its type is
compatible with the type of object to which you want to point.

The Pointer Operators

The pointer operators were discussed in Chapter 2. We will review them here. There are two pointer
operators: * and &. The & is a unary operator that returns the memory address of its operand.
(Remember, a unary operator only requires one operand.) For example,

m = &count;

places into m the memory address of the variable count . This address is the computer's internal
location of the variable. It has nothing to do with the value of count . You can think of & as
returning "the address of." Therefore, the preceding assignment statement can be verbalized as "m
receives the address of count ."

To understand the above assignment better, assume that the variable count uses memory location
2000 to store its value. Also assume that count has a value of 100. Then, after the preceding
assignment, m will have the value 2000.

The second pointer operator, *, is the complement of &. It is a unary operator that returns the value
located at the address that follows. For example, if m contains the memory address of the variable
count ,

q = *m;

places the value of count into q. Thus, q will have the value 100 because 100 is stored at location
2000, which is the memory address that was stored in m. You can think of * as "at address." In this
case, the preceding statement can be verbalized as "q receives the value at address m."

Page 122

Pointer Expressions

In general, expressions involving pointers conform to the same rules as other expressions. This
section examines a few special aspects of pointer expressions, such as assignments, conversions, and
arithmetic.

Pointer Assignments

You can use a pointer on the right-hand side of an assignment statement to assign its value to
another pointer. When both pointers are the same type, the situation is straightforward. For example:

#include <stdio.h>

int main(void)
{
 int x = 99;
 int *p1, *p2;

 p1 = &x;
 p2 = p1;

 /* print the value of x twice */
 printf(''Values at p1 and p2: %d %
d\n", *p1, *p2);

 /* print the address of x twice */
 printf("Addresses pointed to by p1 and p2: %p %p", p1, p2);

 return 0;
}

After the assignment sequence

p1 = &x;
p2 = p1;

p1 and p2 both point to x. Thus, both p1 and p2 refer to the same object. Sample output from the
program, which confirms this, is shown here.

Values at p1 and p2: 99 99
Addresses pointed to by p1 and p2: 0063FDF0 0063FDF0

Page 123

Notice that the addresses are displayed by using the %p printf() format specifier, which causes
printf() to display an address in the format used by the host computer.

It is also possible to assign a pointer of one type to a pointer of another type. However, doing so
involves a pointer conversion, which is the subject of the next section.

Pointer Conversions

One type of pointer can be converted into another type of pointer. There are two general categories
of conversion: those that involve void * pointers, and those that don't. Each is examined here.

In C, it is permissible to assign a void * pointer to any other type of pointer. It is also permissible to
assign any other type of pointer to a void * pointer. A void * pointer is called a generic pointer. The
void * pointer is used to specify a pointer whose base type is unknown. The void * type allows a
function to specify a parameter that is capable of receiving any type of pointer argument without
reporting a type mismatch. It is also used to refer to raw memory (such as that returned by the
malloc() function described later in this chapter) when the semantics of that memory are not
known. No explicit cast is required to convert to or from a void * pointer.

Except for void *, all other pointer conversions must be performed by using an explicit cast.
However, the conversion of one type of pointer into another type may create undefined behavior.
For example, consider the following program that attempts to assign the value of x to y, through the
pointer p. This program compiles without error, but does not produce the desired result.

#include <stdio.h>

int main(void)
{
 double x = 100.1, y;
 int *p;

 /* The next statement causes p (which is an
 integer pointer) to point to a double. */
 p = (int *) &x;

 /* The next statement does not operate as expected. */
 y = *p; /* attempt to assign y the value x through p */

 /* The following statement won't output 100.1. */
 printf(''The (incorrect) value of x is: %f", y);

 return 0;
}

Page 124

Notice that an explicit cast is used when assigning the address of x (which is implicitly a double *
pointer) to p, which is an int * pointer. While this cast is correct, it does not cause the program to
act as intended (at least not in most environments). To understand the problem, assume 4-byte ints
and 8-byte doubles. Because p is declared as an integer pointer, only 4 bytes of information will be
transferred to y by this assignment statement,

y = *p;

not the 8 bytes that make up a double. Thus, even though p is a valid pointer, the fact that it points
to a double does not change the fact that operations on it expect int values. Thus, the use to which p
is put is invalid.

The preceding example reinforces the rule stated earlier: Pointer operations are performed relative to
the base type of the pointer. While it is technically permissible for a pointer to point to some other
type of object, the pointer will still ''think" that it is pointing to an object of its base type. Thus,
pointer operations are governed by the type of the pointer, not the type of the object being pointed
to.

One other pointer conversion is allowed: You can convert an integer into a pointer or a pointer into
an integer. However, you must use an explicit cast, and the result of such a conversion is
implementation defined and may result in undefined behavior. (A cast is not needed when
converting zero, which is the null pointer.)

NOTE

In C++, in all cases it is illegal to convert one type of pointer into another type of
pointer without the use of an explicit type cast. This includes void * pointer
conversions, too. For this reason, many C programmers cast all pointer conversions
so that their code is also compatible with C++.

Pointer Arithmetic

There are only two arithmetic operations that you can use on pointers: addition and subtraction. To
understand what occurs in pointer arithmetic, let p1 be an integer pointer with a current value of
2000. Also, assume ints are 2 bytes long. After the expression

p1++;

p1 contains 2002, not 2001. The reason for this is that each time p1 is incremented, it will point to
the next integer. The same is true of decrements. For example, assuming that p1 has the value 2000,
the expression

p1--;

causes p1 to have the value 1998.

Page 125

Generalizing from the preceding example, the following rules govern pointer arithmetic. Each time a
pointer is incremented, it points to the memory location of the next element of its base type. Each
time it is decremented, it points to the location of the previous element. When applied to char
pointers, this will appear as ''normal" arithmetic because a char object is always 1 byte long no
matter what the environment. All other pointers will increase or decrease by the length of the data
type they point to. This approach ensures that a pointer is always pointing to an appropriate element
of its base type. Figure 5-2 illustrates this concept.

You are not limited to the increment and decrement operators. For example, you may add or subtract
integers to or from pointers. The expression

p1 = p1 + 12;

makes p1 point to the 12th element of p1 's type beyond the one it currently points to.

Besides addition and subtraction of a pointer and an integer, only one other arithmetic operation is
allowed: You can subtract one pointer from another in order to find the number of objects of their
base type that separate the two. All other arithmetic operations are prohibited. Specifically, you
cannot multiply or divide pointers; you cannot add two pointers; you cannot apply the bitwise
operators to them; and you cannot add or subtract type float or double to or from pointers.

Figure 5-2
All pointer arithmetic is relative

to its base type (assume
2-byte integers)

Page 126

Pointer Comparisons

You can compare two pointers in a relational expression. For instance, given two pointers p and q,
the following statement is perfectly valid:

if(p < q) printf("p points to lower memory than q\n");

Generally, pointer comparisons are useful only when two pointers point to a common object, such as
an array. As an example, a set of stack functions are developed that store and retrieve integer values.
As most readers will know, a stack is a list that uses first-in, last-out accessing. It is often compared
to a stack of plates on a table— the first one set down is the last one to be used. Stacks are used
frequently in compilers, interpreters, spreadsheets, and other system-related software. To create a
stack, you need two functions: push() and pop(). The push() function places values on the stack,
and pop() takes them off. These routines are shown here with a simple main() function to drive
them. The program puts the values you enter into the stack. If you enter 0, a value is popped from
the stack. To stop the program, enter –1.

#include <stdio.h>
#include <stdlib.h>

#define SIZE 50

void push(int i);
int pop(void);

int *tos, *pl, stack[SIZE];

int main(void)
{
 int value;

 tos = stack; /* tos points to the top of stack */
 p1 = stack; /* initialize p1 */

 do {
 printf(''Enter value: ");
 scanf("%d", &value);

 if(value != 0) push(value);
 else printf("value on top is %d\n", pop());

TE
AM
FL
Y

Team-Fly®

Page 127

 } while(value != -1);

 return 0;
}

void push(int i)
{
 p1++;
 if(p1 == (tos+SIZE)) {
 printf(''Stack Overflow.\n");
 exit(1);
 }
 *p1 = i;
}

int pop(void)
{
 if(p1 == tos) {
 printf("Stack Underflow. \n");
 exit(1);
 }
 p1--;
 return *(p1+1);
}

You can see that memory for the stack is provided by the array stack. The pointer p1 is set to point
to the first element in stack. The p1 variable accesses the stack. The variable tos holds the memory
address of the top of the stack. It is used to prevent stack overflows and underflows. Once the stack
has been initialized, push() and pop() can be used. Both the push() and pop() functions perform a
relational test on the pointer p1 to detect limit errors. In push(), p1 is tested against the end of the
stack by adding SIZE (the size of the stack) to tos. This prevents an overflow. In pop(), p1 is
checked against tos to be sure that a stack underflow has not occurred.

In pop(), the parentheses are necessary in the return statement. Without them, the statement would
look like this,

return *p1+1;

which would return the value at location p1 plus one, not the value of the location p1+1.

Page 128

Pointers and Arrays

There is a close relationship between pointers and arrays. Consider this program fragment:

char str[80], *p1;
p1 = str;

Here, p1 has been set to the address of the first array element in str. To access the fifth element in
str, you could write

str[4]

or

*(p1+4)

Both statements will return the fifth element. Remember, arrays start at 0. To access the fifth
element, you must use 4 to index str. You also add 4 to the pointer p1 to access the fifth element
because p1 currently points to the first element of str. (Recall that an array name without an index
returns the starting address of the array, which is the address of the first element.)

The preceding example can be generalized. In essence, C provides two methods of accessing array
elements: pointer arithmetic and array indexing. Although the standard array-indexing notation is
sometimes easier to understand, pointer arithmetic can be faster. Since speed is often a consideration
in programming, C programmers often use pointers to access array elements.

These two versions of putstr()— one with array indexing and one with pointers— illustrate how you
can use pointers in place of array indexing. The putstr() function writes a string to the standard
output device one character at a time.

/* Index s as an array. */
void putstr(char *s)
{
 register int t;

 for(t=0; s[t]; ++t) putchar(s[t]);
}

/* Access s as a pointer. */
void putstr(char *s)
{
 while(*s) putchar(*s++);
}

Page 129

Most professional C programmers would find the second version easier to read and understand.
Depending upon the compiler, it might also be more efficient. In fact, the pointer version is the way
routines of this sort are commonly written in C.

Arrays of Pointers

Pointers can be arrayed like any other data type. The declaration for an int pointer array of size 10 is

int *x[10];

To assign the address of an integer variable called var to the third element of the pointer array, write

x[2] = &var;

To find the value of var, write

*x[2]

If you want to pass an array of pointers into a function, you can use the same method that you use to
pass other arrays: Simply call the function with the array name without any subscripts. For example,
a function that can receive array x looks like this:

void display_array(int *q[])
{
 int t;

 for(t=0; t<10; t++)
 printf(''%d ", *q[t]);
}

Remember, q is not a pointer to integers, but rather a pointer to an array of pointers to integers.
Therefore you need to declare the parameter q as an array of integer pointers, as just shown. You
cannot declare q simply as an integer pointer because that is not what it is.

Pointer arrays are often used to hold pointers to strings. For example, you can create a function that
outputs an error message given its index, as shown here:

void syntax_error(int num)
{
 static char *err[] = {

Page 130

 "Cannot Open File\n",
 ''Read Error\n",
 "Write Error\n",
 "Media Failure\n"
 };
 printf("%s", err[num]);
}

The array err holds a pointer to each error string. This works because a string constant used in an
expression (in this case, an initialization) produces a pointer to the string. The printf() function is
called with a character pointer that points to the error message whose index is passed to the function.
For example, if num is passed a 2, the message Write Error is displayed.

As a point of interest, note that the command line argument argv is an array of character pointers.
(See Chapter 6.)

Multiple Indirection

You can have a pointer point to another pointer that points to the target value. This situation is called
multiple indirection, or pointers to pointers. Pointers to pointers can be confusing. Figure 5-3 helps
clarify the concept of multiple indirection. As you can see, the value of a normal pointer is the
address of the object that contains the desired value. In the case of a pointer to a pointer, the first
pointer contains the address of the second pointer, which points to the object that contains the
desired value.

Multiple indirection can be carried on to whatever extent desired, but more than a pointer to a
pointer is rarely needed. In fact, excessive indirection is difficult to follow and prone to conceptual
errors.

NOTE

Do not confuse multiple indirection with high-level data structures, such as linked
lists, that use pointers. These are two fundamentally different concepts.

A variable that is a pointer to a pointer must be declared as such. You do this by placing an
additional asterisk in front of the variable name. For example, the following declaration tells the
compiler that newbalance is a pointer to a pointer of type float:

float **newbalance;

You should understand that newbalance is not a pointer to a floating-point number but rather a
pointer to a float pointer.

Page 131

Figure 5-3
Single and multiple indirection

To access the target value indirectly pointed to by a pointer to a pointer, you must apply the asterisk
operator twice, as in this example:

#include <stdio.h>

int main(void)
{
 int x, *p, **q;

 x = 10;
 p = &x;
 q = &p;

 printf("%d", **q); /* print the value of x */

 return 0;
}

Here, p is declared as a pointer to an integer and q as a pointer to a pointer to an integer. The call to
printf() prints the number 10 on the screen.

Initializing Pointers

After a nonstatic, local pointer is declared but before it has been assigned a value, it contains an
unknown value. (Global and static local pointers are automatically initialized to null.) Should you
try to use the pointer before giving it a valid value, you will probably crash your program— and
possibly your computer's operating system as well— a very nasty type of error!

Page 132

There is an important convention that most C programmers follow when working with pointers: A
pointer that does not currently point to a valid memory location is given the value null (which is
zero). Null is used because C guarantees that no object will exist at the null address. Thus, any
pointer that is null implies that it points to nothing and should not be used.

One way to give a pointer a null value is to assign zero to it. For example, the following initializes p
to null.

char *p = 0;

Additionally, many of C's headers, such as <stdio.h> , define the macro NULL, which is a null
pointer constant. Therefore, you will often see a pointer assigned null using a statement such as this:

p = NULL;

However, just because a pointer has a null value, it is not necessarily ''safe." The use of null to
indicate unused pointers is simply a convention that programmers follow. It is not a rule enforced by
the C language. For example, the following sequence, although incorrect, will still be compiled
without error:

int *p = 0;
p = 10; / wrong! */

In this case, the assignment through p causes an assignment at 0, which will usually cause a program
crash.

Because a null pointer is assumed to be unused, you can use the null pointer to make many of your
pointer routines easier to code and more efficient. For example, you can use a null pointer to mark
the end of a pointer array. A routine that accesses that array knows that it has reached the end when
it encounters the null value. The search() function shown in the following program illustrates this
type of approach. Given a list of names, search() determines whether a specified name is in that
list.

#include <stdio.h>
#include <string.h>

int search(char *p[], char *name);

char *names[] = {
 "Herb",
 "Rex",

Page 133

 "Dennis",
 ''John ",
 NULL}; /* null pointer constant ends the list */

int main(void)
{
 if(search(names, "Dennis") != -
1)
 printf
("Dennis is in list.\n");

 if(search(names, "Bill") == -1)
 printf("Bill not found.\n");

 return 0;
}

/* Look up a name. */
int search(char *p[], char *name)
{
 register int t;

 for(t=0; p[t]; ++t)
 if(!strcmp(p[t], name)) return t;

 return -1; /* not found */
}

The search() function is passed two parameters. The first, p, is an array of char * pointers that
point to strings containing names. The second, name, is a pointer to a string that points to the name
being sought. The search() function searches through the list of pointers, seeking a string that
matches the one pointed to by name. The for loop inside search() runs until either a match is found
or a null pointer is encountered. Assuming the end of the array is marked with a null, the condition
controlling the loop is false when the end of the array is reached. That is, p[t] will be false when p[t]
is null. In the example, this occurs when the name Bill is tried, since it is not in the list of names.

C programmers commonly initialize char * pointers to point to string constants, as the previous
example shows. To understand why this works, consider the following statement:

char *p = "hello world";

As you can see, p is a pointer, not an array. This raises a question: Where is the string constant
"hello world" being held? Since p is not an array, it can't be stored in p. Yet,

Page 134

the string is obviously being stored somewhere. The answer to the question is found in the way C
compilers handle string constants. The C compiler creates what is called a string table, which stores
the string constants used by the program. Therefore, the preceding declaration statement places the
address of ''hello world", as stored in the string table, into the pointer p. Throughout a program, p
can be used like any other string. For example, the following program is perfectly valid:

#include <stdio.h>
#include <string.h>

char *p = "hello world";

int main(void)
{
 register int t;

 /* print the string forward and backwards */
 printf(p);
 for(t=strlen(p)-1; t>-1; t--) printf("%c", p[t]);

 return 0;
}

Pointers to Functions

A particularly confusing yet powerful feature of C is the function pointer. A function has a physical
location in memory that can be assigned to a pointer. This address is the entry point of the function
and it is the address used when the function is called. Once a pointer points to a function, the
function can be called through that pointer. Function pointers also allow functions to be passed as
arguments to other functions.

You obtain the address of a function by using the function's name without any parentheses or
arguments. (This is similar to the way an array's address is obtained when only the array name,
without indexes, is used.) To see how this is done, study the following program, which compares
two strings entered by the user. Pay close attention to the declarations of check() and the function
pointer p, inside main().

#include <stdio.h>
#include <string.h>

void check(char *a, char *b,
 int (*cmp)(const char *, const char *));

Page 135

int main(void)
{
 char s1[80], s2[80];
 int (*p)(const char *, const char *); /* function pointer */

 p = strcmp; /* assign address of strcmp to p */

 printf("Enter two strings.\n");
 gets(s1);
 gets(s2);

 check(s1, s2, p); /* pass address of strcmp via p */

 return 0;
}

void check(char *a, char *b,
 int (*cmp) (const char *, const char *))
{
 printf(''Testing for equality.\n");
 if(!(*cmp)(a, b)) printf("Equal");
 else printf("Not Equal");
}

Let's look closely at this program. First, examine the declaration for p in main(). It is shown here:

int (*p)(const char *, const char *);

This declaration tells the compiler that p is a pointer to a function that has two const char *
parameters, and returns an int result. The parentheses around p are necessary in order for the
compiler to properly interpret this declaration. You must use a similar form when declaring other
function pointers, although the return type and parameters of the function may differ.

Next, examine the check() function. It declares three parameters: two character pointers, a and b,
and one function pointer, cmp. Notice that the function pointer is declared using the same format as
was p inside main(). Thus, cmp is able to receive a pointer to a function that takes two const char
* arguments and returns an int result. Like the declaration for p, the parentheses around the *cmp
are necessary for the compiler to interpret this statement correctly.

When the program begins, it assigns p the address of strcmp(), the standard string comparison
function. Next, it prompts the user for two strings, and then it passes

Page 136

pointers to those strings along with p to check(), which compares the strings for equality. Inside
check(), the expression

(*cmp)(a, b)

calls strcmp(), which is pointed to by cmp, with the arguments a and b. The parentheses around
*cmp are necessary. This is one way to call a function through a pointer. A second, simpler syntax,
as shown here, can also be used.

cmp(a, b);

The reason that you will frequently see the first style is that it tips off anyone reading your code that
a function is being called through a pointer (that is, that cmp is a function pointer, not the name of a
function). Also, the first style was the form originally specified by C.

Note that you can call check() by using strcmp() directly, as shown here:

check(s1, s2, strcmp);

This eliminates the need for an additional pointer variable, in this case.

You may wonder why anyone would write a program like the one just shown. Obviously, nothing is
gained, and significant confusion is introduced. However, at times it is advantageous to pass
functions as parameters or to create an array of functions. For example, when an interpreter is
written, the parser (the part that processes expressions) often calls various support functions, such as
those that compute mathematical operations (sine, cosine, tangent, etc.), perform I/O, or access
system resources. Instead of having a large switch statement with all of these functions listed in it,
an array of function pointers can be created. In this approach, the proper function is selected by its
index.

You can get a better idea of the value of function pointers by studying the expanded version of the
previous example, shown next. In this version, check() can be made to check for either alphabetical
equality or numeric equality by simply calling it with a different comparison function. When
checking for numeric equality, the string ''0123" will compare equal to "123", even though the
strings, themselves, differ.

#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>

void check(char *a, char *b,
 int (*cmp)(const char *, const char *));
int compvalues(const char *a, const char *b);

TE
AM
FL
Y

Team-Fly®

Page 136

pointers to those strings along with p to check(), which compares the strings for equality. Inside
check(), the expression

(*cmp)(a, b)

calls strcmp(), which is pointed to by cmp, with the arguments a and b. The parentheses around
*cmp are necessary. This is one way to call a function through a pointer. A second, simpler syntax,
as shown here, can also be used.

cmp(a, b);

The reason that you will frequently see the first style is that it tips off anyone reading your code that
a function is being called through a pointer (that is, that cmp is a function pointer, not the name of a
function). Also, the first style was the form originally specified by C.

Note that you can call check() by using strcmp() directly, as shown here:

check(s1, s2, strcmp);

This eliminates the need for an additional pointer variable, in this case.

You may wonder why anyone would write a program like the one just shown. Obviously, nothing is
gained, and significant confusion is introduced. However, at times it is advantageous to pass
functions as parameters or to create an array of functions. For example, when an interpreter is
written, the parser (the part that processes expressions) often calls various support functions, such as
those that compute mathematical operations (sine, cosine, tangent, etc.), perform I/O, or access
system resources. Instead of having a large switch statement with all of these functions listed in it,
an array of function pointers can be created. In this approach, the proper function is selected by its
index.

You can get a better idea of the value of function pointers by studying the expanded version of the
previous example, shown next. In this version, check() can be made to check for either alphabetical
equality or numeric equality by simply calling it with a different comparison function. When
checking for numeric equality, the string ''0123" will compare equal to "123", even though the
strings, themselves, differ.

#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>

void check(char *a, char *b,
 int (*cmp)(const char *, const char *));
int compvalues(const char *a, const char *b);

Page 137

int main(void)
{
 char s1[80], s2[80];

 printf ("Enter two values or two strings.\n");
 gets (s1);
 gets(s2);

 if(isdigit(*sl)) {
 printf(''Testing values for equality.\n");
 check(s1, s2, compvalues);
 }
 else {
 printf("Testing strings for equality.\n");
 check(s1, s2, strcmp);
 }

 return 0;
}

void check(char *a, char *b,
 int (*cmp)(const char *, const char *))
{
 if(!(*cmp)(a, b)) printf("Equal");
 else printf("Not Equal");
}

int compvalues(const char *a, const char *b)
{
 if(atoi(a)==atoi(b)) return 0;
 else return 1;
}

In this program, if you enter a string that begins with a digit, compvalues() is passed to check().
Otherwise, strcmp() is used. Since check() calls the function that it is passed, it can use a different
comparison function in different cases. Two sample program runs are shown here:

Enter two values or two strings.
Test
Test
Testing strings for equality.

Page 139

region of memory allocated from the heap. If there is not enough available memory to satisfy the
malloc() request, an allocation failure occurs and malloc() returns a null.

The code fragment shown here allocates 1,000 bytes of contiguous memory:

char *p;
p = malloc(1000); /* get 1000 bytes */

After the assignment, p points to the first of 1,000 bytes of free memory.

In the preceding example, notice that no type cast is used to assign the return value of malloc() to p.
As explained, a void * pointer is automatically converted to the type of the pointer on the left side of
an assignment. (However, this automatic conversion does not occur in C++, and an explicit type cast
is needed.)

The next example allocates space for 50 integers. Notice the use of sizeof to ensure portability.

int *p;
p = malloc(50*sizeof(int));

Since the heap is not infinite, whenever you allocate memory, you must check the value returned by
malloc() to make sure that it is not null before using the pointer. Using a null pointer will almost
certainly crash your program. The proper way to allocate memory and test for a valid pointer is
illustrated in this code fragment:

p = malloc(100);
if(!p) {
 printf(''Out of memory.\n");
 exit (1);
}

Of course, you can substitute some other sort of error handler in place of the call to exit(). Just
make sure that you do not use the pointer p if it is null.

The free() function is the opposite of malloc() in that it returns previously allocated memory to the
system. Once the memory has been freed, it may be reused by a subsequent call to malloc(). The
function free() has this prototype:

void free(void *p);

Here, p is a pointer to memory that was previously allocated using malloc(). It is critical that you
never call free() with an invalid argument; this will damage the allocation system.

C's dynamic allocation subsystem is used in conjunction with pointers to support a variety of
important programming constructs, such as linked lists and binary trees. Several examples of these
are included in Part Four. Another important use of dynamic allocation is discussed next:
dynamically allocated arrays.

Page 140

Dynamically Allocated Arrays

Sometimes you will want to allocate memory using malloc(), but operate on that memory as if it
were an array, using array indexing. In essence, you may want to create a dynamically allocated
array. Since any pointer can be indexed as if it were an array, this presents no trouble. For example,
the following program shows how you can use a dynamically allocated array to hold a one-
dimensional array— in this case, a string.

/* Allocate space for a string dynamically, request user
 input, and then print the string backwards. */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *s;
 register int t;

 s = malloc(80);

 if(!s) {
 printf(''Memory request failed.\n");
 exit (1);
 }

 gets(s);
 for(t=strlen(s)-l; t>=0; t--) putchar(s[t]);
 free(s);

 return 0;
}

As the program shows, before its first use, s is tested to ensure that the allocation request succeeded
and that a valid pointer was returned by malloc(). This is absolutely necessary to prevent accidental
use of a null pointer. Notice how the pointer s is used in the call to gets() and then indexed as an
array to print the string backwards.

You can also dynamically allocate multidimensional arrays. To do so, you must declare a pointer
that specifies all but the leftmost array dimension. To see how this works, study the following
example, which builds a table of the numbers 1 through 10 raised to their first, second, third, and
fourth powers.

Page 141

#include <stdio.h>
#include <stdlib.h>

int pwr(int a, int b);

int main(void)
{
 /* Declare a pointer to an array that has 10
 ints in each row. */
 int (*p)[10];

 register int i, j;

 /* allocate memory to hold a 4 x 10 array */
 p = malloc(40*sizeof(int));

 if(!p) {
 printf(''Memory request failed.\n");
 exit (1);
 }

 for(j=l; j<ll; j++)
 for(i=l; i<5; i++) p[i-l][j-l] = pwr(j, i);

 for(j=l; j<ll; j++) {
 for(i=l; i<5; i++) printf("%10d ", p[i-1][j-
l]);
 printf ("\n");
 }

 return 0;
}

/* Raise an integer to the specified power. */
pwr(int a, int b)
{
 register int t=l;

 for(; b; b--) t = t*a;
 return t;
}

Page 142

The output produced by this program is shown here.

1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256
5 25 125 625
6 36 216 1296
7 49 343 2401
8 64 512 4096
9 81 729 6561
10 100 1000 10000

In main(), the pointer p is declared like this:

int (*p)[10];

The parentheses around *p are necessary. This declaration states that p is a pointer to an array of 10
integers. That is, its base type is a 10-int array. When p is incremented, it will point to the start of
the next 10 integers; when decremented, p will point to the previous 10 integers. Thus, p is a pointer
to a two-dimensional integer array that has 10 elements in each row. This means that p can be
indexed as a two-dimensional array, as the program shows. The only difference is that the storage
for the array is allocated manually using the malloc() statement, rather than automatically using a
normal array declaration statement.

One final point: As has been mentioned, in C++ you must cast all pointer conversions. Therefore, if
you want to make the preceding program compatible with both C and C++, you must cast the
pointer returned by malloc(), as shown here:

p = (int (*)[10]) malloc(40*sizeof(int));

As explained earlier, many C programmers cast all pointer conversions for the sake of compatibility
with C++.

restrict-Qualified Pointers

The C99 standard has added a new type qualifier that applies only to pointers: restrict. Pointers
qualified by restrict are discussed in detail in Part Two, but a brief description is given here.

A pointer qualified by restrict is initially the only means by which the object it points to is accessed.
Access to the object by another pointer can occur only if the second pointer is based on the first.
Thus, access to the object is restricted to expressions based on the restrict-qualified pointer.
Pointers qualified by restrict are primarily used as

Page 143

function parameters or to point to memory allocated via malloc(). By qualifying a pointer with
restrict, the compiler is better able to optimize certain types of routines. For example, if a function
specifies two restrict-qualified pointer parameters, then the compiler can assume that the pointers
point to different (that is, non-overlapping) objects. The restrict qualifier does not change the
semantics of a program.

Problems with Pointers

Nothing will get you into more trouble than a wild pointer! Pointers are a mixed blessing. They give
you tremendous power, but when a pointer is used incorrectly, or contains the wrong value, it can be
a very difficult bug to find.

An erroneous pointer is difficult to find because the pointer, by itself, is not the problem. The
trouble starts when you access an object through that pointer. In short, when you attempt to use a
bad pointer, you are reading or writing to some unknown piece of memory. If you read from it, you
will get a garbage value, which will probably cause your program to malfunction. If you write to it,
you might be writing over other pieces of your code or data. In either case, the problem might not
show up until later in the execution of your program and may lead you to look for the bug in the
wrong place. There may be little or no evidence to suggest that the pointer is the original cause of
the problem. Programmers lose sleep over this type of bug time and time again.

Because pointer errors are so troublesome, you should, of course, do your best never to generate
one. To help you avoid them, a few of the more common errors are discussed here. The classic
example of a pointer error is the uninitialized pointer. Consider this program:

/* This program is wrong. */
int main(void)
{
 int x, *p;

 x = 10;
 p = x; / error, p not initialized */

 return 0;
}

This program assigns the value 10 to some unknown memory location. Here is why. Since the
pointer p has never been given a value, it contains an unknown value when the assignment *p = x
takes place. This causes the value of x to be written to some unknown memory location. This type of
problem often goes unnoticed when the program is small because the odds are in favor of p
containing a ''safe" address–one that is not in your code, data area, or operating system. However, as
your program grows, the probability increases of p pointing to something vital. Eventually, your
program stops working. In this simple example, most compilers will issue a warning

Page 144

message stating that you are attempting to use an uninitialized pointer, but the same type of error
can occur in more roundabout ways that the compiler can't detect.

A second common error is caused by a simple misunderstanding of how to use a pointer. Consider
the following:

/* This program is wrong. */
#include <stdio.h>

int main(void)
{
 int x, *p;

 x = 10;
 p = x;

 printf("%d", *p);

 return 0;
}

The call to printf() does not print the value of x, which is 10, on the screen. It prints some unknown
value because the assignment

p = x;

is wrong. That statement assigns the value 10 to the pointer p. However, p is supposed to contain an
address, not a value. To correct the program, write

p = &x;

As with the earlier error, most compilers will issue at least a warning message when you attempt to
assign x to p. But as before, this error can manifest itself in a more subtle fashion which the
compiler can't detect.

Another error that sometimes occurs is caused by incorrect assumptions about the placement of
variables in memory. In general, you cannot know where your data will be placed in memory, or
whether it will be placed there the same way again, or whether different compilers will treat it in the
same way. For these reasons, making any comparisons between pointers that do not point to a
common object may yield unexpected results. For example,

char s[80], y[80];
char *p1, *p2;

Page 145

p1 = s;
p2 = y;
if(p1 < p2) . . .

is generally an invalid concept. (In very unusual situations, you might use something like this to
determine the relative position of the variables. But this would be rare.)

A related error results when you assume that two adjacent arrays may be indexed as one by simply
incrementing a pointer across the array boundaries. For example:

int first[10], second[10];
int *p, t;

p = first;
for(t=0; t<20; ++t) *p++ = t;

This is not a good way to initialize the arrays first and second with the numbers 0 through 19. Even
though it may work on some compilers under certain circumstances, it assumes that both arrays will
be placed back to back in memory with first first. This may not always be the case.

The next program illustrates a very dangerous type of bug. See if you can find it.

/* This program has a bug. */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char *p1;
 char s[80];

 p1 = s;
 do {
 gets(s); /* read a string */

 /* print the decimal equivalent of each
 character */
 while(*p1) printf('' %d", *p1++);

 } while(strcmp(s, "done"));

 return 0;
}

Page 146

This program uses p1 to print the ASCII values associated with the characters contained in s. The
problem is that p1 is assigned the address of s only once, outside the loop. The first time through the
loop, p1 points to the first character in s. However, the second time through, it continues where it
left off because it is not reset to the start of s. This next character may be part of the second string,
another variable, or a piece of the program! The proper way to write this program is

/* This program is now correct. */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char *p1;
 char s[80];

 do {
 p1 = s; /* reset p1 to beginning of s */
 gets(s); /* read a string */

 /* print the decimal equivalent of each
 character */
 while(*p1) printf('' %d", *p1++);

 } while(strcmp(s, "done"));

 return 0;
}

Here, each time the loop iterates, p1 is set to the start of the string. In general, you should remember
to reinitialize a pointer if it is to be reused.

The fact that handling pointers incorrectly can cause tricky bugs is no reason to avoid using them.
Just be careful, and make sure that you know where each pointer is pointing before you use it.TE

AM
FL
Y

Team-Fly®

Page 147

Chapter 6—
Functions

Page 148

Functions are the building blocks of C and the place where all program activity occurs. This chapter
examines their features, including function arguments, return values, prototypes, and recursion.

The General Form of a Function

The general form of a function is

ret-type function-name(parameter list)
{
 body of the function
}

The ret-type specifies the type of data that the function returns. A function may return any type of
data except an array. The parameter list is a comma-separated list of variable names and their
associated types. The parameters receive the values of the arguments when the function is called. A
function can be without parameters, in which case the parameter list is empty. An empty parameter
list can be explicitly specified as such by placing the keyword void inside the parentheses.

In variable declarations, you can declare several variables to be of the same type by using a comma-
separated list of variable names. In contrast, all function parameters must be declared individually,
each including both the type and name. That is, the parameter declaration list for a function takes
this general form:

f(type varname1, type varname2, . . . , type varnameN)

For example, here are a correct and an incorrect function parameter declaration:

f(int i, int k, int j) /* correct */
f(int i, k, float j) /* wrong, k must have its own type specifier */

Understanding the Scope of a Function

The scope rules of a language are the rules that govern whether a piece of code knows about or has
access to another piece of code or data. The scopes defined by C were described in Chapter 2. Here
we will look more closely at one specific scope: the one defined by a function.

Each function is a discrete block of code. Thus, a function defines a block scope. This means that a
function's code is private to that function and cannot be accessed by any statement in any other
function except through a call to that function. (For instance, you cannot use goto to jump into the
middle of another function.) The code that constitutes the body of a function is hidden from the rest
of the program, and unless it uses global variables, it can neither affect nor be affected by other parts
of the

Page 149

program. Stated another way, the code and data defined within one function cannot interact with the
code or data defined in another function because the two functions have different scopes.

Variables that are defined within a function are local variables. A local variable comes into
existence when the function is entered and is destroyed upon exit. Thus, a local variable cannot hold
its value between function calls. The only exception to this rule is when the variable is declared with
the static storage class specifier. This causes the compiler to treat the variable as if it were a global
variable for storage purposes, but limit its scope to the function. (See Chapter 2 for additional
information on global and local variables.)

The formal parameters to a function also fall within the function's scope. This means that a
parameter is known throughout the entire function. A parameter comes into existence when the
function is called and is destroyed when the function is exited.

All functions have file scope. Thus, you cannot define a function within a function. This is why C is
not technically a block-structured language.

Function Arguments

If a function is to accept arguments, it must declare the parameters that will receive the values of the
arguments. As shown in the following function, the parameter declarations occur after the function
name.

/* Return 1 if c is part of string s; 0 otherwise. */
int is_in(char *s, char c)
{
 while (*s)
 if(*s==c) return 1;
 else s++;
 return 0;
}

The function is_in() has two parameters: s and c. This function returns 1 if the character c is part of
the string s; otherwise, it returns 0.

Even though parameters perform the special task of receiving the value of the arguments passed to
the function, they behave like any other local variable. For example, you can make assignments to a
function's formal parameters or use them in an expression.

Call by Value, Call by Reference

In a computer language there are two ways that arguments can be passed to a subroutine. The first is
call by value. This method copies the value of an argument into

Page 150

the formal parameter of the subroutine. In this case, changes made to the parameter have no effect
on the argument.

Call by reference is the second way of passing arguments to a subroutine. In this method, the
address of an argument is copied into the parameter. Inside the subroutine, the address is used to
access the actual argument used in the call. This means that changes made to the parameter affect
the argument.

With few exceptions, C uses call by value to pass arguments. In general, this means that code within
a function cannot alter the arguments used to call the function. Consider the following program:

#include <stdio.h>

int sqr(int x);

int main(void)
{
 int t=10;

 printf("%d %d", sqr(t), t);

 return 0;
}

int sqr(int x)
{
 x = x*x;
 return(x);
}

In this example, the value of the argument to sqr(), 10, is copied into the parameter x. When the
assignment x = x*x takes place, only the local variable x is modified. The variable t, used to call sqr
(), still has the value 10. Hence, the output is 100 10.

Remember that it is a copy of the value of the argument that is passed into a function. What occurs
inside the function has no effect on the variable used in the call.

Creating a Call by Reference

Even though C uses call by value for passing parameters, you can create a call by reference by
passing a pointer to an argument, instead of passing the argument itself. Since the address of the
argument is passed to the function, code within the function can change the value of the argument
outside the function.

Pointers are passed to functions just like any other argument. Of course, you need to declare the
parameters as pointer types. For example, the function swap(),

Page 151

which exchanges the values of the two integer variables pointed to by its arguments, shows how:

void swap(int *x, int *y)
{
 int temp;

 temp = *x; /* save the value at address x */
 *x = *y; /* put y into x */
 y = temp; / put x into y */
}

The swap() function is able to exchange the values of the two variables pointed to by x and y
because their addresses (not their values) are passed. Within the function, the contents of the
variables are accessed using standard pointer operations, and their values are swapped.

Remember that swap() (or any other function that uses pointer parameters) must be called with the
addresses of the arguments. The following program shows the correct way to call swap():

#include <stdio.h>
void swap(int *x, int *y);

int main (void)
{
 int i, j;

 i = 10;
 j = 20;

 printf("i and j before swapping: %d %d\n", i, j);

 swap(&i, &j); /* pass the addresses of i and j */

 printf("i and j after swapping: %d %d\n", i, j);

 return 0;
}

void swap(int *x, int *y)
{
 int temp;

Page 152

 temp = *x; /* save the value at address x */
 *x = *y; /* put y into x */
 y = temp; / put x into y */
}

The output from this program is shown here:

i and j before swapping: 10 20
i and j after swapping: 20 10

In the program, the variable i is assigned the value 10, and j is assigned the value 20. Then swap()
is called with the addresses of i and j. (The unary operator & is used to produce the address of the
variables.) Therefore, the addresses of i and j, not their values, are passed into the function swap().

NOTE

C++ allows you to fully automate a call by reference through the use of reference
parameters. Reference parameters are not supported by C.

Calling Functions with Arrays

Arrays are covered in detail in Chapter 4. However, this section discusses passing arrays as
arguments to functions because it is an exception to the normal call-by-value parameter passing.

When an array is used as a function argument, its address is passed to a function. This is an
exception to the call-by-value parameter passing convention. In this case, the code inside the
function is operating on, and potentially altering, the actual contents of the array used to call the
function. For example, consider the function print_upper(), which prints its string argument in
uppercase:

#include <stdio.h>
#include <ctype.h>

void print_upper(char *string);

int main(void)
{
 char s[80];

 printf("Enter a string: ");
 gets(s);
 print_upper(s);
 printf(''\ns is now uppercase: %s", s);

Page 153

 return 0;
}

/* Print a string in uppercase. */
void print_upper(char *string)
{
 register int t;

 for(t=0; string[t]; ++t) {
 string[t] = toupper(string
[t]);
 putchar(string[t]);
 }
}

Here is sample output:

Enter a string: This is a test.
THIS IS A TEST.
s is now uppercase: THIS IS A TEST.

After the call to print_upper(), the contents of array s in main() are changed to uppercase. If this
is not what you want, you could write the program like this:

#include <stdio.h>
#include <ctype.h>

void print_upper(char *string);

int main(void)
{
 char s[80];

 printf("Enter a string: ");
 gets (s);
 print_upper(s);
 printf(''\ns is unchanged: %s", s);

 return 0;
}

void print_upper(char *string)

Page 154

{
 register int t;
 for(t=0; string[t]; ++t)
 putchar(toupper(string[t]));
}

Here is sample output from this version of the program:

Enter a string: This is a test.
THIS IS A TEST.
s is unchanged: This is a test.

In this case, the contents of array s remain unchanged because its values are not altered inside
print_upper().

The standard library function gets() is a classic example of passing arrays into functions. Although
the gets() in your standard library is more sophisticated, the following simpler version, called xgets
(), will give you an idea of how it works.

/* A simple version of the standard
 gets() library function. */
char *xgets(char *s)
{
 char ch, *p;
 int t;

 p = s; /* gets() returns a pointer to s */

 for(t=0; t<80; ++t){
 ch = getchar();

 switch(ch) {
 case '\n':
 s[t] = '\0'; /* terminate the string */
 return p;
 case '\b':
 if(t>0) t--;
 break;
 default:
 s[t] = ch;
 }

Page 155

 }
 s[79] = '\0';
 return p;
}

The xgets() function must be called with a char * pointer. This, of course, can be the name of a
character array, which by definition is a char * pointer. Upon entry, xgets() establishes a for loop
from 0 to 80. This prevents larger strings from being entered at the keyboard. If more than 80
characters are entered, the function returns. (The real gets() function does not have this restriction.)
Because C has no built-in bounds checking, you should make sure that any array used to call xgets
() can accept at least 80 characters. As you type characters on the keyboard, they are placed in the
string. If you type a backspace, the counter t is reduced by 1, effectively removing the previous
character from the array. When you press ENTER, a null is placed at the end of the string, signaling its
termination. Because the array used to call xgets() is modified, upon return it contains the
characters that you type.

argc and argv— Arguments to main()

Sometimes it is useful to pass information into a program when you run it. Generally, you pass
information into the main() function via command line arguments. A command line argument is the
information that follows the program's name on the command line of the operating system. For
example, when you compile a program, you might type something like the following after the
command prompt,

cc program_name

where program_name is a command line argument that specifies the name of the program you wish
to compile.

Two special built-in arguments, argc and argv, are used to receive command line arguments. The
argc parameter holds the number of arguments on the command line and is an integer. It is always at
least 1 because the name of the program qualifies as the first argument. The argv parameter is a
pointer to an array of character pointers. Each element in this array points to a command line
argument. All command line arguments are strings— any numbers will have to be converted by the
program into the proper binary format, manually.

Here is a simple example that uses a command line argument. It prints Hello and your name on the
screen, if you specify your name as a command line argument.

#include <stdio.h>
#include <stdlib.h>

Page 156

int main(int argc, char *argv[])
{
 if(argc!=2) {
 printf(''You forgot to type your name.\n");
 exit(1);
 }
 printf("Hello %s", argv[1]);

 return 0;
}

If you called this program name and your name were Tom, you would type name Tom to run the
program. The output from the program would be Hello Tom.

In many environments, each command line argument must be separated by a space or a tab.
Commas, semicolons, and the like are not considered separators. For example,

run Spot, run

is made up of three strings, while

Herb,Rick,Fred

is a single string because commas are not generally legal separators.

Some environments allow you to enclose within double quotes a string containing spaces. This
causes the entire string to be treated as a single argument. Check your operating system
documentation for details on the definition of command line parameters for your system.

You must declare argv properly. The most common method is

char *argv[];

The empty brackets indicate that the array is of undetermined length. You can now access the
individual arguments by indexing argv. For example, argv[0] points to the first string, which is
always the program's name; argv[1] points to the first argument, and so on.

Another short example using command line arguments is the program called countdown, shown
here. It counts down from a starting value (which is specified on the command line) and beeps when
it reaches 0. Notice that the first argument containing the starting count is converted into an integer
by the standard function atoi(). If the string "display" is the second command line argument, the
countdown will also be displayed on the screen.

TE
AM
FL
Y

Team-Fly®

Page 157

/* Countdown program. */
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>

int main(int argc, char *argv[])
{
 int disp, count;

 if(argc<2) {
 printf(''You must enter the length of the count\n");
 printf("on the command line. Try again.\n");
 exit(1);
 }

 if(argc==3 && !strcmp(argv[2], "display")) disp = 1;
 else disp = 0;

 for(count=atoi(argv[1]); count; --count)
 if(disp) printf("%d\n", count);

 putchar('\a'); /* this will ring the bell */
 printf("Done");

 return 0;
}

Notice that if no command line arguments have been specified, an error message is printed. A
program with command line arguments often issues instructions if the user attempts to run the
program without entering the proper information.

To access an individual character in one of the command line arguments, add a second index to
argv. For example, the next program displays all of the arguments with which it was called, one
character at a time:

#include <stdio.h>

int main(int argc, char *argv[])
{
 int t, i;

 for(t=O; t<argc; ++t) {

Page 158

 i = 0;

 while(argv[t][i]) {
 putchar(argv[t][i]);
 ++i;
 }
 printf(''\n");
 }

 return 0;
}

Remember, for argv, the first index accesses the string, and the second index accesses the individual
characters of the string.

Usually, you use argc and argv to get initial commands into your program that are needed at start-
up. For example, command line arguments often specify such things as a filename, an option, or an
alternate behavior. Using command line arguments gives your program a professional appearance
and facilitates its use in batch files.

The names argc and argv are traditional but arbitrary. You may name these two parameters to main
() anything you like. Also, some compilers may support additional arguments to main(), so be sure
to check your compiler's documentation.

When a program does not require command line parameters, it is common practice to explicitly
declare main() as having no parameters. This is accomplished by using the void keyword in its
parameter list.

The return Statement

The mechanics of return are described in Chapter 3. As explained, it has two important uses. First,
it causes an immediate exit from the function. That is, it causes program execution to return to the
calling code. Second, it can be used to return a value. The following sections examine how the
return statement is applied.

Returning from a Function

A function terminates execution and returns to the caller in two ways. The first occurs when the last
statement in the function has executed, and, conceptually, the function's ending curly brace (}) is
encountered. (Of course, the curly brace isn't actually present in the object code, but you can think
of it in this way.) For example, the pr_reverse() function in this program simply prints the string I
like C backwards on the screen and then returns.

Page 159

#include <string.h>
#include <stdio.h>

void pr_reverse(char *s);

int main(void)
{
 pr_reverse(''I like C");

 return 0;
}

void pr_reverse(char *s)
{
 register int t;

 for(t=strlen(s)-l; t>=0; t--) putchar(s[t]);
}

Once the string has been displayed, there is nothing left for pr_reverse() to do, so it returns to the
place from which it was called.

Actually, not many functions use this default method of terminating their execution. Most functions
rely on the return statement to stop execution either because a value must be returned or to make a
function's code simpler and more efficient.

A function may contain several return statements. For example, the find_substr() function in the
following program returns the starting position of a substring within a string, or it returns –1 if no
match is found. It uses two return statements to simplify the coding.

#include <stdio.h>

int find_substr(char *s1, char *s2);

int main(void)
{
 if(find_substr("C is fun", "is") != -1)
 printf("Substring is found.");

 return 0;
}

/* Return index of first match of s2 in s1. */

Page 160

int find_substr(char *s1, char *s2)
{
 register int t;
 char *p, *p2;

 for(t=0; s1[t]; t++)
 p = &s1[t];
 p2 = s2;

 while(*p2 && *p2==*p) {
 p++;
 p2++;
 }
 if(!*p2) return t; /* 1st return */
 }
 return -1; /* 2nd return */
}

Returning Values

All functions, except those of type void , return a value. This value is specified by the return
statement. In C89, if a non-void function executes a return statement that does not include a value,
then a garbage value is returned. This is, to say the least, bad practice! In C99 (and C++), a non-void
function must use a return statement that returns a value. That is, in C99, if a function is specified
as returning a value, any return statement within it must have a value associated with it. However,
if execution reaches the end of a non-void function (that is, encounters the function's closing curly
brace), a garbage value is returned. Although this condition is not a syntax error, it is still a
fundamental flaw and should be avoided.

As long as a function is not declared as void, you can use it as an operand in an expression.
Therefore, each of the following expressions is valid:

x = power(y);
if(max(x,y) > 100) printf(''greater");
for(ch=getchar(); isdigit(ch);) . . . ;

As a general rule, a function call cannot be on the left side of an assignment. A statement such as

swap(x,y) = 100; /* incorrect statement */

is wrong. The C compiler will flag it as an error and will not compile a program that contains it.

Page 161

When you write programs, your functions will be of three types. The first type is simply
computational. These functions are specifically designed to perform operations on their arguments
and return a value based on that operation. A computational function is a ''pure" function. Examples
are the standard library functions sqrt() and sin(), which compute the square root and sine of their
arguments.

The second type of function manipulates information and returns a value that simply indicates the
success or failure of that manipulation. An example is the library function fclose(), which closes a
file. If the close operation is successful, the function returns 0; it returns EOF if an error occurs.

The last type of function has no explicit return value. In essence, the function is strictly procedural
and produces no value. An example is exit(), which terminates a program. All functions that do not
return values should be declared as returning type void. By declaring a function as void, you keep it
from being used in an expression, thus preventing accidental misuse.

Sometimes, functions that really don't produce an interesting result return something anyway. For
example, printf() returns the number of characters written. Yet, it is unusual to find a program that
actually checks this. In other words, although all functions, except those of type void, return values,
you don't have to use the return value for anything. A common question concerning function return
values is, "Don't I have to assign this value to some variable since a value is being returned?" The
answer is no. If there is no assignment specified, the return value is simply discarded. Consider the
following program, which uses the function mul():

#include <stdio.h>

int mul(int a, int b);

int main(void)
{
 int x, y, z;

 x = 10; y = 20;
 z = mul
(x, y); /* 1 */
 printf("%d", mul
(x,y)); /* 2 */
 mul
(x, y); /* 3 */

 return 0;
}

int mul(int a, int b)
{
 return a*b;
}

Page 162

In line 1, the return value of mul() is assigned to z. In line 2, the return value is not actually
assigned, but it is used by the printf() function. Finally, in line 3, the return value is lost because it
is neither assigned to another variable nor used as part of an expression.

Returning Pointers

Although functions that return pointers are handled just like any other type of function, it is helpful
to review some key concepts and look at an example. Pointers are neither integers nor unsigned
integers. They are the memory addresses of a certain type of data. One reason for this distinction is
that pointer arithmetic is relative to the base type. For example, if an integer pointer is incremented,
it will contain a value that is four greater than its previous value (assuming 4-byte integers). In
general, each time a pointer is incremented (or decremented), it points to the next (or previous) item
of its type. Since the length of different data types may differ, the compiler must know what type of
data the pointer is pointing to. For this reason, a function that returns a pointer must declare
explicitly what type of pointer it is returning. For example, you should not use a return type of int *
to return a char * pointer! In a few cases, a function will need to return a generic pointer. In this
case, the function return type must be specified as void *.

To return a pointer, a function must be declared as having a pointer return type. For example, the
following function returns a pointer to the first occurrence of the character c in string s: If no match
is found, a pointer to the null terminator is returned.

/* Return pointer of first occurrence of c in s. */
char *match(char c, char *s)
{
 while(c!=*s && *s) s++;
 return(s);
}

Here is a short program that uses match():

#include <stdio.h>

char *match(char c, char *s); /* prototype */

int main(void)
{
 char s[80], *p, ch;

 gets(s);
 ch = getchar();
 p = match(ch, s);

Page 163

 if(*p) /* there is a match */
 printf(''%s ", p);
 else
 printf("No match found.");

 return 0;
}

This program reads a string and then a character. It then searches for an occurrence of the character
in the string. If the character is in the string, p will point to that character, and the program prints the
string from the point of match. When no match is found, p will be pointing to the null terminator,
making *p false. In this case, the program prints No match found.

Functions of Type void

One of void's uses is to explicitly declare functions that do not return values. This prevents their use
in any expression and helps avert accidental misuse. For example, the function print_vertical()
prints its string argument vertically down the side of the screen. Since it returns no value, it is
declared as void.

void print_vertical (char *str)
{
 while (*str)
 printf("%c\n", *str++);
}

Here is an example that uses print_vertical():

#include <stdio.h>

void print_vertical(char *str); /* prototype */

int main(int argc, char *argv[])
{
 if(argc > 1) print_vertical(argv[1]);

 return 0;
}

void print_vertical(char *str)
{

Page 164

 while(*str)
 printf(''%c\n", *str++);
}

One last point: Early versions of C did not define the void keyword. Thus, in early C programs,
functions that did not return values simply defaulted to type int, even though no value was returned.

What Does main() Return?

The main() function returns an integer to the calling process, which is generally the operating
system. Returning a value from main() is the equivalent of calling exit() with the same value. If
main() does not explicitly return a value, the value passed to the calling process is technically
undefined. In practice, most C compilers automatically return 0, but do not rely on this if portability
is a concern.

Recursion

In C, a function can call itself. In this case, the function is said to be recursive. Recursion is the
process of defining something in terms of itself, and is sometimes called circular definition.

A simple example of a recursive function is factr(), which computes the factorial of an integer. The
factorial of a number n is the product of all the whole numbers between 1 and n. For example, 3
factorial is 1 × 2 × 3, or 6. Both factr() and its iterative equivalent are shown here:

/* recursive */
int factr(int n) {
 int answer;

 if(n==l) return(1);
 answer = factr(n-l)*n; /* recursive call */
 return(answer);
}

/* non-recursive */
int fact(int n) {
 int t, answer;

 answer = 1;

Page 165

 for(t=1; t<=n; t++)
 answer=answer*(t);

 return(answer);
}

The nonrecursive version of fact() should be clear. It uses a loop that runs from 1 to n and
progressively multiplies each number by the moving product.

The operation of the recursive factr() is a little more complex. When factr() is called with an
argument of 1, the function returns 1. Otherwise, it returns the product of factr(n-1)*n. To evaluate
this expression, factr() is called with n-1. This happens until n equals 1 and the calls to the function
begin returning.

Computing the factorial of 2, the first call to factr() causes a second, recursive call with the
argument of 1. This call returns 1, which is then multiplied by 2 (the original n value). The answer is
then 2. Try working through the computation of 3 factorial on your own. (You might want to insert
printf() statements into factr() to see the level of each call and what the intermediate answers are.)

When a function calls itself, a new set of local variables and parameters are allocated storage on the
stack, and the function code is executed from the top with these new variables. A recursive call does
not make a new copy of the function. Only the values being operated upon are new. As each
recursive call returns, the old local variables and parameters are removed from the stack, and
execution resumes immediately after the recursive call inside the function. Recursive functions
could be said to ''telescope" out and back.

Although recursion seems to offer the possibility of improved efficiency, such is seldom the case.
Often, recursive routines do not significantly reduce code size or improve memory utilization. Also,
the recursive versions of most routines may execute a bit slower than their iterative equivalents
because of the overhead of the repeated function calls. In fact, many recursive calls to a function
could cause a stack overrun. Because storage for function parameters and local variables is on the
stack and each new call creates a new copy of these variables, the stack could be exhausted. A stack
overrun is what usually causes a program to crash when a recursive function runs wild.

The main advantage to recursive functions is that you can use them to create clearer and simpler
versions of several algorithms. For example, the quicksort algorithm (shown in Part Four) is difficult
to implement in an iterative way. Also, some problems, especially ones related to artificial
intelligence, lend themselves to recursive solutions. Finally, some people seem to think recursively
more easily than iteratively.

When writing recursive functions, you must have a conditional statement, such as an if, somewhere
to force the function to return without the recursive call being executed. If you don't, the function
will never return once you call it. Omitting the conditional statement is a common error when
writing recursive functions. Use

Page 166

printf() liberally during program development so that you can watch what is going on and abort
execution if you see a mistake.

Function Prototypes

In modern, properly written C programs, all functions must be declared before they are used. This is
normally accomplished using a function prototype. Function prototypes were not part of the original
C language, but were added by C89. Although prototypes are not technically required, their use is
strongly encouraged. (Prototypes are required by C++, however.) In this book, all examples include
full function prototypes. Prototypes enable the compiler to provide stronger type checking,
somewhat like that provided by languages such as Pascal. When you use prototypes, the compiler
can find and report any questionable type conversions between the arguments used to call a function
and the type of its parameters. The compiler will also catch differences between the number of
arguments used to call a function and the number of parameters in the function.

The general form of a function prototype is

type func_name(type parm_namel, type parm_name2, . . . ,
 type parm_nameN);

The use of parameter names is optional. However, they enable the compiler to identify any type
mismatches by name when an error occurs, so it is a good idea to include them.

The following program illustrates the value of function prototypes. It produces an error message
because it contains an attempt to call sqr_it() with an integer argument instead of the integer
pointer required.

/* This program uses a function prototype to
 enforce strong type checking. */

void sqr_it(int *i); /* prototype */

int main(void)
{
 int x;

 x = 10;
 sqr_it(x); /* type mismatch */

 return 0;
}

TE
AM
FL
Y

Team-Fly®

Page 167

void sqr_it(int *i)
{
 *i = *i * *i;
}

A function's definition can also serve as its prototype if the definition occurs prior to the function's
first use in the program. For example, this is a valid program:

#include <stdio.h>

/* This definition will also serve
 as a prototype within this program. */
void f(int a, int b)
{
 printf(''%d ", a % b);
}

int main (void)
{
 f(10,3);

 return 0;
}

In this example, since f() is defined prior to its use in main(), no separate prototype is required.
Although it is possible for a function's definition to serve as its prototype in small programs, it is
seldom possible in large ones— especially when several files are used. The programs in this book
include a separate prototype for each function because that is the way C code is normally written in
practice.

The only function that does not require a prototype is main() because it is the first function called
when your program begins.

There is a small but important difference between how C and C++ handle the prototyping of a
function that has no parameters. In C++, an empty parameter list is indicated in the prototype by the
absence of any parameters. For example,

int f(); /* C++ prototype for a function with no parameters */

However, in C this statement means something different. Because of the need for compatibility with
the original version of C, an empty parameter list simply says that no parameter information is
given. As far as the compiler is concerned, the function could have several parameters or no
parameters. (Such a statement is called an old-style function declaration and is described in the
following section.)

Page 168

In C, when a function has no parameters, its prototype uses void inside the parameter list. For
example, here is f()'s prototype as it would appear in a C program:

float f(void);

This tells the compiler that the function has no parameters, and any call to that function that has
arguments is an error. In C++, the use of void inside an empty parameter list is still allowed, but
redundant.

Function prototypes help you trap bugs before they occur. In addition, they help verify that your
program is working correctly by not allowing functions to be called with mismatched arguments.

One last point: Since early versions of C did not support the full prototype syntax, prototypes are
technically optional in C. This is necessary to support pre-prototype C code. If you are porting older
C code to C++, you will need to add full function prototypes before the code will compile.
Remember, although prototypes are optional in C, they are required by C++. This means that every
function in a C++ program must be fully prototyped. Because of this, most C programmers also
fully prototype their programs.

Old-Style Function Declarations

In the early days of C, prior to the creation of function prototypes, there was still a need to tell the
compiler in advance about the return type of a function so that the proper code could be generated
when the function was called. (Since sizes of different data types differ, the size of the return type
needs to be known prior to a call to a function.) This was accomplished using a function declaration
that did not contain any parameter information. The old-style approach is archaic by today's
standards. However, it can still be found in older code. For this reason, it is important to understand
how it works.

Using the old-style approach, the function's return type and name are declared near the start of your
program, as illustrated here:

#include <stdio.h>

double div(); /* old-style function declaration */

int main(void)
{
 printf(''%f", div(10.2, 20.0));

 return 0;
}

Page 169

double div(double num, double denom)
{
 return num / denom;
}

The old-style function type declaration tells the compiler that div() returns an object of type double.
This allows the compiler to correctly generate code for calls to div(). It does not, however, say
anything about the parameters to div().

The old-style function declaration statement has the following general form:

type_specifier function_name();

Notice that the parameter list is empty. Even if the function takes arguments, none are listed in its
type declaration.

As stated, the old-style function declaration is outmoded and should not be used for new code. It is
also incompatible with C++.

Standard Library Function Prototypes

Any standard library function used by your program must be prototyped. To accomplish this, you
must include the appropriate header for each library function. All necessary headers are provided by
the C compiler. In C, the library headers are (usually) files that use the .h extension. A header
contains two main elements: any definitions used by the library functions and the prototypes for the
library functions. For example, <stdio.h> is included in almost all programs in this book because it
contains the prototype for printf(). The headers for the standard library are described in Part Two.

Declaring Variable Length Parameter Lists

You can specify a function that has a variable number of parameters. The most common example is
printf(). To tell the compiler that an unknown number of arguments will be passed to a function,
you must end the declaration of its parameters using three periods. For example, this prototype
specifies that func() will have at least two integer parameters and an unknown number (including 0)
of parameters after that:

int func(int a, int b, . . .);

This form of declaration is also used by a function's definition.

Page 170

Any function that uses a variable number of parameters must have at least one actual parameter. For
example, this is incorrect:

int func(. . .); /* illegal */

The ''Implicit int" Rule

The original version of C included a feature that is sometimes described as the "implicit int" rule
(also called the "default to int" rule). This rule states that in the absence of an explicit type specifier,
the type int is assumed. This rule was included in the C89 standard, but has been eliminated by C99.
(It is also not supported by C++.) Since the implicit int rule is now obsolete, this book does not use
it. However, since it is still employed by many existing programs, a brief discussion is warranted.

The most common use of the implicit int rule was in the return type of functions. Years ago, many
(probably most) C programmers took advantage of the rule when creating functions that returned an
int result. Thus, years ago a function such as

int f(void) {
 /* . . . */
 return 0;
}

would often have been written like this:

f(void) { /* return type int by default */
 /* . . . */
 return 0;
}

In the first instance, the return type of int is explicitly specified. In the second, it is assumed by
default.

The implicit int rule does not apply only to function return values (although that was its most
common use). For example, for C89 and earlier, the following function is correct:

/* Here, the return type defaults to int, and so do
 the types of a and b. */
f(register a, register b) {
 register c; /* c defaults to int, too */

 c = a + b;

Page 171

 printf("%d", c);

 return c;
}

Here, the return type of f() defaults to int; so do the types of the parameters, a and b, and the local
variable c.

Remember, the implicit int rule is not supported by C99 or C++. Thus, its use in C89-compatible
programs is not recommended. It is best to explicitly specify every type used by your program.

Old-Style vs. Modern Function Parameter Declarations

Early versions of C used a different parameter declaration method than do modern versions of C,
including both C89 and C99 (and C++). This early approach is sometimes called the classic form.
This book uses a declaration approach called the modern form. Standard C supports both forms, but
strongly recommends the modern form. (C++ supports only the modern parameter declaration
method.) However, you should know the old-style form because many older C programs still use it.

The old-style function parameter declaration consists of two parts: a parameter list, which goes
inside the parentheses that follow the function name, and the actual parameter declarations, which
go between the closing parentheses and the function's opening curly brace. The general form of the
old-style parameter definition is

type func_name(parm1 , parm2 , . . . parmN)
type parm1;
type parm2;
.
.
.
type parmN;
{
 function code
}

For example, this modern declaration

float f(int a, int b, char ch)
{
 /* . . . */
}

Page 172

will look like this in its old-style form:

float f(a, b, ch)
int a, b;
char ch;
{
 /* . . . */
}

Notice that the old-style form allows the declaration of more than one parameter in a list after the
type name.

REMEMBER

The old-style form of parameter declaration is designated as obsolete by Standard C
and is not supported by C++.

The inline Keyword

C99 has added the keyword inline, which applies to functions. It is described fully in Part Two, but
a brief description is given here. By preceding a function declaration with inline, you are telling the
compiler to optimize calls to the function. Typically, this means that the function's code will be
expanded in line, rather than called. However, inline is only a request to the compiler, and can be
ignored.

NOTE

The inline specifier is also supported by C++.

Page 173

Chapter 7—
Structures, Unions, Enumerations, and
typedef

Page 174

The C language gives you five ways to create a custom data type:

• The structure, which is a grouping of variables under one name and is called an aggregate data
type. (The terms compound or conglomerate are also commonly used.)

• The union, which enables the same piece of memory to be defined as two or more different types
of variables.

• The bit-field, which is a special type of structure or union element that allows easy access to
individual bits.

• The enumeration, which is a list of named integer constants.

• The typedef keyword, which defines a new name for an existing type.

Each of these features is described in this chapter.

Structures

A structure is a collection of variables referenced under one name, providing a convenient means of
keeping related information together. A structure declaration forms a template that can be used to
create structure objects (that is, instances of a structure). The variables that make up the structure are
called members. (Structure members are also commonly referred to as elements or fields.)

Usually, the members of a structure are logically related. For example, the name and address
information in a mailing list would normally be represented in a structure. The following code
fragment shows how to declare a structure that defines the name and address fields. The keyword
struct tells the compiler that a structure is being declared.

struct addr
{
 char name[30];
 char street[40];
 char city[20];
 char state[3];
 unsigned long int zip;
};

Notice that the declaration is terminated by a semicolon. This is because a structure declaration is a
statement. Also, the structure tag addr identifies this particular data structure and is its type
specifier.

At this point, no variable has actually been created. Only the form of the data has been defined.
When you declare a structure, you are defining an aggregate type, not a

Page 175

variable. Not until you declare a variable of that type does one actually exist. To declare a variable
(that is, a physical object) of type addr, write

struct addr addr_info;

This declares a variable of type addr called addr_info. Thus, addr describes the form of a structure
(its type), and addr_info is an instance (an object) of the structure.

When a structure variable (such as addr_info) is declared, the compiler automatically allocates
sufficient memory to accommodate all of its members. Figure 7-1 shows how addr_info appears in
memory, assuming 4-byte long integers.

You can also declare one or more objects when you declare a structure. For example,

struct addr {
 char name[30];
 char street[40];
 char city[20];
 char state[3];
 unsigned long int zip;
} addr_info, binfo, cinfo;

defines a structure type called addr and declares variables addr_info, binfo, and cinfo of that type.
It is important to understand that each structure variable contains its own copies of the structure's
members. For example, the zip field of binfo is separate and distinct from the zip field of cinfo.
Changes to zip in binfo do not, for example, affect the zip in cinfo.

Figure 7-1
The addr_Info structure in memory

Page 176

If you only need one structure variable, the structure tag is not needed. This means that

struct {
 char name[30];
 char street[40];
 char city[20];
 char state[3];
 unsigned long int zip;
} addr_info;

declares one variable named addr_info as defined by the structure preceding it.

The general form of a structure declaration is

struct tag {
 type member-name;
 type member-name;
 type member-name;
 .
 .
 .
} structure-variables;

where either tag or structure-variables may be omitted, but not both.

Accessing Structure Members

Individual members of a structure are accessed through the use of the . operator (usually called the
dot operator). For example, the following statement assigns the ZIP code 12345 to the zip field of
the structure variable addr_info declared earlier:

addr_info.zip = 12345;

The object name (in this case, addr_info) followed by a period and the member name (in this case,
zip) refers to that individual member. The general form for accessing a member of a structure is

object-name.member-name

Therefore, to print the ZIP code on the screen, write

printf("%lu", addr_info.zip);

This prints the ZIP code contained in the zip member of the structure variable addr_info.

TE
AM
FL
Y

Team-Fly®

Page 177

In the same fashion, the character array addr_info.name can be used in a call to gets(), as shown
here:

gets(addr_info.name);

This passes a character pointer to the start of name.

Since name is a character array, you can access the individual characters of addr_info.name by
indexing name. For example, you can print the contents of addr_info.name one character at a time
by using the following code:

for(t=0; addr_info.name[t]; ++t)
 putchar(addr_info.name[t]);

Notice that it is name (not addr_info) that is indexed. Remember, addr_info is the name of an
entire structure object; name is an element of that structure. Thus, if you want to index an element
of a structure, you must put the subscript after the element's name.

Structure Assignments

The information contained in one structure can be assigned to another structure of the same type
using a single assignment statement. You do not need to assign the value of each member
separately. The following program illustrates structure assignments:

#include <stdio.h>

int main(void)
{
 struct {
 int a;
 int b;
 } x, y;

 x.a = 10;

 y = x; /* assign one structure to another */

 printf("%d", y.a);

 return 0;
}

After the assignment, y.a will contain the value 10.

Page 178

Arrays of Structures

Structures are often arrayed. To declare an array of structures, you must first define a structure and
then declare an array variable of that type. For example, to declare a 100-element array of structures
of type addr defined earlier, write

struct addr addr_list[100];

This creates 100 sets of variables that are organized as defined in the structure addr.

To access a specific structure, index the array name. For example, to print the ZIP code of structure
3, write

printf("%lu", addr_list[2].zip);

Like all array variables, arrays of structures begin indexing at 0.

To review: When you want to refer to a specific structure within an array of structures, index the
structure array name. When you want to index a specific element of a structure, index the element.
Thus, the following statement assigns 'X' to the first character of name in the third structure of
addr_list.

addr_list[2].name[0] = 'X';

A Mailing List Example

To illustrate how structures and arrays of structures are used, this section develops a simple mailing
list program that uses an array of structures to hold the address information. In this example, the
stored information includes name, street, city, state, and ZIP code.

The address information is held in an array of addr structures, as shown here:

struct addr {
 char name[30];
 char street[40];
 char city[20];
 char state[3];
 unsigned long int zip;
} addr_list[MAX];

Notice that the zip field is an unsigned long integer. Frankly, it is more common to store postal
codes using a character string because it accommodates postal codes that use letters as well as
numbers (as used by Canada and other countries). However, this

Page 179

example stores the ZIP code in an integer as a means of illustrating a numeric structure element.

The first function needed for the program is main(), shown
here:

int main(void)
{
 char choice;

 init_list(); /* initialize the structure array */

 for(;;) {
 choice = menu_select();
 switch(choice) {
 case 1: enter();
 break;
 case 2: delete();
 break;
 case 3: list();
 break;
 case 4: exit(0);
 }
 }

 return 0;
}

The function begins by initializing the structure array and then responds to menu selections.

The function init_list() prepares the structure array for use by putting a null character into the first
byte of the name field for each structure in the array. The program assumes that an array element is
not in use if name is empty. The init_list() function is shown here:

/* Initialize the list. */
void initlist(void)
{
 register int t;

 for(t=0; t<MAX; ++t) addr_list[t].name[0] = '\0';
}

The menu_select() function displays the menu and returns the user's selection.

Page 180

/* Get a menu selection. */
int menu_select(void)
{
 char s[80];
 int c;

 printf("1. Enter a name\n");
 printf(''2. Delete a name\n");
 printf("3. List the file\n");
 printf("4. Quit\n");

 do {
 printf("\nEnter your choice: ");
 gets(s);
 c = atoi(s);
 } while(c<0 || c>4);

 return c;
}

The enter() function prompts the user for input and stores the information in the next free structure.
If the array is full, the message List Full is displayed. find_free() searches the structure array for an
unused element.

/* Input addresses into the list. */
void enter(void)
{
 int slot;
 char s[80];

 slot = find_free();
 if(s1ot==-1) {
 printf("\nList Full");
 return;
 }

 printf("Enter name: ");
 gets(addr_list[slot].name);

 printf("Enter street: ");
 gets(addr_list[slot].street);

Page 181

 printf("Enter city: ");
 gets(addr_list[slot].city);

 printf("Enter state: ");
 gets(addr_list[slot].state);

 printf("Enter zip: ");
 gets(s);
 addr_list[slot].zip = strtoul(s, '\0', 10);
}

/* Find an unused structure. */
int find_free(void)
{
 register int t;

 for(t=0; addr_list[t].name[0] && t<MAX; ++t) ;

 if(t==MAX) return -1; /* no slots free */
 return t;
}

Notice that find_free() returns a –1 if every structure array variable is in use. This is a safe number
because there cannot be a –1 element in an array.

The delete() function asks the user to specify the index of the address that needs to be deleted. The
function then puts a null character in the first character position of the name field.

/* Delete an address. */
void delete(void)
{
 register int slot;
 char s[80];

 printf("Enter record #: ");
 gets(s);
 slot = atoi(s);
 if(s1ot>=0 && slot < MAX)
 addr_list[slot].name
[0] = '\0';
}

Page 182

The final function needed by the program is list(), which prints the entire mailing list on the screen.
C does not define a standard function that sends output to the printer because of the wide variation
among computing environments. However, all C compilers provide some means to accomplish this.
You might want to add printing capability to the mailing list program on your own.

/* Display the list on the screen. */
void list(void)
{
 register int t;

 for(t=0; t<MAX; ++t) {
 if(addr_list[t].name[0]) {
 printf(''%s\n", addr_list[t].name);
 printf("%s\n", addr_list[t].street);
 printf("%s\n", addr_list[t].city);
 printf("%s\n", addr_list[t].state);
 printf("%lu\n\n", addr_list[t].zip);
 }
 }
 printf("\n\n");
}

The complete mailing list program is shown next. If you have any remaining doubts about
structures, enter this program into your computer and study its execution, making changes and
watching their effects.

/* A simple mailing list example using an array of structures. */
#include <stdio.h>
#include <stdlib.h>

#define MAX 100

struct addr {
 char name[30];
 char street[40];
 char city[20];
 char state[3];
 unsigned long int zip;
} addr_list[MAX];

Page 183

void init_list (void), enter(void);
void delete(void), list(void);
int menu_select(void), find_free(void);

int main(void)
{
 char choice;

 init_list(); /* initialize the structure array */
 for(;;) {
 choice = menu_select();
 switch(choice) {
 case 1: enter();
 break;
 case 2: delete();
 break;
 case 3: list();
 break;
 case 4: exit(0);
 }
 }

 return 0;
}

/* Initialize the list. */
void init_list(void)
{
 register int t;

 for(t=0; t<MAX; ++t) addr_list[t].name[0] = '\0';
}

/* Get a menu selection. */
int menu_select(void)
{
 char s[80];
 int c;

 printf("1. Enter a name\n");
 printf(''2. Delete a name\n");

Page 184

 printf("3. List the file\n");
 printf(''4. Quit\n");
 do {
 printf("\nEnter your choice: ");
 gets(s);
 c = atoi(s);
 } while(c<0 || c>4);
 return c;
}

/* Input addresses into the list. */
void enter(void)
{
 int slot;
 char s[80];

 slot = find_free();

 if(s1ot==-1) {
 printf("\nList Full");
 return;
 }

 printf("Enter name: ");
 gets(addr_list[slot].name);

 printf("Enter street: ");
 gets(addr_list[slot].street);

 printf("Enter city: ");
 gets(addr_list[slot].city);

 printf("Enter state: ");
 gets(addr_list[slot].state);

 printf("Enter zip: ");
 gets(s);
 addr_list[slot].zip = strtoul(s, '\0', 10);
}

Page 185

/* Find an unused structure. */
int find_free(void)
{
 register int t;

 for(t=0; addr_list[t].name[0] && t<MAX; ++t) ;

 if(t==MAX) return -1; /* no slots free */
 return t;
}

/* Delete an address. */
void delete(void)
{
 register int slot;
 char s[80];

 printf("enter record #: ");
 gets(s);
 slot = atoi(s);

 if(s1ot>=0 && slot < MAX)
 addr_list[slot].name
[0] = '\0';
}

/* Display the list on the screen. */
void list (void)
{
 register int t;

 for(t=0; t<MAX; ++t) {
 if(addr_list[t].name[0]) {
 printf(''%s\n", addr_list[t].name);
 printf("%s\n", addr_list[t].street);
 printf("%s\n", addr_list[t].city);
 printf("%s\n", addr_list[t].state);
 printf("%lu\n\n", addr_list[t].zip);
 }
 }
 printf("\n\n");
}

Page 186

Passing Structures to Functions

This section discusses passing structures and their members to functions.

Passing Structure Members to Functions

When you pass a member of a structure to a function, you are passing the value of that member to
the function. It is irrelevant that the value is obtained from a member of a structure. For example,
consider this structure:

struct fred
{
 char x;
 int y;
 float z;
 char s[10];
} mike;

Here are examples of each member being passed to a function:

func(mike.x); /* passes character value of x */
func2(mike.y); /* passes integer value of y */
func3(mike.z); /* passes float value of z */
func4(mike.s); /* passes address of string s */
func(mike.s[2]); /* passes character value of s[2] */

In each case, it is the value of a specific element that is passed to the function. It does not matter that
the element is part of a larger unit.

If you wish to pass the address of an individual structure member, put the & operator before the
structure name. For example, to pass the address of the members of the structure mike, write

func(&mike.x); /* passes address of character x */
func2(&mike.y); /* passes address of integer y */
func3(&mike.z); /* passes address of float z */
func4(mike.s); /* passes address of string s */
func(&mike.s[2]); /* passes address of character s[2] */

Note that the & operator precedes the structure name, not the individual member name. Note also
that s already signifies an address, so no & is required.

TE
AM
FL
Y

Team-Fly®

Page 187

Passing Entire Structures to Functions

When a structure is used as an argument to a function, the entire structure is passed using the normal
call-by-value method. Of course, this means that any changes made to the contents of the parameter
inside the function do not affect the structure passed as the argument.

When using a structure as a parameter, remember that the type of the argument must match the type
of the parameter. For example, in the following program both the argument arg and the parameter
parm are declared as the same type of structure.

#include <stdio.h>

/* Define a structure type. */
struct struct_type {
 int a, b;
 char ch;
} ;

void f1(struct struct_type parm);

int main(void)
{
 struct struct_type arg;

 arg.a = 1000;

 f1(arg);

 return 0;
}

void f1(struct struct_type parm)
{
 printf(''%d", parm.a);
}

As this program illustrates, if you will be declaring parameters that are structures, you must make
the declaration of the structure type global so that all parts of your program can use it. For example,
had struct_type been declared inside main(), it would not have been visible to f1().

As just stated, when passing structures, the type of the argument must match the type of the
parameter. It is not sufficient for them simply to be physically similar; their

Page 188

type names must match. For example, the following version of the preceding program is incorrect
and will not compile because the type name of the argument used to call f1() differs from the type
name of its parameter.

/* This program is incorrect and will not compile. */
#include <stdio.h>

/* Define a structure type. */
struct struct_type {
 int a, b;
 char ch;
};

/* Define a structure similar to struct_type,
 but with a different name. */
struct struct_type2 {
 int a, b;
 char ch;
};

void f1(struct struct_type2 parm);

int main(void)
{
 struct struct_type arg;

 arg.a = 1000;

 f1(arg); /* type mismatch */

 return 0;
}

void f1(struct struct_type2 parm)
{
 printf(''%d", parm.a);
}

Structure Pointers

C allows pointers to structures just as it allows pointers to any other type of object. However, there
are some special aspects to structure pointers, which are described next.

Page 189

Declaring a Structure Pointer

Like other pointers, structure pointers are declared by placing * in front of a structure variable's
name. For example, assuming the previously defined structure addr, the following declares
addr_pointer as a pointer to data of that type:

struct addr *addr_pointer;

Using Structure Pointers

There are two primary uses for structure pointers: to pass a structure to a function using call by
reference and to create linked lists and other dynamic data structures that rely on dynamic
allocation. This chapter covers the first use.

There is one major drawback to passing all but the simplest structures to functions: the overhead
needed to push the structure onto the stack when the function call is executed. (Recall that
arguments are passed to functions on the stack.) For simple structures with few members, this
overhead is not too great. If the structure contains many members, however, or if some of its
members are arrays, run-time performance may degrade to unacceptable levels. The solution to this
problem is to pass a pointer to the structure.

When a pointer to a structure is passed to a function, only the address of the structure is pushed on
the stack. This makes for very fast function calls. A second advantage, in some cases, is that passing
a pointer makes it possible for the function to modify the contents of the structure used as the
argument.

To find the address of a structure variable, place the & operator before the structure's name. For
example, given the following fragment,

struct bal {
 float balance;
 char name[80];
} person;

struct bal *p; /* declare a structure pointer */

this places the address of the structure person into the pointer p:

p = &person;

To access the members of a structure using a pointer to that structure, you must use the –> operator.
For example, this references the balance field:

p–>balance

Page 190

The –>, usually called the arrow operator, consists of the minus sign followed by a greater than
sign. The arrow is used in place of the dot operator when you are accessing a structure member
through a pointer to the structure.

To see how a structure pointer can be used, examine this simple program, which displays the hours,
minutes, and seconds using a software timer:

/* Display a software timer. */
#include <stdio.h>

#define DELAY 128000

struct my_time {
 int hours;
 int minutes;
 int seconds;
} ;

void display(struct my_time *t);
void update(struct my_time *t);
void delay(void);

int main(void)
{
 struct my_time systime;

 systime.hours = 0;
 systime.minutes = 0;
 systime.seconds = 0;

 for(;;) {
 update(&systime);
 display(&systime);
 }

 return 0;
}

void update(struct my_time *t)
{
 t->seconds++;
 if(t->seconds==60) {
 t->seconds = 0;

Page 191

 t->minutes++;
 }

 if(t->minutes==60) {
 t->minutes = 0;
 t->hours++;
 }

 if(t->hours==24) t->hours = 0;
 delay();
}

void display(struct my_time *t)
{

 printf("%02d:", t->hours);
 printf(''%02d:", t->minutes);
 printf("%02d\n", t->seconds);
}

void delay(void)
{
 long int t;

 /* change this as needed */
 for(t=l; t<DELAY; ++t) ;
}

The timing of this program is adjusted by changing the definition of DELAY.

As you can see, a global structure called my_time is defined, but no variable is declared. Inside
main(), the structure systime is declared and initialized to 00:00:00. This means that systime is
known directly only to the main() function.

The functions update() (which changes the time) and display() (which prints the time) are passed
the address of systime. In both functions, their arguments are declared as a pointer to a my_time
structure.

Inside update() and display(), each member of systime is accessed via a pointer. Because update
() receives a pointer to the systime structure, it can update its value. For example, to set the hours
back to 0 when 24:00:00 is reached, update() contains this line of code:

if(t->hours==24) t->hours = 0;

Page 192

This tells the compiler to take the address of t (which points to systime in main()) and to reset
hours to zero.

Remember, use the dot operator to access structure elements when operating on the structure itself.
When you have a pointer to a structure, use the arrow operator.

Arrays and Structures within Structures

A member of a structure can be either a simple variable, such as an int or double, or an aggregate
type. In C, aggregate types are arrays and structures. You have already seen one type of aggregate
element: the character arrays used in addr.

A member of a structure that is an array is treated as you might expect from the earlier examples.
For example, consider this structure:

struct x {
 int a[10] [10]; /* 10 x 10 array of ints */
 float b;
} y;

To reference integer 3,7 in a of structure y, write

y.a[3][7]

When a structure is a member of another structure, it is called a nested structure. For example, the
structure address is nested inside emp in this example:

struct emp {
 struct addr address; /* nested structure */
 float wage;
} worker;

Here, structure emp has been defined as having two members. The first is a structure of type addr,
which contains an employee's address. The other is wage, which holds the employee's wage. The
following code fragment assigns 93456 to the zip element of address.

worker.address.zip = 93456;

As you can see, the members of each structure are referenced from outermost to innermost. The C89
standard specifies that structures can be nested to at least 15 levels. The C99 standard suggests that
at least 63 levels of nesting be allowed.

Page 193

Unions

A union is a memory location that is shared by two or more different types of variables. A union
provides a way of interpreting the same bit pattern in two or more different ways. Declaring a union
is similar to declaring a structure. Its general form is

union tag {
 type member-name;
 type member-name;
 type member-name;
 .
 .
 .
} union-variables;

For example:

union u_type {
 int i;
 char ch;
};

This declaration does not create any variables. You can declare a variable either by placing its name
at the end of the declaration or by using a separate declaration statement. To declare a union
variable called cnvt of type u_type using the definition just given, write

union u_type cnvt;

In cnvt, both integer i and character ch share the same memory location. Of course, i occupies 2
bytes (assuming 2-byte integers), and ch uses only 1. Figure 7-2 shows how i and ch share the same
address. At any point in your program, you can refer to the data stored in a cnvt as either an integer
or a character.

Figure 7-2
How i and ch utilize the union
 cnvt (assume 2-byte integers)

Page 194

When a union variable is declared, the compiler automatically allocates enough storage to hold the
largest member of the union. For example, (assuming 2-byte integers) cnvt is 2 bytes long so that it
can hold i, even though ch requires only 1 byte.

To access a member of a union, use the same syntax that you would use for structures: the dot and
arrow operators. If you are operating on the union directly, use the dot operator. If the union is
accessed through a pointer, use the arrow operator. For example, to assign the integer 10 to element
i of cnvt, write

cnvt.i = 10;

In the next example, a pointer to cnvt is passed to a function:

void func1(union u_type *un)
{
 un-> = 10; /* assign 10 to cnvt through a pointer */
}

Unions are used frequently when specialized type conversions are needed because you can refer to
the data held in the union in fundamentally different ways. For example, you might use a union to
manipulate the bytes that constitute a double in order to alter its precision or to perform some
unusual type of rounding.

To get an idea of the usefulness of a union when nonstandard type conversions are needed, consider
the problem of writing a short integer to a disk file. The C standard library defines no function
specifically designed to write a short integer to a file. Although you can write any type of data to a
file using fwrite(), using fwrite() incurs excessive overhead for such a simple operation. However,
using a union, you can easily create a function called putw(), which writes the binary
representation of a short integer to a file one byte at a time. (This example assumes that short
integers are 2 bytes long.) To see how, first create a union consisting of one short integer and a 2-
byte character array:

union pw {
 short int i;
 char ch[2];
};

Now, you can use pw to create the version of putw() shown in the following program.

#include <stdio.h>
#include <stdlib.h>

union pw {
 short int i;

Page 195

 char ch[2];
};

int putw(short int num, FILE *fp);

int main(void)
{
 FILE *fp;

 fp = fopen("test.tmp", "wb+");
 if(fp == NULL) {
 printf
(''Cannot open file.\n");
 exit(1);
 }

 putw(1025, fp); /* write the value 1025 */
 fclose(fp);

 return 0;
}

int putw(short int num, FILE *fp)
{
 union pw word;

 word.i = num;

 putc(word.ch[0], fp); /* write first half */
 return putc(word.ch[1], fp); /* write second half */
}

Although putw() is called with a short integer, it can still use the standard function putc() to write
each byte in the integer to a disk file one byte at a time.

Bit-Fields

Unlike some other computer languages, C has a built-in feature, called a bit-field, that allows you to
access a single bit. Bit-fields can be useful for a number of reasons, such as:

• If storage is limited, you can store several Boolean (true/false) variables in one byte.

Page 196

• Certain devices transmit status information encoded into one or more bits within a byte.

• Certain encryption routines need to access the bits within a byte.

Although these tasks can be performed using the bitwise operators, a bit-field can add more
structure (and possibly efficiency) to your code.

A bit-field must be a member of a structure or union. It defines how long, in bits, the field is to be.
The general form of a bit-field definition is

type name: length;

Here, type is the type of the bit-field, and length is the number of bits in the field. The type of a bit-
field must be int, signed, or unsigned. (C99 also allows a bit-field to be of type _Bool.)

Bit-fields are frequently used when analyzing input from a hardware device. For example, the status
port of a serial communications adapter might return a status byte organized like this:

Bit Meaning When Set

0 Change in clear-to-send line

1 Change in data-set-ready

2 Trailing edge detected

3 Change in receive line

4 Clear-to-send

5 Data-set-ready

6 Telephone ringing

7 Received signal

You can represent the information in a status byte using the following bit-field:

struct status_type {
 unsigned delta_cts: 1;
 unsigned delta_dsr: 1;
 unsigned tr_edge: 1;
 unsigned delta_rec: 1;
 unsigned cts: 1;
 unsigned dsr: 1;
 unsigned ring: 1;
 unsigned rec_line: 1;
} status;

TE
AM
FL
Y

Team-Fly®

Page 197

You might use statements like the ones shown here to enable a program to determine when it can
send or receive data:

status = get_port_status();
if(status.cts) printf(''clear to send");
if(status.dsr) printf("data ready");

To assign a value to a bit-field, simply use the form you would use for any other type of structure
element. For example, this code fragment clears the ring field:

status.ring = 0;

As you can see from this example, each bit-field is accessed with the dot operator. However, if the
structure is referenced through a pointer, you must use the –> operator.

You do not have to name each bit-field. This makes it easy to reach the bit you want, bypassing
unused ones. For example, if you only care about the cts and dsr bits, you could declare the
status_type structure like this:

struct status_type {
 unsigned : 4;
 unsigned cts: 1;
 unsigned dsr: 1;
} status;

Also, notice that the bits after dsr do not need to be specified if they are not used.

It is valid to mix normal structure members with bit-fields. For example,

struct emp {
 struct addr address;
 float pay;
 unsigned lay_off: 1; /* lay off or active */
 unsigned hourly: 1; /* hourly pay or wage */
 unsigned deductions: 3; /* IRS deductions */
};

defines an employee record that uses only 1 byte to hold three pieces of information: the employee's
status, whether the employee is salaried, and the number of deductions. Without the bit-field, this
information would take 3 bytes.

Bit-fields have certain restrictions. You cannot take the address of a bit-field. Bit-fields cannot be
arrayed. You cannot know, from machine to machine, whether the fields will run from right to left
or from left to right; this implies that any code using

Page 198

bit-fields may have some machine dependencies. Other restrictions may be imposed by various
specific implementations.

Enumerations

An enumeration is a set of named integer constants. Enumerations are common in everyday life. For
example, an enumeration of the coins used in the United States is

penny, nickel, dime, quarter, half-dollar, dollar

Enumerations are defined much like structures; the keyword enum signals the start of an
enumeration type. The general form for enumerations is

enum tag { enumeration list } variable_list;

Here, both the tag and the variable list are optional. (But at least one must be present.) The following
code fragment defines an enumeration called coin :

enum coin { penny, nickel, dime, quarter,
 half_dollar, dollar};

The enumeration tag name can be used to declare variables of its type. The following declares
money to be a variable of type coin :

enum coin money;

Given these declarations, the following types of statements are perfectly valid:

money = dime;
if(money==quarter) printf(''Money is a quarter.\n");

The key point to understand about an enumeration is that each of the symbols stands for an integer
value. As such, they can be used anywhere that an integer can be used. Each symbol is given a value
one greater than the symbol that precedes it. The value of the first enumeration symbol is 0.
Therefore,

printf("%d %d", penny, dime);

displays 0 2 on the screen.

You can specify the value of one or more of the symbols by using an initializer. Do this by
following the symbol with an equal sign and an integer value. Symbols that appear after an
initializer are assigned values greater than the preceding value. For example, the following code
assigns the value of 100 to quarter:

Page 199

enum coin { penny, nickel, dime, quarter=100,
 half_dollar, dollar};

Now, the values of these symbols
are

penny 0

nickel 1

dime 2

quarter 100

half_dollar 101

dollar 102

One common but erroneous assumption about enumerations is that the symbols can be input and
output directly. This is not the case. For example, the following code fragment will not perform as
desired:

/* this will not work */
money = dollar;
printf(''%s", money);

Remember, dollar is simply a name for an integer; it is not a string. Thus, attempting to output
money as a string is inherently invalid. For the same reason, you cannot use this code to achieve the
desired results:

/* this code is wrong */
strcpy(money, "dime");

That is, a string that contains the name of a symbol is not automatically converted to that symbol.

Actually, creating code to input and output enumeration symbols is quite tedious (unless you are
willing to settle for their integer values). For example, you need the following code to display, in
words, the kind of coin that money contains:

switch(money) {
 case penny: printf("penny");
 break;
 case nickel: printf("nickel");
 break;
 case dime: printf("dime");
 break;

Page 200

 case quarter: printf("quarter");
 break;
 case half_dollar: printf(''half_dollar");
 break;
 case dollar: printf("dollar");
}

Sometimes, you can declare an array of strings and use the enumeration value as an index to
translate that value into its corresponding string. For example, this code also outputs the proper
string:

char name[][12]={
 "penny",
 "nickel",
 "dime",
 "quarter",
 "half_dollar",
 "dollar"
};
printf("%s", name[money]);

Of course, this only works if no symbol is initialized, because the string array must be indexed
starting at 0 in strictly ascending order using increments of 1.

Since enumeration values must be converted manually to their human-readable string equivalents
for I/O operations, they are most useful in routines that do not make such conversions. An
enumeration is often used to define a compiler's symbol table, for example.

An Important Difference between C and C++

There is an important difference between C and C++ related to the type names of structures, unions,
and enumerations. To understand the difference, consider the following structure declaration:

struct MyStruct {
 int a;
 int b;
} ;

Page 201

In C, the name MyStruct is called a tag. To declare an object of type MyStruct, you need to use a
statement such as this:

struct MyStruct obj;

As you can see, the tag name MyStruct is preceded by the keyword struct. However, in C++, you
can use this shorter form:

MyStruct obj; /* OK for C++, wrong for C */

Here, the keyword struct is not needed. In C++, once a structure has been declared, you can declare
variables of its type using only its tag, without preceding it with the keyword struct. The reason for
this difference is that in C, a structure's name does not define a complete type name. This is why C
refers to this name as a tag. However, in C++, a structure's name is a complete type name and can be
used by itself to define variables. Keep in mind, however, that it is still perfectly legal to use the C-
style declaration in a C++ program.

The preceding discussion can be generalized to unions and enumerations. Thus, in C, you must
precede a tag name with the keyword struct, union, or enum (whichever applies) when declaring
objects. In C++, you don't need the keyword.

Since C++ accepts the C-style declarations, there is no trouble regarding this issue when porting
from C to C++. However, if you are porting C++ code to C, you will need to make the appropriate
changes.

Using Sizeof to Ensure Portability

You have seen that structures and unions can be used to create variables of different sizes, and that
the actual size of these variables might change from machine to machine. The sizeof operator
computes the size of any variable or type and can help eliminate machine-dependent code from your
programs. This operator is especially useful where structures or unions are concerned.

For the following discussion, assume an implementation that has the sizes for the data types shown
here:

Type Size in Bytes

char 1

int 4

double 8

Page 202

Therefore, the following code will print the numbers 1, 4, and 8 on the screen:

char ch;
int i;
double f;

printf("%d", sizeof(ch));
printf(''%d", sizeof(i));
printf("%d", sizeof(f));

The size of a structure is equal to or greater than the sum of the sizes of its members. For example:

struct s {
 char ch;
 int i;
 double f;
} s_var;

Here, sizeof(s_var) is at least 13 (8+4+1). However, the size of s_var might be greater because the
compiler is allowed to pad a structure in order to achieve word or paragraph alignment. (A
paragraph is 16 bytes.) Since the size of a structure may be greater than the sum of the sizes of its
members, you should always use sizeof when you need to know the size of a structure. For example,
if you want to dynamically allocate memory for an object of type s, you should use a statement
sequence like the one shown here (rather than manually adding up the lengths of its members):

struct s *p;
p = malloc(sizeof(struct s));

Since sizeof is a compile-time operator, all the information necessary to compute the size of any
variable is known at compile time. This is especially meaningful for unions, because the size of a
union is always equal to the size of its largest member. For example, consider

union u {
 char ch;
 int i;
 double f;
} u_var;

Page 203

Here, the sizeof(u_var) is 8. At run time, it does not matter what u_var is actually holding. All that
matters is the size of its largest member, because any union must be as large as its largest element.

typedef

You can define new data type names by using the keyword typedef. You are not actually creating a
new data type, but rather defining a new name for an existing type. This process can help make
machine-dependent programs more portable. If you define your own type name for each machine-
dependent data type used by your program, then only the typedef statements have to be changed
when compiling for a new environment. typedef also can aid in self-documenting your code by
allowing descriptive names for the standard data types. The general form of the typedef statement is

typedef type newname;

where type is any valid data type, and newname is the new name for this type. The new name you
define is in addition to, not a replacement for, the existing type name.

For example, you could create a new name for float by using

typedef float balance;

This statement tells the compiler to recognize balance as another name for float. Next, you could
create a float variable using balance:

balance over_due;

Here, over_due is a floating-point variable of type balance, which is another word for float.

Now that balance has been defined, it can be used in another typedef. For example,

typedef balance overdraft;

tells the compiler to recognize overdraft as another name for balance, which is another name for
float.

Using typedef can make your code easier to read and easier to port to a new machine. But you are
not creating a new physical type.

Page 205

Chapter 8—
Console I/O

Page 206

The C language does not define any keywords that perform I/O. Instead, input and output are
accomplished through library functions. C's I/O system is an elegant piece of engineering that offers
a flexible yet cohesive mechanism for transferring data between devices. C's I/O system is, however,
quite large, and consists of several different functions. The header for the I/O functions is <stdio.h> .

There are both console and file I/O functions. Technically, there is little distinction between console
I/O and file I/O. But conceptually they are in very different worlds. This chapter examines in detail
the console I/O functions. The next chapter presents the file I/O system and describes how the two
systems relate.

With one exception, this chapter covers only console I/O functions defined by Standard C. Standard
C does not define any functions that perform various screen control operations (such as cursor
positioning) or that display graphics, because these operations vary widely among machines. Nor
does it define any functions that write to a window or dialog box under Windows. Instead, the
console I/O functions perform only TTY-based output. However, most compilers include in their
libraries screen control and graphics functions that apply to the specific environment in which the
compiler is designed to run. And, of course, you can use C to write Windows programs. It is just that
the C language does not define functions that perform these tasks directly.

This chapter refers to the console I/O functions as performing input from the keyboard and output to
the screen. In actuality, these functions operate on standard input and standard output. Furthermore,
standard input and standard output may be redirected to other devices. Thus, the ''console functions"
do not necessarily operate on the console. I/O redirection is covered in Chapter 9. In this chapter it is
assumed that the standard input and standard output have not been redirected.

NOTE

In addition to I/O functions, C++ also includes I/O operators. These operators are,
however, not supported by C.

Reading and Writing Characters

The simplest of the console I/O functions are getchar() , which reads a character from the keyboard,
and putchar(), which writes a character to the screen. The getchar() function waits until a key is
pressed and then returns its value. The keypress is also automatically echoed to the screen. The
putchar() function writes a character to the screen at the current cursor position. The prototypes for
getchar() and putchar() are shown here:

int getchar(void);
int putchar(int c);

Page 207

As its prototype shows, the getchar() function is declared as returning an integer. However, you
can assign this value to a char variable, as is usually done, because the character is contained in the
low-order byte. (The high-order byte is usually zero.) getchar() returns EOF if an error occurs.
(The EOF macro is defined in <stdio.h> and is often equal to –1.)

In the case of putchar(), even though it is declared as taking an integer parameter, you will
generally call it using a character argument. Only the low-order byte of its parameter is actually
output to the screen. The putchar() function returns the character written or EOF if an error occurs.

The following program illustrates getchar() and putchar(). It inputs characters from the keyboard
and displays them in reverse case. That is, it prints uppercase as lowercase and lowercase as
uppercase. To stop the program, enter a period.

#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char ch;

 printf("Enter some text (type a period to quit).\n");
 do {
 ch = getchar();

 if(islower(ch)) ch = toupper(ch);
 else ch = tolower(ch);

 putchar(ch);
 } while (ch != '.');

 return 0;
}

A Problem with getchar()

There are some potential problems with getchar(). For many compilers, getchar() is implemented
in such a way that it buffers input until ENTER is pressed. This is called line-buffered input; you have
to press ENTER before any character is returned. Also, since getchar() inputs only one character each
time it is called, line buffering may leave one or more characters waiting in the input queue, which
is annoying in interactive environments. Even though it is permissible for getchar() to be
implemented as an

TE
AM
FL
Y

Team-Fly®

Page 208

interactive function, it seldom is. Therefore, if the preceding program did not behave as you
expected, you now know why.

Alternatives to getchar()

Since getchar() might not be implemented by your compiler in such a way that it is useful in an
interactive environment, you might want to use a different function to read characters from the
keyboard. Standard C does not define any function that is guaranteed to provide interactive input,
but virtually all C compilers do. Although these functions are not defined by Standard C, they are
commonly used because getchar() does not fill the needs of most programmers.

Two of the most common alternative functions, getch() and getche(), have these prototypes:

int getch(void);
int getche(void);

For most compilers, the prototypes for these functions are found in the header file <conio.h>. For
some compilers, these functions have a leading underscore. For example, in Microsoft's Visual C++,
they are called _getch() and _getche().

The getch() function waits for a keypress after which it returns immediately. It does not echo the
character to the screen. The getche() function is the same as getch(), but the key is echoed. You
will frequently see getche() or getch() used instead of getchar() when a character needs to be read
from the keyboard in an interactive program. For example, the previous program is shown here
using getch() instead of getchar() :

#include <stdio.h>
#include <conio.h>
#include <ctype.h>

int main(void)
{
 char ch;

 printf("Enter some text (type a period to quit).\n");
 do {
 ch = getch();

 if(islower(ch)) ch = toupper(ch);
 else ch = tolower(ch);

 putchar(ch);
 } while (ch != '.');

Page 209

 return 0;
}

When you run this version of the program, each time you press a key, it is immediately transmitted
to the program and displayed in reverse case. Input is no longer line buffered. Although the code in
this book will not make further use of getch() or getche(), they may be useful in the programs that
you write.

NOTE

At the time of this writing, when using Microsoft's Visual C++ compiler, _getche()
and _getch() are not compatible with the standard C input functions, such as scanf
() or gets(). Instead, you must use special versions of the standard functions, such
as cscanf() or cgets(). You will need to examine the Visual C++ documentation for
details.

Reading and Writing Strings

The next step up in console I/O, in terms of complexity and power, are the functions gets() and puts
(). They enable you to read and write strings of characters.

The gets() function reads a string of characters entered at the keyboard and stores them at the
address pointed to by its argument. You can type characters at the keyboard until you strike a
carriage return. The carriage return does not become part of the string; instead, a null terminator is
placed at the end, and gets() returns. In fact, you cannot use gets() to return a carriage return
(although getchar() can do so). You can correct typing mistakes by using the backspace key before
pressing ENTER. The prototype for gets() is

char *gets(char *str);

where str is a pointer to a character array that receives the characters entered by the user. gets() also
returns str. The following program reads a string into the array str and prints its length:

#include <stdio.h>
#include <string.h>

int main (void)
{
 char str[80];

 gets(str);
 printf(''Length is %d", strlen(str));

 return 0;
}

Page 210

You need to be careful when using gets() because it performs no boundary checks on the array that
is receiving input. Thus, it is possible for the user to enter more characters than the array can hold.
While gets() is fine for sample programs and simple utilities that only you will use, you will want to
avoid its use in commercial code. One alternative is the fgets() function described in the next
chapter, which allows you to prevent an array overrun.

The puts() function writes its string argument to the screen followed by a newline. Its prototype is

int puts(const char *str);

puts() recognizes the same backslash escape sequences as printf(), such as \t for tab. A call to puts
() requires far less overhead than the same call to printf() because puts() can only output a string
of characters— it cannot output numbers or do format conversions. Therefore, puts() takes up less
space and runs faster than printf(). For this reason, the puts() function is often used when no
format conversions are required.

The puts() function returns a nonnegative value if successful or EOF if an error occurs. However,
when writing to the console, you can usually assume that no error will occur, so the return value of
puts() is seldom monitored. The following statement displays hello:

puts("hello");

Table 8-1 summarizes the basic console I/O functions.

Function Operation

getchar() Reads a character from the keyboard; usually waits for carriage return.

getche() Reads a character with echo; does not wait for carriage return; not
defined by Standard C, but a common extension.

getch() Reads a character without echo; does not wait for carriage return; not
defined by Standard C, but a common extension.

putchar() Writes a character to the screen.

gets() Reads a string from the keyboard.

puts() Writes a string to the screen.

Table 8 -1. The Basic I/O Functions

Page 211

The following program— a simple computerized dictionary— demonstrates several basic console I/O
functions. It prompts the user to enter a word and then checks to see if the word matches one in its
built-in database. If a match is found, the program prints the word's meaning. Pay special attention
to the indirection used in this program. If you have any trouble understanding it, remember that the
dic array is an array of pointers to strings. Notice that the list must be terminated by two nulls.

/* A simple dictionary. */
#include <stdio.h>
#include <string.h>
#include <ctype.h>

/* list of words and meanings */
char *dic[][40] = {
 ''atlas", "A volume of maps.",
 "car", "A motorized vehicle.",
 "telephone", "A communication device.",
 "airplane", "A flying machine.",
 "", "" /* null terminate the list */
};

int main(void)
{
 char word[80], ch;
 char **p;

 do {
 puts("\nEnter word: ");
 scanf("%s", word);

 p = (char **)dic;

 /* find matching word and print its meaning */
 do {
 if(!strcmp(*p, word)) {
 puts("Meaning:");
 puts(*(p+1));
 break;
 }
 if(!strcmp(*p, word)) break;
 p = p + 2; /* advance through the list */
 } while(*p);

Page 212

 if(!*p) puts("Word not in dictionary.");
 printf(''Another? (y/n): ");
 scanf(" %c%*c", &ch);
 } while(toupper(ch) != 'N');

 return 0;
}

Formatted Console I/O

The functions printf() and scanf() perform formatted output and input— that is, they can read and
write data in various formats that are under your control. The printf() function writes data to the
console. The scanf() function, its complement, reads data from the keyboard. Both functions can
operate on any of the built-in data types, plus null-terminated character strings.

printf()

The prototype for printf() is

int printf(const char *control_string, . . .);

The printf() function returns the number of characters written or a negative value if an error occurs.

The control_string consists of two types of items. The first type is composed of characters that will
be printed on the screen. The second type contains format specifiers that define the way the
subsequent arguments are displayed. A format specifier begins with a percent sign and is followed
by the format code. There must be exactly the same number of arguments as there are format
specifiers, and the format specifiers and the arguments are matched in order from left to right. For
example, this printf() call

printf("I like %c %s", 'C', "very much!");

displays

I like C very much!

Here, the %c matches the character 'C', and the %s matches the string "very much".

The printf() function accepts a wide variety of format specifiers, as shown in Table 8-2.

Page 213

Code Format

%a Hexadecimal output in the form 0xh.hhhhp+d (C99 only).

%A Hexadecimal output in the form 0Xh.hhhhP+d (C99 only).

%c Character.

%d Signed decimal integers.

%i Signed decimal integers.

%e Scientific notation (lowercase e).

%E Scientific notation (uppercase E).

%f Decimal floating point.

%g Uses %e or %f, whichever is shorter.

%G Uses %E or %F, whichever is shorter.

%o Unsigned octal.

%s String of characters.

%u Unsigned decimal integers.

%x Unsigned hexadecimal (lowercase letters).

%X Unsigned hexadecimal (uppercase letters).

%p Displays a pointer.

%n The associated argument must be a pointer to an integer. This
specifier causes the number of characters written (up to the
point at which the %n is encountered) to be stored in that
integer.

%% Prints a % sign.

Table 8 -2. printf() Format Specifiers

Printing Characters

To print an individual character, use %c. This causes the matching argument to be output,
unmodified, to the screen.

To print a string, use %s.

Page 214

Printing Numbers

You can use either %d or %i to display a signed integer in decimal format. These format specifiers
are equivalent; both are supported for historical reasons, of which one is the desire to maintain an
equivalence relationship with the scanf() format specifiers.

To output an unsigned integer, use %u.

The %f format specifier displays numbers in floating point. The matching argument must be of type
double.

The %e and %E specifiers tell printf() to display a double argument in scientific notation.
Numbers represented in scientific notation take this general form:

x.dddddE+/–yy

If you want to display the letter E in uppercase, use the %E format; otherwise, use %e.

You can tell printf() to use either %f or %e by using the %g or %G format specifiers. This causes
printf() to select the format specifier that produces the shortest output. Where applicable, use %G
if you want E shown in uppercase; otherwise, use %g. The following program demonstrates the
effect of the %g format specifier:

#include <stdio.h>

int main(void)
{
 double f;

 for(f=1.0; f<1.0e+10; f=f*10)
 printf(''%g ", f);

 return 0;
}

It produces the following output:

1 10 100 1000 10000 100000 1e+006 1e+007 1e+008 1e+009

You can display unsigned integers in octal or hexadecimal format using %o and %x, respectively.
Since the hexadecimal number system uses the letters A through F to represent the numbers 10
through 15, you can display these letters in either upper- or lowercase. For uppercase, use the %X
format specifier; for lowercase, use %x, as shown here:

#include <stdio.h>

int main(void)

Page 215

{
 unsigned num;

 for(num=0; num < 16; num++) {
 printf(''%o ", num);
 printf("%x ", num);
 printf("%X\n", num);
 }

 return 0;
}

The output is shown here:

0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
10 8 8
11 9 9
12 a A
13 b B
14 c C
15 d D
16 e E
17 f F

Displaying an Address

If you want to display an address, use %p. This format specifier causes printf() to display a
machine address in a format compatible with the type of addressing used by the computer. The next
program displays the address of sample:

#include <stdio.h>

int sample;

int main(void)

Page 216

{
 printf(''%p", &sample);

 return 0;
}

The %n Specifier

The %n format specifier is different from the others. Instead of telling printf() to display
something, it causes printf() to load the integer variable pointed to by its corresponding argument
with a value equal to the number of characters that have been output. In other words, the value that
corresponds to the %n format specifier must be a pointer to a variable. After the call to printf() has
returned, this variable will hold the number of characters output, up to the point at which the %n
was encountered. Examine the next program to understand this somewhat unusual format code:

#include <stdio.h>

int main(void)
{
 int count;

 printf("this%n is a test\n", &count);
 printf("%d", count);

 return 0;
}

This program displays this is a test followed by the number 4. The %n format specifier is used
primarily to enable your program to perform dynamic formatting.

Format Modifiers

Many format specifiers can take modifiers that alter their meaning slightly. For example, you can
specify a minimum field width, the number of decimal places, and left justification. The format
modifier goes between the percent sign and the format code. These modifiers are discussed next.

The Minimum Field Width Specifier

An integer placed between the % sign and the format code acts as a minimum field width specifier.
This pads the output with spaces to ensure that it reaches a certain minimum length. If the string or
number is longer than that minimum, it will still be printed in

Page 217

full. The default padding is done with spaces. If you wish to pad with 0's, place a 0 before the field
width specifier. For example, %05d will pad a number of less than five digits with 0's so that its
total length is five. The following program demonstrates the minimum field width specifier:

#include <stdio.h>

int main (void)
{
 double item;

 item = 10.12304;

 printf("%f\n", item);
 printf(''%10f\n", item);
 printf("%012f\n", item);

 return 0;
}

This program produces the following output:

10.123040
 10.123040
00010.123040

The minimum field width modifier is most commonly used to produce tables in which the columns
line up. For example, the next program produces a table of squares and cubes for the numbers
between 1 and 19:

#include <stdio.h>

int main(void)
{
 int i;

 /* display a table of squares and cubes */
 for(i=1; i<20; i++)
 printf("%8d %8d %8d\n", i, i*i, i*i*i);

 return 0;
}

TE
AM
FL
Y

Team-Fly®

Page 218

A sample of its output is shown here:

 1 1 1
 2 4 8
 3 9 27
 4 16 64
 5 25 125
 6 36 216
 7 49 343
 8 64 512
 9 81 729
10 100 1000
11 121 1331
12 144 1728
13 169 2197
14 196 2744
15 225 3375
16 256 4096
17 289 4913
18 324 5832
19 361 6859

The Precision Specifier

The precision specifier follows the minimum field width specifier (if there is one). It consists of a
period followed by an integer. Its exact meaning depends upon the type of data to which it is
applied.

When you apply the precision specifier to floating-point data using the %f, %e, or %E specifiers, it
determines the number of decimal places displayed. For example, %10.4f displays a number at least
10 characters wide with four decimal places.

When the precision specifier is applied to %g or %G, it specifies the number of significant digits.

Applied to strings, the precision specifier specifies the maximum field length. For example, %5.7s
displays a string at least five and not exceeding seven characters long. If the string is longer than the
maximum field width, the end characters will be truncated.

When applied to integer types, the precision specifier determines the minimum number of digits that
will appear for each number. Leading zeroes are added to achieve the required number of digits.

The following program illustrates the precision specifier:

#include <stdio.h>

int main(void)
{

The output is shown here:

Page 219

 printf("%.4f\n", 123.1234567);
 printf(''%3.8d\n", 1000);
 printf("%10.15s\n", "This is a simple test.");

 return 0;
}

It produces the following output:

123.1235
00001000
This is a simpl

Justifying Output

By default, all output is right justified. That is, if the field width is larger than the data printed, the
data will be placed on the right edge of the field. You can force output to be left justified by placing
a minus sign directly after the %. For example, %–10.2f left-justifies a floating-point number with
two decimal places in a 10-character field.

The following program illustrates left justification:

#include <stdio.h>

int main(void)
{
 printf(".........................\n");
 printf("right-justified: %8d\n", 100);
 printf(" left-justified: %-8d\n", 100);

 return 0;
}

.........................
right-justified: 100
 left-justified: 100

Handling Other Data Types

There are format modifiers that allow printf() to display short and long integers. These modifiers
can be applied to the d, i, o, u, and x type specifiers. The 1 (ell) modifier tells printf() that a long
data type follows. For example, %1d means that a long int is to

Page 220

be displayed. The h modifier instructs printf() to display a short integer. For instance, %hu
indicates that the data is of type short unsigned int.

The 1 and h modifiers can also be applied to the n specifier, to indicate that the corresponding
argument is a pointer to a long or short integer, respectively.

If you are using a compiler that supports the wide-character features added by the 1995 Amendment
1, you can use the 1 modifier with the c format to indicate a wide character. You can also use the 1
modifier with the s format to indicate a wide-character string.

The L modifier may prefix the floating-point specifiers e, f, and g and indicates that a long double
follows.

C99 adds two new format modifiers: hh and ll. The hh modifier can be applied to d, i, o, u, x, or n.
It specifies that the corresponding argument is a signed or unsigned char value or, in the case of n,
a pointer to a signed char variable. The ll modifier also can be applied to d, i, o, u, x, or n. It
specifies that the corresponding argument is a signed or unsigned long long int value or, in the case
of n, a pointer to a long long int. C99 also allows the 1 to be applied to the floating-point specifiers
a, e, f, and g, but it has no effect.

NOTE

C99 includes some additional printf() type modifiers, which are described in Part
Two.

The * and # Modifiers

The printf() function supports two additional modifiers to some of its format specifiers: * and #.

Preceding g, G, f, E, or e specifiers with a # ensures that there will be a decimal point even if there
are no decimal digits. If you precede the x or X format specifier with a #, the hexadecimal number
will be printed with a 0x prefix. Preceding the o specifier with # causes the number to be printed
with a leading zero. You cannot apply # to any other format specifiers. (In C99, the # can also be
applied to the %a conversion, which ensures that a decimal point will be displayed.)

Instead of constants, the minimum field width and precision specifiers can be provided by
arguments to printf(). To accomplish this, use an * as a placeholder. When the format string is
scanned, printf() will match the * to an argument in the order in which they occur. For example, in
Figure 8-1, the minimum field width is 10, the precision is 4, and the value to be displayed is 123.3.

The following program illustrates both # and *:

#include <stdio.h>

int main(void)
{
 printf(''%x %#x\n", 10, 10);
 printf("%*.*f", 10, 4, 1234.34);

 return 0;
}

Page 221

Figure 8-1
How the * is matched

to its value

scanf()

scanf() is the general -purpose console input routine. It can read all the built-in data types and
automatically convert numbers into the proper internal format. It is much like the reverse of printf
(). The prototype for scanf() is

int scanf(const char *control_string, . . .);

The scanf() function returns the number of data items successfully assigned a value. If an error
occurs, scanf() returns EOF. The control_string determines how values are read into the variables
pointed to in the argument list.

The control string consists of three classifications of characters:

• Format specifiers

• White-space characters

• Non-white-space characters

Let's take a look at each of these now.

Format Specifiers

The input format specifiers are preceded by a % sign and tell scanf() what type of data is to be read
next. These codes are listed in Table 8-3. The format specifiers are matched, in order from left to
right, with the arguments in the argument list. Let's look at some examples.

Inputting Numbers

To read an integer, use either the %d or %i specifier. To read a floating-point number represented
in either standard or scientific notation, use %e, %f, or %g. (C99 also includes %a, which reads a
floating-point number.)

You can use scanf() to read integers in either octal or hexadecimal form by using the %o and %x
format commands, respectively. The %x can be in either upper- or lowercase. Either way, you can
enter the letters A through F in either case

Page 222

Code Meaning

%a Reads a floating -point value (C99 only).

%c Reads a single character.

%d Reads a decimal integer.

%i Reads an integer in either decimal, octal, or hexadecimal format.

%e Reads a floating -point number.

%f Reads a floating -point number.

%g Reads a floating -point number.

%o Reads an octal number.

%s Reads a string.

%x Reads a hexadecimal number.

%p Reads a pointer.

%n Receives an integer value equal to the number of characters read so far.

%u Reads an unsigned decimal integer.

%[] Scans for a set of characters.

%% Reads a percent sign.

Table 8 -3. scanf() Format Specifiers

when entering hexadecimal numbers. The following program reads an octal and hexadecimal
number:

#include <stdio.h>

int main(void)
{
 int i, j;

 scanf("%o%x", &i, &j);
 printf(''%o %x", i, j);

 return 0;
}

Page 223

The scanf() function stops reading a number when the first non-numeric character is encountered.

Inputting Unsigned Integers

To input an unsigned integer, use the %u format specifier. For
example,

unsigned num;
scanf(''%u", &num);

reads an unsigned number and puts its value into num.

Reading Individual Characters Using scanf()

As explained earlier in this chapter, you can read individual characters using getchar() or a
derivative function. You can also use scanf() for this purpose if you use the %c format specifier.
However, like most implementations of getchar(), scanf() will generally line-buffer input when
the %c specifier is used. This makes it somewhat troublesome in an interactive environment.

Although spaces, tabs, and newlines are used as field separators when reading other types of data,
when reading a single character, white-space characters are read like any other character. For
example, with an input stream of "x y," this code fragment

scanf("%c%c%c", &a, &b, &c);

returns with the character x in a, a space in b, and the character y in c.

Reading Strings

The scanf() function can be used to read a string from the input stream using the %s format
specifier. Using %s causes scanf() to read characters until it encounters a white-space character.
The characters that are read are put into the character array pointed to by the corresponding
argument, and the result is null terminated. As it applies to scanf(), a white-space character is either
a space, a newline, a tab, a vertical tab, or a formfeed. Unlike gets() , which reads a string until ENTER
is pressed, scanf() reads a string until the first white space is entered. This means that you cannot
use scanf() to read a string like "this is a test" because the first space terminates the reading process.
To see the effect of the %s specifier, try this program using the string "hello there":

#include <stdio.h>

int main(void)

Page 224

{
 char str[80];

 printf("Enter a string: ");
 scanf(''%s", str);
 printf("Here's your string: %s", str);

 return 0;
}

The program responds with only the "hello" portion of the string.

Inputting an Address

To input a memory address, use the %p format specifier. This specifier causes scanf() to read an
address in the format defined by the architecture of the CPU. For example, this program inputs an
address and then displays what is at that memory address:

#include <stdio.h>

int main(void)
{
 char *p;

 printf("Enter an address: ");
 scanf("%p", &p);
 printf("Value at location %p is %c\n", p, *p);

 return 0;
}

The %n Specifier

The %n specifier instructs scanf() to store the number of characters read from the input stream (up
to the point at which the %n was encountered) in the integer variable pointed to by the
corresponding argument.

Using a Scanset

The scanf() function supports a general-purpose format specifier called a scanset. A scanset defines
a set of characters. When scanf() processes a scanset, it will input characters as long as those
characters are part of the set defined by the scanset. The characters read will be assigned to the
character array that is pointed to by the scanset's

Page 225

corresponding argument. You define a scanset by putting the characters to scan for inside square
brackets. The beginning square bracket must be prefixed by a percent sign. For example, the
following scanset tells scanf() to read only the characters X, Y, and Z:

% [XYZ]

When you use a scanset, scanf() continues to read characters, putting them into the corresponding
character array until it encounters a character that is not in the scanset. Upon return from scanf(),
this array will contain a null-terminated string that consists of the characters that have been read. To
see how this works, try this program:

#include <stdio.h>

int main(void)
{
 int i;
 char str[80], str2[80];

 scanf("%d%[abcdefg]%s", &i, str, str2);
 printf(''%d %s %s", i, str, str2);

 return 0;
}

Enter 123abcdtye followed by ENTER. The program will then display 123 abcd tye. Because the "t" is
not part of the scanset, scanf() stops reading characters into str when it encounters the "t." The
remaining characters are put into str2.

You can specify an inverted set if the first character in the set is a ^. The ^ instructs scanf() to
accept any character that is not defined by the scanset.

In most implementations you can specify a range using a hyphen. For example, this tells scanf() to
accept the characters A through Z:

%[A-Z]

One important point to remember is that the scanset is case sensitive. If you want to scan for both
upper- and lowercase letters, you must specify them individually.

Discarding Unwanted White Space

A white-space character in the control string causes scanf() to skip over one or more leading white-
space characters in the input stream. A white-space character is either a

Page 226

space, a tab, vertical tab, formfeed, or a newline. In essence, one white-space character in the control
string causes scanf() to read, but not store, any number (including zero) of white-space characters
up to the first non-white-space character.

Non-White-Space Characters in the Control String

A non-white-space character in the control string causes scanf() to read and discard matching
characters in the input stream. For example, ''%d,%d" causes scanf() to read an integer, read and
discard a comma, and then read another integer. If the specified character is not found, scanf()
terminates. If you want to read and discard a percent sign, use %% in the control string.

You Must Pass scanf() Addresses

All the variables used to receive values through scanf() must be passed by their addresses. This
means that all arguments must be pointers. Recall that this is how C creates a call by reference,
which allows a function to alter the contents of an argument. For example, to read an integer into the
variable count , you would use the following scanf() call:

scanf("%d", &count);

Strings will be read into character arrays, and the array name, without any index, is the address of
the first element of the array. So, to read a string into the character array str, you would use

scanf("%s", str);

In this case, str is already a pointer and need not be preceded by the & operator.

Format Modifiers

As with printf(), scanf() allows a number of its format specifiers to be modified. The format
specifiers can include a maximum field length modifier. This is an integer, placed between the %
and the format specifier, that limits the number of characters read for that field. For example, to read
no more than 20 characters into str, write

scanf("%20s", str);

If the input stream is greater than 20 characters, a subsequent call to input begins where this call
leaves off. For example, if you enter

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Page 227

as the response to the scanf() call in this example, only the first 20 characters, or up to the T, are
placed into str because of the maximum field width specifier. This means that the remaining
characters, UVWXYZ, have not yet been used. If another scanf() call is made, such as

scanf("%s", str);

the letters UVWXYZ are placed into str. Input for a field may terminate before the maximum field
length is reached if a white space is encountered. In this case, scanf() moves on to the next field.

To read a long integer, put an 1 (ell) in front of the format specifier. To read a short integer, put an h
in front of the format specifier. These modifiers can be used with the d, i, o, u, x, and n format
codes.

By default, the f, e, and g specifiers tell scanf() to assign data to a float. If you put an 1 (ell) in front
of one of these specifiers, scanf() assigns the data to a double. Using an L tells scanf() that the
variable receiving the data is a long double.

The 1 modifier can also be used with the c and s format codes as long as your compiler implements
the wide-character features added to C by the 1995 Amendment 1. Preceding c with an 1 indicates a
pointer to an object of type wchar_t. Preceding s with an 1 indicates a pointer to a wchar_t array.
The 1 can also be used to modify a scanset for use with wide characters.

C99 adds the ll and hh modifiers. The hh modifier can be applied to d, i, o, u, x, or n. It specifies
that the corresponding argument is a pointer to a signed or unsigned char value. The ll modifier
also can be applied to d, i, o, u, x, or n. It specifies that the corresponding argument is a pointer to a
signed or unsigned long long int value.

NOTE

C99 includes some additional scanf() type modifiers, which are described in Part
Two.

Suppressing Input

You can tell scanf() to read a field but not assign it to any variable by preceding that field's format
code with an *. For example, given

scanf("%d%*c%d", &x, &y);

you could enter the coordinate pair 10,10. The comma would be correctly read, but not assigned to
anything. Assignment suppression is especially useful when you need to process only a part of what
is being entered.

TE
AM
FL
Y

Team-Fly®

Page 229

Chapter 9—
File I/O

Page 230

This chapter describes the C file system. As explained in Chapter 8, the C I/O system is
implemented through library functions, not through keywords. This makes the I/O system extremely
powerful and flexible. For example, when operating on files, data can be transferred either in its
internal binary representation, or in its human-readable text format. This makes it easy to create files
to fit any need.

C vs. C++ File I/O

Because C forms the foundation for C++, there is sometimes confusion over how C's file system
relates to C++. First, C++ supports the entire C file system. Thus, if you will be porting older C code
to C++, you will not have to change all of your I/O routines right away. Second, C++ defines its
own, object-oriented I/O system, which includes both I/O functions and I/O operators. The C++ I/O
system completely duplicates the functionality of the C I/O system and renders the C file system
redundant. In general, if you are writing C++ programs, you will usually want to use the C++ I/O
system, but you are free to use the C file system if you like.

Standard C vs. Unix File I/O

C was originally implemented for the Unix operating system. As such, early versions of C (and
many still today) support a set of I/O functions that are compatible with Unix. This set of I/O
functions is sometimes referred to as the Unix-like I/O system, or the unbuffered I/O system.
However, when C was standardized, the Unix-like functions were not incorporated into the standard,
largely because they are redundant. Also, the Unix-like system may not be relevant to certain
environments that could otherwise support C.

This chapter discusses only those I/O functions that are defined by Standard C. In previous editions
of this work, the Unix-like file system was given a small amount of coverage. In the time that has
elapsed since the previous edition, use of the standard I/O functions has steadily risen and use of the
Unix-like functions has steadily decreased. Today, most programmers use the standard functions
because they are portable to all environments (and to C++). Programmers wanting to use the Unix-
like functions should consult their compiler's documentation.

Streams and Files

Before beginning our discussion of the C file system it is necessary to know the difference between
the terms streams and files. The C I/O system supplies a consistent interface to the programmer
independent of the actual device being accessed. That is, the C I/O system provides a level of
abstraction between the programmer and the device. This abstraction is called a stream, and the
actual device is called a file. It is important to understand how streams and files interact.

Page 231

Streams

The C file system is designed to work with a wide variety of devices, including terminals, disk
drives, and tape drives. Even though each device is very different, the buffered file system
transforms each into a logical device called a stream. All streams behave similarly. Because streams
are largely device independent, the same function that can write to a disk file can also write to
another type of device, such as the console. There are two types of streams: text and binary.

Text Streams

A text stream is a sequence of characters. Standard C states that a text stream is organized into lines
terminated by a newline character. However, the newline character is optional on the last line. In a
text stream, certain character translations may occur as required by the host environment. For
example, a newline may be converted to a carriage return/linefeed pair. Therefore, there may not be
a one-to-one relationship between the characters that are written (or read) and those stored on the
external device. Also, because of possible translations, the number of characters written (or read)
may not be the same as the number that is stored on the external device.

Binary Streams

A binary stream is a sequence of bytes that has a one-to-one correspondence to the bytes in the
external device— that is, no character translations occur. Also, the number of bytes written (or read)
is the same as the number on the external device. However, an implementation— defined number of
null bytes may be appended to a binary stream. These null bytes might be used to pad the
information so that it fills a sector on a disk, for example.

Files

In C, a file may be anything from a disk file to a terminal or printer. You associate a stream with a
specific file by performing an open operation. Once a file is open, information can be exchanged
between it and your program.

Not all files have the same capabilities. For example, a disk file can support random access, while
some printers cannot. This brings up an important point about the C I/O system: All streams are the
same, but all files are not.

If the file can support position requests, opening that file also initializes the file position indicator to
the start of the file. As each character is read from or written to the file, the position indicator is
incremented, ensuring progression through the file.

You disassociate a file from a specific stream with a close operation. If you close a file opened for
output, the contents, if any, of its associated stream are written to the external device. This process,
generally referred to as flushing the stream, guarantees that no information is accidentally left in the
disk buffer. All files are closed automatically when your program terminates normally, either by
main() returning to the operating

Page 232

system or by a call to exit(). Files are not closed when a program terminates abnormally, such as
when it crashes or when it calls abort().

Each stream that is associated with a file has a file control structure of type FILE. Never modify this
file control block.

If you are new to programming, the separation of streams and files may seem unnecessary or
contrived. Just remember that its main purpose is to provide a consistent interface. You need only
think in terms of streams and use only one file system to accomplish all I/O operations. The I/O
system automatically converts the raw input or output from each device into an easily managed
stream.

File System Basics

The C file system is composed of several interrelated functions. The most common of these are
shown in Table 9-1. They require the header <stdio.h> .

The header <stdio.h> provides the prototypes for the I/O functions and defines these three types:
size_t, fpos_t, and FILE. The size_t type is some variety of unsigned integer, as is fpos_t. The
FILE type is discussed in the next section.

Also defined in <stdio.h> are several macros. The ones relevant to this chapter are NULL, EOF,
FOPEN_MAX, SEEK_SET, SEEK_CUR , and SEEK_END. The NULL macro defines a null
pointer. The EOF macro, often defined as-1, is the value returned when an input function tries to
read past the end of the file. FOPEN_MAX defines an integer value that determines the number of
files that may be open at any one time. The other macros are used with fseek(), which is the
function that performs random access on a file.

The File Pointer

The file pointer is the common thread that unites the C I/O system. A file pointer is a pointer to a
structure of type FILE. It points to information that defines various things about the file, including
its name, status, and the current position of the file. In essence, the file pointer identifies a specific
file and is used by the associated stream to direct the operation of the I/O functions. In order to read
or write files, your program needs to use file pointers. To obtain a file pointer variable, use a
statement like this:

FILE *fp;

Opening a File

The fopen() function opens a stream for use and links a file with that stream. Then it returns the file
pointer associated with that file. Most often (and for the rest of this discussion), the file is a disk file.
The fopen() function has this prototype,

FILE *fopen(const char *filename, const char *mode);

Page 233

Name Function

fopen() Opens a file

fclose() Closes a file

putc() Writes a character to a file

fputc() Same as putc()

getc() Reads a character from a file

fgetc() Same as getc()

fgets() Reads a string from a file

fputs() Writes a string to a file

fseek() Seeks to a specified byte in a file

ftell() Returns the current file position

fprintf() Is to a file what printf() is to the console

fscanf() Is to a file what scanf() is to the console

feof() Returns true if end-of-file is reached

ferror() Returns true if an error has occurred

rewind() Resets the file position indicator to the beginning of the file

remove() Erases a file

fflush() Flushes a file

Table 9 -1. Commonly Used C File-System Functions

where filename is a pointer to a string of characters that make up a valid filename and may include a
path specification. The string pointed to by mode determines how the file will be opened. Table 9-2
shows the legal values for mode. Strings like ''r+b" may also be represented as "rb+".

As stated, the fopen() function returns a file pointer. Your program should never alter the value of
this pointer. If an error occurs when it is trying to open the file, fopen() returns a null pointer.

The following code uses fopen() to open a file named TEST for output.

FILE *fp;
fp = fopen("test", "w");

Page 234

Mode Meaning

r Open a text file for reading

w Create a text file for writing

a Append to a text file

rb Open a binary file for reading

wb Create a binary file for writing

ab Append to a binary file

r+ Open a text file for read/write

w+ Create a text file for read/write

a+ Append or create a text file for read/write

r+b Open a binary file for read/write

w+b Create a binary file for read/write

a+b Append or create a binary file for read/write

Table 9 -2. Legal Values for Mode

Although the preceding code is technically correct, you will usually see it written like this:

FILE *fp;

if ((fp = fopen("test","w"))==NULL) {
 printf(''Cannot open file.\n");
 exit(1);
}

This method will detect any error in opening a file, such as a write-protected or a full disk, before
your program attempts to write to it. In general, you will always want to confirm that fopen()
succeeded before attempting any other operations on the file.

Although most of the file modes are self-explanatory, a few comments are in order. If, when
opening a file for read-only operations, the file does not exist, fopen() will fail. When opening a file
using append mode, if the file does not exist, it will be created. Further, when a file is opened for
append, all new data written to the file will be written to the end of the file. The original contents
will remain unchanged. If, when a file is opened for writing, the file does not exist, it will be
created. If it does exist, the

Page 235

contents of the original file will be destroyed, and a new file will be created. The difference between
modes r+ and w+ is that r+ will not create a file if it does not exist; however, w+ will. Further, if the
file already exists, opening it with w+ destroys its contents; opening it with r+ does not.

As Table 9-2 shows, a file can be opened in either text or binary mode. In most implementations, in
text mode, carriage return/linefeed sequences are translated to newline characters on input. On
output, the reverse occurs: Newlines are translated to carriage return/linefeeds. No such translations
occur on binary files.

The number of files that may be open at any one time is specified by FOPEN_MAX . This value
will be at least 8, but you must check your compiler manual for its exact value.

Closing a File

The fclose() function closes a stream that was opened by a call to fopen(). It writes any data still
remaining in the disk buffer to the file and does a formal operating-system-level close on the file.
Failure to close a stream invites all kinds of trouble, including lost data, destroyed files, and possible
intermittent errors in your program. fclose() also frees the file control block associated with the
stream, making it available for reuse. Since there is a limit to the number of files you can have open
at any one time, you may have to close one file before opening another.

The fclose() function has this prototype,

int fclose(FILE *fp);

where fp is the file pointer returned by the call to fopen(). A return value of zero signifies a
successful close operation. The function returns EOF if an error occurs. You can use the standard
function ferror() (discussed shortly) to determine the precise cause of the problem. Generally,
fclose() will fail only when a disk has been prematurely removed from the drive or there is no more
space on the disk.

Writing a Character

The C I/O system defines two equivalent functions that output a character: putc() and fputc().
(Actually, putc() is usually implemented as a macro.) The two identical functions exist simply to
preserve compatibility with older versions of C. This book uses putc(), but you can use fputc() if
you like.

The putc() function writes characters to a file that was previously opened for writing using the
fopen() function. The prototype of this function is

int putc(int ch, FILE *fp);

where fp is the file pointer returned by fopen(), and ch is the character to be output. The file pointer
tells putc() which file to write to. Although ch is defined as an int, only the low-order byte is
written.

If a putc() operation is successful, it returns the character written. Otherwise, it returns EOF.

Page 236

Reading a Character

There are also two equivalent functions that input a character: getc() and fgetc(). Both are defined
to preserve compatibility with older versions of C. This book uses getc() (which is usually
implemented as a macro), but you can use fgetc() if you like.

The getc() function reads characters from a file opened in read mode by fopen(). The prototype of
getc() is

int getc(FILE *fp);

where fp is a file pointer of type FILE returned by fopen(). getc() returns an integer, but the
character is contained in the low-order byte. Unless an error occurs, the high-order byte (or bytes) is
zero.

The getc() function returns an EOF when the end of the file has been reached. Therefore, to read to
the end of a text file, you could use the following code:

do {
 ch = getc(fp);
} while(ch!=EOF);

However, getc() also returns EOF if an error occurs. You can use ferror() to determine precisely
what has occurred.

Using fopen(), getc(), putc(), and fclose()

The functions fopen(), getc() , putc(), and fclose() constitute the minimal set of file routines. The
following program, KTOD, is a simple example that uses putc(), fopen(), and fclose(). It reads
characters from the keyboard and writes them to a disk file until the user types a dollar sign. The
filename is specified from the command line. For example, if you call this program KTOD, typing
KTOD TEST allows you to enter lines of text into the file called TEST.

/* KTOD: A key to disk program. */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])

{
 FILE *fp;
 char ch;

 if(argc!=2) {
 printf(''You forgot to enter the filename.\n");

Page 237

 exit(1);
 }

 if((fp=fopen(argv[1], "w"))==NULL) {
 printf(''Cannot open file.\n");
 exit (1);
 }

 do {
 ch = getchar();
 putc(ch, fp);
 } while (ch != '$');

 fclose(fp);

 return 0;
}

The complementary program DTOS reads any text file and displays the contents on the screen.

/* DTOS: A program that reads files and displays them
 on the screen. */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *fp;
 char ch;

 if(argc!=2) {
 printf("You forgot to enter the filename.\n");
 exit(1);
 }

 if((fp=fopen(argv[1], "r"))==NULL) {
 printf("Cannot open file.\n");
 exit(1);
 }

Page 238

 ch = getc(fp); /* read one character */

 while (ch!=EOF) {
 putchar(ch); /* print on screen */
 ch = getc(fp);
 }

 fclose(fp);

 return 0;
}

To try these two programs, first use KTOD to create a text file. Then read its contents using
DTOS.

Using feof()

As just described, getc() returns EOF when the end of the file has been encountered. However,
testing the value returned by getc() may not be the best way to determine when you have arrived at
the end of a file. First, the C file system can operate on both text and binary files. When a file is
opened for binary input, an integer value that will test equal to EOF may be read. This would cause
the input routine to indicate an end-of-file condition even though the physical end of the file had not
been reached. Second, getc() returns EOF when it fails and when it reaches the end of the file.
Using only the return value of getc() , it is impossible to know which occurred. To solve these
problems, C includes the function feof(), which determines when the end of the file has been
encountered. The feof() function has this prototype:

int feof(FILE *fp);

feof() returns true if the end of the file has been reached; otherwise, it returns zero. Therefore, the
following routine reads a binary file until the end of the file is encountered:

while(!feof(fp)) ch = getc(fp);

Of course, you can apply this method to text files as well as binary files.

The following program, which copies text or binary files, contains an example of feof(). The files
are opened in binary mode, and feof() checks for the end of the file.

/* Copy a file. */
#include <stdio.h>

TE
AM
FL
Y

Team-Fly®

Page 239

#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *in, *out;
 char ch;

 if(argc!=3)
 printf(''You forgot to enter a filename.\n");
 exit(1);
 }

 if((in=fopen(argv[1], "rb"))==NULL) {
 printf("Cannot open source file.\n");
 exit(1);
 }
 if((out=fopen(argv[2], "wb")) == NULL) {
 printf("Cannot open destination file.\n");
 exit(1);
 }

 /* This code actually copies the file. */
 while(!feof(in)) {
 ch = getc(in);
 if(!feof(in)) putc(ch, out);
 }

 fclose(in);
 fclose(out);

 return 0;
}

Working with Strings:
fputs() and fgets()

In addition to getc() and putc(), C supports the related functions fgets() and fputs(), which read
and write character strings from and to a disk file. These functions work just like putc() and getc(),
but instead of reading or writing a single character, they read or write strings. They have the
following prototypes:

int fputs(const char *str, FILE *fp);
char *fgets(char *str, int length, FILE *fp);

Page 240

The fputs() function writes the string pointed to by str to the specified stream. It returns EOF if an
error occurs.

The fgets() function reads a string from the specified stream until either a newline character is read
or length–1 characters have been read. If a newline is read, it will be part of the string (unlike the
gets() function). The resultant string will be null terminated. The function returns str if successful
and a null pointer if an error occurs.

The following program demonstrates fputs(). It reads strings from the keyboard and writes them to
the file called TEST. To terminate the program, enter a blank line. Since gets() does not store the
newline character, one is added before each string is written to the file so that the file can be read
more easily.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
 char str[80];
 FILE *fp;

 if((fp = fopen("TEST", "w"))==NULL) {
 printf(''Cannot open file.\n");
 exit(1);
 }

 do {
 printf("Enter a string (CR to quit):\n");
 gets(str);
 strcat(str, "\n"); /* add a newline */
 fputs(str, fp);
 } while(*str!='\n');

 return 0;
}

rewind()

The rewind() function resets the file position indicator to the beginning of the file specified as its
argument. That is, it "rewinds" the file. Its prototype is

void rewind(FILE *fp);

where fp is a valid file pointer.

Page 241

To see an example of rewind(), you can modify the program from the previous section so that it
displays the contents of the file just created. To accomplish this, the program rewinds the file after
input is complete and then uses fgets() to read back the file. Notice that the file must now be opened
in read/write mode using ''w+" for the mode parameter.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
 char str[80];
 FILE *fp;

 if((fp = fopen("TEST", "w+"))==NULL) {
 printf("Cannot open file.\n");
 exit(1);
 }

 do {
 printf("Enter a string (CR to quit):\n");
 gets(str);
 strcat(str, "\n"); /* add a newline */
 fputs(str, fp);
 } while(*str!='\n');

 /* now, read and display the file */
 rewind(fp); /* reset file position indicator to
 start of the file. */
 while(!feof(fp)) {
 fgets(str, 79, fp);
 printf(str);
 }

 return 0;
}

ferror()

The ferror() function determines whether a file operation has produced an error. The ferror()
function has this prototype,

int ferror(FILE *fp);

Page 242

where fp is a valid file pointer. It returns true if an error has occurred during the last file operation;
otherwise, it returns false. Because each file operation sets the error condition, ferror() should be
called immediately after each file operation; otherwise, an error may be lost.

The following program illustrates ferror() by removing tabs from a file and substituting the
appropriate number of spaces. The tab size is defined by TAB_SIZE. Notice how ferror() is called
after each file operation. To use the program, specify the names of the input and output files on the
command line.

/* The program substitutes spaces for tabs
 in a text file and supplies error checking. */

#include <stdio.h>
#include <stdlib.h>

#define TAB_SIZE 8
#define IN 0
#define OUT 1

void err(int e);

int main(int argc, char *argv[])
{
 FILE *in, *out;
 int tab, i;
 char ch;

 if(argc!=3)
 printf(''usage: detab <in> <out>\n");
 exit(1);
 }

 if((in = fopen(argv[1], "rb"))==NULL) {
 printf("Cannot open %s.\n", argv[1]);
 exit(1);
 }

 if((out = fopen(argv[2], "wb"))==NULL) {
 printf("Cannot open %s.\n", argv[1]);
 exit(1);
 }

Page 243

 tab = 0;
 do {
 ch = getc(in);
 if(ferror(in)) err(IN);

 /* if tab found, output appropriate number of spaces */
 if(ch=='\t') {
 for(i=tab; i<8; i++) {
 putc(' ', out);
 if(ferror(out)) err(OUT);
 }
 tab = 0;
 }
 else {
 putc(ch, out);
 if(ferror(out)) err(OUT);
 tab++;
 if(tab==TAB_SIZE) tab = 0;
 if(ch=='\n' || ch=='\r') tab = 0;
 }
 } while(!feof(in));
 fclose(in);
 fclose(out);

 return 0;
}

void err(int e)
{
 if(e==IN) printf(''Error on input.\n");
 else printf("Error on output.\n");
 exit(1);
}

Erasing Files

The remove() function erases the specified file. Its prototype is

int remove(const char *filename);

It returns zero if successful. Otherwise, it returns a nonzero value.

Page 244

The following program erases the file specified on the command line. However, it first gives you a
chance to change your mind. A utility like this might be useful for new computer users.

/* Double check before erasing. */
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

int main(int argc, char *argv[])
{
 char str[80];

 if(argc!=2) {
 printf(''usage: xerase <filename>\n");
 exit(1);
 }

 printf("Erase %s? (Y/N): ", argv[1]);
 gets(str);

 if(toupper(*str)=='Y')
 if(remove(argv[1])) {
 printf("Cannot erase file.\n");
 exit(1);
 }
 return 0;
}

Flushing a Stream

If you wish to flush the contents of an output stream, use the fflush() function, whose prototype is
shown here:

int fflush(FILE *fp);

This function writes the contents of any buffered data to the file associated with fp. If you call fflush
() with fp being null, all files opened for output are flushed.

The fflush() function returns zero if successful; otherwise, it returns EOF.

Page 245

fread() and fwrite()

To read and write data types that are longer than 1 byte, the C file system provides two functions:
fread() and fwrite(). These functions allow the reading and writing of blocks of any type of data.
Their prototypes are

size_t fread(void *buffer, size_t num_bytes, size_t count, FILE *fp);
size_t fwrite(const void *buffer, size_t num_bytes, size_t count, FILE *fp);

For fread(), buffer is a pointer to a region of memory that will receive the data from the file. For
fwrite(), buffer is a pointer to the information that will be written to the file. The value of count
determines how many items are read or written, with each item being num_bytes bytes in length.
(Remember, the type size_t is defined as some kind of unsigned integer.) Finally, fp is a file pointer
to a previously opened stream.

The fread() function returns the number of items read. This value may be less than count if the end
of the file is reached or an error occurs. The fwrite() function returns the number of items written.
This value will equal count unless an error occurs.

Using fread() and fwrite()

As long as the file has been opened for binary data, fread() and fwrite() can read and write any
type of information. For example, the following program writes and then reads back a double, an
int, and a long to and from a disk file. Notice how it uses sizeof to determine the length of each data
type.

/* Write some non-character data to a disk file
 and read it back. */
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *fp;
 double d = 12.23;
 int i = 101;
 long 1 = 123023L;

 if((fp=fopen("test", "wb+"))==NULL) {
 printf(''Cannot open file.\n");
 exit(1);
 }

Page 246

 fwrite(&d, sizeof(double), 1, fp);
 fwrite(&i, sizeof(int), 1, fp);
 fwrite(&l, sizeof(long), 1, fp);

 rewind(fp);

 fread(&d, sizeof
(double), 1, fp);
 fread(&i, sizeof(int), 1, fp);
 fread(&l, sizeof(long), 1, fp);

 printf("%f %d %ld", d, i, 1);

 fclose(fp);

 return 0;
}

As this program illustrates, the buffer can be (and often is) simply the memory used to hold a
variable. In this simple program, the return values of fread() and fwrite() are ignored. In the real
world, however, you should check their return values for errors.

One of the most useful applications of fread() and fwrite() involves reading and writing user-
defined data types, especially structures. For example, given this structure,

struct struct_type {
 float balance;
 char name[80];
} cust;

the following statement writes the contents of cust to the file pointed to by fp:

fwrite(&cust, sizeof(struct struct_type), 1, fp);

A Mailing List Example

To illustrate just how easy it is to write large amounts of data using fread() and fwrite(), we will
rework the mailing list program first shown in Chapter 7. The enhanced version will be capable of
storing the addresses in a file. As before, addresses will be stored in an array of structures of this
type:

Page 247

struct addr {
 char name[30];
 char street[40];
 char city[20];
 char state[3];
 unsigned long int zip;
} addr_list[MAX];

The value of MAX determines how many addresses the list can hold.

When the program executes, the name field of each structure is initialized with a null. By
convention, the program assumes that a structure is unused if the name is of zero length.

The save() and load() functions, shown next, are used to save and load the mailing list database.
Note how little code is contained in each function because of the power of fread() and fwrite().
Notice also how these functions check the return values of fread() and fwrite() for errors.

/* Save the list. */
void save(void)
{
 FILE *fp;
 register int i;

 if((fp=fopen("maillist", "wb"))==NULL) {
 printf(''Cannot open file.\n");
 return;
 }

 for(i=0; i<MAX; i++)
 if(*addr_list[i].name)
 if(fwrite(&addr_list[i],
 sizeof(struct addr), 1, fp)!=l)
 printf("File write error.\n");

 fclose(fp);
}

/* Load the file. */
void load(void)
{
 FILE *fp;
 register int i;

Page 248

 if((fp=fopen("maillist", "rb"))==NULL) {
 printf(''Cannot open file.\n");
 return;
 }

 init_list();
 for(i=0; i<MAX; i++)
 if(fread(&addr_list[i],
 sizeof(struct addr), 1, fp)!=1)
 if(feof(fp)) break;
 printf("File read error.\n");
 }
 fclose(fp);
}

Both functions confirm a successful file operation by checking the return value of fread() or fwrite
(). Also, load() must explicitly check for the end of the file via feof() because fread() returns the
same value whether the end of the file has been reached or an error has occurred.

The entire mailing list program is shown next. You may wish to use this as a core for further
enhancements, such as the ability to search for addresses.

/* A simple mailing list example using an array of structures. */
#include <stdio.h>
#include <stdlib.h>

#define MAX 100

struct addr {
 char name[30];
 char street[40];
 char city[20];
 char state[3];
 unsigned long int zip;
} addr_list[MAX];

void init_list(void), enter(void);
void delete(void), list(void);
void load(void), save(void);
int menu_select(void), find_free(void);

TE
AM
FL
Y

Team-Fly®

Page 249

int main(void)
{
 char choice;

 init_list(); /* initialize the structure array */
 for(;;) {
 choice = menu_select();
 switch(choice) {
 case 1: enter();
 break;
 case 2: delete();
 break;
 case 3: list();
 break;
 case 4: save();
 break;
 case 5: load();
 break;
 case 6: exit(0);
 }
 }

 return 0;
}

/* Initialize the list. */
void init_list(void)
{
 register int t;

 for(t=0; t<MAX; ++t) addr_list[t].name[0] = '\0';
}

/* Get a menu selection. */
int menu_select(void)
{
 char s[80];
 int c;

 printf("1. Enter a name\n");
 printf(''2. Delete a name\n");

Page 250

 printf("3. List the file\n");
 printf(''4. Save the file\n");
 printf("5. Load the file\n");
 printf("6. Quit\n");
 do {
 printf("\nEnter your choice: ");
 gets(s);
 c = atoi(s);
 } while(c<0 || c>6);
 return c;
}

/* Input addresses into the list. */
void enter(void)
{
 int slot;
 char s[80];

 slot = find_free();

 if(s1ot==-1) {
 printf("\nList Full");
 return;
 }

 printf("Enter name: ");
 gets(addr_list[slot].name);

 printf("Enter street: ");
 gets(addr_list[slot].street);

 printf("Enter city: ");
 gets(addr_list[slot].city);

 printf("Enter state: ");
 gets(addr_list[slot].state);

 printf("Enter zip: ");
 gets(s);
 addr_list[slot].zip = strtoul(s, '\0', 10);
}

/* Find an unused structure. */

Page 251

int find_free(void)
{
 register int t;

 for(t=0; addr_list[t].name[0] && t<MAX; ++t) ;

 if(t==MAX) return -1; /* no slots free */
 return t;
}

/* Delete an address. */
void delete(void)
{
 register int slot;
 char s[80];

 printf("enter record #: ");
 gets(s);
 slot = atoi(s);

 if(s1ot>=0 && slot < MAX)
 addr_list[slot].name
[0] = '\0';
}

/* Display the list on the screen. */
void list(void)
{
 register int t;

 for(t=0; t<MAX; ++t) {
 if(addr_list[t].name[0]) {
 printf(''%s\n", addr_list[t].name);
 printf("%s\n", addr_list[t].street);
 printf("%s\n", addr_list[t].city);
 printf("%s\n", addr_list[t].state);
 printf("%lu\n\n", addr_list[t].zip);
 }
 }
 printf ("\n\n");
}

/* Save the list. */

Page 252

void save(void)
{
 FILE *fp;
 register int i;

 if((fp=fopen("maillist", "wb"))==NULL) {
 printf(''Cannot open file.\n");
 return;
 }

 for(i=0; i<MAX; i++)
 if(*addr_list[i].name)
 if(fwrite(&addr_list[i],
 sizeof(struct addr), 1, fp)!=1)
 printf("File write error.\n");

 fclose(fp);
}

/* Load the file. */
void load(void)
{
 FILE *fp;
 register int i;

 if((fp=fopen("maillist", "rb"))==NULL) {
 printf("Cannot open file.\n");
 return;
 }

 init_list();
 for(i=0; i<MAX; i++)
 if(fread(&addr_list[i],
 sizeof(struct addr), 1, fp)!=l) {
 if(feof(fp)) break;
 printf("File read error.\n");
 }
 fclose(fp);
}

Page 253

fseek() and Random-Access I/O

You can perform random read and write operations using the C I/O system with the help of fseek(),
which sets the file position indicator. Its prototype is shown here:

int fseek(FILE *fp, long int numbytes, int origin);

Here, fp is a file pointer returned by a call to fopen(), numbytes is the number of bytes from origin,
which will become the new current position, and origin is one of the following macros:

Origin Macro Name

Beginning of file SEEK_SET

Current position SEEK_CUR

End of file SEEK_END

Therefore, to seek numbytes from the start of the file, origin should be SEEK_SET. To seek from
the current position, use SEEK_CUR, and to seek from the end of the file, use SEEK_END . The
fseek() function returns zero when successful and a nonzero value if an error occurs.

The following program illustrates fseek(). It seeks to and displays the specified byte in the specified
file. Specify the filename and then the byte to seek to on the command line.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *fp;

 if(argc!=3) {
 printf(''Usage: SEEK filename byte\n");
 exit(1);
 }

 if((fp = fopen(argv[1], "rb"))==NULL) {
 printf("Cannot open file.\n");
 exit(1);
 }

Page 254

 if(fseek(fp, atol(argv[2]), SEEK_SET)) {
 printf(''Seek error.\n");
 exit(1);
 }

 printf("Byte at %ld is %c.\n", atol(argv[2]), getc(fp));
 fclose(fp);

 return 0;
}

You can use fseek() to seek in multiples of any type of data by simply multiplying the size of the
data by the number of the item you want to reach. For example, assume a mailing list that consists of
structures of type addr (as shown earlier). To seek to the tenth address in the file that holds the
addresses, use this statement:

fseek(fp, 9*sizeof(struct addr), SEEK_SET);

You can determine the current location of a file using ftell(). Its prototype is

long int ftell(FILE *fp);

It returns the location of the current position of the file associated with fp. If a failure occurs, it
returns –1.

In general, you will want to use random access only on binary files. The reason for this is simple.
Because text files may have character translations performed on them, there may not be a direct
correspondence between what is in the file and the byte that it would appear you want to seek to.
The only time you should use fseek() with a text file is when seeking to a position previously
determined by ftell(), using SEEK_SET as the origin.

Remember one important point: Even a file that contains only text can be opened as a binary file, if
you like. There is no inherent restriction about random access on files containing text. The
restriction applies only to files opened as text files.

fprintf() and fscanf()

In addition to the basic I/O functions already discussed, the C I/O system includes fprintf() and
fscanf(). These functions behave exactly like printf() and scanf() except that they operate with
files. The prototypes of fprintf() and fscanf() are

int fprintf(FILE *fp, const char *control_string, . . .);
int fscanf(FILE *fp, const char *control_string, . . .);

Page 255

where fp is a file pointer returned by a call to fopen(). fprintf() and fscanf() direct their I/O
operations to the file pointed to by fp.

As an example, the following program reads a string and an integer from the keyboard and writes
them to a disk file called TEST. The program then reads the file and displays the information on the
screen. After running this program, examine the TEST file. As you will see, it contains human-
readable text.

/* fscanf() - fprintf() example */
#include <stdio.h>
#include <io.h>
#include <stdlib.h>

int main(void)
{
 FILE *fp;
 char s[80];
 int t;

 if((fp=fopen("test", "w")) == NULL) {
 printf(''Cannot open file.\n");
 exit(1);
 }

 printf("Enter a string and a number: ");
 fscanf(stdin, "%s%d", s, &t); /* read from keyboard */

 fprintf(fp, "%s %d", s, t); /* write to file */
 fclose(fp);

 if((fp=fopen("test","r")) == NULL) {
 printf("Cannot open file.\n");
 exit(1);
 }

 fscanf(fp, "%s%d", s, &t); /* read from file */
 fprintf(stdout, "%s %d", s, t); /* print on screen */

 return 0;
}

A word of warning: Although fprintf() and fscanf() often are the easiest way to write and read
assorted data to disk files, they are not always the most efficient. Because

Page 256

formatted ASCII data is being written as it would appear on the screen (instead of in binary), extra
overhead is incurred with each call. So, if speed or file size is a concern, you should probably use
fread() and fwrite().

The Standard Streams

As it relates to the C file system, when a program starts execution, three streams are opened
automatically. They are stdin (standard input), stdout (standard output), and stderr (standard error).
Normally, these streams refer to the console, but they can be redirected by the operating system to
some other device in environments that support redirectable I/O. (Redirectable I/O is supported by
Windows, DOS, Unix, and OS/2, for example.)

Because the standard streams are file pointers, they may be used by the C I/O system to perform I/O
operations on the console. For example, putchar() could be defined like this:

int putchar(char c)
{
 return putc(c, stdout);
}

In general, stdin is used to read from the console, and stdout and stderr are used to write to the
console.

You can use stdin , stdout, and stderr as file pointers in any function that uses a variable of type
FILE *. For example, you could use fgets() to input a string from the console using a call like this:

char str[255];
fgets(str, 80, stdin);

In fact, using fgets() in this manner can be quite useful. As mentioned earlier in this book, when
using gets(), it is possible to overrun the array that is being used to receive the characters entered by
the user because gets() provides no bounds checking. When used with stdin , the fgets() function
offers a useful alternative because it can limit the number of characters read and thus prevent array
overruns. The only trouble is that fgets() does not remove the newline character and gets() does, so
you will have to manually remove it, as shown in the following program:

#include <stdio.h>
#include <string.h>

Page 257

int main(void)
{
 char str[80];
 int i;

 printf("Enter a string: ");
 fgets(str, 10, stdin);

 /* remove newline, if present */
 i = strlen(str) - l;
 if(str[i]=='\n') str[i] = '\0';

 printf("This is your string: %s", str);

 return 0;
}

Keep in mind that stdin , stdout, and stderr are not variables in the normal sense and can not be
assigned a value using fopen(). Also, just as these file pointers are created automatically at the start
of your program, they are closed automatically at the end; you should not try to close them.

The Console I/O Connection

C makes little distinction between console I/O and file I/O. The console I/O functions described in
Chapter 8 actually direct their I/O operations to either stdin or stdout. In essence, the console I/O
functions are simply special versions of their parallel file functions. The reason they exist is as a
convenience to you, the programmer.

As described in the previous section, you can perform console I/O using any of C's file system
functions. However, what might surprise you is that you can perform disk file I/O using console I/O
functions, such as printf()! This is because all of the console I/O functions described in Chapter 8
operate on stdin and stdout. In environments that allow redirection of I/O, this means that stdin and
stdout could refer to a device other than the keyboard and screen. For example, consider this
program:

#include <stdio.h>

int main(void)
{
 char str[80];

Page 258

 printf("Enter a string: ");
 gets(str);
 printf(str);

 return 0;
}

Assume that this program is called TEST. If you execute TEST normally, it displays its prompt on
the screen, reads a string from the keyboard, and displays that string on the screen. However, in an
environment that supports I/O redirection, either stdin , stdout, or both could be redirected to a file.
For example, in a DOS or Windows environment, executing TEST like this,

TEST > OUTPUT

causes the output of TEST to be written to a file called OUTPUT. Executing TEST like this,

TEST < INPUT > OUTPUT

directs stdin to the file called INPUT and sends output to the file called OUTPUT.

When a C program terminates, any redirected streams are reset to their default status.

Using freopen() to Redirect the Standard Streams

You can redirect the standard streams by using the freopen() function. This function associates an
existing stream with a new file. Thus, you can use it to associate a standard stream with a new file.
Its prototype is

FILE *freopen(const char *filename, const char *mode, FILE *stream);

where filename is a pointer to the filename you want associated with the stream pointed to by
stream. The file is opened using the value of mode, which may have the same values as those used
with fopen(). freopen() returns stream if successful or NULL on failure.

TE
AM
FL
Y

Team-Fly®

Page 259

The following program uses freopen() to redirect stdout to a file called OUTPUT:

#include <stdio.h>

int main(void)
{
 char str[80];

 freopen("OUTPUT", "w", stdout);

 printf("Enter a string: ");
 gets(str);
 printf(str);

 return 0;
}

In general, redirecting the standard streams by using freopen() is useful in special situations, such
as debugging. However, performing disk I/O using redirected stdin and stdout is not as efficient as
using functions like fread() or fwrite().

Page 261

Chapter 10—
The Preprocessor and Comments

Page 262

You can include various instructions to the compiler in the source code of a C program. These are
called preprocessor directives, and they expand the scope of the programming environment. This
chapter also examines comments.

The Preprocessor

The preprocessor directives are shown here:

#define #endif #ifdef #line

#elif #error #ifndef #pragma

#else #if #include #undef

As you can see, all preprocessor directives begin with a # sign. In addition, each preprocessing
directive must be on its own line. For example, this will not work:

#include <stdio.h> #include <stdlib.h>

#define

The #define directive defines an identifier and a character sequence (a set of characters) that will be
substituted for the identifier each time it is encountered in the source file. The identifier is referred
to as a macro name and the replacement process as macro replacement. The general form of the
directive is

#define macro-name char-sequence

Notice that there is no semicolon in this statement. There may be any number of spaces between the
identifier and the character sequence, but once the character sequence begins, it is terminated only
by a newline.

For example, if you wish to use the word LEFT for the value 1 and the word RIGHT for the value
0, you could declare these two #define directives:

#define LEFT 1
#define RIGHT 0

This causes the compiler to substitute a 1 or a 0 each time LEFT or RIGHT is encountered in your
source file. For example, the following prints 0 1 2 on the screen:

printf("%d %d %d", RIGHT, LEFT, LEFT+1);

Page 263

Once a macro name has been defined, it may be used as part of the definition of other macro names.
For example, this code defines the values of ONE, TWO , and THREE:

#define ONE 1
#define TWO ONE+ONE
#define THREE ONE+TWO

Macro substitution is simply the replacement of an identifier by the character sequence associated
with it. Therefore, if you wish to define a standard error message, you might write something like
this:

#define E_MS "standard error on input\n"
/* . . . */
printf(E_MS);

The compiler will substitute the string ''standard error on input\n" when the identifier E_MS is
encountered. To the compiler, the printf() statement will actually appear to be

printf("standard error on input\n");

No text substitutions occur if the identifier is within a quoted string. For example,

#define XYZ this is a test

printf("XYZ");

does not print this is a test, but rather XYZ.

If the character is longer than one line, you may continue it on the next by placing a backslash at the
end of the line, as shown here:

#define LONG_STRING "this is a very long \
string that is used as an example"

C programmers often use uppercase letters for defined identifiers. This convention helps anyone
reading the program know at a glance that a macro replacement will take place. Also, it is usually
best to put all #defines at the start of the file or in a separate header file rather than sprinkling them
throughout the program.

Page 264

Macros are most frequently used to define names for ''magic numbers" that occur in a program. For
example, you may have a program that defines an array and has several routines that access that
array. Instead of "hard-coding" the array's size with a constant, you can define the size using a
#define statement and then use that macro name whenever the array size is needed. In this way, if
you need to change the size of the array, you will need to change only the #define statement and
then recompile your program. For example:

#define MAX_SIZE 100
/* . . . */
float balance[MAX_SIZE];
/* . . . */
for(i=0; i<MAX_SIZE; i++) printf("%f", balance[i]);
/* . . . */
for(i=0; i<MAX_SIZE; i++) x =+ balance[i];

Since MAX_SIZE defines the size of the array balance, if the size of balance needs to be changed
in the future, you need change only the definition of MAX_SIZE. All subsequent references to it
will be automatically updated when you recompile your program.

Defining Function-like Macros

The #define directive has another powerful feature: The macro name can have arguments. Each time
the macro name is encountered, the arguments used in its definition are replaced by the actual
arguments found in the program. This form of a macro is called a function-like macro. For example:

#include <stdio.h>

#define ABS(a) (a) < 0 ? -(a) : (a)

int main(void)
{
 printf("abs of -1 and 1: %d %d", ABS(-1), ABS
(1));

 return 0;
}

When this program is compiled, a in the macro definition will be substituted with the values –1 and
1. The parentheses that enclose a ensure proper substitution in all cases. For example, if the
parentheses around a were removed, this expression

Page 265

ABS (10-20)

would be converted to

10-20 < 0 ? -10-20 : 10-20

after macro replacement and would yield the wrong result.

The use of a function-like macro in place of real functions has one major benefit: It increases the
execution speed of the code because there is no function call overhead. However, if the size of the
function-like macro is very large, this increased speed may be paid for with an increase in the size of
the program because of duplicated code.

One other point: Although parameterized macros are a valuable feature, C99 (and C++) has a better
way of creating in-line code, which uses the inline keyword.

NOTE

In C99, you can create a macro with a variable number of arguments. This is
described in Part Two of this book.

#error

The #error directive forces the compiler to stop compilation. It is used primarily for debugging. The
general form of the #error directive is

#error error-message

The error-message is not between double quotes. When the #error directive is encountered, the
error message is displayed, possibly along with other information defined by the compiler.

#include

The #include directive tells the compiler to read another source file in addition to the one that
contains the #include directive. The name of the source file must be enclosed between double
quotes or angle brackets. For example,

#include "stdio.h"
#include <stdio.h>

both cause the compiler to read and compile the header for the I/O system library functions.

Include files can have #include directives in them. This is referred to as nested includes. The
number of levels of nesting allowed varies between compilers. However, C89 stipulates that at least
8 nested inclusions will be available. C99 specifies that at least 15 levels of nesting be supported.

Page 266

Whether the filename is enclosed by quotes or by angle brackets determines how the search for the
specified file is conducted. If the filename is enclosed in angle brackets, the file is searched for in a
manner defined by the creator of the compiler. Often, this means searching some special directory
set aside for include files. If the filename is enclosed in quotes, the file is looked for in another
implementation-defined manner. For many compilers, this means searching the current working
directory. If the file is not found, the search is repeated as if the filename had been enclosed in angle
brackets.

Typically, most programmers use angle brackets to include standard header files. The use of quotes
is generally reserved for including files specifically related to the program at hand. However, there
is no hard and fast rule that demands this usage.

In addition to files, a C program uses the #include directive to include a header. C defines a set of
standard headers that provide the information necessary for the various C libraries. A header is a
standard identifier that might map to a filename, but need not. Thus, a header is simply an
abstraction that guarantees that the appropriate information is included. As a practical matter,
however, C headers are nearly always files.

Conditional Compilation Directives

There are several directives that allow you to selectively compile portions of your program's source
code. This process is called conditional compilation and is used widely by commercial software
houses that provide and maintain many customized versions of one program.

#if, #else, #elif, and #endif

Perhaps the most commonly used conditional compilation directives are #if, #else, #elif, and #endif.
These directives allow you to conditionally include portions of code based upon the outcome of a
constant expression.

The general form of #if is

#if constant-expression
 statement sequence
#endif

If the constant expression following #if is true, the code that is between it and #endif is compiled.
Otherwise, the intervening code is skipped. The #endif directive marks the end of an #if block. For
example:

/* Simple #if example. */
#include <stdio.h>

#define MAX 100

Page 267

int main(void)
{
#if MAX>99
 printf(''Compiled for array greater than 99.\n");
#endif
 return 0;
}

This program displays the message on the screen because MAX is greater than 99. This example
illustrates an important point. The expression that follows the #if is evaluated at compile time.
Therefore, it must contain only previously defined identifiers and constants— no variables may be
used.

The #else directive works much like the else that is part of the C language: It establishes an
alternative if #if fails. The previous example can be expanded as shown here:

/* Simple #if/#else example. */
#include <stdio.h>

#define MAX 10

int main(void)
{
#if MAX>99
 printf("Compiled for array greater than 99.\n");
#else
 printf("Compiled for small array.\n");
#endif

 return 0;
}

In this case, MAX is defined to be less than 99, so the #if portion of the code is not compiled. The
#else alternative is compiled, however, and the message Compiled for small array is displayed.

Notice that #else is used to mark both the end of the #if block and the beginning of the #else block.
This is necessary because there can only be one #endif associated with any #if.

The #elif directive means "else if" and establishes an if-else-if chain for multiple compilation
options. #elif is followed by a constant expression. If the expression is

Page 268

true, that block of code is compiled and no other #elif expressions are tested. Otherwise, the next
block in the series is checked. The general form for #elif is

#if expression
 statement sequence
#elif expression 1
 statement sequence
#elif expression 2
 statement sequence
#elif expression 3
 statement sequence
#elif expression 4
.
.
.
#elif expression N
 statement sequence
#endif

For example, the following fragment uses the value of ACTIVE_COUNTRY to define the
currency sign:

#define US 0
#define ENGLAND 1
#define FRANCE 2

#define ACTIVE_COUNTRY US

#if ACTIVE_COUNTRY == US
 char currency[] = ''dollar";
#elif ACTIVE_COUNTRY == ENGLAND
 char currency[] = "pound";
#else
 char currency[] = "franc";
#endif

C89 states that #ifs and #elifs may be nested at least 8 levels. C99 states that at least 63 levels of
nesting be allowed. When nested, each #endif, #else, or #elif associates with the nearest #if or #elif.
For example, the following is perfectly valid:

#if MAX>100
 #if SERIAL_VERSION
 int port=198;

Page 269

 #elif
 int port=200;
 #endif
#else
 char out_buffer[100];
#endif

#ifdef and #ifndef

Another method of conditional compilation uses the directives #ifdef and #ifndef, which mean ''if
defined" and "if not defined," respectively. The general form of #ifdef is

#ifdef macro-name
 statement sequence
#endif

If macro-name has been previously defined in a #define statement, the block of code will be
compiled.

The general form of #ifndef is

#ifndef macro-name
 statement sequence
#endif

If macro-name is currently undefined by a #define statement, the block of code is compiled.

Both #ifdef and #ifndef may use an #else or #elif statement.

For example,

#include <stdio.h>

#define TED 10

int main(void)
{
#ifdef TED
 printf("Hi Ted\n");
#else
 printf("Hi anyone\n");
#endif
#ifndef RALPH

TE
AM
FL
Y

Team-Fly®

Page 270

 printf("RALPH not defined\n");
#endif

 return 0;
}

will print Hi Ted and RALPH not defined. However, if TED were not defined, Hi anyone would
be displayed, followed by RALPH not defined.

You may nest #ifdefs and #ifndefs to at least 8 levels in C89. C99 specifies that at least 63 levels of
nesting be supported.

#undef

The #undef directive removes a previously defined definition of the macro name that follows it—
that is, it ''undefines" a macro. The general form for #undef is

#undef macro-name

For example:

#define LEN 100
#define WIDTH 100

char array[LEN][WIDTH];

#undef LEN
#undef WIDTH
/* at this point both LEN and WIDTH are undefined */

Both LEN and WIDTH are defined until the #undef statements are encountered.

#undef is used principally to allow macro names to be localized to only those sections of code that
need them.

Using defined

In addition to #ifdef, there is a second way to determine whether a macro name is defined. You can
use the #if directive in conjunction with the defined compile-time operator. The defined operator
has this general form:

defined macro-name

Page 271

If macro-name is currently defined, the expression is true; otherwise, it is false. For example, to
determine whether the macro MYFILE is defined, you can use either of these two preprocessing
commands:

#if defined MYFILE

or

#ifdef MYFILE

You can also precede defined with the ! to reverse the condition. For example, the following
fragment is compiled only if DEBUG is not defined:

#if ! defined DEBUG
 printf(''Final version!\n");
#endif

One reason for using defined is that it allows the existence of a macro name to be determined by a
#elif statement.

#line

The #line directive changes the contents of _ _LINE_ _ and _ _FILE _, which are predefined
identifiers in the compiler. The _ _LINE_ _ identifier contains the line number of the currently
compiled line of code. The _ _FILE_ _ identifier is a string that contains the name of the source file
being compiled. The general form for #line is

#line number "filename"

where number is any positive integer and becomes the new value of _ _LINE_ _, and the optional
filename is any valid file identifier, which becomes the new value of _ FILE_ _. #line is primarily
used for debugging and special applications.

For example, the following code specifies that the line count will begin with 100, and the printf()
statement displays the number 102 because it is the third line in the program after the #line 100
statement.

#include <stdio.h>

#line 100 /* reset the line counter */
int main(void) /* line 100 */
{ /* line 101 */

Page 272

 printf("%d\n", _ _LINE_ _); /* line 102 */

 return 0;
}

#pragma

#pragma is an implementation-defined directive that allows various instructions to be given to the
compiler. For example, a compiler may have an option that supports program execution tracing. A
trace option would then be specified by a #pragma statement. You must check the compiler's
documentation for details and options.

NOTE

C99 has added an alternative to #pragma: the _Pragma operator. It is described in
Part Two of this book.

The # and ## Preprocessor Operators

There are two preprocessor operators: # and ##. These operators are used with the #define
statement.

The # operator, which is generally called the stringize operator, turns the argument it precedes into a
quoted string. For example, consider this program:

#include <stdio.h>

#define mkstr(s) # s

int main(void)
{
 printf(mkstr(I like C));

 return 0;
}

The preprocessor turns the line

printf(mkstr(I like C));

into

printf("I like C");

Page 273

The ## operator, called the pasting operator, concatenates two tokens. For example:

#include <stdio.h>

#define concat(a, b) a ## b

int main(void)
{
 int xy = 10;

 printf("%d", concat(x, y));

 return 0;
}

The preprocessor transforms

printf("%d", concat(x, y));

into

printf("%d", xy);

If these operators seem strange to you, keep in mind that they are not needed or used in most
programs. They exist primarily to allow the preprocessor to handle some special cases.

Predefined Macro Names

C specifies five built-in predefined macro names. They are

_ _LINE_ _
_ _FILE_ _
_ _DATE_ _
_ _TIME_ _
_ _STDC_ _

Each will be described here, in turn.

The _ _LINE_ _ and _ _FILE_ _ macros were described in the discussion of #line. Briefly, they
contain the current line number and filename of the program when it is being compiled.

Page 274

The _ _DATE_ _ macro contains a string of the form month/day/year that is the date of the
translation of the source file into object code.

The _ _TIME_ _ macro contains the time at which the program was compiled. The time is
represented in a string having the form hour:minute:second.

If _ _STDC_ _ is defined as 1, then the compiler conforms to Standard C. C99 also defines these
two macros:

_ _STDC_HOSTED_ _
_ _STDC_VERSION_ _

_ _STDC_HOSTED_ _ is 1 for environments in which an operating system is present and 0
otherwise. _ _STDC_VERSION_ _ will be at least 199901 and will be increased with each new
version of C. (Other macros may also be defined by C99 and are described in Part Two.)

Comments

C89 defines only one style of comment, which begins with the character pair /* and ends with */.
There must be no spaces between the asterisk and the slash. The compiler ignores any text between
the beginning and ending comment symbols. For example, this program prints only hello on the
screen:

#include <stdio.h>

int main(void)
{
 printf(''hello");
 /* printf("there"); */

 return 0;
}

This style of comment is commonly called a multiline comment because the text of the comment
may extend over two or more lines. For example:

/* this is a
multiline
comment */

Page 275

Comments may be placed anywhere in a program, as long as they do not appear in the middle of a
keyword or identifier. That is, this comment is valid,

x = 10+ /* add the numbers */5;

while

swi/*this will not work*/tch(c) { . . .

is incorrect because a keyword cannot contain a comment. However, you should not generally place
comments in the middle of expressions because it obscures their meaning.

Multiline comments may not be nested. That is, one comment may not contain another comment.
For example, this code fragment causes a compile-time error:

/* this is an outer comment
 x = y/a;
 /* this is an inner comment - and causes an error */
*/

Single-Line Comments

C99 (and C++) supports two types of comments. The first is the /* */, or multiline comment just
described. The second is the single-line comment. Single-line comments begin with // and end at the
end of the line. For example,

// this is a single-line comment

Single-line comments are especially useful when short, line-by-line descriptions are needed.
Although they are not technically supported by C89, many C compilers accept them.

A single-line comment can be nested within a multiline comment. For example, the following
comment is valid.

/* this is a // test of nested comments. */

You should include comments whenever they are needed to explain the operation of the code. All
but the most obvious functions should have a comment at the top that states what the function does,
how it is called, and what it returns.

Page 277

PART II—
THE C99 STANDARD

Computer languages are not static; they evolve, reacting to changes in methodologies, applications
generally accepted practices, and hardware. C is no exception. In the case of C, two evolutionary
paths were set in motion. The first is the continuing development of the C language. The second is
C++, for which C provided the starting point. While most of the focus of the past several years has
been on C++, the refinement of C has continued unabated. For example, reacting to the

Page 278

internationalization of the computing environment, the original C89 standard was amended in 1995
to include various wide-character and multibyte functions. Once the 1995 amendment was complete,
work began on updating the language, in general. The end result is, of course, C99.

In the course of creating the 1999 standard, each element of the C language was thoroughly
reexamined, usage patterns were analyzed, and future demands were anticipated. As expected, C's
relationship to C++ provided a backdrop for the entire process. The resulting C99 standard is a
testimonial to the strengths of the original. Very few of the key elements of C were altered. For the
most part, the changes consist of a small number of carefully selected additions to the language and
the inclusion of several new library functions. Thus C is still C!

Part One of this book described those features of C that were defined by the C89 standard. Here we
will examine those features added by C99 and the few differences between C99 and C89.

Page 279

Chapter 11—
C99

Page 280

Perhaps the greatest cause for concern that accompanies the release of a new language standard is
the issue of compatibility with its predecessor. Does the new specification render old programs
obsolete? Have important constructs been altered? Do I have to change the way that I write code?
The answers to these types of questions often determine the degree to which the new standard is
accepted and, in the longer term, the viability of the language itself. Fortunately, the creation of C99
was a controlled, even-handed process that reflects the fact that several experienced pilots were at
the controls. Put simply: If you liked C the way it was, you will like the version of C defined by
C99. What many programmers think of as the world's most elegant programming language, still is!

In this chapter we will examine the changes and additions made to C by the 1999 standard. Many of
these changes were mentioned in passing in Part One. Here they are examined in closer detail. Keep
in mind, however, that as of this writing, there are no widely used compilers that support many of
C99's new features. Thus, you may need to wait a while before you can ''test drive" such exciting
new constructs as variable-length arrays, restricted pointers, and the long long data type.

C89 vs. C99:
An Overview

There are three general categories of changes between C89 and C99:

• Features added to C89

• Features removed from C89

• Features that have been changed or enhanced

Many of the differences between C89 and C99 are quite small and clarify nuances of the language.
This book will concentrate on the larger changes that affect the way programs are written.

Features Added

Perhaps the most important features added by C99 are the new keywords:

inline

restrict

_Bool

_Complex

_Imaginary

Other major additions include

• Variable-length arrays

• Support for complex arithmetic

• The long long int data type

TE
AM
FL
Y

Team-Fly®

Page 281

• The //comment

• The ability to intersperse code and data

• Additions to the preprocessor

• Variable declarations inside the for statement

• Compound literals

• Flexible array structure members

• Designated initializers

• Changes to the printf() and scanf() family of functions

• The _ _func_ _ predefined identifier

• New libraries and headers

Most of the features added by C99 are innovations created by the standardization committee, of
which many were based on language extensions offered by a variety of C implementations. In a few
cases, however, features were borrowed from C++. The inline keyword and // style comments are
examples. It is important to understand that C99 does not add C++-style classes, inheritance, or
member functions. The consensus of the committee was to keep C as C.

Features Removed

The single most important feature removed by C99 is the ''implicit int" rule. In C89, in many cases
when no explicit type specifier is present, the type int is assumed. This is not allowed by C99. Also
removed is implicit function declaration. In C89, if a function was not declared before it is used, an
implicit declaration is assumed. This is not supported by C99. Both of these changes may require
existing code to be rewritten if compatibility with C99 is desired.

Features Changed

C99 incorporates several changes to existing features. For the most part, these changes expand
features or clarify their meaning. In a few cases, the changes restrict or narrow the applicability of a
feature. Many such changes are small, but a few are quite important, including:

• Increased translation limits

• Extended integer types

• Expanded integer type promotion rules

• Tightening of the return statement

As it affects existing programs, the change to return has the most significant effect because it might
require that code be rewritten slightly.

Page 282

Throughout the remainder of this chapter we will examine the major differences between C89 and
C99.

restrict-Qualified Pointers

One of the most important innovations in C99 is the restrict type qualifier. This qualifier applies
only to pointers. A pointer qualified by restrict is initially the only means by which the object it
points to can be accessed. Access to the object by another pointer can occur only if the second
pointer is based on the first. Thus, access to the object is restricted to expressions based on the
restrict-qualified pointer. Pointers qualified by restrict are primarily used as function parameters,
or to point to memory allocated via malloc(). The restrict qualifier does not change the semantics
of a program.

By qualifying a pointer with restrict, the compiler is better able to optimize certain types of routines
by making the assumption that the restrict-qualified pointer is the sole means of access to the
object. For example, if a function specifies two restrict-qualified pointer parameters, the compiler
can assume that the pointers point to different (that is, non-overlapping) objects. For example,
consider what has become the classic example of restrict: the memcpy() function. In C89, it is
prototyped as shown here:

void *memcpy(void *str1, const void *str2, size_t size);

The description for memcpy() states that if the objects pointed to by str1 and str2 overlap, the
behavior is undefined. Thus, memcpy() is guaranteed to work for only non-overlapping objects.

In C99, restrict can be used to explicitly state in memcpy() 's prototype what C89 must explain
with words. Here is the C99 prototype for memcpy():

void *memcpy
(void * restrict str1, const void * restrict str2, size_t size);

By qualifying str1 and str2 with restrict, the prototype explicitly asserts that they point to non-
overlapping objects.

Because of the potential benefits that result from using restrict, C99 has added it to the prototypes
for many of the library functions originally defined by C89.

inline

C99 adds the keyword inline, which applies to functions. By preceding a function declaration with
inline, you are telling the compiler to optimize calls to the function. Typically, this means that the
function's code will be expanded in line, rather than called. However, inline is only a request to the
compiler, and can be ignored. Specifically, C99 states that using inline ''suggests that calls to the
function be as fast as possible." The inline specifier is also supported by C++, and the C99 syntax
for inline is compatible with C++.

Page 283

To create an in-line function, precede its definition with the inline keyword. For example, in this
program, calls to the function max() are optimized:

#include <stdio.h>

inline int max(int a, int b)
{
 return a > b ? a : b;
}

int main(void)
{
 int x=5, y=10;

 printf("Max of %d and %d is: %d\n", x, y, max(x, y));

 return 0;
}

For a typical implementation of inline, the preceding program is equivalent to this one:

#include <stdio.h>

int main(void)
{
 int x=5, y=10;

 printf("Max of %d and %d is: %d\n", x, y, (x>y ? x : y));

 return 0;
}

The reason that inline functions are important is that they help you create more efficient code while
maintaining a structured, function-based approach. As you probably know, each time a function is
called, a significant amount of overhead is generated by the calling and return mechanism.
Typically, arguments are pushed onto the stack and various registers are saved when a function is
called, and then restored when the function returns. The trouble is that these instructions take time.
However, when a function is expanded in line, none of those operations occur. Although expanding
function calls in line can produce faster run times, it can also result in larger code size because of
duplicated code. For this reason, it is best to inline only very small functions. Further, it is also a
good idea to inline only those functions that will have significant impact on the performance of your
program.

Page 284

Remember: Although inline typically causes a function's code to be expanded in line, the compiler
can ignore this request or use some other means to optimize calls to the function.

New Built-in Data Types

C99 adds several new built-in data types. Each is examined here.

_Bool

C99 adds the _Bool data type, which is capable of storing the values 1 and 0 (true and false). _Bool
is an integer type. As many readers know, C++ defines the keyword bool , which is different from
_Bool. Thus, C99 and C++ are incompatible on this point. Also, C++ defines the built-in Boolean
constants true and false, but C99 does not. However, C99 adds the header <stdbool.h>, which
defines the macros bool, true, and false. Thus, code that is compatible with C/C++ can be easily
created.

The reason that _Bool rather than bool is specified as a keyword is that many existing C programs
have already defined their own custom versions of bool. By defining the Boolean type as _Bool,
C99 avoids breaking this preexisting code. However, for new programs, it is best to include
<stdbool.h> and then use the bool macro.

_Complex and _Imaginary

C99 adds support for complex arithmetic, which includes the keywords _Complex and _Imaginary,
additional headers, and several new library functions. However, no implementation is required to
implement imaginary types, and freestanding implementations (those without operating systems) do
not have to support complex types. Complex arithmetic was added to C99 to provide better support
for numerical programming.

The following complex types are defined:

float _Complex
float _Imaginary
double _Complex
double _Imaginary
long double _Complex
long double _Imaginary

The reason that _Complex and _Imaginary, rather than complex and imaginary, are specified as
keywords is that many existing C programs have already defined their own custom complex data
types using the names complex and imaginary. By defining the keywords _Complex and
_Imaginary, C99 avoids breaking this preexisting code.

The header <complex.h> defines (among other things) the macros complex and imaginary, which
expand to Complex and _Imaginary. Thus, for new programs, it is best to include <complex.h>
and then use the complex and imaginary macros.

Page 285

The long long Integer Types

C99 adds the long long int and unsigned long long int data types. A long long int has a range of at
least –(263–1) to 263–1. An unsigned long long int has a minimal range of 0 to 264–1. The long long
types allow 64-bit integers to be supported as a built-in type.

Array Enhancements

C99 has added two important features to arrays: variable length and the ability to include type
qualifiers in their declarations.

Variable-Length Arrays

In C89 array dimensions must be declared using integer constant expressions, and the size of an
array is fixed at compile time. C99 changes this for certain circumstances. In C99, you can declare
an array whose dimensions are specified by any valid integer expression, including those whose
value is known only at run time. This is called a variable-length array (VLA). However, only local
arrays (that is, those with block scope or prototype scope) can be of variable length. Here is an
example of a variable-length array:

void f(int dim1, int dim2)
{
 int matrix[dim1] [dim2]; /* a variable-length, 2-D array */

 /* . . . */
}

Here, the size of matrix is determined by the values passed to f() in dim1 and dim2. Thus, each
call to f() can result in matrix being created with different dimensions.

It is important to understand that variable-length arrays do not change their dimensions during their
lifetime. (That is, they are not dynamic arrays.) Rather, a variable-length array can be created with a
different size each time its declaration is encountered.

You can specify a variable-length array of an unspecified size by using * as the size.

The inclusion of variable-length arrays causes a small change in the sizeof operator. In general,
sizeof is a compile-time operator. That is, it is normally translated into an integer constant whose
value is equal to the size of the type or object when a program is compiled. However, when it is
applied to a variable-length array, sizeof is evaluated at run time. This change is necessary because
the size of a variable-length array cannot be known until run time.

One of the major reasons for the addition of variable-length arrays to C99 is to support numeric
processing. Of course, it is a feature that has widespread applicability. But remember, variable-
length arrays are not supported by C89 (or by C++).

Page 286

Use of Type Qualifiers in an Array Declaration

In C99 you can use the keyword static inside the brackets of an array declaration when that
declaration is for a function parameter. It tells the compiler that the array pointed to by the
parameter will always contain at least the specified number of elements. Here is an example:

int f(char str [static 80])
{
 // here, str is always a pointer to an 80-element array
 // . . .
}

In this example, str is guaranteed to point to the start of an array of chars that contains at least 80
elements.

You can also use the keywords restrict, volatile, and const inside the brackets, but only for function
parameters. Using restrict specifies that the pointer is the sole initial means of access to the object.
Using const states that the same array is always pointed to (that is, the pointer always points to the
same object). The use of volatile is allowed, but meaningless.

Single-Line Comments

C99 adds the single-line comment to C. This type of comment begins with // and runs to the end of
the line. For example:

// This is a comment
int i; // this is another commen

Single-line comments are also supported by C++. They are convenient when only brief, single-line
remarks are needed. Many programmers use C's traditional multiline comments for longer
descriptions, reserving single-line comments for ''play-by-play" explanations.

Interspersed Code and Declarations

In C89, within a block, all declarations must precede the first code statement. This rule does not
apply for C99. For example:

#include <stdio.h>

int main(void)
{

Page 287

 int i;

 i = 10;

 int j; // wrong for C89; OK for C99 and C++

 j = i;

 printf("%d %d", i, j);

 return 0;
}

Here, the statement

i = 10;

comes between the declaration of i and the declaration of j. This is not allowed by C89. It is allowed
by C99 (and by C++). The ability to intersperse declarations and code is widely used in C++.
Adding this feature to C makes it easier to write code that will be used in both environments.

Preprocessor Changes

C99 makes a number of small changes to the preprocessor.

Variable Argument Lists

Perhaps the most important change to the preprocessor is the ability to create macros that take a
variable number of arguments. This is indicated by an ellipsis (. . .) in the definition of the macro.
The built-in preprocessing identifier _ _VA_ARGS_ _ determines where the arguments will be
substituted. For example, given this definition

#define MyMax(. . .) max(__VA_ARGS__)

this statement

MyMax(a, b);

is transformed into

max(a, b);

Page 288

There can be other arguments prior to the variable ones. For example, given

#define compare(compfunc, . . .) compfunc(__VA_ARGS__)

this statement

compare(strcmp, "one", "two");

is transformed into

strcmp("one", "two");

As the example shows, _ _VA_ARGS_ _ is replaced by all of the remaining arguments.

The _Pragma Operator

C99 includes another way to specify a pragma in a program: the _Pragma operator. It has this
general form:

_Pragma (''directive")

Here, directive is the pragma being invoked. The addition of the _Pragma operator allows pragmas
to participate in macro replacement.

Built-in Pragmas

C99 defines the following built-in pragmas:

Pragma Meaning

STDC FP_CONTRACT ON/OFF/DEFAULT When on, floating-point
expressions are treated as
indivisible units that are
handled by hardware-based
methods. The default state is
implementation defined.

STDC FENV_ACCESS ON/OFF/DEFAULT Tells the compiler that the
floating-point environment
might be accessed. The default
state is implementation defined.

STDC CX_LIMITED_RANGE ON/OFF/DEFAULT When on, tells the compiler that
certain formulas involving
complex values are safe. The
default state is off.

Page 289

You should refer to your compiler's documentation for details concerning these pragmas.

Additional Built-in Macros

C99 adds the following macros to those already supported by C89:

_ _STDC_HOSTED_ _ 1 if an operating system is present.

_ _STDC_VERSION_ _ 199901L or greater. Represents version of C.

_ _STDC_IEC_559_ _ 1 if IEC 60559 floating-point arithmetic is
supported.

_ _STDC_IEC_599_COMPLEX_
_

1 if IEC 60559 complex arithmetic is
supported.

_ _STDC_ISO_10646_ _ A value of the form yyyymmL that states the
year and month of the ISO/IEC 10646
specification supported by the compiler.

Declaring Variables within a for Loop

C99 enhances the for loop by allowing one or more variables to be declared within the initialization
portion of the loop. A variable declared in this way has its scope limited to the block of code
controlled by that statement. That is, a variable declared within a for loop will be local to that loop.
This feature has been included in C because often the variable that controls a for loop is needed only
by that loop. By localizing this variable to the loop, unwanted side effects can be avoided.

Here is an example that declares a variable within the initialization portion of a for loop:

#include <stdio.h>

int main(void)
{
 // declare i within for
 for(int i=O; i < 10; i++)
 printf(''%d ", i);

 return 0;
}

Here, i is declared within the for loop, rather than prior to it.

As mentioned, a variable declared within a for is local to that loop. Consider the following program.
Notice that the variable i is declared twice: at the start of main() and inside the for loop.

Page 290

#include <stdio.h>

int main(void)
{
 int i = -99;

 // declare i within for
 for(int i=0; i < 10; i++)
 printf(''%d ", i);

 printf("\n");

 printf("Value of i is: %d", i); // displays-99

 return 0;
}

This program displays the following:

0 1 2 3 4 5 6 7 8 9
Value of i is: -99

As the output shows, once the for loop ends, the scope of the i declared within that loop ends. Thus,
the final printf() statement displays –99, the value of the i declared at the start of main().

The ability to declare a loop-control variable inside the for has been available in C++ for quite some
time, and is widely used. It is expected that most C programmers will do the same.

Compound Literals

C99 allows you to define compound literals, which are array, structure, or union expressions
designating objects of the given type. A compound literal is created by specifying a parenthesized
type name, which is then followed by an initialization list, which must be enclosed between curly
braces. When the type name is an array, its size must not be specified. The object created is
unnamed.

Here is an example of a compound literal:

double *fp = (double[]) {1.0, 2.0, 3.0};

This creates a pointer to double, called fp, which points to the first of a three-element array of
double values.

TE
AM
FL
Y

Team-Fly®

Page 291

A compound literal created at file scope exists throughout the lifetime of the program. A compound
literal created within a block is a local object that is destroyed when the block is left.

Flexible Array Structure Members

C99 allows you to specify an unsized array as the last member of a structure. (The structure must
have at least one other member prior to the flexible array member.) This is referred to as a flexible
array member. It allows a structure to contain an array of variable size. The size of such a structure
returned by sizeof does not include memory for the flexible array.

Typically, memory to hold a structure containing a flexible array member is allocated dynamically,
using malloc(). Extra memory must be allocated beyond the size of the structure to accommodate
the desired size of the flexible array. For example, given

struct mystruct {
 int a;
 int b;
 float fa[]; // flexible array
};

the following statement allocates room for a 10-element
array:

struct mystruct *p;
p = (struct mystruct *) malloc(sizeof(struct mystruct) + 10 *
 sizeof(float));

Since sizeof(struct mystruct) yields a value that does not include any memory for fa, room for the
10-element array of floats is added by the expression

10 * sizeof(float)

when malloc() is called.

Designated Initializers

A new feature of C99 that will be especially helpful to those programmers working with sparse
arrays is designated initializers. Designators take two forms: one for arrays and one for structures
and unions. For arrays, this form is used,

[index] = val

Page 292

where index specifies the element being initialized to the value val. For example:

int a[10] = { [0] = 100, [3] = 200 };

Here, only elements 0 and 3 are initialized.

For structure or union members, this form is used:

. member-name

Using a designator with a structure allows an easy means of initializing only selected members of a
structure. For example:

struct mystruct {
 int a;
 int b;
 int c;
} ob = { .c = 30, .a = 10 };

Here, b is uninitialized.

Using designators also allows you to initialize a structure without knowing the order of its members.
This is useful for predefined structures, such as div_t, or for structures defined by some third party.

Additions to the printf() and scanf() Family of Functions

C99 adds to the printf() and scanf() family of functions the ability to handle the long long int and
unsigned long long int data types. The format modifier for long long is ll. For example, the
following fragment shows how to output a long long int and an unsigned long long int:

long long int val;
unsigned long long int u_val;
printf(''%lld %llu", val, val2);

The ll can be applied to the d, i, o, u, and x format specifiers for both printf() and scanf
().

C99 adds the hh modifier, which is used to specify a char argument when using the d, i, o, u, or x
format specifiers.

Both the ll and hh specifiers can also be applied to the n specifier.

The format specifiers a and A, which were added to printf(), cause a floating-point value to be
output in a hexadecimal format. The format of the value is

[–]0xh.hhhhp+d

Page 293

When A is used, the x and the p are uppercase. The format specifiers a and A were also added to
scanf(), and read a floating-point value.

In a call to printf(), C99 allows the 1 modifier to be added to the %f specifier (as in, %lf), but it has
no effect. In C89, %lf is undefined for printf().

New Libraries in C99

C99 adds several new libraries and headers. They are shown here:

Header Purpose

<complex.h> Supports complex arithmetic.

<fenv.h> Gives access to the floating-point status flags and other aspects
of the floating-point environment.

<inttypes.h> Defines a standard, portable set of integer type names. Also
supports functions that handle greatest-width integers.

<iso646.h> Added in 1995 by Amendment 1. Defines macros that
correspond to various operators, such as && and ^.

<stdbool.h> Supports Boolean data types. Defines the macros bool , true,
and false, which helps with C++ compatibility.

<stdint.h> Defines a standard, portable set of integer type names. This
header is included by <inttypes.h>.

<tgmath.h> Defines type-generic floating-point macros.

<wchar.h> Added in 1995 by Amendment 1. Supports multibyte and wide-
character functions.

<wctype.h> Added in 1995 by Amendment 1. Supports multibyte and wide-
character classification functions.

The contents of these headers and the functions they support are covered in Part Three.

The _ _func_ _ Predefined Identifier

C99 defines _ _func_ _, which specifies the name (as a string literal) of the function in which _
func _ occurs. For example:

void StrUpper(char *str)
{

Page 294

 static int i = 0;

 i++;
 printf(''%s has been called %d time(s).\n", __func__, i);

 while(*str) {
 *str = toupper(*str);
 str++;
 }
}

When called the first time, StrUpper() will display this output:

StrUpper has been called 1 time(s).

Increased Translation Limits

The term "translation limits" refers to the minimum number of various elements that a C compiler
must be able to handle. These include such things as the length of identifiers, levels of nesting,
number of case statements, and number of members allowed in a structure or union. C99 has
increased several of these limits beyond the already generous ones specified by C89. Here are some
examples:

Limit C89 C99

Nesting levels of blocks 15 127

Nesting levels of conditional inclusion 8 63

Significant characters in an internal identifier 31 63

Significant characters in an external identifier 6 31

Members of a structure or union 127 1023

Arguments in a function call 31 127

Implicit int No Longer Supported

Several years ago, C++ dropped the implicit int rule, and with the advent of C99, C follows suit. In
C89, the implicit int rule states that in the absence of an explicit type specifier, the type int is
assumed. The most common use of the implicit int rule was in the return type of functions. In the
past, C programmers often omitted the int when

Page 295

declaring functions that returned an int value. For example, in the early days of C, main() was often
written like this:

main ()
{
 /* . . . */
}

In this approach, the return type was simply allowed to default to int. In C99 (and in C++) this
default no longer occurs, and the int must be explicitly specified, as it is for all of the programs in
this book.

Here is another example. In the past a function such as

int isEven(int val)
{
 return !(val%2);
}

would often have been written like this:

/* use integer default */
isEven (int val)
{
 return !(val%2);
}

In the first instance, the return type of int is explicitly specified. In the second, it is assumed by
default.

The implicit int rule does not apply only to function return values (although that was its most
common use). For example, for C89 and earlier, the isEven() function could also be written like
this:

isEven(const val)
{
 return ! (val%2);
}

Here, the parameter val also defaults to int— in this case, const int . Again, this default to int is not
supported by C99.

Page 296

NOTE

Technically, a C99-compatible compiler can accept code containing implied ints
after reporting a warning error. This allows old code to be compiled. However,
there is no requirement that a C99-compatible compiler accept such code.

Implicit Function Declarations Have Been Removed

In C89, if a function is called without a prior explicit declaration, then an implicit declaration of that
function is created. This implicit declaration has the following form:

extern int name();

Implicit function declarations are no longer supported by C99.

NOTE

Technically, a C99-compatible compiler can accept code containing implied
function declarations after reporting a warning error. This allows old code to be
compiled. However, there is no requirement that a C99-compatible compiler accept
such code.

Restrictions on return

In C89, a function that has a non-void return type (that is, a function that supposedly returns a value)
could use a return statement that did not include a value. Although this creates undefined behavior,
it was not technically illegal. In C99, a non-void function must use a return statement that returns a
value. That is, in C99, if a function is specified as returning a value, any return statement within it
must have a value associated with it. Thus, the following function is technically valid for C89, but
invalid for C99:

int f(void)
{
 /* . . . */
 return ; // in C99, this statement must return a value
}

Page 297

Extended Integer Types

C99 defines several extended integer types in <stdint.h>. Extended types include exact-width,
minimum-width, maximum-width, and fastest integer types. Here is a sampling:

Extended Type Meaning

int16_t An integer consisting of exactly 16 bits

int_least16_t An integer consisting of at least 16 bits

int_fast32_t Fastest integer type that has at least 32 bits

intmax_t Largest integer type

uintmax_t Largest unsigned integer type

The extended types make it easier for you to write portable code. They are described in greater
detail in Part Three.

Changes to the Integer Promotion Rules

C99 enhances the integer promotion rules. In C89, a value of type char, short int , or an int bit-field
can be used in place of an int or unsigned int in an expression. If the promoted value can be held in
an int, the promotion is made to int; otherwise, the original value is promoted to unsigned int.

In C99, each of the integer types is assigned a rank. For example, the rank of long long int is greater
than int, which is greater than char, and so on. In an expression, any integer type that has a rank less
than int or unsigned int can be used in place of an int or unsigned int.

Page 299

PART III—
THE C STANDARD LIBRARY

Part Three of this book examines the C standard library. Chapter 12 discusses linking, libraries, and
headers. Chapters 13 through 20 describe the functions in the standard library, with each chapter
concentrating on a specific function subsystem.

This book describes the standard functions defined by both C89 and C99. C99 includes all functions
specified by C89. Thus, if you have a C99-compatible compiler you will be able to use all of the
functions

Page 300

described in Part Three. If you are using a C89-compatible compiler, the C99 functions will not be
available. Also, Standard C++ includes the functions defined by C89, but not those specified by
C99. Throughout Part Three, the functions added by C99 are so indicated.

When exploring the standard library, remember this: Most compiler implementors take great pride
in the completeness of their library. Your compiler's library will probably contain many additional
functions beyond those described here. For example, the C standard library does not define any
screen-handling or graphics functions because of differences between environments, but your
compiler very likely includes such functions. Therefore, it is always a good idea to browse through
your compiler's documentation.

Page 301

Chapter 12—
Linking, Libraries, and Headers

TE
AM
FL
Y

Team-Fly®

Page 302

When a C compiler is written, there are actually two parts to the job. First, the compiler itself must
be created. The compiler translates source code into object code. Second, the standard library must
be implemented. Somewhat surprisingly, the compiler is relatively easy to develop. Often, it is the
library functions that take the most time and effort. One reason for this is that many functions (such
as the I/O system) must interface with the operating system for which the compiler is being written.
In addition, the C standard library defines a large and diverse set of functions. Indeed, it is the
richness and flexibility of the standard library that sets C apart from many other languages.

While subsequent chapters describe the C library functions, this chapter covers several foundational
concepts that relate to their use, including the link process, libraries, and headers.

The Linker

The linker has two functions. The first, as the name implies, is to combine (link) various pieces of
object code. The second is to resolve the addresses of call and load instructions found in the object
files that it is combining. To understand its operation, let's look more closely at the process of
separate compilation.

Separate Compilation

Separate compilation is the feature that allows a program to be broken down into two or more files,
compiled separately, and then linked to form the finished executable program. The output of the
compiler is an object file, and the output of the linker is an executable file. The linker physically
combines the files specified in the link list into one program file and resolves external references.
An external reference is created any time the code in one file refers to code in another file. This may
be through either a function call or a reference to a global variable. For example, when the two files
shown here are linked, File 2's reference to count (which is declared in File 1) must be resolved.
The linker tells the code in File 2 where count will be found.

File 1 File 2

int count; #include <stdio.h>
void display(void); extern int count;

int main(void) void display(void)
{ {
 count = 10; printf(''%d", count);
 display(); }

 return 0;
}

Page 303

In a similar fashion, the linker tells File 1 where the function display() is located so that it can be
called.

When the compiler generates the object code for display(), it substitutes a placeholder for the
address of count because the compiler has no way of knowing where count is. The same sort of
thing occurs when main() is compiled. The address of display() is unknown, so a placeholder is
used. When these two files are linked together, these placeholders are replaced with the addresses of
the items. Whether these addresses are absolute or relocatable depends upon your environment.

Relocatable vs. Absolute Code

For most modern environments, the output of a linker is relocatable code. This is object code that
can run in any available memory region large enough to hold it. In a relocatable object file, the
address of each call or load instruction is not fixed, but is relative. Thus, the addresses in relocatable
code are offsets from the beginning of the program. When the program is loaded into memory for
execution, the loader converts the relative addresses into physical addresses that correspond to the
memory into which the program is loaded.

For some environments, such as dedicated controllers in which the same address space is used for all
programs, the output of the linker actually contains the physical addresses. When this is the case, the
output of the linker is absolute code.

Linking with Overlays

Although no longer commonplace, C compilers for some environments supply an overlay linker in
addition to a standard linker. An overlay linker works like a regular linker but can also create
overlays. An overlay is a piece of object code that is stored in a disk file and loaded and executed
only when needed. The place in memory into which an overlay is loaded is called the overlay
region. Overlays allow you to create and run programs that would be larger than available memory,
because only the parts of the program that are currently in use are in memory.

To understand how overlays work, imagine that you have a program consisting of seven object files
called F1 through F7. Assume also that there is insufficient free memory to run the program if the
object files are all linked together in the normal way-you can only link the first five files before
running out of memory. To remedy this situation, instruct the linker to create overlays consisting of
files F5, F6, and F7. Each time a function in one of these files is invoked, the overlay manager
(provided by the linker) finds the proper file and places it into the overlay region, allowing
execution to proceed. The code in files F1 through F4 remains resident at all times. Figure 12-1
illustrates this situation.

As you might guess, the principal advantage of overlays is that they enable you to write very large
programs. The main disadvantage— and the reason that overlays are usually a last resort— is that the
loading process takes time and has a significant impact on the overall speed of execution. For this
reason, you should group related functions

Page 304

Figure 12-1
Program with overlays in memory

together if you have to use overlays, so that the number of overlay loads is minimized. For example,
if the application is a mailing list, it makes sense to place all sorting routines in one overlay, printing
routines in another, and so on.

As mentioned, overlays are not often used in today's modern computing environments.

Linking with DLLs

Windows provides another form of linking, called dynamic linking. Dynamic linking is the process
by which the object code for a function remains in a separate file on disk until a program that uses it
is executed. When the program is executed, the dynamically linked functions required by the
program are also loaded. Dynamically linked functions reside in a special type of library called a
Dynamic Link Library, or DLL, for short.

The main advantage to using dynamically linked libraries is that the size of executable programs is
dramatically reduced because each program does not have to store redundant copies of the library
functions that it uses. Also, when DLL functions are updated, programs that use them will
automatically obtain their benefits.

Although the C standard library is not contained in a dynamic link library, many other types of
functions are. For example, when you program for Windows, the entire set of API (Application
Program Interface) functions are stored in DLLs. Fortunately, relative to your C program, it does not
usually matter whether a library function is stored in a DLL or in a regular library file.

Page 305

The C Standard Library

The ANSI/ISO standard for C defines both the content and form of the C standard library. That is,
the C standard specifies a set of functions that all standard compilers must support. However, a
compiler is free to supply additional functions not specified by the standard. (And, indeed, most
compilers do.) For example, it is common for a compiler to have graphics functions, mouse-handler
routines, and the like, even though none of these is defined by Standard C. As long as you will not
be porting your programs to a new environment, you can use these nonstandard functions without
any negative consequences. However, if your code must be portable, the use of these functions must
be restricted. From a practical point of view, virtually all nontrivial C programs will make use of
nonstandard functions, so you should not necessarily shy away from their use just because they are
not part of the standard function library.

Library Files vs. Object Files

Although libraries are similar to object files, they have one important difference. When you link
object files, the entire contents of each object file becomes part of the finished executable file. This
happens whether the code is actually used or not. This is not the case with library files.

A library is a collection of functions. Unlike an object file, a library file stores each function
individually. When your program uses a function contained in a library, the linker looks up that
function and adds its code to your program. In this way, only functions that you actually use in your
program— not the contents of the entire library— are added to the executable file. Because functions
are selectively added to your program when a library is used, the C standard functions are contained
in libraries rather than object files.

Headers

Each function defined in the C standard library has a header associated with it. The headers that
relate to the functions that you use in your programs are included using #include. The headers
perform two important jobs. First, many functions in the standard library work with their own
specific data types, to which your program must have access. These data types are defined in the
header related to each function. One of the most common examples is the file system header
<stdio.h> , which provides the type FILE that is necessary for disk file operations.

The second reason to include headers is to obtain the prototypes for the standard library functions.
Function prototypes allow stronger type checking to be performed by

Page 306

the compiler. Although prototypes are technically optional, they are for all practical purposes
necessary. Also, they are required by C++. All programs in this book include full prototyping.

Table 12-1 shows the standard headers defined by C89. Table 12-2 shows the headers added by
C99.

Standard C reserves identifier names beginning with an underscore and followed by either a second
underscore or a capital letter for use in headers.

As explained in Part One, headers are usually files, but they are not necessarily files. It is
permissible for a compiler to predefine the contents of a header internally. However, for all practical
purposes, the Standard C headers are contained in files that correspond to their names.

The remaining chapters in Part Three, which describe each function in the standard library, will
indicate which of these headers are necessary for each function.

Header Purpose

<assert.h> Defines the assert() macro

<ctype.h> Character handling

<errno.h> Error reporting

<float.h> Defines implementation -dependent floating -point limits

<limits.h> Defines various implementation-dependent limits

<locale.h> Supports localization

<math.h> Various definitions used by the math library

<setjmp.h> Supports nonlocal jumps

<signal.h> Supports signal handling

<stdarg.h> Supports variable argument lists

<stddef.h> Defines some commonly used constants

<stdio.h> Supports the I/O system

<stdlib.h> Miscellaneous declarations

<string.h> Supports string functions

<time.h> Supports system time functions

Table 12-1. Headers Defined by C89

Page 307

Header Purpose

<complex.h> Supports complex arithmetic.

<fenv.h> Gives access to the floating-point status flags and other aspects of
the floating-point environment.

<inttypes.h> Defines a standard, portable set of integer type names. Also supports
functions that handle greatest-width integers.

<iso646.h> Added in 1995 by Amendment 1. Defines macros that correspond to
various operators, such as && and ^.

<stdbool.h> Supports Boolean data types. Defines the macro bool, which helps
with C++ compatibility.

<stdint.h> Defines a standard, portable set of integer type names. This file is
included by <inttypes.h> .

<tgmath.h> Defines type-generic floating-point macros.

<wchar.h> Added in 1995 by Amendment 1. Supports multibyte and wide-
character functions.

<wctype.h> Added in 1995 by Amendment 1. Supports multibyte and wide-
character classification functions.

Table 12-2. Headers Added by C99

Macros in Headers

Many of the C standard functions can be implemented either as actual functions or as function-like
macros defined in a header. For example, abs(), which returns the absolute value of its integer
argument, could be defined as a macro, as shown here:

#define abs(i) (i)<0 ? -(i) : (i)

Whether a standard function is defined as a macro or as a regular C function is usually of no
consequence. However, in rare situations where a macro is unacceptable— for example, where code
size is to be minimized or where an argument must not be evaluated more than once— you will have
to create a real function and substitute it for the macro. Sometimes the C library itself also has a real
function that you can use to replace a macro.

Page 308

To force the compiler to use the real function, you need to prevent the compiler from substituting
the macro when the function name is encountered. Although there are several ways to do this, by far
the best is simply to undefine the macro name using #undef. For example, to force the compiler to
substitute the real abs() function for the previously defined macro, you would insert this line of
code near the beginning of your program:

#undef abs

Then, since abs is no longer defined as a macro, the function version is used.

Redefinition of Library Functions

Although linkers may vary slightly between implementations, they all operate in essentially the
same way. For example, if your program consists of three files called Fl, F2, and F3, the linker
command line looks something like this,

LINK F1 F2 F3 LIBC

where LIBC is the name of the standard library.

NOTE

Some linkers automatically use the standard library and do not require that it be
specified explicitly. Also, integrated programming environments often include the
appropriate library files automatically.

As the link process begins, usually the linker first attempts to resolve all external references by using
only the files F1, F2, and F3. Once this is done, the library is searched if unresolved external
references still exist.

Because most linkers proceed in the order just described, you can redefine a function that is
contained in the standard library. For instance, you could create your own version of fwrite() that
handled file output in some special way. In this case, when you link a program that includes your
redefined version of fwrite(), that implementation is found first and used to resolve all references to
it. Therefore, by the time the library is scanned, there are no unresolved references to the fwrite()
function, and it is not loaded from the library.

You must be very careful when you redefine library functions because you could be creating
unexpected side effects. Another part of your program might use the library function that you are
redefining. In this case, the other part will be expecting the library function but will get your
redefined function instead. For example, if you redefine fwrite() for use in one part of a program
and another part of your program uses fwrite(), expecting it to be the standard library function, then
(to say the least) unexpected behavior may result. It is a better idea simply to use a different name
for your function than to redefine a library function.

Page 309

Chapter 13—
I/O Functions

Page 310

This chapter describes the Standard C I/O functions. It includes the functions defined by C89 and
those added by C99. The header associated with the I/O functions is <stdio.h> . This header defines
several macros and types used by the file system. The most important type is FILE, which is used to
declare a file pointer. Two other frequently used types are size_t and fpos_t. The size_t type, which
is some form of unsigned integer, is the type of the result returned by sizeof. The fpos_t type defines
an object that can uniquely specify each location within a file. The most commonly used macro
defined by the header is EOF, which is the value that indicates end-of-file. Other data types and
macros defined in <stdio.h> are described in conjunction with the functions to which they relate.

Many of the I/O functions set the built-in global integer variable errno when an error occurs. Your
program can check this variable to obtain more information about the error. The values that errno
may have are implementation dependent.

C99 adds the restrict qualifier to certain parameters of several functions originally defined by C89.
When this is the case, the function will be shown using its C89 prototype (which is also the
prototype used by C++), but the restrict-qualified parameters will be pointed out in the function's
description.

For an overview of the I/O system, see Chapters 8 and 9 in Part One.

NOTE

This chapter describes the character-based I/O functions. These are the functions
that were originally defined for Standard C and are, by far, the most widely used. In
1995 several wide-character (wchar_t) functions were added, and they are briefly
described in Chapter 19.

clearerr

#include <stdio.h>
void clearerr(FILE *stream);

The clearerr() function resets (that is, sets to zero) the error flag associated with the stream pointed
to by stream. The end-of-file indicator is also reset.

The error flags for each stream are initially set to zero by a successful call to fopen(). File errors
can occur for a wide variety of reasons, many of which are system dependent. The exact nature of
the error can be determined by calling perror(), which displays a message describing the error (see
perror).

Example

This program copies one file to another. If an error is encountered, a message is printed and the error
is cleared.

Page 311

/* Copy one file to another. */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *in, *out;
 char ch;

 if(argc!=3) {
 printf(''You forgot to enter a filename.\n");
 exit(1);
 }

 if((in=fopen(argv[1], "rb")) == NULL) {
 printf("Cannot open input file.\n");
 exit:(1);
 }
 if((out=fopen(argv[2], "wb")) == NULL) {
 printf("Cannot open output file.\n");
 exit(1);
 }

 while(!feof(in)) {
 ch = getc(in);
 if(ferror(in)) {
 printf("Read Error");
 clearerr(in);
 break;
 } else {
 if(!feof(in)) putc(ch, out);
 if(ferror(out)) {
 printf("Write Error");
 clearerr(out);
 break;
 }
 }
 }
 fclose(in);
 fclose(out);

 return 0;
}

TE
AM
FL
Y

Team-Fly®

Page 312

Related Functions

feof(), ferror(), and perror()

fclose

#include <stdio.h>
int fclose(FILE *stream);

The fclose() function closes the file associated with stream and flushes its buffer. After a call to
fclose(), stream is no longer connected with the file, and any automatically allocated buffers are
deallocated.

If fclose() is successful, zero is returned; otherwise EOF is returned. Trying to close a file that has
already been closed is an error. Removing the storage media before closing a file will also generate
an error, as will lack of sufficient free disk space.

Example

The following code opens and closes a file:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *fp;

 if((fp=fopen("test", "rb"))==NULL) {
 printf(''Cannot open file.\n");
 exit(1);
 }

 if(fclose(fp)) printf("File close error.\n");

 return 0;
}

Related Functions

fopen(), freopen(), and fflush()

Page 313

feof

#include <stdio.h>
int feof(FILE *stream);

The feof() function determines whether the end of the file associated with stream has been reached.
A nonzero value is returned if the file position indicator is at the end of the file; zero is returned
otherwise.

Once the end of the file has been reached, subsequent read operations will return EOF until either
rewind() is called or the file position indicator is moved using fseek().

The feof() function is particularly useful when working with binary files because the end-of-file
marker is also a valid binary integer. Explicit calls must be made to feof() rather than simply testing
the return value of getc(), for example, to determine when the end of a binary file has been reached.

Example

This code fragment shows one way to read to the end of a file:

/*
 Assume that fp has been opened for read operations.
*/
while(!feof(fp)) getc(fp);

Related Functions

clearerr(), ferror(), perror(), putc(), and getc()

ferror

#include <stdio.h>
int ferror(FILE *stream);

The ferror() function checks for a file error on the given stream. A return value of zero indicates
that no error has occurred, while a nonzero value means an error.

To determine the exact nature of the error, use the perror() function.

Page 314

Example

The following code fragment aborts program execution if a file error
occurs:

/*
 Assume that fp points to a stream opened for write
 operations.
*/

while(!done) {
 putc(info, fp);
 if(ferror(fp)) {
 printf(''File Error\n");
 exit(1);
 }
}

Related Functions

clearerr(), feof(), and perror()

fflush

#include <stdio.h>
int fflush(FILE *stream);

If stream is associated with a file opened for writing, a call to fflush() causes the contents of the
output buffer to be physically written to the file. The file remains open.

A return value of zero indicates success; EOF indicates that a write error has occurred.

All buffers are automatically flushed upon normal termination of the program or when they are full.
Also, closing a file flushes its buffer.

Example

The following code fragment flushes the buffer after each write operation:

/*
 Assume that fp is associated with an output file.
*/

Page 315

for(i=0; i<MAX; i++) {
 fwrite(buf, sizeof(some_type), 1, fp);
 fflush(fp);
}

Related Functions

fclose(), fopen(), fread(), fwrite(), getc() , and putc()

fgetc

#include <stdio.h>
int fgetc(FILE *stream);

The fgetc() function returns the next character from the specified input stream and increments the
file position indicator. The character is read as an unsigned char that is converted to an integer.

If the end of the file is reached, fgetc() returns EOF. However, since EOF is a valid integer value,
when working with binary files you must use feof() to check for the end of the file. If fgetc()
encounters an error, EOF is also returned. If working with binary files, you must use ferror() to
check for file errors.

Example

The following program reads and displays the contents of a text file:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *fp;
 char ch;

 if((fp=fopen(argv[1],"r"))==NULL) {
 printf(''Cannot open file.\n");
 exit(1);
 }

 while((ch=fgetc(fp)) != EOF) {

Page 316

 printf("%c", ch);
 }
 fclose(fp);

 return 0;
}

Related Functions

fputc(), getc(), putc(), and fopen()

fgetpos

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *position);

For the specified stream, the fgetpos() function stores the current value of the file position indicator
in the object pointed to by position. The object pointed to by position must be of type fpos_t. The
value stored there is useful only in a subsequent call to fsetpos().

In C99, both stream and position are qualified by restrict.

If an error occurs, fgetpos() returns nonzero; otherwise it returns zero.

Example

The following fragment stores the current file location in file_loc:

FILE *fp;
fpos_t file_loc;
·
·
·
fgetpos(fp, &file_loc);

Related Functions

fsetpos(), fseek(), and ftell()

Page 317

fgets

#include <stdio.h>
char *fgets(char *str, int num, FILE *stream);

The fgets() function reads up to num–1 characters from stream and stores them in the character
array pointed to by str. Characters are read until either a newline or an EOF is received or until the
specified limit is reached. After the characters have been read, a null is stored in the array
immediately after the last character read. A newline character will be retained and will be part of the
array pointed to by str.

In C99, str and stream are qualified by restrict.

If successful, fgets() returns str; a null pointer is returned upon failure. If a read error occurs, the
contents of the array pointed to by str are indeterminate. Because a null pointer will be returned
when either an error has occurred or when the end of the file is reached, you should use feof() or
ferror() to determine what has actually happened.

Example

This program uses fgets() to display the contents of the text file whose name is specified as the first
command line argument:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *fp;
 char str[128];

 if((fp=fopen(argv[1], "r"))==NULL) {
 printf(''Cannot open file.\n");
 exit(1);
 }

 while(!feof(fp)) {
 if(fgets(str, 126, fp)) printf("%s", str);
 }

 fclose(fp);

 return 0;
}

Page 318

Related Functions

fputs(), fgetc(), gets(), and puts()

fopen

#include <stdio.h>
FILE *fopen(const char *fname, const char *mode);

The fopen() function opens a file whose name is pointed to by fname and returns the stream that is
associated with it. The type of operations that will be allowed on the file are defined by the value of
mode. The legal values for mode are shown in Table 13-1. The filename must be a string of
characters constituting a valid filename as defined by the operating system and may include a path
specification if the environment supports it.

In C99, fname and mode are qualified by restrict.

If fopen() is successful in opening the specified file, a FILE pointer is returned. If the file cannot be
opened, a null pointer is returned.

Mode Meaning

''r" Open text file for reading

"w" Create a text file for writing

"a" Append to text file

"rb" Open binary file for reading

"wb" Create binary file for writing

"ab" Append to a binary file

"r+" Open text file for read/write

"w+" Create text file for read/write

"a+" Open text file for read/write

"rb+" or "r+b" Open binary file for read/write

"wb+" or "w+b" Create binary file for read/write

"ab+" or "a+b" Open binary file for read/write

Table 13-1. Legal Values for the mode Parameter of fopen()

Page 319

As the table shows, a file can be opened in either text or binary mode. In text mode, some character
translations may occur. For example, newlines may be converted into carriage return/linefeed
sequences. No such translations occur on binary files.

The correct method of opening a file is illustrated by this code fragment:

FILE *fp;

if ((fp = fopen("test", "w"))==NULL) {
 printf(''Cannot open file.\n");
 exit(1);
}

This method detects any error in opening a file, such as a write-protected or a full disk, before
attempting to write to it.

If you use fopen() to open a file for output, any preexisting file by that name will be erased and a
new file started. If no file by that name exists, one will be created. Opening a file for read operations
requires that the file exists. If it does not exist, an error will be returned. If you want to add to the
end of the file, you must use mode "a". If the file does not exist, it will be created.

When accessing a file opened for read/write operations, you cannot follow an output operation with
an input operation without first calling either fflush(), fseek(), fsetpos(), or rewind(). Also, you
cannot follow an input operation with an output operation without first calling one of the previously
mentioned functions, except when the end of the file is reached during input. That is, output can
directly follow input at the end of the file.

Up to FOPEN_MAX files can be open at any one time. FOPEN_MAX is defined in <stdio.h> .

Example

This fragment opens a file called TEST for binary read/write operations:

FILE *fp;

if((fp=fopen("test", "rb+"))==NULL) {
 printf("Cannot open file.\n");
 exit(1);
}

Related Functions

fclose(), fread(), fwrite(), putc(), and getc()

Page 320

fprintf

#include <stdio.h>
int fprintf(FILE *stream, const char *format, . . .);

The fprintf() function outputs the values of the arguments that make up the argument list as
specified in the format string to the stream pointed to by stream. The return value is the number of
characters actually printed. If an error occurs, a negative number is returned.

In C99, stream and format are qualified by restrict.

The operations of the format control string and commands are identical to those in printf(); see
printf for a complete description.

Example

This program creates a file called TEST and writes this is a test 10 20.01 into the file using fprintf
() to format the data:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *fp;

 if((fp=fopen("test", "wb"))==NULL) {
 printf(''Cannot open file.\n");
 exit(1);
 }

 fprintf(fp, "this is a test %d %f", 10, 20.01);
 fclose(fp);

 return 0;
}

Related Functions

printf() and fscanf()

Page 321

fputc

#include <stdio.h>
int fputc(int ch, FILE *stream);

The fputc() function writes the character ch to the specified stream at the current file position and
then advances the file position indicator. Even though ch is declared to be an int for historical
reasons, it is converted by fputc() into an unsigned char. Because a character argument is elevated
to an integer at the time of the call, you will generally see character values used as arguments. If an
integer were used, the high-order byte(s) would simply be discarded.

The value returned by fputc() is the value of the character written. If an error occurs, EOF is
returned. For files opened for binary operations, an EOF may be a valid character, and the function
ferror() will need to be used to determine whether an error has actually occurred.

Example

This function writes the contents of a string to the specified stream:

void write_string(char *str, FILE *fp)
{
 while(*str) if(!ferror(fp)) fputc(*str++, fp);
}

Related Functions

fgetc(), fopen(), fprintf(), fread(), and fwrite()

fputs

#include <stdio.h>
int fputs(const char *str, FILE *stream);

The fputs() function writes the contents of the string pointed to by str to the specified stream. The
null terminator is not written.

In C99, str and stream are qualified by restrict.

The fputs() function returns nonnegative on success and EOF on failure.

If the stream is opened in text mode, certain character translations may take place. This means that
there may not be a one-to-one mapping of the string onto the file.

TE
AM
FL
Y

Team-Fly®

Page 322

However, if the stream is opened in binary mode, no character translations will occur, and a one-to-
one mapping between the string and the file will exist.

Example

This code fragment writes the string this is a test to the stream pointed to by fp:

fputs("this is a test", fp);

Related Functions

fgets(), gets(), puts(), fprintf(), and fscanf()

fread

#include <stdio.h>
size_t fread(void *buf, size_t size, size_t count, FILE *stream);

The fread() function reads count number of objects, each object being size bytes in length, from the
stream pointed to by stream and stores them in the array pointed to by buf. The file position
indicator is advanced by the number of characters read.

In C99, buf and stream are qualified by restrict.

The fread() function returns the number of items actually read. If fewer items are read than are
requested in the call, either an error has occurred or the end of the file has been reached. You must
use feof() or ferror() to determine what has taken place.

If the stream is opened for text operations, certain character translations, such as carriage
return/linefeed sequences being transformed into newlines, may occur.

Example

The following program writes five floating-point numbers from the bal array to a disk file called
TEST and then reads them back:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *fp;
 float bal[5] = { 1.1F, 2.2F, 3.3F, 4.4F, 5.5F };
 int i;

 /* write the values */

Page 323

 if((fp=fopen("test", "wb"))==NULL) {
 printf(''Cannot open file.\n");
 exit(1);
 }

 if(fwrite(bal, sizeof(float), 5, fp) != 5)
 printf("File read error.");
 fclose(fp);

 /* read the values */
 if((fp=fopen("test", "rb"))==NULL) {
 printf("Cannot open file.\n");
 exit (1);
 }

 if(fread(bal, sizeof(float), 5, fp) != 5) {
 if(feof(fp)) printf("Premature end of file.");
 else printf("File read error.");
 }
 fclose(fp);

 for(i=0; i<5; i++)
 printf("%f ", bal[i]);

 return 0;
}

Related Functions

fwrite(), fopen(), fscanf(), fgetc(), and getc()

freopen

#include <stdio.h>
FILE *freopen(const char *fname, const char *mode, FILE *stream);

The freopen() function associates an existing stream with a different file. The end-of-file and error
flags are cleared in the process. The new file's name is pointed to by fname, the access mode is
pointed to by mode, and the stream to be reassigned is pointed to by stream. The mode parameter
uses the same format as fopen(); a complete discussion is found in the fopen() description.

In C99, fname, mode, and stream are qualified by restrict.

Page 324

When called, freopen() first tries to close a file that may currently be associated with stream.
However, if the attempt to close the file fails, the freopen() function still continues to open the
other file.

The freopen() function returns a pointer to stream on success and a null pointer otherwise.

The main use of freopen() is to redirect the system-defined files stdin, stdout, and stderr to some
other file.

Example

The program shown here uses freopen() to redirect the stream stdout to the file called OUT.
Because printf() writes to stdout, the first message is displayed on the screen and the second is
written to the disk file.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *fp;

 printf("This will display on the screen.\n");

 if((fp=freopen("OUT", "w" ,stdout))==NULL) {
 printf(''Cannot open file.\n");
 exit(1);
 }

 printf("This will be written to the file OUT.");

 fclose(fp);

 return 0;
}

Related Functions

fopen() and fclose()

fscanf

#include <stdio.h>
int fscanf(FILE *stream, const char *format, . . .);

Page 325

The fscanf() function works exactly like the scanf() function except that it reads the information
from the stream specified by stream instead of stdin . See scanf for details.

In C99, stream and format are qualified by restrict.

The fscanf() function returns the number of arguments actually assigned values. This number does
not include skipped fields. A return value of EOF means that a failure occurred before the first
assignment was made.

Example

This code fragment reads a string and a float from the stream fp:

char str[80];
float f;

fscanf(fp, "%s%f", str, &f);

Related Functions

scanf() and fprintf()

fseek

#include <stdio.h>
int fseek(FILE *stream, long int offset, int origin);

The fseek() function sets the file position indicator associated with stream according to the values
of offset and origin. Its purpose is to support random access I/O operations. The offset is the number
of bytes from origin to seek to. The values for origin must be one of these macros (defined in
<stdio.h>):

Name Meaning

SEEK_SET Seek from start of file

SEEK_CUR Seek from current location

SEEK_END Seek from end of file

A return value of zero means that fseek() succeeded. A nonzero value indicates failure.

In general, fseek() should be used only with binary files. If used on a text file, origin must be
SEEK_SET and offset must be a value obtained by calling ftell() on the same file, or zero (to set
the file position indicator to the start of the file).

The fseek() function clears the end-of-file flag associated with the specified stream. Furthermore, it
nullifies any prior ungetc() on the same stream (see ungetc).

Page 326

Example

The following function seeks to the specified structure of type addr. Notice the use of sizeof to
obtain the size of the structure.

struct addr {
 char name[40];
 char street[40];
 char city[40];
 char state[3];
 char zip[10];
} info;

void find(long int client_num)
{
 FILE *fp;

 if((fp=fopen("mail", "rb")) == NULL) {
 printf(''Cannot open file.\n");
 exit(1);
 }

 /* find the proper structure */
 fseek(fp, client_num*sizeof(struct addr), SEEK_SET);

 /* read the data into memory */
 fread(&info, sizeof(struct addr), 1, fp);

 fclose(fp);
}

Related Functions

ftell(), rewind(), fopen(), fgetpos(), and fsetpos()

fsetpos

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *position);

Page 327

The fsetpos() function moves the file position indicator to the location specified by the object
pointed to by position. This value must have been previously obtained through a call to fgetpos().
After fsetpos() is executed, the end-of-file indicator is reset. Also, any previous call to ungetc() is
nullified.

If fsetpos() fails, it returns nonzero. If it is successful, it returns zero.

Example

This code fragment resets the current file position indicator to the value stored in file_loc:

fsetpos(fp, &file_loc);

Related Functions

fgetpos(), fseek(), and ftell()

ftell

#include <stdio.h>
long int ftell(FILE *stream);

The ftell() function returns the current value of the file position indicator for the specified stream.
In the case of binary streams, the value is the number of bytes the indicator is from the beginning of
the file. For text streams, the return value may not be meaningful except as an argument to fseek()
because of possible character translations, such as carriage return/linefeeds being substituted for
newlines, which affect the apparent size of the file.

The ftell() function returns –1 when an error occurs.

Example

This code fragment obtains the current value of the file position indicator for the stream pointed to
by fp:

long int i;

if((i=ftell(fp)) == -1L)
 printf(''A file error has occurred.\n");

Page 328

Related Functions

fseek() and fgetpos()

fwrite

#include <stdio.h>
size_t fwrite(const void *buf, size_t size, size_t count,
 FILE *stream);

The fwrite() function writes count number of objects, each object being size bytes in length, to the
stream pointed to by stream from the character array pointed to by buf. The file position indicator is
advanced by the number of characters written.

In C99, buf and stream are qualified by restrict.

The fwrite() function returns the number of items actually written, which, if the function is
successful, will equal the number requested. If fewer items are written than are requested, an error
has occurred.

Example

This program writes a float to the file TEST. Notice that sizeof is used both to determine the number
of bytes in a float and to ensure portability.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *fp;
 float f=12.23;

 if((fp=fopen("test", "wb"))==NULL) {
 printf(''Cannot open file.\n");
 exit(1);
 }

 fwrite(&f, sizeof
(float), 1, fp);

 fclose(fp);

 return 0;
}

Page 329

Related Functions

fread(), fscanf(), getc(), and fgetc()

getc

#include <stdio.h>
int getc(FILE *stream);

The getc() function returns the next character from the specified input stream and increments the
file position indicator. The character is read as an unsigned char that is converted to an integer.

If the end of the file is reached, getc() returns EOF. However, since EOF is a valid integer value,
when working with binary files you must use feof() to check for the end-of-file condition. If getc()
encounters an error, EOF is also returned. If working with binary files, you must use ferror() to
check for file errors.

The functions getc() and fgetc() are identical except that in most implementations getc() is defined
as a macro.

Example

The following program reads and displays the contents of a text file:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *fp;
 char ch;

 if((fp=fopen(argv[1], "r"))==NULL) {
 printf(''Cannot open file.\n");
 exit(1);
 }

 while((ch=getc(fp)) ! =EOF)
 printf("%c", ch);
 }

 fclose(fp);

Page 330

 return 0;
}

Related Functions

fputc(), fgetc(), putc(), and fopen()

getchar

#include <stdio.h>
int getchar(void);

The getchar() function returns the next character from stdin. The character is read as an unsigned
char that is converted to an integer.

If the end of the file is reached, getchar() returns EOF. If getchar() encounters an error, EOF is
also returned.

The getchar() function is often implemented as a macro.

Example

This program reads characters from stdin into the array s until the user presses ENTER. Then, the
string is displayed.

#include <stdio.h>

int main(void)
{
 char s[256], *p;

 p = s;

 while((*p++ = getchar())!= '\n') ;
 p = '\0'; / add null terminator */
 printf(s);

 return 0;
}

Page 331

Related Functions

fputc(), fgetc(), putc(), and fopen()

gets

#include <stdio.h>
char *gets(char *str);

The gets() function reads characters from stdin and places them into the character array pointed to
by str. Characters are read until a newline or an EOF is received. The newline character is not made
part of the string; instead, it is translated into a null to terminate the string.

If successful, gets() returns str; a null pointer is returned upon failure. If a read error occurs, the
contents of the array pointed to by str are indeterminate. Because a null pointer will be returned
when either an error has occurred or when the end of the file is reached, you should use feof() or
ferror() to determine what has actually happened.

There is no way to limit the number of characters that gets() will read, which means that the array
pointed to by str could be overrun. Thus, this function is inherently dangerous. Its use should be
limited to sample programs (such as those in this book) or utilities for your own use. It should not be
used for production code.

Example

This program uses gets() to read a filename:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *fp;
 char fname[128];

 printf("Enter filename: ");
 gets(fname);

 if((fp=fopen(fname, "r"))==NULL) {
 printf(''Cannot open file.\n");

TE
AM
FL
Y

Team-Fly®

Page 332

 exit(1);
 }

 fclose(fp);

 return 0;
}

Related Functions

fputs(), fgetc(), fgets(), and puts()

perror

#include <stdio.h>
void perror(const char *str);

The perror() function maps the value of the global variable errno onto a string and writes that
string to stderr. If the value of str is not null, the string is written first, followed by a colon and then
the implementation-defined error message.

Example

This fragment reports any I/O error that may have occurred on the stream associated with fp:

if(ferror(fp)) perror("File error ");

printf

#include <stdio.h>
int printf(const char *format, ...);

The printf() function writes to stdout the arguments that make up the argument list as specified by
the string pointed to by format.

In C99, format is qualified with restrict.

The string pointed to by format consists of two types of items. The first type is made up of
characters that will be printed on the screen. The second type contains format specifiers

Page 333

that define the way the arguments are displayed. A format specifier begins with a percent sign and is
followed by the format code. There must be exactly the same number of arguments as there are
format specifiers, and the format specifiers and the arguments are matched in order. For example,
the following printf() call displays ''Hi c 10 there!"

printf("Hi %c %d %s", 'c', 10, "there!");

If there are insufficient arguments to match the format specifiers, the output is undefined. If there
are more arguments than format specifiers, the remaining arguments are discarded. The format
specifiers are shown in Table 13-2.

The printf() function returns the number of characters actually printed. A negative return value
indicates that an error has taken place.

The format codes can accept modifiers that specify the field width, precision, and left justification.
An integer placed between the % sign and the format code acts as a minimum field-width specifier.
This pads the output with spaces or zeros to ensure that it is at least a certain minimum length. If the
string or number is greater than that minimum, it will be printed in full, even if it overruns the
minimum. The default padding is done with spaces. If you want to pad with zeros, place a zero
before the field-width specifier. For example, %05d will pad a number of less than five digits with
zeros so that its total length is five.

The exact meaning of the precision modifier depends on the format code being modified. To add a
precision modifier, place a decimal point followed by the precision after the field-width specifier.
For a, A, e, E, f, and F formats, the precision modifier determines the number of decimal places
printed. For example, %10.4f will display a number at least 10 characters wide with four decimal
places. When the precision modifier is applied to the g or G format code, it determines the
maximum number of significant digits displayed. When applied to integers, the precision modifier
specifies the minimum number of digits that will be displayed. Leading zeros are added, if
necessary.

When the precision modifier is applied to strings, the number following the period specifies the
maximum field length. For example, %5.7s will display a string that will be at least five characters
long and will not exceed seven characters. If the string is longer than the maximum field width, the
characters will be truncated off the end.

By default, all output is right justified: If the field width is larger than the data printed, the data will
be placed on the right edge of the field. You can force the information to be left justified by putting
a minus sign directly after the %. For example, %–10.2f will left-justify a floating point number
with two decimal places in a 10-character field.

There are two format modifiers that allow printf() to display short and long integers. These
modifiers can be applied to the d, i, o, u, x, and X type specifiers. The l modifier tells printf() that a
long data type follows. For example, %1d means that a long int is to be displayed. The h modifier
tells printf() to display a short integer. Therefore, %hu indicates that the data is of type short
unsigned int.

Page 334

Code Format

%a Hexadecimal output in the form 0xh.hhhhp+d (C99 only).

%A Hexadecimal output in the form 0Xh.hhhhP+d (C99 only).

%c Character.

%d Signed decimal integers.

%i Signed decimal integers.

%e Scientific notation (lowercase e).

%E Scientific notation (uppercase E).

%f Decimal floating point.

%F Decimal floating point (C99 only; produces uppercase INF, INFINITY, or
NAN when applied to infinity or a value that is not a number. The %f specifier
produces lowercase equivalents.)

%g Uses %e or %f, whichever is shorter.

%G Uses %E or %F , whichever is shorter.

%o Unsigned octal.

%s String of characters.

%u Unsigned decimal integers.

%x Unsigned hexadecimal (lowercase letters).

%X Unsigned hexadecimal (uppercase letters).

%p Displays a pointer.

%n The associated argument must be a pointer to an integer. This specifier causes
the number of characters written (up to the point at which the %n is
encountered) to be stored in that integer.

%% Prints a percent sign.

Table 13-2. The printf() Format Specifiers

If you are using a modern compiler that supports the wide-character features added in 1995, you can
use the l modifier with the c specifier to indicate a wide character. You can also use the l modifier
with the s format command to indicate a wide-character string.

Page 335

An L modifier can prefix the floating-point commands of a, A, e, E, f, F, g, and G and indicates that
a long double follows.

The n command causes the number of characters that have been written at the time the n is
encountered to be placed in an integer variable whose pointer is specified in the argument list. For
example, this code fragment displays the number 14 after the line ''this is a test":

int i;

printf("This is a test%n", &i);
printf("%d", i);

You can apply the l modifier to the n specifier to indicate that the corresponding argument points to
a long integer. You can specify the h modifier to indicate that the corresponding argument points to
a short integer.

The # has a special meaning when used with some printf() format codes. Preceding a, A, g, G, f, e,
or E with a # ensures that the decimal point will be present, even if there are no decimal digits. If
you precede the x or X format code with a #, the hexadecimal number will be printed with a 0x
prefix. If you precede the o format with a #, the octal value will be printed with a 0 prefix. The #
cannot be applied to any other format specifiers.

The minimum field-width and precision specifiers may be provided by arguments to printf()
instead of by constants. To accomplish this, use an * as a placeholder. When the format string is
scanned, printf() will match each * to an argument in the order in which they occur.

Format Modifiers for Printf() Added by C99

C99 adds several format modifiers to printf(): hh, ll, j, z, and t. The hh modifier can be applied to
d, i, o, u, x, X, or n. It specifies that the corresponding argument is a signed or unsigned char value
or, in the case of n, a pointer to a signed char variable. The ll modifier also can be applied to d, i, o,
u, x, X, or n. It specifies that the corresponding argument is a signed or unsigned long long int
value or, in the case of n, a pointer to a long long int. C99 also allows the l to be applied to the
floating-point specifiers a, A, e, E, f, F, g, and G, but it has no effect.

The j format modifier, which applies to d, i, o, u, x, X, or n, specifies that the matching argument is
of type intmax_t or uintmax_t. These types are declared in <stdint.h> and specify greatest-width
integers.

The z format modifier, which applies to d, i, o, u, x, X, or n, specifies that the matching argument is
of type size_t. This type is declared in <stddef.h> and specifies the result of sizeof.

The t format modifier, which applies to d, i, o, u, x, X, or n, specifies that the matching argument is
of type ptrdiff_t. This type is declared in <stddef.h> and specifies the difference between two
pointers.

Page 336

Example

This program displays the output shown in its comments:

#include <stdio.h>

int main(void)
{
 /* This prints ''this is a test" left justified
 in 20 character field.
 */
 printf("%-20s", "this is a test");

 /* This prints a float with 3 decimal places in a 10
 character field. The output will be " 12.235".
 */
 printf("%10.3f", 12.234657);

 return 0;
}

Related Functions

scanf() and fprintf()

putc

#include <stdio.h>
int putc(int ch, FILE *stream);

The putc() function writes the character contained in the least significant byte of ch to the output
stream pointed to by stream. Because character arguments are elevated to integer at the time of the
call, you can use character values as arguments to putc(). putc() is often implemented as a macro.

The putc() function returns the character written if successful or EOF if an error occurs. If the
output stream has been opened in binary mode, EOF is a valid value for ch. This means that you
may need to use ferror() to determine whether an error has occurred.

Page 337

Example

The following loop writes the characters in string str to the stream specified by fp. The null
terminator is not written.

for(; *str; str++) putc(*str, fp);

Related Functions

fgetc(), fputc(), getchar(), and putchar()

putchar

#include <stdio.h>
int putchar(int ch);

The putchar() function writes the character contained in the least significant byte of ch to stdout. It
is functionally equivalent to putc(ch, stdout). Because character arguments are elevated to integer
at the time of the call, you can use character values as arguments to putchar().

The putchar() function returns the character written if successful or EOF if an error occurs.

Example

The following loop writes to stdout the characters in string str. The null terminator is not written.

for(; *str; str++) putchar(*str);

Related Function

putc()

puts

#include <stdio.h>
int puts(const char *str);

Page 338

The puts() function writes the string pointed to by str to the standard output device. The null
terminator is translated to a newline.

The puts() function returns a nonnegative value if successful and an EOF upon failure.

Example

The following code writes the string this is an example to stdout:

#include <stdio.h>
#include <string.h>

int main(void)
{
 char str[80];

 strcpy(str, "this is an example");

 puts(str);

 return 0;
}

Related Functions

putc(), gets(), and printf()

remove

#include <stdio.h>
int remove(const char *fname);

The remove() function erases the file specified by fname. It returns zero if the file was successfully
deleted and nonzero if an error occurred.

Example

This program removes the file whose name is specified on the command line:

#include <stdio.h>

int main(int argc, char *argv[])

Page 339

{
 if(remove(argv[1])) printf(''Remove Error");

 return 0;
}

Related Function

rename()

rename

#include <stdio.h>
int rename(const char *oldfname, const char *newfname);

The rename() function changes the name of the file specified by oldfname to newfname. The
newfname must not match any existing directory entry.

The rename() function returns zero if successful and nonzero if an error has
occurred.

Example

This program renames the file specified as the first command line argument to that specified by the
second command line argument. Assuming the program is called CHANGE, a command line
consisting of

CHANGE THIS THAT

will change the name of a file called THIS to THAT.

#include <stdio.h>

int main(int argc, char *argv[])
{
 if(rename(argv[1], argv[2]) != 0) printf("Rename Error");

 return 0;
}

Related Function

remove()

Page 340

rewind

#include <stdio.h>
void rewind(FILE *stream);

The rewind() function moves the file position indicator to the start of the specified stream. It also
clears the end-of-file and error flags associated with stream.

Example

This function twice reads the stream pointed to by fp, displaying the file each time:

void re_read(FILE *fp)
{
 /* read once */
 while(!feof(fp)) putchar(getc(fp));

 rewind(fp);

 /* read twice */
 while(!feof(fp)) putchar(getc(fp));
}

Related Function

fseek()

scanf

#include <stdio.h>
int scanf(const char *format, ...);

The scanf() function is a general-purpose input routine that reads the stream stdin and stores the
information in the variables pointed to in its argument list. It can read all the built-in data types and
automatically converts them into the proper internal format.

In C99, format is qualified with restrict.

The control string pointed to by format consists of three classifications of characters:

Format specifiers
White-space characters
Non-white-space characters

Page 341

The input format specifiers begin with a % sign and tell scanf() what type of data is to be read next.
The format specifiers are listed in Table 13-3. For example, %s reads a string, while %d reads an
integer. The format string is read left to right, and the format specifiers are matched, in order, with
the arguments that make up the argument list.

To read a long integer, put an l (ell) in front of the format specifier. To read a short integer, put an h
in front of the format specifier. These modifiers can be used with the d, i, o, u, and x format codes.

Code Meaning

%a Read a floating-point value (C99 only)

%A Same as %a (C99 only)

%c Read a single character

%d Read a decimal integer

%i Read an integer in either decimal, octal, or hexadecimal format

%e Read a floating-point number

%E Same as %e

%f Read a floating-point number

%F Same as %f (C99 only)

%g Read a floating-point number

%G Same as %g

%o Read an octal number

%s Read a string

%x Read a hexadecimal number

%X Same as %x

%p Read a pointer

%n Receive an integer value equal to the number of characters read so far

%u Read an unsigned decimal integer

%[] Scan for a set of characters

%% Read a percent sign

Table 13-3. The scanf() Format Specifiers

TE
AM
FL
Y

Team-Fly®

Page 342

By default, the a, f, e, and g tell scanf() to assign data to a float. If you put an l (ell) in front of one
of these specifiers, scanf() assigns the data to a double. Using an L tells scanf() that the variable
receiving the data is a long double.

If you are using a modern compiler that supports wide-character features added in 1995, you can use
the 1 modifier with the c format code to indicate a pointer to a wide character of type whcar_t. You
can also use the l modifier with the s format code to indicate a pointer to a wide-character string.
The l may also be used to modify a scanset to indicate wide characters.

A white-space character in the format string causes scanf() to skip over one or more white-space
characters in the input stream. A white-space character is either a space, a tab character, or a
newline. In essence, one white-space character in the control string will cause scanf() to read, but
not store, any number (including zero) of white-space characters up to the first non-white-space
character.

A non-white-space character in the format string causes scanf() to read and discard a matching
character. For example, %d,%d causes scanf() to first read an integer, then read and discard a
comma, and finally, read another integer. If the specified character is not found, scanf() will
terminate.

All the variables used to receive values through scanf() must be passed by their addresses. This
means that all arguments must be pointers to the variables used as arguments.

In the input stream, items must be separated by spaces, tabs, or newlines. Punctuation such as
commas, semicolons, and the like do not count as separators. This means that

scanf("%d%d", &r, &c);

will accept an input of 10 20 but fail with 10,20.

An * placed after the % and before the format code will read data of the specified type but suppress
its assignment. Thus, the following command,

scanf("%d%*c%d", &x, &y);

given the input 10/20, will put the value 10 into x, discard the divide sign, and give y the value 20.

The format commands can specify a maximum field-length modifier. This is an integer number
placed between the % and the format code that limits the number of characters read for any field.
For example, if you wish to read no more than 20 characters into address, you would write

scanf("%20s", address);

Page 343

If the input stream were greater than 20 characters, a subsequent call to input would begin where
this call left off. Input for a field may terminate before the maximum field length is reached if a
white space is encountered. In this case, scanf() moves on to the next field.

Although spaces, tabs, and newlines are used as field separators, when reading a single character,
these are read like any other character. For example, given an input stream of x y,

scanf("%c%c%c", &a, &b, &c);

will return with the character x in a, a space in b, and the character y in c.

Beware: Besides format commands, other characters in the control string— including spaces, tabs,
and newlines— will be used to match and discard characters from the input stream. Any character
that matches is discarded. For example, given the input stream 10t20,

scanf("%dt%d", &x, &y);

will store 10 in x and 20 in y. The t is discarded because of the t in the control string.

Another feature of scanf() is called a scanset . A scanset defines a set of characters that will be read
by scanf() and assigned to the corresponding character array. A scanset is defined by putting the
characters you want to scan for inside square brackets. The beginning square bracket must be
prefixed by a percent sign. For example, this scanset tells scanf() to read only the characters A, B,
and C:

% [ABC]

When a scanset is used, scanf() continues to read characters and put them into the corresponding
character array until a character that is not in the scanset is encountered. The corresponding variable
must be a pointer to a character array. Upon return from scanf(), the array will contain a null-
terminated string made up of the characters read.

You can specify an inverted set if the first character in the set is a ^. When the ^ is present, it
instructs scanf() to accept any character that is not defined by the scanset.

For many implementations, you can specify a range using a hyphen. For example, this tells scanf()
to accept the characters A through Z:

%[A-Z]

One important point to remember is that the scanset is case sensitive. Therefore, if you want to scan
for both upper- and lowercase letters, they must be specified individually.

The scanf() function returns a number equal to the number of fields that were successfully assigned
values. This number will not include fields that were read but not

Page 344

assigned because the * modifier was used to suppress the assignment. EOF is returned if an error
occurs before the first field is assigned.

Format Modifiers for Scanf() Added by C99

C99 adds several format modifiers to scanf(): hh, ll, j, z, and t. The hh modifier can be applied to
d, i, o, u, x, or n. It specifies that the corresponding argument is a pointer to a signed or unsigned
char value. The ll modifier also can be applied to d, i, o, u, x, or n. It specifies that the
corresponding argument is a pointer to a signed or unsigned long long int value.

The j format modifier, which applies to d, i, o, u, x, or n, specifies that the matching argument is a
pointer to an object of type intmax_t or uintmax_t. These types are declared in <stdint.h> and
specify greatest-width integers.

The z format modifier, which applies to d, i, o, u, x, or n, specifies that the matching argument is a
pointer to an object of type size_t. This type is declared in <stddef.h> and specifies the result of
sizeof.

The t format modifier, which applies to d, i, o, u, x, or n, specifies that the matching argument is a
pointer to an object of type ptrdiff_t. This type is declared in <stddef.h> and specifies the
difference between two pointers.

Example

The operation of these scanf() statements is explained in their comments:

#include <stdio.h>

int main(void)
{
 char str[80], str2[80];
 int i;

 /* read a string and an integer */
 scanf(''%s%d", str, &i);

 /* read up to 79 chars into str */
 scanf("%79s", str);

 /* skip the integer between the two strings */
 scanf("%s%*d%s", str, str2);

 return 0;
}

Page 345

Related Functions

printf() and fscanf()

setbuf

#include <stdio.h>
void setbuf(FILE *stream, char *buf);

The setbuf() function specifies the buffer that stream will use or, if called with buf set to null, turns
off buffering. If a programmer-defined buffer is to be specified, it must be BUFSIZ characters long.
BUFSIZ is defined in <stdio.h> .

In C99, stream and buf are qualified by restrict.

Example

The following fragment associates a programmer-defined buffer with the stream pointed to by fp:

char buffer[BUFSIZ];
·
·
·
setbuf(fp, buffer);

Related Functions

fopen(), fclose(), and setvbuf()

setvbuf

#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int mode, size_t size);

The setvbuf() function allows the programmer to specify a buffer, its size, and its mode for the
specified stream. The character array pointed to by buf is used as the buffer for I/O operations on
stream. The size of the buffer is set by size, and mode determines how buffering will be handled. If
buf is null, setvbuf() will allocate its own buffer.

In C99, stream and buf are qualified by restrict.

Page 346

The legal values of mode are _IOFBF, _IONBF , and _IOLBF. These are defined in <stdio.h> .
When mode is set to _IOFBF, full buffering will take place. If mode is _IOLBF, the stream will be
line buffered. For output streams, this means that the buffer will be flushed each time a newline
character is written. The buffer is also flushed when full. For input streams, input is buffered until a
newline is read. If mode is _IONBF, no buffering takes place.

The setvbuf() function returns zero on success, nonzero on failure.

Example

This code fragment sets the stream fp to line-buffered mode with a buffer size of 128:

#include <stdio.h>
char buffer[128];
·
·
·
setvbuf(fp, buffer, _IOLBF, 128);

Related Function

setbuf()

snprintf

#include <stdio.h>
int snprintf(char * restrict buf, size_t num,
 const char * restrict format, ...)

The snprintf() function was added by C99.

The snprintf() function is identical to sprintf() except that a maximum of num–1 characters will
be stored into the array pointed to by buf. On completion, this array is null terminated. Thus,
snprintf() allows you to prevent buf from being overrun.

Related Functions

printf(), sprintf(), and fsprintf()

Page 347

sprintf

#include <stdio.h>
int sprintf (char *buf, const char *format, . . .);

The sprintf() function is identical to printf() except that the output is put into the array pointed to
by buf instead of being written to the stdout. The array pointed to by buf is null terminated. See
printf for details.

In C99, buf and format are qualified by restrict.

The return value is equal to the number of characters actually placed into the array.

It is important to understand that sprintf() provides no bounds checking on the array pointed to by
buf. This means that the array will be overrun if the output generated by sprintf() is greater than the
array can hold. See snprintf for an alternative.

Example

After this code fragment executes, str holds one 2 3:

char str[80];

sprintf(str,"%s %d %c", "one", 2, '3');

Related Functions

printf() and fsprintf()

sscanf

#include <stdio.h>
int sscanf(const char *buf, const char *format, ...);

The sscanf() function is identical to scanf() except that data is read from the array pointed to by
buf rather than stdin . See scanf for details.

In C99, buf and format are qualified by restrict.

The return value is equal to the number of variables that were actually assigned values. This number
does not include fields that were skipped through the use of the * format command modifier. A
value of zero means that no fields were assigned, and EOF indicates that an error occurred prior to
the first assignment.

Page 348

Example

This program prints the message hello 1 on the screen:

#include <stdio.h>

int main(void)
{
 char str[80];
 int i;

 sscanf("hello 1 2 3 4 5", "%s%d", str, &i);
 printf(''%s %d", str, i);

 return 0;
}

Related Functions

scanf() and fscanf()

tmpfile

#include <stdio.h>
FILE *tmpfile(void);

The tmpfile() function opens a temporary binary file for read/write operations and returns a pointer
to the stream. The function automatically uses a unique filename to avoid conflicts with existing
files.

The tmpfile() function returns a null pointer on failure; otherwise it returns a pointer to the
stream.

The temporary file created by tmpfile() is automatically removed when the file is closed or when
the program terminates.

You can open TMP_MAX temporary files (up to the limit set by FOPEN_MAX).

Example

The following fragment creates a temporary working file:

FILE *temp;

Page 349

if((temp=tmpfile())==NULL) {
 printf (''Cannot open temporary work file.\n");
 exit(1);
}

Related Function

tmpnam()

tmpnam

#include <stdio.h>
char *tmpnam(char *name);

The tmpnam() function generates a unique filename and stores it in the array pointed to by name.
This array must be at least L_tmpnam characters long. (L_tmpnam is defined in <stdio.h>.) The
main purpose of tmpnam() is to generate a temporary filename that is different from any other file
in the current disk directory.

The function can be called up to TMP_MAX times. TMP_MAX is defined in <stdio.h> , and it will
be at least 25. Each time tmpnam() is called, it will generate a new temporary filename.

A pointer to name is returned on success; otherwise a null pointer is returned. If name is null, the
temporary filename is held in a static array owned by tmpnam(), and a pointer to this array is
returned. This array will be overwritten by a subsequent call.

Example

This program displays three unique temporary filenames:

#include <stdio.h>

int main(void)
{
 char name[40];
 int i;

 for(i=0; i<3; i++) {
 tmpnam(name);
 printf("%s ", name);
 }

Page 350

 return 0;
}

Related Function

tmpfile()

ungetc

#include <stdio.h>
int ungetc(int ch, FILE *stream);

The ungetc() function returns the character specified by the low-order byte of ch to the input stream
stream. This character will then be obtained by the next read operation on stream. A call to fflush(),
fseek(), or rewind() undoes an ungetc() operation and discards the character.

A one-character pushback is guaranteed; however, some implementations will accept more.

You may not unget an EOF.

A call to ungetc() clears the end-of-file flag associated with the specified stream. The value of the
file position indicator for a text stream is undefined until all pushed-back characters are read, in
which case it will be the same as it was prior to the first ungetc() call. For binary streams, each
ungetc() call decrements the file position indicator.

The return value is equal to ch on success and EOF on failure.

Example

This function reads words from the input stream pointed to by fp. The terminating character is
returned to the stream for later use. For example, given the input count/10, the first call to
read_word() returns count and puts the ''/" back into the input stream.

void read_word(FILE *fp, char *token)
{
 while(isalpha(*token=getc(fp))) token++;
 ungetc(*token, fp);
}

Related Function

getc()

Page 351

vprintf, vfprintf, vsprintf, and vsnprintf

#include <stdarg.h>
#include <stdio.h>
int vprintf(char *format, va_list arg_ptr);
int vfprintf(FILE *stream, const char *format,
 va_list arg_ptr);
int vsprintf(char *buf, const char *format,
 va_list arg_ptr);
int vsnprintf(char * restrict buf, size_t num,
 const char * restrict format, va_list arg_ptr);

The functions vprintf(), vfprintf(), vsprintf(), and vsnprintf() are functionally equivalent to
printf(), fprintf(), sprintf(), and snprintf(), respectively, except that the argument list has been
replaced by a pointer to a list of arguments. This pointer must be of type va_list, which is defined in
the header <stdarg.h>.

In C99, buf and format are qualified by restrict. The vsnprintf() function was added by C99.

Example

This code fragment shows how to set up a call to vprintf(). The call to va_start() creates a
variable-length argument pointer to the start of the argument list. This pointer must be used in the
call to vprintf(). The call to va_end() clears the variable-length argument pointer.

#include <stdio.h>
#include <stdarg.h>

void print_message(char *format, ...);

int main(void)
{
 print_message(''Cannot open file %s.", "test");

 return 0;
}

void print_message(char *format, ...)
{
 va_list ptr; /* get an arg ptr */

 /* initialize ptr to point to the first argument after the

TE
AM
FL
Y

Team-Fly®

Page 352

 format string
 */
 va_start(ptr, format);

 /* print out message */
 vprintf(format, ptr);

 va_end(ptr);
}

Related Functions

vscanf(), vfscanf(), vsscanf(), va_arg(), va_start(), and va_end
()

vscanf, vfscanf, and vsscanf

#include <stdarg.h>
#include <stdio.h>
int vscanf(char * restrict format, va_list arg_ptr);
int vfscanf(FILE * restrict stream, const char * restrict format,
 va_list arg_ptr);
int vsscanf(char * restrict buf, const char * restrict format,
 va_list arg_ptr);

These functions were added by C99.

The functions vscanf() , vfscanf(), and vsscanf() are functionally equivalent to scanf(), fscanf(),
and sscanf(), respectively, except that the argument list has been replaced by a pointer to a list of
arguments. This pointer must be of type va_list, which is defined in the header <stdarg.h>.

Related Functions

vprintf(), vfprintf(), vsprintf(), va_arg(), va_start(), and va_end()

Page 353

Chapter 14—
String and Character Functions

Page 354

The standard function library has a rich and varied set of string- and character-handling functions.
The string functions operate on null-terminated arrays of characters and require the header
<string.h>. The character functions use the header <ctype.h>.

Because C has no bounds checking on array operations, it is the programmer's responsibility to
prevent an array overflow. Neglecting to do so may cause your program to crash.

In C, a printable character is one that can be displayed on a terminal. In ASCII environments, these
are the characters between a space (0×20) and tilde (0×FE). Control characters have values between
0 and 0×1F, and DEL (0×7F) in ASCII environments.

For historical reasons, the arguments to the character functions are integers, but only the low-order
byte is used; the character functions automatically convert their arguments to unsigned char. Of
course, you are free to call these functions with character arguments because characters are
automatically elevated to integers at the time of the call.

The header <string.h> defines the size_t type, which is the result of the sizeof operator and is some
form of unsigned integer.

This chapter describes only those functions that operate on characters of type char. These are the
functions originally defined by Standard C, and they are, by far, the most widely used and
supported. Wide-character functions that operate on characters of type wchar_t are discussed in
Chapter 19.

C99 adds the restrict qualifier to certain parameters of several functions originally defined by C89.
When this is the case, the function will be shown using its C89 prototype (which is also the
prototype used by C++), but the restrict-qualified parameters will be pointed out in the function's
description.

isalnum

#include <ctype.h>
int isalnum(int ch);

The isalnum() function returns nonzero if its argument is either a letter of the alphabet or a digit. If
the character is not alphanumeric, zero is returned.

Example

This program checks each character read from stdin and reports all alphanumeric characters:

#include <ctype.h>
#include <stdio.h>

Page 355

int main(void)
{
 char ch;

 for(;;) {
 ch = getc(stdin);
 if(ch == '.') break;
 if(isalnum(ch)) printf(''%c is alphanumeric\n", ch);
 }

 return 0;
}

Related Functions

isalpha(), iscntrl(), isdigit(), isgraph() , isprint(), ispunct(), and isspace()

isalpha

#include <ctype.h>
int isalpha(int ch);

The isalpha() function returns nonzero if ch is a letter of the alphabet; otherwise zero is returned.
What constitutes a letter of the alphabet may vary from language to language. For English, these are
the upper- and lowercase letters A through Z.

Example

This program checks each character read from stdin and reports all

#include <ctype.h>
#include <stdio.h>

int main(void)
{
 char ch;

 for(;;) {
 ch = getchar();
 if(ch == '.') break;

Page 356

 if(isalpha(ch)) printf("%c is a letter\n", ch);
 }

 return 0;
}

Related Functions

isalnum(), iscntrl(), isdigit(), isgraph(), isprint(), ispunct(), and isspace()

isblank

#include <ctype.h>
int isblank(int ch);

The isblank() function was added by C99.

The isblank() function returns nonzero if ch is a character for which isspace() returns true and is
used to separate words. Thus, for English, the blank characters are space and horizontal tab.

Example

This program checks each character read from stdin and reports the number of characters that
separate words:

#include <ctype.h>
#include <stdio.h>

int main(void)
{
 char ch;

 for(;;) {
 ch = getchar();
 if(ch == '.') break;
 if(isblank(ch)) printf(''%c is a word separator\n", ch);
 }

 return 0;
}

Page 357

Related Functions

isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), ispunct(), and isspace()

iscntrl

#include <ctype.h>
int iscntrl(int ch);

The iscntrl() function returns nonzero if ch is a control character, which in ASCII environments is a
value between zero and 0×1F, or equal to 0×7F (DEL). Otherwise zero is returned.

Example

This program checks each character read from stdin and reports all control characters:

#include <ctype.h>
#include <stdio.h>

int main(void)
{
 char ch;

 for(;;) {
 ch = getchar();
 if(ch == '.') break;
 if(iscntrl(ch)) printf(''%c is a control char\n", ch);
 }

 return 0;
}

Related Functions

isalnum(), isalpha(), isdigit(), isgraph(), isprint(), ispunct(), and isspace()

Page 358

isdigit

#include <ctype.h>
int isdigit(int ch);

The isdigit() function returns nonzero if ch is a digit, that is, 0 through 9. Otherwise zero is
returned.

Example

This program checks each character read from stdin and reports all digits:

#include <ctype.h>
#include <stdio.h>

int main(void)
{
 char ch;

 for(;;) {
 ch = getchar();
 if(ch == '.') break;
 if(isdigit(ch)) printf(''%c is a digit\n", ch);
 }

 return 0;
}

Related Functions

isalnum(), isalpha(), iscntrl(), isgraph(), isprint(), ispunct(), and isspace()

isgraph

#include <ctype.h>
int isgraph(int ch);

The isgraph() function returns nonzero if ch is any printable character other than a space; otherwise
zero is returned. For ASCII environments, printable characters are in the range 0×21 through 0×7E.

Page 359

Example

This program checks each character read from stdin and reports all printable characters:

#include <ctype.h>
#include <stdio.h>

int main(void)
{
 char ch;

 for(;;) {
 ch = getchar();
 if(isgraph(ch)) printf(''%c is printable\n", ch);
 if(ch == '.') break;
 }

 return 0;
}

Related Functions

isalnum(), isalpha(), iscntrl(), isdigit(), isprint(), ispunct(), and isspace()

islower

#include <ctype.h>
int islower(int ch);

The islower() function returns nonzero if ch is a lowercase letter; otherwise zero is returned.

Example

This program checks each character read from stdin and reports all lowercase letters:

#include <ctype.h>
#include <stdio.h>

int main(void)
{

Page 360

 char ch;

 for(;;) {
 ch = getchar();
 if(ch == '.') break;
 if(islower(ch)) printf(''%c is lowercase\n", ch);
 }

 return 0;
}

Related Function

isupper()

isprint

#include <ctype.h>
int isprint(int ch);

The isprint() function returns nonzero if ch is a printable character, including a space; otherwise
zero is returned. In ASCII environments, printable characters are in the range 0×20 through 0×7E.

Example

This program checks each character read from stdin and reports all printable characters:

#include <ctype.h>
#include <stdio.h>

int main(void)
{
 char ch;

 for(;;) {
 ch = getchar();
 if(isprint(ch)) printf("%c is printable\n",ch);
 if(ch == '.') break;
 }

Page 361

 return 0;
}

Related Functions

isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), ispunct(), and isspace()

ispunct

#include <ctype.h>
int ispunct(int ch);

The ispunct() function returns nonzero if ch is a punctuation character; otherwise zero is returned.
The term ''punctuation," as defined by this function, includes all printing characters that are neither
alphanumeric nor a space.

Example

This program checks each character read from stdin and reports all punctuation:

#include <ctype.h>
#include <stdio.h>

int main (void)
{
 char ch;

 for(;;) {
 ch = getchar();
 if(ispunct(ch)) printf("%c is punctuation\n", ch);
 if(ch == '.') break;
 }

 return 0;
}

Related Functions

isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), and isspace()

TE
AM
FL
Y

Team-Fly®

Page 362

isspace

#include <ctype.h>
int isspace(int ch);

The isspace() function returns nonzero if ch is a white-space character, including space, horizontal
tab, vertical tab, formfeed, carriage return, or newline character; otherwise zero is returned.

Example

This program checks each character read from stdin and reports all white-space characters:

#include <ctype.h>
#include <stdio.h>

int main(void)
{
 char ch;

 for(;;) {
 ch = getchar();
 if(isspace(ch)) printf(''%c is white space\n", ch);
 if(ch == '.') break;
 }

 return 0;
}

Related Functions

isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), and ispunct()

isupper

#include <ctype.h>
int isupper(int ch);

The isupper() function returns nonzero if ch is an uppercase letter; otherwise zero is returned.

Page 363

Example

This program checks each character read from stdin and reports all uppercase letters:

#include <ctype.h>
#include <stdio.h>

int main (void)
{
 char ch;0

 for(;;) {
 ch = getchar();
 if(ch == '.') break;
 if(isupper(ch)) printf(''%
c is uppercase\n", ch);
 }

 return 0;
}

Related Function

islower()

isxdigit

#include <ctype.h>
int isxdigit(int ch);

The isxdigit() function returns nonzero if ch is a hexadecimal digit; otherwise zero is returned. A
hexadecimal digit will be in one of these ranges: A–F, a–f, or 0–9.

Example

This program checks each character read from stdin and reports all hexadecimal digits:

#include <ctype.h>
#include <stdio.h>

int main(void)
{

Page 364

 char ch;

 for(;;) {
 ch = getchar();
 if(ch == '.') break;
 if(isxdigit(ch)) printf(''%c is hexadecimal digit\n", ch);
 }

 return 0;
}

Related Functions

isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), ispunct(), and isspace()

memchr

#include <string.h>
void *memchr(const void *buffer, int ch, size_t count);

The memchr() function searches the array pointed to by buffer for the first occurrence of ch in the
first count characters.

The memchr() function returns a pointer to the first occurrence of ch in buffer, or it returns a null
pointer if ch is not found.

Example

This program prints is a test on the
screen:

#include <stdio.h>
#include <string.h>

int main(void)
{
 char *p;

 p = memchr("this is a test", ' ', 14);
 printf(p);

 return 0;
}

Page 365

Related Functions

memcpy() and isspace()

memcmp

#include <string.h>
int memcmp(const void *buf1, const void *buf2, size_t count);

The memcmp() function compares the first count characters of the arrays pointed to by buf1 and
buf2.

The memcmp() function returns an integer that is interpreted as indicated here:

Value Meaning

Less than zero buf1 is less than buf2

Zero buf1 is equal to buf2

Greater than zero buf1 is greater than buf2

Example

This program shows the outcome of a comparison of its two command line
arguments:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 int outcome, len, l1, l2;

 if(argc!=3) {
 printf (''Incorrect number of arguments.");
 exit(1);
 }

 /* find the length of shortest string */
 l1 = strlen(argv[1]);
 l2 = strlen(argv[2]);
 len = l1 < l2 ? l1:l2;

Page 366

 outcome = memcmp(argv[l], argv[2], len);
 if(!outcome) printf(''Equal");
 else if(outcome<0) printf("First less than second.");
 else printf("First greater than second.");

 return 0;
}

Related Functions

memchr(), memcpy(), and strcmp()

memcpy

#include <string.h>
void *memcpy(void *to, const void *from, size_t count);

The memcpy() function copies count characters from the array pointed to by from into the array
pointed to by to. If the arrays overlap, the behavior of memcopy() is undefined.

In C99, to and from are qualified by restrict.

The memcpy() function returns a pointer to to.

Example

This program copies the contents of buf1 into buf2 and displays the result:

#include <stdio.h>
#include <string.h>

#define SIZE 80

int main(void)
{
 char buf1[SIZE], buf2[SIZE];

 strcpy(buf1, "When, in the course of . . .");
 memcpy(buf2, buf1, SIZE);
 printf(buf2);

 return 0;
}

Page 367

Related Function

memmove()

memmove

#include <string.h>
void *memmove(void *to, const void *from, size_t count);

The memmove() function copies count characters from the array pointed to by from into the array
pointed to by to. If the arrays overlap, the copy will take place correctly, placing the correct contents
into to but leaving from modified.

The memmove() function returns a pointer to to.

Example

This program shifts the contents of str down 10 places and displays the result:

#include <stdio.h>
#include <string.h>

#define SIZE 80

int main(void)
{
 char str[SIZE], *p;

 strcpy(str, "When, in the course of . . .");
 p = str + 10;

 memmove(str, p, SIZE);
 printf(''result after shift: %s", str);

 return 0;
}

Related Function

memcpy()

Page 368

memset

#include <string.h>
void *memset(void *buf, int ch, size_t count);

The memset() function copies the low-order byte of ch into the first count characters of the array
pointed to by buf. It returns buf.

The most common use of memset() is to initialize a region of memory to some known value.

Example

This fragment initializes to null the first 100 bytes of the array pointed to by buf. Then it sets the
first 10 bytes to X and displays the string XXXXXXXXXX .

memset(buf, '\0', 100);
memset(buf, 'X', 10);
printf(buf);

Related Functions

memcmp(), memcpy(), and memmove()

strcat

#include <string.h>
char *strcat(char *str1, const char *str2);

The strcat() function concatenates a copy of str2 to str1 and terminates str1 with a null. The null
terminator originally ending str1 is overwritten by the first character of str2. The string str2 is
untouched by the operation. If the arrays overlap, the behavior of strcat() is undefined.

In C99, str1 and str2 are qualified by restrict.

The strcat() function returns str1.

Remember, no bounds checking takes place, so it is the programmer's responsibility to ensure that
str1 is large enough to hold both its original contents and those of str2.

Page 369

Example

This program appends the first string read from stdin to the second. For example, assuming the user
enters hello and there, the program prints therehello.

#include <stdio.h>
#include <string.h>

int main(void)
{
 char s1[80], s2[80];

 gets (s1);
 gets (s2);

 strcat(s2, s1);
 printf(s2);

 return 0;
}

Related Functions

strchr(), strcmp(), and strcpy()

strchr

#include <string.h>
char *strchr(const char *str, int ch);

The strchr() function returns a pointer to the first occurrence of the low-order byte of ch in the
string pointed to by str. If no match is found, a null pointer is returned.

Example

This program prints the string is a test:

#include <stdio.h>
#include <string.h>

Page 370

int main(void)
{
 char *p;

 p = strchr("this is a test", ' ');
 printf(p);

 return 0;
}

Related Functions

strpbrk(), strspn(), strstr(), and strtok()

strcmp

#include <string.h>
int strcmp(const char *str1, const char *str2);

The strcmp() function lexicographically compares two strings and returns an integer based on the
outcome as shown here:

Value Meaning

Less than zero str1 is less than str2

Zero str1 is equal to str2

Greater than zero str1 is greater than str2

Example

You can use the following function as a password-verification routine. It returns zero on failure and
1 on success.

int password(void)
 char s[80];

 printf("Enter password: ");
 gets(s);

Page 371

 if(strcmp(s, "pass")) {
 printf(''Invalid Password\n");
 return 0;
 }
 return 1;
}

Related Functions

strchr(), strcpy() , and strncmp()

strcoll

#include <string.h>
int strcoll(const char *str1, const char *str2);

The strcoll() function compares the string pointed to by str1 with the one pointed to by str2. The
comparison is performed in accordance with the locale specified using the setlocale() function. (See
setlocale() for details.)

The strcoll() function returns an integer that is interpreted as indicated here:

Value Meaning

Less than zero str1 is less than str2

Zero str1 is equal to str2

Greater than zero str1 is greater than str2

Example

This code fragment prints Equal on the screen:

if(strcoll("hi", "hi")) printf("Equal");

Related Functions

memcmp() and strcmp()

TE
AM
FL
Y

Team-Fly®

Page 372

strcpy

#include <string.h>
char *strcpy(char *str1, const char *str2);

The strcpy() function copies the contents of str2 into str1. str2 must be a pointer to a null-
terminated string. The strcpy() function returns a pointer to str1.

In C99, str1 and str2 are qualified by restrict.

If str1 and str2 overlap, the behavior of strcpy() is undefined.

Example

The following code fragment copies hello into string str:

char str[80];
strcpy
(str, ''hello");

Related Functions

memcpy(), strchr(), strcmp(), and strcmp()

strcspn

#include <string.h>
size_t strcspn(const char *str1, const char *str2);

The strcspn() function returns the length of the initial substring of the string pointed to by str1 that
is made up of only those characters not contained in the string pointed to by str2. Stated differently,
strcspn() returns the index of the first character in the string pointed to by str1 that matches any of
the characters in the string pointed to by str2.

Example

The following program prints the number 8:

#include <string.h>
#include <stdio.h>

int main(void)
{
 int len;

Page 373

 len = strcspn("this is a test", "ab");
 printf(''%d", len);

 return 0;
}

Related Functions

strrchr(), strpbrk(), strstr(), and strtok()

strerror

#include <string.h>
char *strerror(int errnum);

The strerror() function returns a pointer to an implementation-defined string associated with the
value of errnum. Under no circumstances should you modify the string.

Example

This code fragment prints an implementation-defined error message on the screen:

printf(strerror(10));

strlen

#include <string.h>
size_t strlen(const char *str);

The strlen() function returns the length of the null-terminated string pointed to by str. The null
terminator is not counted.

Example

The following code fragment prints 5 on the screen:

printf("%d", strlen("hello"));

Page 374

Related Functions

memcpy(), strchr(), strcmp(), and strncmp()

strncat

#include <string.h>
char *strncat(char *str1, const char *str2, size_t count);

The strncat() function concatenates not more than count characters of the string pointed to by str2
to the string pointed to by str1 and terminates str1 with a null. The null terminator originally ending
str1 is overwritten by the first character of str2. The string str2 is untouched by the operation. If the
strings overlap, the behavior is undefined.

In C99, str1 and str2 are qualified by restrict.

The strncat() function returns str1.

Remember that no bounds checking takes place, so it is the programmer's responsibility to ensure
that str1 is large enough to hold both its original contents and also those of str2.

Example

This program appends the first string read from stdin to the second and prevents an array overflow
from occurring to s1. For example, assuming the user enters hello and there, the program prints
therehello.

#include <stdio.h>
#include <string.h>

int main(void)
{
 char s1[80], s2[80];
 unsigned int len;

 gets(s1);
 gets(s2);

 /* compute how many chars will actually fit */
 len = 79-strlen(s2);

Page 375

 strncat(s2, s1, len);
 printf(s2);

 return 0;
}

Related Functions

strcat(), strnchr(), strncmp(), and strncpy()

strncmp

#include <string.h>
int strncmp(const char *str1, const char *str2, size_t count);

The strncmp() function lexicographically compares not more than count characters from the two
null-terminated strings and returns an integer based on the outcome, as shown here:

Value Meaning

Less than zero str1 is less than str2

Zero str1 is equal to str2

Greater than zero str1 is greater than str2

If there are less than count characters in either string, the comparison ends when the first null is
encountered.

Example

The following function compares the first eight characters of two command line arguments and
reports if they are equal:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(int argc, char *argv[])

Page 376

{
 if(argc!=3) {
 printf(''Incorrect number of arguments.");
 exit(1);
 }

 if(!strncmp(argv[1], argv[2], 8))
 printf("The strings are the same.\n");

 return 0;
}

Related Functions

strcmp(), strchr(), and strncpy()

strncpy

#include <string.h>
char *strncpy(char *str1, const char *str2, size_t count);

The strncpy() function copies up to count characters from the string pointed to by str2 into the
array pointed to by str1. str2 must be a pointer to a null-terminated string.

In C99, str1 and str2 are qualified by restrict.

If str1 and str2 overlap, the behavior of strncpy() is undefined.

If the string pointed to by str2 has less than count characters, nulls will be appended to the end of
str1 until count characters have been copied.

Alternatively, if the string pointed to by str2 is longer than count characters, the resultant array
pointed to by str1 will not be null terminated.

The strncpy() function returns a pointer to str1.

Example

The following code fragment copies at most 79 characters of str1 into str2, thus ensuring that no
array boundary overflow occurs.

char str1[128], str2[80];

gets(str1);
strncpy(str2, str1, 79);

Page 377

Related Functions

memcpy(), strchr(), strncat(), and strncmp()

strpbrk

#include <string.h>
char *strpbrk(const char *str1, const char *str2);

The strpbrk() function returns a pointer to the first character in the string pointed to by str1 that
matches any character in the string pointed to by str2. The null terminators are not included. If there
are no matches, a null pointer is returned.

Example

This program prints the message s is a test on the screen:

#include <stdio.h>
#include <string.h>

int main (void)
{
 char *p;

 p = strpbrk("this is a test", " absj");
 printf (p);

 return 0;
}

Related Functions

strspn(), strrchr(), strstr(), and strtok()

strrchr

#include <string.h>
char *strrchr(const char *str, int ch);

Page 378

The strrchr() function returns a pointer to the last occurrence of the low-order byte of ch in the
string pointed to by str. If no match is found, a null pointer is returned.

Example

This program prints the string is a test:

#include <string.h>
#include <stdio.h>

int main(void)
{
 char *p;

 p = strrchr("this is a test", 'i');
 printf(p);

 return 0;
}

Related Functions

strpbrk(), strspn(), strstr(), and strtok()

strspn

#include <string.h>
size_t strspn(const char *str1, const char *str2);

The strspn() function returns the length of the initial substring of the string pointed to by str1 that is
made up of only those characters contained in the string pointed to by str2. Stated differently, strspn
() returns the index of the first character in the string pointed to by str1 that does not match any of
the characters in the string pointed to by str2.

Example

This program prints 8:

#include <string.h>
#include <stdio.h>

Page 379

int main(void)
{
 int len;

 len = strspn("this is a test", "siht ");
 printf(''%d", len);

 return 0;
}

Related Functions

strpbrk(), strrchr(), strstr(), and strtok()

strstr

#include <string.h>
char *strstr(const char *str1, const char *str2);

The strstr() function returns a pointer to the first occurrence in the string pointed to by str1 of the
string pointed to by str2. It returns a null pointer if no match is found.

Example

This program displays the message is is a test:

#include <string.h>
#include <stdio.h>

int main(void)
{
 char *p;

 p = strstr("this is a test", "is");
 printf(p);

 return 0;
}

Page 380

Related Functions

strchr(), strcspn(), strpbrk(), strspn(), strtok(), and strrchr()

strtok

#include <string.h>
char *strtok(char *str1, const char *str2);

The strtok() function returns a pointer to the next token in the string pointed to by str1. The
characters making up the string pointed to by str2 are the delimiters that determine the token. A null
pointer is returned when there is no token to return.

In C99, str1 and str2 are qualified by restrict.

To tokenize a string, the first call to strtok() must have str1 point to the string being tokenized.
Subsequent calls must use a null pointer for str1. In this way the entire string can be reduced to its
tokens.

It is possible to use a different set of delimiters for each call to strtok
().

Example

This program tokenizes the string ''The summer soldier, the sunshine patriot," with spaces and
commas being the delimiters. The output is

The | summer | soldier | the | sunshine | patriot

#include <stdio.h>
#include <string.h>

int main(void)
{
 char *p;

 p = strtok("The summer soldier, the sunshine patriot", " ");
 printf(p);
 do {
 p = strtok('\0', ", ");
 if(p) printf("|%s", p);
 } while(p);

 return 0;
}

Page 381

Related Functions

strchr(), strcspn(), strpbrk(), strrchr(), and strspn()

strxfrm

#include <string.h>
size_t strxfrm(char *str1, const char *str2, size_t count);

The strxfrm() function transforms the string pointed to by str2 so that it can be used by the strcmp
() function and puts the result into the string pointed to by str1. After the transformation, the
outcome of a strcmp() using str1 and a strcoll() using the original string pointed to by str2 will be
the same. Not more than count characters are written to the array pointed to by str1.

In C99, str1 and str2 are qualified by restrict.

The strxfrm() function returns the length of the transformed string.

Example

The following line transforms the first 10 characters of the string pointed to by s2 and puts the result
in the string pointed to by s1.

strxfrm(s1, s2, 10);

Related Function

strcoll()

tolower

#include <ctype.h>
int tolower(int ch);

The tolower() function returns the lowercase equivalent of ch if ch is a letter; otherwise ch is
returned unchanged.

TE
AM
FL
Y

Team-Fly®

Page 382

Example

This code fragment displays q:

putchar(tolower('Q'));

Related Function

toupper()

toupper

#include <ctype.h>
int toupper(int ch);

The toupper() function returns the uppercase equivalent of ch if ch is a letter; otherwise ch is
returned unchanged.

Example

This code displays A:

putchar(toupper('a'));

Related Function

tolower()

Page 383

Chapter 15—
Mathematical Functions

Page 384

C99 has greatly increased the size of the C mathematical library. The C89 standard defined just 22
mathematical functions. C99 has more than tripled this number. Expanding the usability of C for
numeric processing was one of the primary goals of the C99 committee. It is safe to say that they
succeeded!

All the math functions require the header <math.h>. In addition to declaring the math functions, this
header defines one or more macros. For C89, the only macro defined by <math.h> is HUGE_VAL,
which is a double value indicating that an overflow has occurred. C99 defines several more,
including

HUGE_VALF A float version of HUGE_VAL

HUGE_VALL A long double version of HUGE_VAL

INFINITY A value representing infinity

math_errhandling Contains either MATH_ERRNO and/or
MATH_ERREXCEPT

MATH_ERRNO erno used to report errors

MATH_ERREXCEPT Floating-point exception raised to report errors

NAN Not a number

C99 defines several function-like macros that classify a value. They are shown here.

int fpclassify(fpval) Returns FP_INFINITE, FP_NAN, FP_NORMAL ,
FP_SUBNORMAL , or FP_ZERO, depending upon the
value in fpval. These macros are defined by <math.h>.

int isfinite(fpval) Returns nonzero if fpval is finite.

int isinf(fpval) Returns nonzero if fpval is infinite.

int isnan(fpval) Returns nonzero if fpval is not a number.

int isnormal(fpval) Returns nonzero if fpval is a normal value.

int signbit(fpval) Returns nonzero if fpval is negative (that is, its sign bit is
set).

C99 defines the following comparison macros. For each, a and b must be floating-point types.

int isgreater(a, b) Returns nonzero if a is greater than b.

int isgreaterequal(a, b) Returns nonzero if a is greater than or equal to b.

int isless(a, b) Returns nonzero if a is less than b.

Page 385

int islessequal(a, b) Returns nonzero if a is less than or equal to b.

int islessgreater(a, b) Returns nonzero if a is greater than or less than b.

int isunordered(a, b) Returns 1 if a and b are unordered relative to each other; zero
is returned if a and b are ordered.

The reason for these macros is that they gracefully handle values that are not numbers, without
causing a floating-point exception.

The macros EDOM and ERANGE are also used by the math functions. These macros are defined
in the header <errno.h>.

C89 and C99 handle errors somewhat differently. For C89, if an argument to a math function is not
in the domain for which it is defined, an implementation-defined value is returned, and the built-in
global integer variable errno is set equal to EDOM. For C99, a domain error also causes an
implementation-defined value to be returned. However, the value of math_errhandling determines
what other actions take place. If math_errhandling contains MATH_ERRNO, then the built-in
global integer variable errno is set equal to EDOM. If math_errhandling contains
MATH_ERREXCEPT, a floating-point exception is raised.

For C89, if a function produces a result that is too large to be represented, an overflow occurs. This
causes the function to return HUGE_VAL, and errno is set to ERANGE , indicating a range error.
If an underflow happens, the function returns zero and sets errno to ERANGE. For C99, an
overflow error also causes the function to return HUGE_VAL, and an underflow also causes the
function to return zero. Then, if math_errhandling contains MATH_ERRNO, errno is set to
ERANGE, indicating a range error. If math_errhandling contains MATH_ERREXCEPT, a
floating-point exception is raised.

In C89, the mathematical functions are specified as operating on values of type double, and
returning double values. C99 added float and long double versions of these functions, which use
the f and 1 suffixes, respectively. For example, C89 defines sin() as shown here:

double sin(double arg);

C99 keeps sin() and adds sinf() and sinl(), shown next.

float sinf(float arg);

long double sinl(long double arg);

The operation of all three functions is the same except for the data upon which they operate. The
addition of the f and 1 math functions allows you to use the version that precisely fits the data upon
which you are operating.

Page 386

Since C99 has added so many new functions, it will be helpful to list those functions that are
supported by C89. They are shown here:

acos cos fmod modf tan

asin cosh frexp pow tanh

atan exp ldexp sin

atan2 fabs log sinh

ceil floor log10 sqrt

Furthermore, as just explained, only the double version of these functions is supported by
C89.

One last point: Throughout, all angles are in radians.

acos

#include <math.h>
float acosf(float arg);
double acos(double arg);
long double acosl(long double arg);

acosf() and acosl() were added by C99.

The acos() family of functions returns the arc cosine of arg. The argument must be in the range –1
to 1; otherwise a domain error will occur.

Example

This program prints the arc cosines of the values –1 through 1, in increments of one
tenth:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double val = -1.0;

 do {

Page 387

 printf("Arc cosine of %f is %f.\n", val, acos(val));
 val += 0.1;
 } while(val<=1.0);

 return 0;
}

Related Functions

asin(), atan(), atan2(), sin(), cos(), tan(), sinh(), cosh(), and tanh()

acosh

#include <math.h>
float acoshf(float arg);
double acosh(double arg);
long double acoshl(long double arg);

acosh(), acoshf(), and acoshl() were added by C99.

The acosh() family of functions returns the arc hyperbolic cosine of arg. The argument must be
zero or greater; otherwise a domain error will occur.

Related Functions

asinh(), atanh(), sinh(), cosh(), and tanh()

asin

#include <math.h>
float asinf(float arg);
double asin(double arg);
long double asinl(long double arg);

asinf() and asinl() were added by C99.

The asin() family of functions returns the arc sine of arg. The argument must be in the range –1 to
1; otherwise a domain error will occur.

Page 388

Example

This program prints the arc sines of the values –1 through 1, in increments of one tenth:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double val = -1.0;

 do {
 printf(''Arc sine of %f is %f.\n", val, asin(val));
 val += 0.1;
 } while(val<=1.0);

 return 0;
}

Related Functions

acos(), atan(), atan2(), sin(), cos(), tan(), sinh(), cosh(), and tanh()

asinh

#include <math.h>
float asinhf(float arg);
double asinh(double arg);
long double asinhl(long double arg);

asinh(), asinhf(), and asinhl() were added by C99.

The asinh() family of functions returns the arc hyperbolic sine of arg.

Related Functions

acosh(), atanh(), sinh(), cosh(), and tanh()

atan

#include <math.h>
float atanf(float arg);

Page 389

double atan(double arg);
long double atanl(long double arg);

atanf() and atanl() were added by C99.

The atan() family of functions returns the arc tangent of arg.

Example

This program prints the arc tangents of the values –1 through 1, in increments of one tenth:

#include <math.h>
#include <stdio.h>

int main (void)
{
 double val = -1.0;

 do {
 printf(''Arc tangent of %f is %f.\n", val, atan(val));
 val += 0.1;
 } while(val<=1.0);

 return 0;
}

Related Functions

asin(), acos(), atan2(), tan(), cos(), sin(), sinh(), cosh(), and tanh()

atanh

#include <math.h>
float atanhf(float arg);
double atanh(double arg);
long double atanhl(long double arg);

atanh(), atanhf(), and atanhl() were added by C99.

The atanh() family of functions returns the arc hyperbolic tangent of arg. This argument must be in
the range –1 to 1; otherwise a domain error will occur. If arg equals 1 or –1, a range error is
possible.

Page 390

Related Functions

acosh(), asinh(), sinh(), cosh(), and tanh()

atan2

#include <math.h>
float atan2f(float a, float b);
double atan2(double a, double b);
long double atan21(long double a, long double b);

atan2f() and atan21() were added by C99.

The atan2() family of functions returns the arc tangent of a/b. The functions use the signs of its
arguments to compute the quadrant of the return value.

Example

This program prints the arc tangents of y, from –1 through 1, in increments of one tenth:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double val = -1.0;

 do {
 printf(''Atan2 of %f is %f.\n", val, atan2(val,1.0));
 val += 0.1;
 } while(val<=1.0);

 return 0;
}

Related Functions

asin(), acos(), atan(), tan(), cos(), sin(), sinh(), cosh(), and tanh()

TE
AM
FL
Y

Team-Fly®

Page 391

cbrt

#include <math.h>
float cbrtf(float num);
double cbrt(double num);
long double cbrtl(long double num);

cbrt(), cbrtf(), and cbrtl() were added by C99.

The cbrt() family of functions returns the cube root of num.

Example

This code fragment prints 2 on the screen:

printf("%f", cbrt(8));

Related Function

sqrt()

ceil

#include <math.h>
float ceilf(float num);
double ceil(double num);
long double ceill(long double num);

ceilf() and ceill() were added by C99.

The ceil() family of functions returns the smallest integer (represented as a floating-point value) not
less than num. For example, given 1.02, ceil() would return 2.0. Given –1.02, ceil() would return –
1.

Example

This code fragment prints 10 on the screen:

printf("%f", ceil(9.9));

Page 392

Related Functions

floor() and fmod()

copysign

#include <math.h>
float copysignf(float val, float signval);
double copysign(double val, double signval);
long double copysignl(long double val, long double signval);

copysign(), copysignf(), and copysignl() were added by C99.

The copysign() family of functions gives val the same sign as the value passed in signval, and
return the result. Thus, the value returned has a magnitude equal to val, but with the same sign as
that of signval .

Related Function

fabs()

cos

#include <math.h>
float cosf(float arg);
double cos(double arg);
long double cosl(long double arg);

cosf() and cosl() were added by C99.

The cos() family of functions returns the cosine of arg. The value of arg must be in radians.

Example

This program prints the cosines of the values –1 through 1, in increments of one tenth:

#include <math.h>
#include <stdio.h>

Page 393

int main(void)
{
 double val = -1.0;

 do {
 printf(''Cosine of %f is %f.\n", val, cos
(val));
 val += 0.1;
 } while(val<=1.0);

 return 0;
}

Related Functions

asin(), acos(), atan2(), atan(), tan(), sin(), sinh(), cos(), and tanh()

cosh

#include <math.h>
float coshf(float arg);
double cosh(double arg);
long double coshl(long double arg);

coshf() and coshl() were added by C99.

The cosh() family of functions returns the hyperbolic cosine of arg.

Example

The following program prints the hyperbolic cosines of the values –1 through 1, in increments of
one tenth:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double val = -1.0;

 do {

Page 394

 printf("Hyperbolic cosine of %f is %f.\n", val, cosh(val));
 val += 0.1;
 } while(val<=1.0);

 return 0;
}

Related Functions

asin(), acos(), atan2(), atan(), tan(), sin(), and tanh()

erf

#include <math.h>
float erff(float arg);
double erf(double arg);
long double erfl(long double arg);

erf(), erff(), and erfl() were added by C99.

The erf() family of functions returns the error function of arg.

Related Function

erfc()

erfc

#include <math.h>
float erfcf(float arg);
double erfc(double arg);
long double erfcl(long double arg);

erfc(), erfcf(), and erfcl() were added by C99.

The erfc() family of functions returns the complementary error function of arg.

Related Function

erf()

Page 395

exp

#include <math.h>
float expf(float arg);
double exp(double arg);
long double expl(long double arg);

expf() and expl() were added by C99.

The exp() family of functions returns the natural logarithm e raised to the arg power.

Example

This fragment displays the value of e (rounded to 2.718282):

printf("Value of e to the first: %f.", exp(1.0));

Related Functions

exp2() and log()

exp2

#include <math.h>
float exp2f(float arg);
double exp2(double arg);
long double exp2l(long double arg);

exp2(), exp2f(), and exp2l() were added by C99.

The exp2() family of functions returns 2 raised to the arg power.

Related Functions

exp() and log()

expm1

#include <math.h>
float expm1f(float arg);

Page 396

double expm1(double arg);
long double expm1l(long double arg);

expm1(), expm1f(), and expm1l() were added by C99.

The expm1() family of functions returns the natural logarithm e raised to the arg power, minus 1.
That is, it returns earg – 1.

Related Functions

exp() and log()

fabs

#include <math.h>
float fabsf(float num);
double fabs(double num);
long double fabsl(long double num);

fabsf() and fabsl() were added by C99.

The fabs() family of functions returns the absolute value of num.

Example

This program prints 1.0 1.0 on the screen:

#include <math.h>
#include <stdio.h>

int main(void)
{
 printf(''%1.1f %1.1f", fabs(1.0), fabs(-1.0));

 return 0;
}

Related Function

abs()

Page 397

fdim

#include <math.h>
float fdimf(float a, float b);
double fdim(double a, double b);
long double fdiml(long double a, long double b);

fdim(), fdimf(), and fdiml() were defined by C99.

The fdim() family of functions returns zero if a is less than or equal to b. Otherwise, the result of a
– b is returned.

Related Functions

remainder() and remquo()

floor

#include <math.h>
float floorf(float num);
double floor(double num);
long double floorl(long double num);

floorf() and floorl() were added by C99.

The floor() family of functions returns the largest integer (represented as a floating-point value) not
greater than num. For example, given 1.02, floor() would return 1.0. Given –1.02, floor() would
return –2.0.

Example

This code fragment prints 10 on the screen:

printf("%f", floor(10.9));

Related Functions

ceil() and fmod()

Page 398

fma

#include <math.h>
float fmaf(float a, float b, float c);
double fma(double a, double b, double c);
long double fmal(long double a, long double b, long double c);

fma(), fmaf(), and fmal() were defined by C99.

The fma() family of functions returns the value of a * b + c. Rounding takes place only once, after
the entire operation has been completed.

Related Functions

round(), lround(), and llround()

fmax

#include <math.h>
float fmaxf(float a, float b);
double fmax(double a, double b);
long double fmaxl(long double a, long double b);

fmax(), fmaxf(), and fmaxl() were defined by C99.

The fmax() family of functions returns the greater of a and b.

Related Function

fmin()

fmin

#include <math.h>
float fminf(float a, float b);
double fmin(double a, double b);
long double fminl(long double a, long double b);

fmin(), fminf(), and fminl() were defined by C99.

The fmin() family of functions returns the lesser of a and b.

Page 399

Related Function

fmax()

fmod

#include <math.h>
float fmodf(float a, float b);
double fmod(double a, double b);
long double fmodl(long double a, long double b);

fmodf() and fmodl() were added by C99.

The fmod() family of functions returns the remainder of a/b.

Example

The following program prints 1.0 on the screen, which is the remainder of 10/3:

#include <math.h>
#include <stdio.h>

int main(void)
{
 printf(''%1.1f", fmod(10.0, 3.0));

 return 0;
}

Related Functions

ceil(), floor(), and fabs()

frexp

#include <math.h>
float frexpf(float num, int *exp);
double frexp(double num, int *exp);
long double frexpl(long double num, int *exp);

frexpf() and frexpl() were added by C99.

Page 400

The frexp() family of functions decomposes the number num into a mantissa in the range 0.5 to less
than 1, and an integer exponent such that num = mantissa * 2exp. The mantissa is returned by the
function, and the exponent is stored at the variable pointed to by exp.

Example

This code fragment prints 0.625 for the mantissa and 4 for the exponent:

int e;
double f;

f = frexp(10.0, &e);
printf(''%f %d", f, e);

Related Function

ldexp()

hypot

#include <math.h>
float hypotf(float side1, float side2);
double hypot(double side1, double side2);
long double hypotl(long double side1, long double side2);

hypot(), hypotf(), and hypotl() were added by C99.

The hypot() family of functions returns the length of the hypotenuse given the lengths of the two
opposing sides. That is, the functions return the square root of the sum of the squares of side1 and
side2.

Related Function

sqrt()

ilogb

#include <math.h>
int ilogbf(float num);

TE
AM
FL
Y

Team-Fly®

Page 401

int ilogb(double num);
int ilogbl(long double num);

ilogb(), ilogbf(), and ilogbl() were added by C99.

The ilogb() family of functions returns the exponent of num. This value is returned as an int value.

Related Function

logb()

ldexp

#include <math.h>
float ldexpf(float num, int exp);
double ldexp(double num, int exp);
long double ldexpl(long double num, int exp);

ldexpf() and ldexpl() were added by C99.

The ldexp() family of functions returns the value of num * 2exp.

Example

This program displays the number 4:

#include <math.h>
#include <stdio.h>

int main(void)
{
 printf(''%f", ldexp
(1,2));

 return 0;
}

Related Functions

frexp() and modf()

Page 402

lgamma

#include <math.h>
float lgammaf(float arg);
double lgamma(double arg);
long double lgammal(long double arg);

lgamma(), lgammaf(), and lgammal() were added by C99.

The lgamma() family of functions computes the absolute value of the gamma of arg and returns its
natural logarithm.

Related Function

tgamma()

llrint

#include <math.h>
long long int llrintf(float arg);
long long int llrint(double arg);
long long int llrintl(long double arg);

llrint(), llrintf(), and llrintl() were added by C99.

The llrint() family of functions returns the value of arg rounded to the nearest long long integer.

Related Functions

lrint() and rint()

llround

#include <math.h>
long long int llroundf(float arg);
long long int llround(double arg);
long long int llroundl(long double arg);

llround(), llroundf(), and llroundl() were added by C99.

Page 403

The llround() family of functions returns the value of arg rounded to the nearest long long integer.
Values precisely between two values, such as 3.5, are rounded up.

Related Functions

lround() and round()

log

#include <math.h>
float logf(float num);
double log(double num);
long double logl(long double num);

logf() and logl() were added by C99.

The log() family of functions returns the natural logarithm for num. A domain error occurs if num is
negative. If num is zero, a range error is possible.

Example

The following program prints the natural logarithms for the numbers 1 through 10:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double val = 1.0;

 do {
 printf(''%f %f\n", val, log(val));
 val++;
 } while (val<11.0);

 return 0;
}

Related Functions

log10() and log2()

Page 404

log1p

#include <math.h>
float log1pf(float num);
double log1p(double num);
long double log1pl(long double num);

log1p(), log1pf(), and log1pl() were added by C99.

The log1p() family of functions returns the natural logarithm for num+1. A domain error occurs if
num is negative. If num is –1, a range error is possible.

Related Function

log()

log10

#include <math.h>
float log10f(float num);
double log10(double num);
long double log101(long double num);

log10f() and log10l() were added by C99.

The log10() family of functions returns the base 10 logarithm for num. A domain error occurs if
num is negative. If num is zero, a range error is possible.

Example

This program prints the base 10 logarithms for the numbers 1 through 10:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double val = 1.0;

 do {
 printf(''%f %f\n", val, log10(val));
 val++;

Page 405

 } while (val<11.0);

 return 0;
}

Related Functions

log() and log2()

log2

#include <math.h>
float log2f(float num);
double log2(double num);
long double log2l(long double num);

log2(), log2f(), and log2l() were added by C99.

The log2() family of functions returns the base 2 logarithm for num. A domain error occurs if num
is negative. If num is zero, a range error is possible.

Related Functions

log() and log10()

logb

#include <math.h>
float logbf(float num);
double logb(double num);
long double logbl(long double num);

logb(), logbf(), and logbl() were added by C99.

The logb() family of functions returns the exponent of num. This value is returned as a floating-
point integer value. A domain error is possible when num is zero.

Related Function

ilogb()

Page 406

lrint

#include <math.h>
long int lrintf(float arg);
long int lrint(double arg);
long int lrintl(long double arg);

lrint(), lrintf(), and lrintl() were added by C99.

The lrint() family of functions returns the value of arg rounded to the nearest long integer.

Related Functions

llrint() and rint()

lround

#include <math.h>
long int lroundf(float arg);
long int lround(double arg);
long int lroundl(long double arg);

lround(), lroundf(), and lroundl() were added by C99.

The lround() family of functions returns the value of arg rounded to the nearest long integer.
Values precisely between two values, such as 3.5, are rounded up.

Related Functions

llround() and round()

modf

#include <math.h>
float modff(float num, float *i);
double modf(double num, double *i);
long double modfl(long double num, long double *i);

modff() and modfl() were added by C99.

Page 407

The modf() family of functions decomposes num into its integer and fractional parts. The functions
return the fractional portion and place the integer part in the variable pointed to by i.

Example

This code fragment displays 10 and 0.123:

double i;
double f;

f = modf(10.123, &i);
printf(''%f %f",i , f);

Related Functions

frexp() and ldexp()

nan

#include <math.h>
float nanf(const char *content);
double nan(const char *content);
long double nanl(const char *content);

nan(), nanf(), and nanl() were defined by C99.

The nan() family of functions returns a value that is not a number and that contains the string
pointed to by content .

Related Function

isnan()

nearbyint

#include <math.h>
float nearbyintf(float arg);
double nearbyint(double arg);
long double nearbyintl(long double arg);

nearbyint(), nearbyintf(), and nearbyintl() were added by C99.

Page 408

The nearbyint() family of functions returns the value of arg rounded to the nearest integer.
However, the number is returned as a floating-point value.

Related Functions

rint() and round()

nextafter

#include <math.h>
float nextafterf(float from, float towards);
double nextafter(double from, double towards);
long double nextafterl(long double from, long double towards);

nextafter(), nextafterf(), and nextafterl() were defined by
C99.

The nextafter() family of functions returns the next value after from that is closer to towards.

Related Function

nexttoward()

nexttoward

#include <math.h>
float nexttowardf(float from, long double towards);
double nexttoward(double from, long double towards);
long double nexttowardl(long double from, long double towards);

nexttoward(), nexttowardf(), and nexttowardl() were defined by C99.

The nexttoward() family of functions returns the next value after from that is closer to towards.
They are the same as the nextafter() family except that towards is a long double for all three
functions.

Related Function

nextafter()

Page 409

pow

#include <math.h>
float powf(float base, float exp);
double pow(double base, double exp);
long double powl(long double base, long double exp);

powf() and powl() were added by C99.

The pow() family of functions returns base raised to the exp power (baseexp). A domain error may
occur if base is zero and exp is less than or equal to zero. It will also happen if base is negative and
exp is not an integer. A range error is possible.

Example

The following program prints the first ten powers of 10:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 10.0, y = 0.0;

 do {
 printf(''%f\n", pow(x, y));
 y++;
 } while(y<11.0);

 return 0;
}

Related Functions

exp(), log(), and sqrt()

remainder

#include <math.h>
float remainderf(float a, float b);

Page 410

double remainder(double a, double b);
long double remainderl(long double a, long double b);

remainder(), remainderf(), and remainderl() were added by C99.

The remainder() family of functions returns the remainder of a/b.

Related Function

remquo()

remquo

#include <math.h>
float remquof(float a, float b, int *quo);
double remquo(double a, double b, int *quo);
long double remquol(long double a, long double b, int *quo);

remquo(), remquof(), and remquol() were added by C99.

The remquo() family of functions returns the remainder of a/b. On return, the integer pointed to by
quo will contain the quotient.

Related Function

remainder()

rint

#include <math.h>
float rintf(float arg);
double rint(double arg);
long double rintl(long double arg);

rint(), rintf(), and rintl() were added by C99.

The rint() family of functions returns the value of arg rounded to the nearest integer. However, the
number is returned as a floating-point value. It is possible that a floating-point exception will be
raised.

TE
AM
FL
Y

Team-Fly®

Page 411

Related Functions

nearbyint() and round()

round

#include <math.h>
float roundf(float arg);
double round(double arg);
long double roundl(long double arg);

round(), roundf(), and roundl() were added by C99.

The round() family of functions returns the value of arg rounded to the nearest integer. However,
the number is returned as a floating-point value. Values precisely between two values, such as 3.5,
are rounded up.

Related Function

lround() and llround()

scalbln

#include <math.h>
float scalblnf(float val, long int exp);
double scalbln(double val, long int exp);
long double scalblnl(long double val, long int exp);

scalbln(), scalblnf(), and scalblnl() were added by C99.

The scalbln() family of functions returns the product of val and FLT_RADIX raised to the exp
power, that is,

val * FLT RADIXexp

The macro FLT_RADIX is defined in <float.h>, and its value is the radix of exponent
representation.

Related Function

scalbn()

Page 412

scalbn

#include <math.h>
float scalbnf(float val, int exp);
double scalbn(double val, int exp);
long double scalbnl(long double val, int exp);

scalbn(), scalbnf(), and scalbnl() were added by C99.

The scalbn() family of functions returns the product of val and FLT_RADIX raised to the exp
power, that is,

val * FLT_RADIXexp

The macro FLT_RADIX is defined in <float.h>, and its value is the radix of exponent
representation.

Related Function

scalbln()

sin

#include <math.h>
float sinf(float arg);
double sin(double arg);
long double sinl(long double arg);

sinf() and sinl() were added by C99.

The sin() family of functions returns the sine of arg. The value of arg must be in radians.

Example

This program prints the sines of the values –1 through 1, in increments of one tenth:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double val = -1.0;
do {

Page 413

 printf("Sine of %f is %f.\n", val, sin(val));
 val += 0.1;
 } while(val<=1.0);

 return 0;
}

Related Functions

asin(), acos(), atan2(), atan(), tan(), cos(), sinh(), cosh(), and tanh()

sinh

#include <math.h>
float sinhf(float arg);
double sinh(double arg);
long double sinhl(long double arg);

sinhf() and sinhl() were added by C99.

The sinh() family of functions returns the hyperbolic sine of arg.

Example

This program prints the hyperbolic sines of the values –1 through 1, in increments of one tenth:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double val = -1.0;

 do {
 printf(''Hyperbolic sine of %f is %f.\n", val, sinh(val));
 val += 0.1;
 } while(val<=1.0);

 return 0;
}

Page 414

Related Functions

asin(), acos(), atan2(), atan(), tan(), cos(), tanh(), cosh(), and sin()

sqrt

#include <math.h>
float sqrtf(float num);
double sqrt(double num);
long double sqrtl(long double num);

sqrtf() and sqrtl() were added by C99.

The sqrt() family of functions returns the square root of num. If they are called with a negative
argument, a domain error will occur.

Example

This code fragment prints 4 on the screen:

printf("%f", sqrt(16.0));

Related Functions

exp(), log(), and pow()

tan

#include <math.h>
float tanf(float arg);
double tan(double arg);
long double tanl(long double arg);

tanf() and tanl() were added by C99.

The tan() family of functions returns the tangent of arg. The value of arg must be in radians.

Example

This program prints the tangent of the values –1 through 1, in increments of one
tenth:

Page 415

#include <math.h>
#include <stdio.h>

int main (void)
{
 double val = -1.0;

 do {
 printf(''Tangent of %f is %f.\n", val, tan(val));
 val += 0.1;
 } while(val<=1.0);

 return 0;
}

Related Functions

acos(), asin(), atan(), atan2(), cos(), sin(), sinh(), cosh(), and tanh()

tanh

#include <math.h>
float tanhf(float arg);
double tanh(double arg);
long double tanhl(long double arg);

tanhf() and tanhl() were added by C99.

The tanh() family of functions returns the hyperbolic tangent of arg.

Example

This program prints the hyperbolic tangent of the values –1 through 1, in increments of one tenth:

#include <math.h>
#include <stdio.h>

int main(void)
{
 double val = -1.0;

Page 416

 do {
 printf(''Hyperbolic tangent of %f is %f.\n", val, tanh(val));
 val += 0.1;
 } while(val<=1.0);

 return 0;
}

Related Functions

acos(), asin(), atan(), atan2(), cos(), sin(), cosh(), sinh(), and tan

tgamma

#include <math.h>
float tgammaf(float arg);
double tgamma(double arg);
long double tgammal(long double arg);

tgamma(), tgammaf(), and tgammal() were added by C99.

The tgamma() family of functions returns the gamma function of arg.

Related Function

lgamma()

trunc

#include <math.h>
float truncf(float arg);
double trunc(double arg);
long double truncl(long double arg);

trunc(), truncf(), and truncl() were added by C99.

The trunc() family of functions returns the truncated value of arg.

Related Function

nearbyint()

Page 417

Chapter 16—
Time, Date, and Localization Functions

Page 418

The standard function library defines several functions that deal with the date and time. It also
defines functions that handle the geopolitical information associated with a program. These
functions are described here.

The time and date functions require the header <time.h>. This header defines three time-related
types: clock_t, time_t, and tm. The types clock_t and time_t are capable of representing the system
time and date as some sort of integer. This is called the calendar time. The structure type tm holds
the date and time broken down into its elements. The tm structure contains the following members:

int tm_sec; /* seconds, 0-60 */
int tm_min; /* minutes, 0-59 */
int tm_hour; /* hours, 0-23 */
int tm_mday; /* day of the month, 1-31 */
int tm_mon; /* months since Jan, 0-11 */
int tm_year; /* years from 1900 */
int tm_wday; /* days since Sunday, 0-6 */
int tm_yday; /* days since Jan 1, 0-365 */
int tm_isdst /* Daylight Saving Time indicator */

The value of tm_isdst will be positive if daylight saving time is in effect, zero if it is not in effect,
and negative if there is no information available. This form of the time and date is called the broken-
down time.

In addition, <time.h> defines the macro CLOCKS_PER_SEC, which is the number of system
clock ticks per second.

The geopolitical environmental functions require the header <locale.h>. It defines the structure
lconv, which is described under the function localeconv().

asctime

#include <time.h>
char *asctime(const struct tm *ptr);

The asctime() function returns a pointer to a string that contains the information stored in the
structure pointed to by ptr converted into the following form:

day month date hours:minutes:seconds year\n\0

For example:

Fri Apr 15 12:05:34 2005

Page 419

The structure pointed to by ptr is usually obtained from either localtime() or gmtime().

The buffer used by asctime() to hold the formatted output string is a statically allocated character
array and is overwritten each time the function is called. If you wish to save the contents of the
string, you must copy it elsewhere.

Example

This program displays the local time defined by the system:

#include <time.h>
#include <stdio.h>

int main(void)
{

 struct tm *ptr;
 time_t lt;

 lt = time(NULL);
 ptr = localtime(<);
 printf(asctime(ptr));

 return 0;
}

Related Functions

localtime(), gmtime(), time(), and ctime()

clock

#include <time.h>
clock_t clock(void);

The clock() function returns a value that approximates the amount of time the calling program has
been running. To transform this value into seconds, divide it by CLOCKS_PER_SEC. A value of –
1 is returned if the time is not available.

Page 420

Example

The following function displays the current execution time, in seconds, for the program calling it:

void elapsed_time(void)
{
 printf(''Elapsed time: %u secs.\n", clock()/CLOCKS_PER_SEC);
}

Related Functions

time(), asctime(), and ctime()

ctime

#include <time.h>
char *ctime(const time_t *time);

The ctime() function returns a pointer to a string of the form

day month year hours:minutes:seconds year\n\0

given a pointer to the calendar time. The calendar time is often obtained through a call to time().

The buffer used by ctime() to hold the formatted output string is a statically allocated character
array and is overwritten each time the function is called. If you wish to save the contents of the
string, it is necessary to copy it elsewhere.

Example

This program displays the local time defined by the system:

#include <time.h>
#include <stdio.h>

{int main(void)
{
 time_t lt;

 lt = time(NULL);

TE
AM
FL
Y

Team-Fly®

Page 421

 printf(ctime(<));

 return 0;
}

Related Functions

localtime(), gmtime(), time(), and asctime()

difftime

#include <time.h>
double difftime(time_t time2, time_t time1);

The difftime() function returns the difference, in seconds, between timel and time2— that is, time2 –
time1.

Example

This program times the number of seconds that it takes for the empty for loop to go from 0 to
5,000,000:

#include <time.h>
#include <stdio.h>

int main(void)
{
 time_t start,end;
 volatile long unsigned t;

 start = time(NULL);
 for(t=0; t<5000000; t++) ;
 end = time(NULL);
 printf(''Loop used %f seconds.\n", difftime(end, start));

 return 0;
}

Related Functions

localtime(), gmtime(), time(), and asctime()

Page 422

gmtime

#include <time.h>
struct tm *gmtime(const time_t *time);

The gmtime() function returns a pointer to the broken-down form of time in the form of a tm
structure. The time is represented in Coordinated Universal Time (UTC), which is essentially
Greenwich mean time. The time pointer is usually obtained through a call to time(). If the system
does not support Coordinated Universal Time, NULL is returned.

The structure used by gmtime() to hold the broken-down time is statically allocated and is
overwritten each time the function is called. If you wish to save the contents of the structure, you
must copy it elsewhere.

Example

This program prints both the local time and the UTC of the system:

#include <time.h>
#include <stdio.h>

/* Print local and UTC time. */
int main(void)
{
 struct tm *local, *gm;
 time_t t;

 t = time(NULL);
 local = localtime(&t);
 printf(''Local time and date: %s\n", asctime(local));
 gm = gmtime(&t);
 printf("Coordinated Universal Time and date: %s", asctime(gm));

 return 0;
}

Related Functions

localtime(), time(), and asctime()

Page 423

localeconv

#include <locale.h>
struct lconv *localeconv(void);

The localeconv() function returns a pointer to a structure of type lconv, which contains a variety of
geopolitical environmental information relating to the way numbers are formatted. The lconv
structure contains the following members:

char *decimal_point; /* Decimal point character
 for nonmonetary values. */
char *thousands_sep; /* Thousands separator
 for nonmonetary values. */
char *grouping; /* Specifies grouping for
 nonmonetary values. */
char *int_curr_symbol; /* International currency symbol. */
char *currency_symbol; /* Local currency symbol. */
char *mon_decimal_point; /* Decimal point character for
 monetary values. */
char *mon_thousands_sep; /* Thousands separator for
 monetary values. */
char *mon_grouping; /* Specifies grouping for
 monetary values. */
char *positive_sign; /* Positive value indicator for
 monetary values. */
char *negative_sign; /* Negative value indicator for
 monetary values. */
char int_frac_digits; /* Number of digits displayed to the
 right of the decimal point for
 monetary values displayed using
 international format. */
char frac_digits; /* Number of digits displayed to the
 right of the decimal point for
 monetary values displayed using
 local format. */
char p_cs_precedes; /* 1 if currency symbol precedes
 positive value, 0 if currency
 symbol follows value. */
char p_sep_by_space; /* 1 if currency symbol is
 separated from value by a space,
 0 otherwise. In C99, contains a
 value that indicates separation. */

Page 424

char n_cs_precedes; /* 1 if currency symbol precedes
 a negative value, 0 if currency
 symbol follows value. */
char n_sep_by_space; /* 1 if currency symbol is
 separated from a negative
 value by a space, 0 if
 currency symbol follows value.
 In C99, contains a value that
 indicates separation. */
char p_sign_posn; /* Indicates position of
 positive value symbol. */
char n_sign_posn; /* Indicates position of
 negative value symbol. */

/* The following members were added by C99. */
char p_cs_precedes; /* 1 if currency symbol precedes
 positive value, 0 if currency
 symbol follows value. Applies to
 internationally formatted values. */
char _p_sep_by_space; /* Indicates the separation between the
 currency symbol, sign, and a positive value.
 Applies to internationally formatted values. */
char _n_cs_precedes; /* 1 if currency symbol precedes
 a negative value, 0 if currency
 symbol follows value. Applies to
 internationally formatted values. */
char _n_sep_by_space; /* Indicates the separation between the
 currency symbol, sign, and a negative value.
 Applies to internationally formatted values. */
char _p_sign_posn; /* Indicates position of
 positive value symbol. Applies to
 internationally formatted values. */
char _n_sign_posn; /* Indicates position of
 negative value symbol. Applies to
 internationally formatted values. */

Page 425

The localeconv() function returns a pointer to the lconv structure. You must not alter the contents
of this structure. Refer to your compiler's documentation for implementation-specific information
relating to the lconv structure.

Example

The following program displays the decimal point character used by the current locale:

#include <stdio.h>
#include <locale.h>

int main (void)
{
 struct lconv lc;

 lc = *localeconv();

 printf("Decimal symbol is: %s\n", lc.decimal_point);

 return 0;
}

Related Function

setlocale()

localtime

#include <time.h>
struct tm *localtime(const time_t *time);

The localtime() function returns a pointer to the broken-down form of time in the form of a tm
structure. The time is represented in local time. The time pointer is usually obtained through a call to
time().

The structure used by localtime() to hold the broken-down time is statically allocated and is
overwritten each time the function is called. If you wish to save the contents of the structure, you
must copy it elsewhere.

Page 426

Example

This program prints both the local time and the Coordinated Universal Time (UTC) of the system:

#include <time.h>
#include <stdio.h>

/* Print local and UTC time. */
int main(void)
{
 struct tm *local;
 time_t t;

 t = time(NULL);
 local = localtime(&t);
 printf(''Local time and date: %s\n", asctime(local));
 local = gmtime(&t);
 printf("UTC time and date: %s\n", asctime(local));

 return 0;
}

Related Functions

gmtime(), time(), and asctime()

mktime

#include <time.h>
time_t mktime(struct tm *time);

The mktime() function returns the calendar-time equivalent of the broken-down time found in the
structure pointed to by time. The elements tm_wday and tm_yday are set by the function, so they
need not be defined at the time of the call.

If mktime() cannot represent the information as a valid calendar time, –1 is returned.

Example

This program tells you the day of the week for January 3, 2005:

Page 427

#include <time.h>
#include <stdio.h>

int main(void)
{
 struct tm t;
 time_t t_of_day;

 t.tm_year = 2005-1900;
 t.tm_mon = 0;
 t.tm_mday = 3;
 t.tm_hour = 0; /* hour, min, sec don't matter */
 t.tm_min = 0; /* as long as they don't cause a */
 t.tm_sec = 1; /* new day to occur */
 t.tm_isdst = 0;

 t_of_day = mktime(&t);
 printf(ctime(&t_of_day));

 return 0;
}

Related Functions

time(), gmtime(), asctime(), and ctime()

setlocale

#include <locale.h>
char *setlocale(int type, const char *locale);

The setlocale() function allows certain parameters that are sensitive to the geopolitical environment
of a program's execution to be queried or set. If locale is null, setlocale() returns a pointer to the
current localization string. Otherwise, setlocale() attempts to use the string specified by locale to set
the locale parameters as specified by type. To specify the standard C locale, use the string ''C". To
specify the native environment, use the null string "". Refer to your compiler's documentation for the
localization strings that it supports.

At the time of the call, type must be one of the following macros (defined in <locale.h>):

LC_ALL
LC_COLLATE

Page 428

LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

LC_ALL refers to all localization categories. LC_COLLATE affects the operation of the strcoll()
function. LC_CTYPE alters the way the character functions work. LC_MONETARY determines
the monetary format. LC_NUMERIC changes the decimal-point character for formatted
input/output functions. Finally, LC_TIME determines the behavior of the strftime() function.

The setlocale() function returns a pointer to a string associated with the type parameter.

Example

This program displays the current locale setting:

#include <locale.h>
#include <stdio.h>

int main(void)
{
 printf(setlocale(LC_ALL, ''"));

 return 0;
}

Related Functions
localeconv(), time(), strcoll(), and strftime()

Strftime

#include <time.h>
size_t strftime(char *str, size_t maxsize, const char *fmt,
 const struct tm *time);

The strftime() function stores time and date information, along with other information, into the
string pointed to by str according to the format commands found in the string pointed to by fmt and
using the broken-down time pointed to by time. A maximum of maxsize characters will be placed
into str.

In C99, str, fmt, and time are qualified by restrict.

Page 429

The strftime() function works a little like sprintf() in that it recognizes a set of format commands that
begin with the percent sign (%), and it stores its formatted output into a string. The format commands
are used to specify the exact way various time and date information is represented in str. Any other
characters found in the format string are placed into str unchanged. The time and date displayed are in
local time. The format commands are shown in the table below. Notice that many of the commands are
case sensitive.

The strftime() function returns the number of characters stored in the string pointed to by str or zero if
an error occurs.

Command Replaced By

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Standard date and time string

%C Last two digits of year

%d Day of month as a decimal (1–31)

%D month/day/year (added by C99)

%e Day of month as a decimal (1–31) in a two-character field (added by C99)

%F year-month-day (added by C99)

%g Last two digits of year using a week-based year (added by C99)

%G The year using a week-based year (added by C99)

%h Abbreviated month name (added by C99)

%H Hour (0–23)

%I Hour (1–12)

%j Day of year as a decimal (1–366)

%m Month as decimal (1–12)

%M Minute as decimal (0–59)

%n A newline (added by C99)

%p Locale's equivalent of AM or PM

%r 12-hour time (added by C99)

%R hh:mm (added by C99)

TE
AM
FL
Y

Team-Fly®

Page 430

Command Replaced By

%S Second as decimal (0–60)

%t Horizontal tab (added by C99)

%T hh:mm:ss (added by C99)

%u Day of week; Monday is first day of week (0–53) (added by C99)

%U Week of year, Sunday being first day (0–53)

%V Week of year using a week-based year (added by C99)

%w Weekday as a decimal (0–6, Sunday being 0)

%W Week of year, Monday being first day (0–53)

%x Standard date string

%X Standard time string

%y Year in decimal without century (0–99)

%Y Year including century as decimal

%z Offset from UTC (added by C99)

%Z Time zone name

%% The percent sign

C99 allows certain of the strftime() format commands to be modified by E or O. The E can modify
C, x, X, y, Y, d, e, and H. The O can modify I, m, M, S, u, U, V, w, W, and y. These modifiers cause
an alternative representation of the time and/or date to be displayed. Consult your compiler's
documentation for details.

A week-based year is used by the %g, %G, and %V format commands. With this representation,
Monday is the first day of the week, and the first week of a year must include January 4.

Example

Assuming that ltime points to a structure that contains 10:00:00 AM, the following program prints It is
now 10 AM:

#include <time.h>
#include <stdio.h>

int main(void)
{

Page 431

 struct tm *ptr;
 time_t lt;
 char str[80];

 lt = time(NULL);
 ptr = localtime(<);

 strftime(str, 100, "It is now %H %p.", ptr);
 printf(str);

 return 0;
}

Related Functions

time(), localtime(), and gmtime()

Time

#include <time.h>
time_t time(time_t *time);

The time() function returns the current calendar time of the system. If the system has no time, –1 is
returned.

The time() function can be called either with a null pointer or with a pointer to a variable of type
time_t. If the latter is used, the variable will also be assigned the calendar time.

Example

This program displays the local time defined by the system:

#include <time.h>
#include <stdio.h>

int main(void)
{
 struct tm *ptr;
 time_t lt;

Page 432

 lt = time(NULL);
 ptr = localtime(<);
 printf(asctime(ptr));

 return 0;
}

Related Functions

localtime(), gmtime(), strftime(), and ctime()

Page 433

Chapter 17—
Dynamic Allocation Functions

Page 434

This chapter describes C's dynamic allocation functions. At their core are malloc() and free(). Each
time malloc() is called, a portion of the remaining free memory is allocated. Each time free() is
called, memory is returned to the system. The region of free memory from which memory is
allocated is called the heap. The prototypes for the dynamic allocation functions are in <stdlib.h>.

NOTE

An overview of dynamic allocation is found in Chapter 5.

Standard C defines four dynamic allocation functions that all compilers will supply: calloc(),
malloc(), free(), and realloc(). However, your compiler will almost certainly contain several
nonstandard variants on these functions to accommodate various options and environmental
differences. For example, special allocation functions are supplied by compilers that produce code
for the segmented memory model of the 8086. You will want to refer to your compiler's
documentation for details and descriptions of additional allocation functions.

calloc

#include <stdlib.h>
void *calloc(size_t num, size_t size);

The calloc() function allocates memory the size of which is equal to num * size. That is, calloc()
allocates sufficient memory for an array of num objects of size size. All bits in the allocated memory
are initially set to zero.

The calloc() function returns a pointer to the first byte of the allocated region. If there is not enough
memory to satisfy the request, a null pointer is returned. It is always important to verify that the
return value is not null before attempting to use it.

Example

This function returns a pointer to a dynamically allocated array of 100 floats:

#include <stdlib.h>
#include <stdio.h>

float *get_mem(void)
{

 float *p;

 p = calloc(100, sizeof(float));
 if(!p) {

Page 435

 printf("Allocation Error\n");
 exit(1);
 }
 return p;
}

Related Functions

free(), malloc(), and realloc()

free

#include <stdlib.h>
void free(void *ptr);

The free() function returns the memory pointed to by ptr to the heap. This makes the memory
available for future allocation.

It is imperative that free() only be called with a pointer that was previously allocated using one of
the dynamic allocation system's functions. Using an invalid pointer in the call most likely will
destroy the memory management mechanism and possibly cause a system crash. If you pass a null
pointer, free() performs no operation.

Example

This program allocates room for the strings entered by the user and then frees the memory:

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *str[100];
 int i;

 for(i=0; i<100; i++) {
 if((str[i] = malloc(128))==NULL) {
 printf (''Allocation Error\n");
 exit (1);
 }

Page 436

 gets(str[i]);
 }

 /* now free the memory */
 for(i=0; i<100; i++) free(str[i]);

 return 0;
}

Related Functions

calloc(), malloc(), and realloc()

malloc

#include <stdlib.h>
void *malloc(size_t size);

The malloc() function returns a pointer to the first byte of a region of memory of size size that has
been allocated from the heap. If there is insufficient memory in the heap to satisfy the request,
malloc() returns a null pointer. It is always important to verify that the return value is not null
before attempting to use it. Attempting to use a null pointer will usually result in a system crash.

Example

This function allocates sufficient memory to hold structures of type addr:

struct addr {
 char name[40];
 char street[40];
 char city[40];
 char state[3];
 char zip[10];
};

struct addr *get_struct(void)
{
 struct addr *p;

 if((p = malloc(sizeof(struct addr)))==NULL) {

Page 437

 printf("Allocation Error\n");
 exit(1);
 }
 return p;
}

Related Functions

free(), realloc(), and calloc()

realloc

#include <stdlib.h>
void *realloc(void *ptr, size_t size);

The precise operation of realloc() differs slightly between C89 and C99, although the net effect is
the same. For C89, realloc() changes the size of the previously allocated memory pointed to by ptr
to that specified by size. The value of size can be greater or less than the original. A pointer to the
memory block is returned because it may be necessary for realloc() to move the block in order to
change its size. If this occurs, the contents of the old block (up to size bytes) are copied into the new
block.

For C99, the block of memory pointed to by ptr is freed, and a new block is allocated. The new
block contains the same contents as the original block (up to the length passed in size). A pointer to
the new block is returned. It is permissible, however, for the new block and the old block to begin at
the same address. That is, the pointer returned by realloc() might be the same as the one passed in
ptr.

If ptr is null, realloc() simply allocates size bytes of memory and returns a pointer to it. If size is
zero, the memory pointed to by ptr is freed.

If there is not enough free memory in the heap to allocate size bytes, a null pointer is returned, and
the original block is left unchanged.

Example

This program first allocates 17 characters, copies the string ''This is 16 chars" into them, and then
uses realloc() to increase the size to 18 in order to place a period at the end.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

Page 438

int main(void)
{
 char *p;

 p = malloc(17);
 if(!p) {
 printf(''Allocation Error\n");
 exit(1);
 }

 strcpy(p, "This is 16 chars");

 p = realloc(p, 18);
 if(!p) {
 printf("Allocation Error\n");
 exit(1);
 }

 strcat(p, ".");

 printf(p);

 free(p);

 return 0;
}

Related Functions

free(), malloc(), and calloc()

TE
AM
FL
Y

Team-Fly®

Page 439

Chapter 18—
Utility Functions

Page 440

The standard function library defines several utility functions. They include various conversions,
variable-length argument processing, sorting and searching, and random number generation. Many
of the functions covered here require the use of the header <stdlib.h>. In this header are declared
the types div_t and ldiv_t, which are the types of the values returned by div() and ldiv(),
respectively. C99 adds the lldiv_t type and the lldiv() function. Also declared are the types size_t
and wchar_t. The following macros are also defined:

Macro Meaning

MB_CUR_MAX Maximum length (in bytes) of a multibyte character

NULL A null pointer

RAND_MAX The maximum value that can be returned by the rand() function

EXIT_FAILURE The value returned to the calling process if program termination is
unsuccessful

EXIT_SUCCESS The value returned to the calling process if program termination is
successful

If a function requires a header other than <stdlib.h>, that function description will discuss it.

abort

#include <stdlib.h>
void abort(void);

The abort() function causes immediate abnormal termination of a program. Generally, no files are
flushed. In environments that support it, abort() will return an implementation-defined value to the
calling process (usually the operating system) indicating failure.

Example

In this program, the program terminates if the user enters an A:

#include <stdlib.h>
#include <stdio.h>

Page 441

int main(void)
{
 for (;;)
 if(getchar()=='A') abort();

 return 0;
}

Related Function

exit() and atexit()

abs

#include <stdlib.h>
int abs(int num);

The abs() function returns the absolute value of num.

Example

This function converts a user-entered number into its absolute value:

int get_abs(void)
{
 char num[80];

 gets(num);
 return abs(atoi(num));
}

Related Function

fabs()

assert

#include <assert.h>
void assert(int exp);

Page 442

The assert() macro, defined in its header <assert.h>, writes error information to stderr and then
aborts program execution if the expression exp evaluates to zero. Otherwise, assert() does nothing.
Although the exact output is implementation defined, many compilers use a message similar to this:

Assertion failed: <expression>, file <file>, line <linenum>

For C99, the message will also include the name of the function that contained assert().

The assert() macro is generally used to help verify that a program is operating correctly, with the
expression being devised in such a way that it evaluates to true only when no errors have taken
place.

It is not necessary to remove the assert() statements from the source code once a program is
debugged because if the macro NDEBUG is defined (as anything), the assert() macros will be
ignored.

Example

This code fragment tests whether the data read from a serial port is an ASCII character (that is, it
does not use the seventh bit):

/* ... */
ch = read_port();
assert(!(ch & 128)); /* check bit 7 */

Related Function

abort()

atexit

#include <stdlib.h>
int atexit(void (*func)(void));

The atexit() function causes the function pointed to by func to be called upon normal program
termination. The atexit() function returns zero if the function is successfully registered as a
termination function and nonzero otherwise.

At least 32 termination functions can be registered, and they will be called in the reverse order of
their registration.

Example

This program prints Hello There on the screen when it terminates:

Page 443

#include <stdlib.h>
#include <stdio.h>

void done(void);

int main(void)
{
 if (atexit(done)) printf(''Error in atexit().");

 return 0;
}

void done(void)
{
 printf("Hello There");
}

Related Functions

exit() and abort()

atof

#include <stdlib.h>
double atof(const char *str);

The atof() function converts the string pointed to by str into a double value. The string must
contain a valid floating-point number. If this is not the case, the returned value is undefined.

The number can be terminated by any character that cannot be part of a valid floating-point number.
This includes white space, punctuation (other than periods), and characters other than E or e. This
means that if atof() is called with "100.00HELLO", the value 100.00 will be returned.

Example

This program reads two floating-point numbers and displays their sum:

#include <stdlib.h>
#include <stdio.h>

Page 444

int main(void)
{
 char num1[80], num2[80];

 printf("Enter first: ");
 gets(num1);
 printf(''Enter second: ");
 gets(num2);
 printf("The sum is: %lf.", atof(num1) + atof(num2));

 return 0;
}

Related Functions

atoi() and atol()

atoi

#include <stdlib.h>
int atoi(const char *str);

The atoi() function converts the string pointed to by str into an int value. The string must contain a
valid integer number. If this is not the case, the returned value is undefined.

The number can be terminated by any character that cannot be part of an integer number. This
includes white space, punctuation, and characters. This means that if atoi() is called with "123.23",
the integer value 123 will be returned, and the ".23" is ignored.

Example

The following program reads two integers and displays their sum:

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char num1[80], num2[80];

Page 445

 printf("Enter first: ");
 gets (num1);
 printf(''Enter second: ");
 gets(num2);
 printf("The sum is: %d.", atoi(num1)+atoi(num2));
 return 0;
}

Related Functions

atof() and atol()

atol

#include <stdlib.h>
long int atol(const char *str);

The atol() function converts the string pointed to by str into a long int value. The string must
contain a valid integer number. If this is not the case, the returned value is undefined.

The number can be terminated by any character that cannot be part of an integer number. This
includes white space, punctuation, and characters. This means that if atol() is called with "123.23",
the long integer value 123L will be returned, and the ".23" is ignored.

Example

This program reads two long integers and displays their sum:

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char num1[80], num2[80];

 printf("Enter first: ");
 gets(num1);
 printf("Enter second: ");

Page 446

 gets(num2);
 printf(''The sum is: %ld.", atol(num1)+atol
(num2));

 return 0;
}

Related Functions

atof(), atoi(), and atoll()

atoll

#include <stdlib.h>
long long int atoll(const char *str);

atoll() was added by C99.

The atoll() function converts the string pointed to by str into a long long int value. It is otherwise
similar to atoll().

Related Functions

atof(), atoi(), and atol()

bsearch

#include <stdlib.h>
void *bsearch(const void *key, const void *buf,
 size_t num, size_t size,
 int (*compare)(const void *, const void *));

The bsearch() function performs a binary search on the sorted array pointed to by buf and returns a
pointer to the first member that matches the key pointed to by key. The number of elements in the
array is specified by num, and the size (in bytes) of each element is described by size.

The function pointed to by compare is used to compare an element of the array with the key. The
form of the compare function must be as follows:

int func_name(const void *arg1, const void *arg2);

Page 447

It must return values as described in the following table:

Comparison Value Returned

arg1 is less than arg2 Less than zero

arg1 is equal to arg2 Zero

arg1 is greater than arg2 Greater than zero

The array must be sorted in ascending order with the lowest address containing the lowest element.
If the array does not contain the key, a null pointer is returned.

Example

The following program reads a character entered at the keyboard and determines whether it belongs
to the alphabet:

#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>

char *alpha = "abcdefghijklmnopqrstuvwxyz";

int comp(const void *ch, const void *s);

int main(void)
{

 char ch;
 char *p;

 printf("Enter a character: ");
 ch = getchar();
 ch = tolower(ch);
 p = (char *) bsearch(&ch, alpha, 26, 1, comp);
 if(p) printf('' %c is in alphabet\n", *p);
 else printf("is not in alphabet\n");

 return 0;
}

/* Compare two characters. */
int comp(const void *ch, const void *s)
{

Page 448

 return *(char *)ch – *(char *)s;
}

Related Function

qsort()

div

#include <stdlib.h>
div_t div(int numerator, int denominator);

The div() function returns the quotient and the remainder of the operation numerator/denominator
in a structure of type div_t.

The structure type div_t has these two fields:

int quot; /* quotient */
int rem; /* remainder */

Example

This program displays the quotient and remainder of 10/3:

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 div_t n;

 n = div(10, 3);

 printf("Quotient and remainder: %d %d.\n", n.quot, n.rem);

 return 0;
}

TE
AM
FL
Y

Team-Fly®

Page 449

Related Functions

ldiv() and lldiv()

exit

#include <:stdlib.h>
void exit(int exit_code);

The exit() function causes immediate, normal termination of a program. This means that
termination functions registered by atexit() are called, and any open files are flushed and closed.

The value of exit_code is passed to the calling process— usually the operating system— if the
environment supports it. By convention, if the value of exit_code is zero, or EXIT_SUCCESS,
normal program termination is assumed. A nonzero value, or EXIT_FAILURE, is used to indicate
an implementation-defined error.

Example

This function performs menu selection for a mailing list program. If Q is selected, the program is
terminated.

int menu(void)
{
 char choice;

 do {
 printf(''Enter names (E)\n");
 printf("Delete name (D)\n");
 printf("Print (P)\n");
 printf("Quit (Q)\n");
 choice = getchar();
 } while(!strchr("EDPQ", toupper(choice)));

 if(choice=='Q') exit(0);

 return choice;
}

Page 450

Related Functions

atexit(), abort() and _Exit()

_Exit

#include <stdlib.h>
void _Exit(int exit_code);

_Exit() was added by C99.

The _Exit() function is similar to exit() except for the following:

• No calls to termination functions registered by atexit() are made.

• No calls to signal handlers registered by signal() are made.

• Open files are not necessarily flushed or closed.

Related Functions

atexit(), abort() and exit()

getenv

#include <stdlib.h>
char *getenv(const char *name);

The getenv() function returns a pointer to environmental information associated with the string
pointed to by name in the implementation-defined environmental information table. The string must
not be changed by your code.

The environment of a program may include such things as path names and devices online. The exact
nature of this data is implementation defined. You will need to refer to your compiler's
documentation for details.

If a call is made to getenv() with an argument that does not match any of the environment data, a
null pointer is returned.

Example

Assuming that a specific compiler maintains environmental information about the devices connected
to the system, the following fragment returns a pointer to the list of devices:

Page 451

char *p
/* ... (/
p = getevn(''DEVICES");

Related Function

system()

labs

#include <stdlib.h>
long int labs(long int num);

The labs() function returns the absolute value of num.

Example

This function converts the number entered at the keyboard into its absolute
value:

long int get_labs()
{
 char num[80];

 gets(num);

 return labs(atol(num));
}

Related Functions

abs() and labs()

llabs

#include <stdlib.h>
long long int llabs(long long int num);

llabs() was added by C99.

abs() and labs()

Page 452

The llabs() function returns the absolute value of num. It is similar to labs() except that it operates
on values of type long long int.

Related Functions

ldiv

#include <stdlib.h>
ldiv_t ldiv(long int numerator, long int denominator);

The ldiv() function returns the quotient and remainder of the operation numerator/denominator in
an ldiv_t structure.

The structure type ldiv_t has these two fields:

long int quot; /* quotient */
long int rem; /* remainder */

Example

This program displays the quotient and remainder of 10/3:

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 ldiv_t n;

 n = ldiv(10L, 3L);

 printf("Quotient and remainder: %ld %ld.\n", n.quot, n.rem);

 return 0;
}

Related Functions

div() and lldiv()

Page 453

lldiv

#include <stdlib.h>
lldiv_t lldiv(long long int numerator, long long int denominator);

lldiv() was added by C99.

The lldiv() function returns the quotient and remainder of the operation numerator/denominator in
an lldiv_t structure. It is similar to ldiv() except that it operates on long long integers.

The structure type lldiv_t has these two fields:

long long int quot; /* quotient */
long long int rem; /* remainder */

Related Functions

div() and ldiv()

longjmp

#include <setjmp.h>
void longjmp(jmp_buf envbuf, int status);

The longjmp() function causes program execution to resume at the point of the last call to setjmp
(). Thus, longjmp() and setjmp() provide a means of jumping between functions. Notice that the
header <setjmp.h> is required.

The longjmp() function operates by resetting the stack to the state as described in envbuf, which
must have been set by a prior call to setjmp(). This causes program execution to resume at the
statement following the setjmp() invocation. That is, the computer is ''tricked" into thinking that it
never left the function that called setjmp(). (As a somewhat graphic explanation, the longjmp()
function "warps" across time and (memory) space to a previous point in your program without
having to perform the normal function return process.)

The buffer evnbufis of type jmp_buf, which is defined in the header <setjmp.h>. Again, the buffer
must have been set through a call to setjmp() prior to calling longjmp().

The value of status becomes the return value of setjmp() and is used to determine where the long
jump came from. The only value that is not allowed is zero. Zero is returned by setjmp() when it is
actually called directly by your program, not indirectly through the execution of longjmp().

Page 454

By far the most common use of longjmp() is to return from a deeply nested set of routines when an
error occurs.

Example

This program prints 1 2 3:

#include <setjmp.h>
#include <stdio.h>

jmp_buf ebuf;
void f2(void);

int main(void)
{

 int i;

 printf("1 ");
 i = setjmp(ebuf);
 if(i == 0) {
 f2();
 printf(''This will not be printed.");
 }
 printf("%d", i);

 return 0;
}

void f2(void)
{
 printf("2 ");
 longjmp(ebuf, 3);
}

Related Function

setjmp()

mblen

#include <stdlib.h>
int mblen(const char *str, size_t size);

Page 455

The mblen() function returns the length (in bytes) of a multibyte character pointed to by str. Only
the first size number of characters are examined. It returns –1 on error.

If str is null, then mblen() returns nonzero if multibyte characters have state-dependent encodings.
If they do not, zero is returned.

Example

This statement displays the length of the multibyte character pointed to by mb:

printf("%d", mblen(mb, 2));

Related Functions

mbtowc() and wctomb()

mbstowcs

#include <stdlib.h>
size_t mbstowcs(wchar_t *out, const char *in, size_t size);

The mbstowcs() function converts the multibyte string pointed to by in into a wide-character string
and puts that result in the array pointed to by out. Only size number of bytes will be stored in out.

In C99, out and in are qualified by
restrict.

The mbstowcs() function returns the number of multibyte characters that are converted. If an error
occurs, the function returns –1.

Example

This statement converts the first four characters in the multibyte string pointed to by mb and puts
the result in str:

mbstowcs(str, mb, 4);

Page 456

Related Functions

wcstombs() and mbtowc()

mbtowc

#include <stdlib.h>
int mbtowc(wchar_t *out, const char *in, size_t size);

The mbtowc() function converts the multibyte character in the array pointed to by in into its wide-
character equivalent and puts that result in the object pointed to by out. Only size number of
characters will be examined.

In C99, out and in are qualified by
restrict.

This function returns the number of bytes that are put into out. If an error occurs, –1 is returned. If in
is null, then mbtowc() returns nonzero if multibyte characters have state-dependent encodings. If
they do not, zero is returned.

Example

This statement converts the multibyte character in mbstr into its equivalent wide character and puts
the result in the array pointed to by widenorm. (Only the first 2 bytes of mbstr are examined.)

mbtowc(widenorm, mbstr, 2);

Related Functions

mblen() and wctomb()

qsort

#include <stdlib.h>
void qsort(void *buf, size_t num, size_t size,
 int (*compare) (const void *, const void *));

The qsort() function sorts the array pointed to by buf using a Quicksort (developed by C. A. R.
Hoare). Quicksort is generally considered the best general-purpose sorting algorithm. The number of
elements in the array is specified by num, and the size (in bytes) of each element is described by
size.

Page 457

The function pointed to by compare is used to compare two elements of the array. The form of the
compare function must be as follows:

int func_name(const void *arg1, const void *arg2);

It must return values as described here:

Comparison Value Returned

arg1 is less than arg2 Less than zero

arg1 is equal to arg2 Zero

arg1 is greater than arg2 Greater than zero

The array is sorted into ascending order with the lowest address containing the lowest element.

Example

This program sorts a list of integers and displays the result:

#include <stdlib.h>
#include <stdio.h>

int num[10] = {
 1, 3, 6, 5, 8, 7, 9, 6, 2, 0
};

int comp(const void *, const void *);

int main (void)
{
 int i;

 printf("Original array: ");
 for(i=0; i<10; i++) printf(''%d ", num[i]);

 qsort(num, 10, sizeof(int), comp);

 printf("Sorted array: ");
 for(i=0; i<10; i++) printf("%d ", num[i]);

 return 0;

Page 458

}

/* compare the integers */
int comp(const void *i, const void *j)
{
 return *(int *)i - *(int *)j;
}

Related Function

bsearch()

raise

#include <signal.h>
int raise(int signal);

The raise() function sends the specified by signal to the executing program. It returns zero if
successful; otherwise it returns nonzero. It uses the header <signal.h>.

The following signals are defined by Standard C. Of course, your compiler is free to provide
additional signals.

Macro Meaning

SIGABRT Termination error

SIGFPE Floating-point error

SIGILL Bad instruction

SIGINT User pressed CTRL-C

SIGSEGV Illegal memory access

SIGTERM Terminate program

Related Function

signal()

TE
AM
FL
Y

Team-Fly®

Page 459

rand

#include <stdlib.h>
int rand(void);

The rand() function generates a sequence of pseudorandom numbers. Each time it is called, an
integer between zero and RAND_MAX is returned. RAND_MAX will be at least 32,767.

Example

The following program displays 10 pseudorandom
numbers:

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int i;

 for(i=0; i<10; i++)
 printf(''%d ", rand());

 return 0;
}

Related Function

srand()

setjmp

#include <setjmp.h>
int setjmp(jmp_buf envbuf);

The setjmp() macro saves the contents of the system stack in the buffer envbuf for later use by
longjmp(). It uses the header <setjmp.h>.

Page 460

The setjmp() macro returns zero upon invocation. However, longjmp() passes an argument to
setjmp(), and it is this value (always nonzero) that will appear to be the value of setjmp() after a
call to longjmp() has occurred.

See longjmp for additional information.

Related Function

longjmp()

signal

#include <signal.h>
void (*signal(int signal, void (*func) (int))) (int);

The signal() function registers the function pointed to by func as a handler for the signal specified
by signal. That is, the function pointed to by func will be called when signal is received by your
program. The header <signal.h> is required.

The value of func can be the address of a signal handler function or one of the following macros,
defined in <signal.h>:

Macro Meaning

SIG_DFL Use default signal handling.

SIG_IGN Ignore the signal.

If a function address is used, the specified handler will be executed when its signal is received.
Check your compiler's documentation for additional details.

On success, signal() returns the address of the previously defined function for the specified signal.
On error, SIG_ERR (defined in <signal.h>) is returned.

Related Function

raise()

srand

#include <stdlib.h>
void srand(unsigned int seed);

Page 461

The srand() function sets a starting point for the sequence generated by rand(). (The rand()
function returns pseudorandom numbers.)

srand() is often used to allow multiple program runs to use different sequences of pseudorandom
numbers by specifying different starting points. Conversely, you can also use srand() to generate
the same pseudorandom sequence over and over again by calling it with the same seed before
starting the sequence.

Example

This program uses the system time to randomly initialize the rand() function by using srand():

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

/* Seed rand() with the system time
 and display the first 10 numbers.
*/
int main(void)
{
 int i, stime;
 long ltime;

 /* get the current calendar time */
 ltime = time(NULL);
 stime = (unsigned) ltime/2;
 srand(stime);

 for(i=0; i<10; i++) printf("%d ", rand());

 return 0;
}

Related Function

rand()

strtod

#include <stdlib.h>
double strtod(const char *start, char **end);

Page 462

The strtod() function converts the string representation of a number stored in the string pointed to
by start into a double and returns the result.

In C99, start and end are qualified by restrict.

The strtod() function works as follows. First, any white space in the string pointed to by start is
stripped. Next, each character that makes up the number is read. Any character that cannot be part of
a floating-point number will cause this process to stop. This includes white space, punctuation (other
than periods), and characters other than E or e. Finally, end is set to point to the remainder, if any, of
the original string. This means that if strtod() is called with '' 100.00 Pliers", the value 100.00 will
be returned, and end will point to the space that precedes "Pliers".

If overflow occurs, either HUGE_VAL or –HUGE_VAL (indicating positive or negative overflow)
is returned, and the global variable errno is set to ERANGE , indicating a range error. If underflow
occurs, the function returns zero, and the global variable errno is set to ERANGE. If start does not
point to a number, no conversion takes place and zero is returned.

Example

This program reads floating-point numbers from a character array:

#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>

int main(void)
{
 char *end, *start = "100.00 pliers 200.00 hammers";

 end = start;
 while(*start) {
 printf("%f, ", strtod(start, &end));
 printf("Remainder: %s\n" ,end);
 start = end;
 /* move past the non-digits */
 while(!isdigit(*start) && *start) start++;
 }

 return 0;
}

The output is

Page 463

100.00000C, Remainder: pliers 200.00 hammers
200.000000, Remainder: hammers

Related Functions

atof(), strtold(), and strtof()

strtof

#include <stdlib.h>
long double strtof(const char * restrict start,
 char restrict ** restrict end);

strtof() was added by C99.

The strtof() function is similar to strtod() except that it returns a float value. If overflow occurs,
then either HUGE_VALF or –HUGE_VALF is returned, and the global variable errno is set to
ERANGE, indicating a range error. If start does not point to a number, no conversion takes place
and zero is returned.

Related Functions

atof(), strtod(), and strtold()

strtol

#include <stdlib.h>
long int strtol(const char *start, char **end, int radix);

The strtol() function converts the string representation of a number stored in the string pointed to
by start into a long int and returns the result. The base of the number is determined by radix. If
radix is zero, the base is determined by the rules that govern constant specification. If radix is other
than zero, it must be in the range 2 through 36.

In C99, start and end are qualified by restrict.

The strtol() function works as follows. First, any white space in the string pointed to by start is
stripped. Next, each character that makes up the number is read. Any character that cannot be part of
a long integer number will cause this process to stop. This includes white space, punctuation, and
characters. Finally, end is set to point to the remainder, if any, of the original string. This means that
if strtol() is called with '' 100 Pliers", the value 100L will be returned, and end will point to the
space that precedes "Pliers".

Page 464

If the result cannot be represented by a long int, LONG_MAX or LONG_MIN is returned, and the
global errno is set to ERANGE , indicating a range error. If start does not point to a number, no
conversion takes place and zero is returned.

Example

This function reads base 10 numbers from standard input and returns their long equivalent:

long int read_long(void)
{
 char start[80], *end;

 printf("Enter a number: ");
 gets(start);
 return strtol(start, &end, 10);
}

Related Functions

atol () and strtoll()

strtold

#include <stdlib.h>
long double strtold(const char * restrict start,
 char restrict ** restrict end);

strtold() was added by C99.

The strtold() function is similar to strtod() except that it returns a long double value. If overflow
occurs, then either HUGE_VALL or –HUGE_VALL is returned, and the global variable errno is
set to ERANGE , indicating a range error. If start does not point to a number, no conversion takes
place and zero is returned.

Related Functions

atof(), strtod(), and strtof()

Page 465

strtoll

#include <stdlib.h>
long long int strtoll(const char * restrict start,
 char ** restrict end, int radix);

strtoll() was added by C99.

The strtoll() function is similar to strtol() except that it returns a long long int. If the result cannot
be represented by a long integer, LLONG_MAX or LLONG_MIN is returned, and the global
errno is set to ERANGE , indicating a range error. If start does not point to a number, no
conversion takes place and zero is returned.

Related Functions

atol() and strto()

strtoul

#include <stdlib.h>
unsigned long int strtoul(const char *start, char **end,
 int radix);

The strtoul() function converts the string representation of a number stored in the string pointed to
by start into an unsigned long int and returns the result. The base of the number is determined by
radix. If radix is zero, the base is determined by the rules that govern constant specification. If the
radix is specified, it must be in the range 2 through 36.

In C99, start and end are qualified by restrict.

The strtoul() function works as follows. First, any white space in the string pointed to by start is
stripped. Next, each character that makes up the number is read. Any character that cannot be part of
an unsigned integer number will cause this process to stop. This includes white space, punctuation,
and characters. Finally, end is set to point to the remainder, if any, of the original string. This means
that if strtoul() is called with ''100 Pliers", the value 100L will be returned, and end will point to the
space that precedes "Pliers".

Page 466

If the result cannot be represented as an unsigned long integer, ULONG_MAX is returned and the
global variable errno is set to ERANGE, indicating a range error. If start does not point to a
number, no conversion takes place and zero is returned.

Example

This function reads unsigned base 16 (hexadecimal) numbers from standard input and returns their
unsigned long equivalent:

unsigned long int read_unsigned_long(void)
{
 char start[80], *end;

 printf("Enter a hex number: ");
 gets(start);
 return strtoul(start, &end, 16);
}

Related Functions

strtol() and strtoull()

strtoull

#include <stdlib.h>
unsigned long long int strtoull(const char *restrict start, char
 **restrict end, int radix);

strtoull() was added by C99.

The strtoull() function is similar to strtoul() except that it returns an unsigned long long int. If the
result cannot be represented as an unsigned long integer, ULLONG_MAX is returned and the
global variable errno is set to ERANGE. If start does not point to a number, no conversion takes
place and zero is returned.

Related Functions

strtol() and strtoul()

Page 467

system

#include <stdlib.h>
int system(const char *str);

The system() function passes the string pointed to by str as a command to the command processor
of the operating system.

If system() is called with a null pointer, it will return nonzero if a command processor is present;
otherwise, it will return zero. (C code executed in unhosted environments will not have access to a
command processor.) The return value of system() is implementation defined, but typically, zero is
returned if the command was successfully executed, and a nonzero return value indicates an error.

Example

Using the Windows operating system, this program displays the contents of the current working
directory:

#include <stdlib.h>

int main(void)
{
 return system(''dir");
}

Related Function

exit()

va_arg, va_copy, va_start, and va_end

#include <stdarg.h>
type va_arg(va_list argptr, type);
void va_copy(va_list target, va_list source);
void va_end(va_list argptr);
void va_start (va_list argptr, last_parm);

va_copy() was added by C99.

Page 468

The va_arg(), va_start(), and va_end() macros work together to allow a variable number of
arguments to be passed to a function. The most common example of a function that takes a variable
number of arguments is printf(). The type va_list is defined by <stdarg.h>.

The general procedure for creating a function that can take a variable number of arguments is as
follows. The function must have at least one known parameter, but may have more, prior to the
variable parameter list. The rightmost known parameter is called the last_ parm. The name of last_
parm is used as the second parameter in a call to va_start(). Before any of the variable-length
parameters can be accessed, the argument pointer argptr must be initialized through a call to
va_start(). After that, parameters are returned via calls to va_arg(), with type being the type of the
next parameter. Finally, once all the parameters have been read, and prior to returning from the
function, a call to va_end() must be made to ensure that the stack is properly restored. If va_end()
is not called, a program crash is very likely.

The va_copy() macro copies the argument list in source to target.

Example

This program uses sum_series() to return the sum of a series of numbers. The first argument
contains a count of the number of arguments to follow. In this example, the program sums the first
five elements of the series:

1 1 1 1 1

— + — + — + — + . . . —

2 4 8 16 2N

The output displayed is 0.968750.

#include <stdio.h>
#include <stdarg.h>

double sum_series(int num, ...);

/* Variable length argument example - sum a series. */
int main(void)
{
 double d;

 d = sum_series(5, 0.5, 0.25, 0.125, 0.0625, 0.03125);

 printf("Sum of series is %f.\n", d);

TE
AM
FL
Y

Team-Fly®

Page 469

 return 0;
}

double sum_series(int num, ...)
{
 double sum=0.0, t;
 va_list argptr;

 /* initialize argptr */
 va_start(argptr, num);

 /* sum the series */
 for(; num; num--) {
 t = va_arg(argptr, double); /* get next argument */
 sum += t;
 }

 /* do orderly shutdown */
 va_end(argptr);
 return sum;
}

Related Function

vprintf()

wcstombs

#include <stdlib.h>
size_t wcstombs(char *out, const wchar_t *in, size_t size);

The wcstombs() function converts the wide-character array pointed to by in into its multibyte
equivalent and puts the result in the array pointed to by out. Only the first size bytes of in are
converted. Conversion stops before that if the null terminator is encountered.

In C99, out and in are qualified by
restrict.

If successful, wcstombs() returns the number of bytes written. On failure, –1 is returned.

Page 470

Related Functions

wctomb() and mbstowcs()

wctomb

#include <stdlib.h>
int wctomb(char *out, wchar_t in);

The wctomb() function converts the wide character in in into its multibyte equivalent and puts the
result in the object pointed to by out. The array pointed to by out must be at least MB_CUR_MAX
characters long.

If successful, wctomb() returns the number of bytes contained in the multibyte character. On
failure, –1 is returned.

If out is null, wctomb() returns nonzero if the multibyte character has state-dependent encodings; it
returns zero otherwise.

Related Functions

wcstombs() and mbtowc()

Page 471

Chapter 19—
Wide-Character Functions

Page 472

In 1995 a number of wide-character functions were added to C89. These functions were also
incorporated into C99. The wide-character functions operate on characters of type wchar_t, which
are 16 bits. For the most part these functions parallel their char equivalents. For example, the
function iswspace() is the wide-character version of isspace(). In general, the wide-character
functions use the same names as their char equivalents, except that a ''w" is added.

The wide-character functions use two headers: <wchar.h> and <wctype.h>. The header
<wctype.h> defines the types wint_t, wctrans_t, and wctype_t. Many of the wide-character
functions receive a wide character as a parameter. The type of this parameter is wint_t. It is capable
of holding a wide character. The use of the wint_t type in the wide-character functions parallels the
use of int in the char-based functions. The types wctrans_t and wctype_t are the types of objects
used to represent a character mapping (character translation) and the classification of a character,
respectively. Also defined is the wide-character EOF mark, which is defined as WEOF.

In addition to defining win_t, the header <wchar.h> defines the types wchar_t, size_t , and
mbstate_t. The wchar_t type creates a wide-character object, and size_t is the type of value
returned by sizeof . The mbstate_t type describes an object that holds the state of a multibyte to
wide-character conversion. The <wchar.h> header also defines the macros NULL , WEOF,
WCHAR_MAX, and WCHAR_MIN. The last two define the maximum and minimum value that
can be held in an object of type wchar_t.

Since most of the wide-character functions simply parallel their char equivalents and are not
frequently used by most C programmers, only a brief description of these functions is provided.

Wide-Character Classification Functions

The header <wctype.h> provides the prototypes for the wide-character functions that support
character classification. These functions categorize wide characters as to their type or convert the
case of a character. Table 19-1 lists these functions along with their char equivalents, which are
described in Chapter 14.

Function char Equivalent

int iswalnum(wint_t ch) isalnum()

int iswalpha(wint_t ch) isalpha()

int iswblank(wint_t ch) isblank() (added by C99)

Table 19-1. Wide-Character Classification Functions and Their char Equivalents

(table continued on next page)

Page 473

(continued)

Function char Equivalent

int iswcntrl(wint_t ch) iscntrl()

int iswdigit(wint_t ch) isdigit()

int iswgraph(wint_t ch) isgraph()

int iswlower(wint_t ch) islower()

int iswprint(wint_t ch) isprint()

int iswpunct(wint_t c) ispunct()

int iswspace(wint_t ch) isspace()

int iswupper(wint_t ch) isupper()

int iswxdigit(wint_t ch) isxdigit()

wint_t towlower(wint_t ch) tolower()

wint_t towupper(wintt ch) toupper()

Table 19-1. Wide-Character Classification Functions and Their char Equivalents

In addition to the functions shown in Table 19-1, <wctype.h> defines the following functions,
which provide an open-ended means of classifying characters.

wctype_t wctype(const char *attr);

int iswctype(wint_t ch, wctype_t attr_ob);

The function wctype() returns a value that can be passed to the attr_ob parameter to iswctype().
The string pointed to by attr specifies a property that a character must have. This value can then be
used to determine whether ch is a character that has that property. If it has the property, iswctype()
returns nonzero. Otherwise, it returns zero. The following property strings are defined for all
execution environments:

alnum digit print upper

alpha graph punct xdigit

cntrl lower space

For C99, the string ''blank" is also defined.

Page 474

The following fragment demonstrates the wctype() and iswctype() functions:

wctype_t x;

x = wctype("space");

if(iswctype(L' ', x))
 printf(''Is a space.\n");

This displays "Is a space."

The functions wctrans() and towctrans() are also defined in <wctype.h>. They are shown here:

wctrans_t wctrans(const char *mapping);

wint_t towctrans(wint_t ch, wctrans_t mapping_ob);

The function wctrans() returns a value that can be passed as the mapping_ob parameter to
towctrans(). The string pointed to by mapping specifies a mapping of one character to another.
This value can then be used by iswctrans() to map ch. The mapped value is returned. The following
mapping strings are supported in all execution environments:

tolower toupper

The following sequence demonstrates wctrans() and towctrans():

wctrans_t x;

x = wctrans("tolower");

wchar_t ch = towctrans(L'W', x);
printf("%c", (char) ch);

This displays a lowercase w.

Wide-Character I/O Functions

Several of the I/O functions described in Chapter 13 have wide-character implementations. These
functions are shown in Table 19-2. The wide-character I/O functions use the header <wchar.h>.
Notice that swprintf() and vswprintf() require an additional parameter not needed by their char
equivalents.

Page 475

In addition to those shown in the table, the following wide-character I/O function has been added:

int fwide(FILE *stream, int how);

Function char Equivalent

win_t fgetwc(FILE * stream) fgetc()

wchar_t *fgetws(wchar_t *str , int num,
 FILE * stream)

fgets()
In C99, str and stream are qualified by restrict.

wint_t fputwc(wchar_t ch , FILE *stream) fputc()

int fputws(const wchar_t * str , FILE *stream) fputs()
In C99, str and stream are qualified by restrict.

int fwprintf(FILE *stream,
 const wchar_t * fmt, . . .)

fprintf()
In C99, stream and fmt are qualified by restrict.

int fwscanf(FILE *stream ,
 const wchar_t * fmt, . . .)

fscanf()
In C99, stream and fmt are qualified by restrict.

wint_t getwc(FILE *stream) getc()

wint_t getwchar(void) getchar()

wint_t putwc(wchar_t ch, FILE *stream) putc()

wint_t putwchar(wchar_t ch) putchar()

int swprintf(wchar_t *str , size_t num,
 const wchar_t *fmt, . . .)

sprintf()
Note the addition of the parameter num, which limits the
number of characters
written to str .
In C99, str and fmt are qualified by restrict.

int swscanf(const wchar_t *str ,
 const wchar_t *fmt, . . .)

sscanf()
In C99, str and fmt are qualified by restrict.

Table 19-2. Wide-Character I/O Functions and Their char Equivalents

(table continued on next page)

Page 476

(continued)

Function char Equivalent

wint_t ungetwc(wint_t ch , FILE *stream) ungetc()

int vfwprintf(FILE *stream,
 const wchar_t *fmt, va_list arg)

vfprintf()
In C99, str and fmt are qualified
by restrict.

int vfwscanf(FILE * restrict stream,
 const wchar_t * restrict fmt,
 va_list arg);

vfscanf() (added by C99)

int vswprintf(wchar_t *str, size_t num,
 const wchar_t *fmt, va_list arg)

vsprintf()
Note the addition of the parameter num, which limits
the number of characters
written to str.
In C99, str and fmt are qualified by restrict.

int vswscanf(const wchar_t * restrict str ,
 const wchar_t * restrict fmt,
 va_list arg);

vsscanf() (added by C99)

int vwprintf(const wchar_t *fmt, va_list arg) vprintf()
In C99, str and fmt are qualified by restrict.

int vwscanf(const wchar_t * restrict fmt,
 va_list arg);

vscanf() (added by C99)

int wprintf(const wchar_t *fmt, . . .) printf()
In C99, fmt is qualified by restrict.

int wscanf(const wchar_t *fmt, . . .) scanf()
In C99,,fmt is qualified by restrict.

Table 19-2. Wide-Character I/O Functions and Their char Equivalents

If how is positive, fwide() makes stream a wide-character stream. If how is negative, fwide()
makes stream into a char stream. If how is zero, stream is unaffected. If the stream has already been
oriented to either wide or normal characters, it will not be changed. The function returns positive if
the stream uses wide characters, negative if

Page 477

the stream uses chars, and zero if the stream has not yet been oriented. A stream's orientation is also
determined by its first use.

Wide-Character String Functions

There are wide-character versions of the string manipulation functions described in Chapter 14.
These are shown in Table 19-3. They use the header <wchar.h>. Note that wcstok() requires an
additional parameter not used by its char equivalent.

Function char Equivalent

wchar_t *wcscat(wchar_t * str1,
 const wchar_t *str2)

strcat()
In C99, str1 and str2 are qualified by
restrict.

wchar_t *wcschr(const wchar_t * str ,
 wchar_t ch)

strchr()

int wcscmp(const wchar_t *str1,
 const wchar_t *str2)

strcmp()

int wcscoll(const wchar_t *str1,
 const wchar_t *str2)

strcoll()

size_t wcscspn(const wchar_t * str1,
 const wchar_t *str2)

strcspn()

wchar_t *wcscpy(wchar_t *str1,
 const wchar_t *str2)

strcpy()
In C99, str1 and str2 are qualified by
restrict.

size_t wcslen(const wchar_t *str) strlen()

wchar_t *wcsncpy(wchar_t *str1,
 const wchar_t str2,
 size_t num)

strncpy()
In C99, str1 and str2 are qualified by
restrict.

wchar_t *wcsncat(wchar_t str1,
 const wchar_t str2,
 size_t num)

strncat()
In C99, str1 and str2 are qualified by
restrict.

int wcsncmp(const wchar_t * str1,
 const wchar_t *str2,
 size_t num)

strncmp()

Table 19-3. Wide-Character String Functions and Their char Equivalents

(table continued on next page)

Page 478

(continued)

Function char Equivalent

wchar_t *wcspbrk(const wchar_t *str1 ,
 const wchar_t *str2)

strpbrk()

wchar_t *wcsrchr(const wchar_t *str,
 wchar_t ch)

strrchr()

size_t wcsspn(const wchar_t *str1,
 const wchar_t *str2)

strspn()

wchar_t *wcstok(wchar_t *str1 ,
 const wchar_t *str2 ,
 wchar_t **endptr)

strtok()
Here, endptr is a pointer that holds
information necessary to continue the
tokenizing process.
In C99, str1, str2, and endptr are qualified
by restrict.

wchar_t *wcsstr(const wchar_t str1,
 const wchar_t *str2)

strstr()

size_t wcsxfrm(wchar_t *str1,
 const wchar_t *str2,
 size_t num)

strxfrm()
In C99, str1 and str2 are qualified by
restrict.

Table 19-3. Wide-Character String Functions and Their char Equivalents

Wide-Character String Conversion Functions

The functions shown in Table 19-4 provide wide-character versions of the standard numeric and
time conversion functions. These functions use the header <wchar.h>.

Function char Equivalent

size_t wcsftime(wchar_t *str, size_t max,
 const wchar_t *fmt,
 const struct tm *ptr)

strftime()
In C99 str,fmt, and ptr are qualified by restrict.

double wcstod(const wchar_t *start, wchar_t **end); strtod()
In C99 start and end are qualified by restrict.

Table 19-4. Wide-Character Conversion Functions and Their char Equivalents

(table continued on next page)

TE
AM
FL
Y

Team-Fly®

Page 479

(continued)

float wcstof(const wchar_t * restrict start,
 wchar_t ** restrict end);

strtof() (added by C99)

long double wcstold(const wchar_t * restrict start,
 wchar_t ** restrict end);

strtold() (added by C99)

long int wcstol(const wchar_t *start ,
 wchar_t **end ,
 int radix)

strtol()
In C99 start and end are
qualified by restrict.

long long int wcstoll(const wchar_t * restrict start,
 wchar_t ** restrict end,
 int radix)

strtoll()
(added by C99)

unsigned long int wcstoul(
 const wchar_t * restrict start,
 wchar_t ** restrict end,
 int radix)

strtoul()
In C99 start and end are
qualified by restrict.

unsigned long long int wcstoull(
 const wchar_t *start ,
 wchar_t **end ,
 int radix)

strtoull() (added by C99)

Table 19-4. Wide-Character Conversion Functions and Their char Equivalents

Wide-Character Array Functions

The standard character array–manipulation functions, such as memcpy(), also have wide-character
equivalents. They are shown in Table 19-5. These functions use the header <wchar.h>.

Function char Equivalent

wchar_t *wmemchr(const wchar_t *str,
 wchar_t ch , size_t num)

memchr()

int wmemcmp(const wchar_t *str1,
 const wchar_t *str2, size_t num)

memcmp()

Table 19-5. Wide-Character Array Functions and Their char Equivalents

(table continued on next page)

Page 480

(continued)

Function char Equivalent

wchar_t *wmemcpy(wchar_t *str1 ,
 const wchar_t *str2 ,
 size_t num)

memcpy()
In C99 str1 and str2 are
qualified by restrict.

wchar_t *wmemmove(wchar_t *str1,
 const wchar_t *str2 ,
 size_t num)

memmove()

wchar_t *wmemset(wchar_t *str, wchar_t ch ,
 size_t num)

memset()

Table 19-5. Wide-Character Array Functions and Their char Equivalents

Multibyte/Wide-Character Conversion Functions

The standard function library supplies various functions that support conversions between multibyte
and wide characters. These functions are shown in Table 19-6. They use the header <wchar.h>.
Many of these functions are restartable versions of the normal multibyte functions. The restartable
version utilizes the state information passed to it in a parameter of type mbstate_t. If this parameter
is null, the function will provide its own mbstate_t object.

Function Description

win_t btowc(int ch) Converts ch into its wide-character equivalent
and returns the result. Returns WEOF on error or
if ch is not a one-byte, multibyte character.

Table 19-6. Wide-Character/Multibyte Conversion Functions

(table continued on next page)

Page 481

(continued)

Function Description

size_t mbrlen(const char *str, size_t num,
 mbstate_t *state)

Restartable version of mblen() as described by
state. Returns a positive value that indicates the
length of the next multibyte character. Zero is
returned if the next character is null. A negative
value is returned if an error occurs.
In C99, str and state are qualified by restrict.

size_t mbrtowc(wchar_t *out,
 const char *in,
 size_t num,
 mbstate_t *state)

Restartable version of mbtowc() as described by
state. Returns a positive value that indicates the
length of the next multibyte character. Zero is
returned if the next character is null. A value of –
1 is returned if an error occurs and the macro
EILSEQ is assigned to errno. If the conversion
is incomplete, –2 is returned.
In C99, out, in, and state are qualified by
restrict.

int mbsinit(const mbstate_t *state) Returns true if state represents an initial
conversion state.

size_t mbsrtowcs(wchar_t *out,
 const char **in,
 size_t num,
 mbstate_t state)

Restartable version of mbstowcs() as described
by state. Also, mbsrtowcs() differs from
mbstowcs() in that in is an indirect pointer to
the source array. If an error occurs, the macro
EILSEQ is assigned to errno.
In C99, out, in, and state are qualified by
restrict.

size_t wcrtomb(char *out, wchar_t ch ,
 mbstate_t *state)

Restartable version of wctomb() as described by
state. If an error occurs, the macro EILSEQ is
assigned to errno.
In C99, out and state are qualified by restrict.

Table 19-6. Wide-Character/Multibyte Conversion Functions

(table continued on next page)

Page 482

(continued)

Function Description

size_t wcsrtombs(char *out,
 const wchar_t **in,
 size_t num,
 mbstate_t *state)

Restartable version of wcstombs() as described
by state. Also, wcsrtombs() differs from
wcstombs() in that in is an indirect pointer to
the source array. If an error occurs, the macro
EILSEQ is assigned to errno.
In C99, out, in, and state are qualified by
restrict.

int wctob(wint_t ch) Converts ch into its one -byte,
multibyte equivalent. It returns EOF
on failure.

Table 19-6. Wide-Character/Multibyte Conversion Functions

Page 483

Chapter 20—
Library Features Added by C99

Page 484

The C99 standard increased the size of the C library two ways. First, it added functions to headers
previously defined by C89. For example, significant additions were made to the mathematics library
supported by the <math.h> header. These additional functions were covered in the preceding
chapters. Second, new categories of functions, ranging from support for complex arithmetic to type-
generic macros, were created, along with new headers to support them. These new library elements
are described in this chapter.

The Complex Library

C99 adds complex arithmetic capabilities to C. The complex library is supported by the
<complex.h> header. The following macros are defined:

Macro Expands To

complex _Complex

imaginary _Imaginary

_Complex_I (const float _Complex) i

_Imaginary_I (const float _Imaginary) i

I _Imaginary_I (or _Complex_I if imaginary types are not supported)

Here, i represents the imaginary value, which is the square root of –1. Support for imaginary types is
optional.

_Complex and _Imaginary, rather than complex and imaginary, were specified as keywords by
C99 because many existing C89 programs had already defined their own custom complex data types
using the names complex and imaginary. By using the keywords _Complex and _Imaginary, C99
avoids breaking preexisting code. For new programs, however, it is best to include <complex.h>
and then use the complex and imaginary macros.

NOTE

C++ defines the complex class, which, of course, provides a different way of
performing complex math.

The complex math functions are shown in Table 20-1. Notice that float complex, double complex,
and long double complex versions of each function are defined. The float complex version uses the
suffix f, and the long double complex version uses the suffix 1. Also, angles are in radians.

Page 485

Function Description

float cabsf(float complex arg);
double cabs(double complex arg);
long double cabsl(long double complex arg);

Returns the complex absolute value of arg

float complex cacosf(float complex arg);
double complex cacos(double complex arg);
long double complex cacosl(long double complex arg);

Returns the complex arc cosine of arg

float complex cacoshf(float complex arg);
double complex cacosh(double complex arg);
long double complex cacoshl(long double complex arg);

Returns the complex arc hyperbolic cosine of arg

float cargf(float complex arg);
double carg(double complex arg);
long double cargl(long double complex arg);

Returns the phase angle of arg

float complex casinf(float complex arg);
double complex casin(double complex arg);
long double complex casinl(long double complex arg);

Returns the complex arc sine of arg

float complex casinhf(float complex arg);
double complex casinh(double complex arg);
long double complex casinhl(long double complex arg);

Returns the complex arc hyperbolic sine of arg

float complex catanf(float complex arg);
double complex catan(double complex arg);
long double complex catanl(long double complex arg);

Returns the complex arc tangent of arg

float complex catanhf(float complex arg);
double complex catanh(double complex arg);
long double complex catanhl(long double complex arg);

Returns the complex arc hyperbolic tangent of arg

Table 20-1. The Complex Math Functions

(table continued on next page)

Page 486

(continued)

Function Description

float complex ccosf(float complex arg);
double complex ccos(double complex arg);
long double complex ccosl(long double complex arg);

Returns the complex cosine of arg

float complex ccoshf(float complex arg);
double complex ccosh(double complex arg);
long double complex ccoshl(long double complex arg);

Returns the complex hyperbolic cosine of arg

float complex cexpf(float complex arg);
double complex cexp(double complex arg);
long double complex cexpl(long double complex arg);

Returns the complex value earg , where e is the natural
logarithm base

float cimagf(float complex arg);
double cimag(double complex arg);
long double cimagl(long double complex arg);

Returns the imaginary part of arg

float complex clogf(float complex arg);
double complex clog(double complex arg);
long double complex clogl(long double complex arg);

Returns the complex natural logarithm of arg

float complex conjf(float complex arg);
double complex conj(double complex arg);
long double complex conjl(long double complex arg);

Returns the complex conjugate of arg

float complex cpowf(float complex a,
 long double complex b);

Returns the complex value of ab

double complex cpow(double complex a,
 double complex b);

long double complex cpowl(long double complex a,
 long double complex b);

Table 20-1. The Complex Math Functions

(table continued on next page)

Page 487

(continued)

Function Description

float complex cprojf(float complex arg);
double complex cproj(double complex arg);
long double complex cprojl(long double complex arg);

Returns the projection of arg onto the Riemann sphere

float crealf(float complex arg);
double creal(double complex arg);
long double creall(long double complex arg);

Returns the real part of arg

float complex csinf(float complex arg);
double complex csin(double complex arg);
long double complex csinl(long double complex arg);

Returns the complex sine of arg

float complex csinhf(float complex arg);
double complex csinh(double complex arg);
long double complex csinhl(long double complex arg);

Returns the complex hyperbolic sine of arg

float complex csqrtf(float complex arg);
double complex csqrt(double complex arg);
long double complex csqrtl(long double complex arg);

Returns the complex square root of arg

float complex ctanf(float complex arg);
double complex ctan(double complex arg);
long double complex ctanl(long double complex arg);

Returns the complex tangent of arg

float complex ctanhf(float complex arg);
double complex ctanh(double complex arg);
long double complex ctanhl(long double complex arg);

Returns the complex hyperbolic tangent of arg

Table 20-1. The Complex Math Functions

Page 488

The Floating-Point Environment Library

In the header <fenv.h>, C99 declares functions that access the floating-point environment. These
functions are shown in Table 20-2. The <fenv.h> header also defines the types fenv_t and
fexcept_t, which represent the floating-point environment and the floating-point status flags,
respectively. The macro FE_DFL_ENV specifies a pointer to the default floating-point
environment defined at the start of program execution.

The following floating-point exception macros are defined:

FE_DIVBYZERO FE_INEXACT FW_INVALID

FE_OVERFLOW FE_UNDERFLOW FE_ALL_EXCEPT

Any combination of these macros can be stored in an int object by ORing them together.

The following rounding-direction macros are defined:

FE_DOWNWARD FE_TONEAREST FE_TOWARDZERO FE_UPWARD

These macros indicate the method that is used to round values.

In order for the floating-point environment flags to be tested, the pragma FENV_ACCESS must be
set to the on position. Whether floating-point flag access is on or off by default is implementation-
defined.

The <stdint.h> Header

The C99 header <stdint.h> does not declare any functions, but it does define a large number of
integer types and macros. The integer types are used to declare integers of known sizes, or integers
that manifest a specified trait.

Macros of the form intN_t specify an integer with N bits. For example, int16_t specifies a 16-bit
signed integer. Macros of the form uintN_t specify an unsigned integer with N bits. For example,
uint32_t specifies a 32-bit unsigned integer. Macros with the values 8, 16, 32, and 64 for N will be
available in all environments that offer integers in these widths.

Macros of the form int_leastN_t specify an integer with at least N bits. Macros of the form
uint_leastN_t specify an unsigned integer with at least N bits. Macros with the values 8, 16, 32, and
64 for N will be available in all environments. For example, int_least16_t is a valid type.

Macros of the form int_fastN_t specify the fastest integer type that has at least N bits. Macros of the
form uint_fastN_t specify the fastest unsigned integer type that has at least N bits. Macros with the
values 8, 16, 32, and 64 for N will be available in all environments. For example, int_fast32_t is
valid in all settings.

TE
AM
FL
Y

Team-Fly®

Page 489

Function Description

void feclearexcept(int ex); Clears the exceptions specified by ex.

void fegetexceptflag(fexcept_t * fptr ,
 int ex);

The state of the floating-point exception flags specified by
ex are stored in the variable pointed to by fptr.

void feraiseexcept(int ex); Raises the exceptions specified by ex.

void fesetexceptflag(const fexcept_t * fptr ,
 int ex);

Sets the floating -point status flags specified by ex to the
state of the flags in the object pointed to by fptr.

int fetestexcept(int ex); Bitwise ORs the exceptions specified in ex with the
current floating -point status flags and returns the result.

int fegetround(void); Returns a value that indicates the current rounding
direction.

int fesetround(int direction); Sets the current rounding direction to that specified by
direction. A return value of zero indicates success.

void fegetenv(fenv_t *envptr); The object pointed to by envptr receives the floating-point
environment.

int feholdexcept(fenv_t *envptr); Causes nonstop floating-point exception handling to be
used. It also stores the floating-point environment in the
variable pointed to by envptr and clears the status flags. It
returns zero if successful.

void fesetenv(const fenv_t *envptr); Sets the floating -point environment to that pointed to by
envptr , but does not raise floating-point exceptions. This
object must have been obtained by calling either fegetenv
() or feholdexcept() .

void feupdateenv(const fenv_t *envptr); Sets the floating -point environment to that pointed to by
envptr. It first saves any current exceptions and then raises
these exceptions after the environment pointed to by
envptr has been set. The object pointed to by envptr must
have been obtained by calling either fegetenv() or
feholdexcept() .

Table 20-2. Floatin-Point Environment Functions

Page 490

The type intmax_t specifies a maximum-sized signed integer, and the type uintmax_t specifies a
maximum-sized unsigned integer.

Also defined are the intptr_t and uintptr_t types. These can be used to create integers that can hold
pointers. These types are optional.

<stdint.h> defines several functionlike macros that expand into constants of a specified integer
type. These macros have the following general forms,

INTN_C(value)

UINTN_C(value)

where N is the bit-width of the desired type. Each macro creates a constant that has at least N bits
containing the specified value.

Also defined are the macros

INTMAX_C(value)

UINTMAX_C(value)

These create maximum-width constants of the specified value.

Integer Format Conversion
Functions

C99 adds a few specialized integer format conversion functions that allow you to convert to and
from greatest-width integers. The header that supports these functions is <inttypes.h>, which
includes <stdint.h>. The <inttypes.h> header defines one type: the structure imaxdiv_t, which
holds the value returned by the imaxdiv() function. The integer conversion functions are shown in
Table 20-3.

<inttypes.h> also defines many macros that can be used in calls to the printf() and scanf() family
of functions, to specify various integer conversions. The printf() macros begin with PRI, and the
scanf() macros begin with SCN. These prefixes are then followed by a conversion specifier, such as
d or u, and then a type name, such as N, MAX , PTR, FASTN, or LEASTN, where N specifies the
number of bits. Consult your compiler's documentation for a precise list of conversion macros
supported.

Type-Generic Math Macros

As described in Chapter 15, C99 defines three versions for most mathematical functions: one for
float, one for double, and one for long double parameters. For example, C99 defines these
functions for the sine operation:

double sin(double arg);

float sinf(float arg);

long double sinl(long double arg);

Page 491

Function Description

intmax_t imaxabs(intmax_t arg); Returns the absolute value of arg.

imaxdiv_t imaxdiv(intmax_t numerator,
 intmax_t denominator);

Returns an imaxdiv_t structure that contains the outcome
of numerator / denominator. The quotient is in the quot
field, and the remainder is in the rem field. Both quot and
rem are of type intmax_t .

intmax_t strtoimax(const char * restrict start,
 char ** restrict end ,
 int base);

The greatest-width integer version of strtol().

uintmax_t strtoumax(const char * restrict start ,
 char ** restrict end,
 int base);

The greatest-width integer version of strtoul() .

intmax_t wcstoimax(const char * restrict start ,
 char ** restrict end ,
 int base);

The greatest-width integer version of wcstol().

uintmax_t wcstoumax(const char * restrict start,
 char ** restrict end ,
 int base);

The greatest-width integer version of wcstoul() .

Table 20-3. Greatest-Width Integer Conversion Functions

Page 492

The operation of all three functions is the same, except for the data upon which they operate. In all
cases, the double version is the original function defined by C89. The float and long double
versions were added by C99. As explained in Chapter 15, the float versions use the f suffix, and
long double versions use the l suffix. By providing three different functions, C99 enables you to call
the one that most precisely fits the circumstances. As described earlier in this chapter, the complex
math functions also provide three versions of each function, for the same reason.

As useful as the three versions of the math and complex functions are, they are not particularly
convenient. First, you have to remember to specify the proper suffix for the data you are passing.
This is both tedious and error prone. Second, if you change the type of data being passed to one of
these functions during project development, you will need to remember to change the suffix as
well— again, tedious and error prone. To address these (and other) issues, C99 defines a set of type-
generic macros that can be used in place of the math or complex functions. These macros
automatically translate into the proper function based upon the type of the argument. The type-
generic macros are defined in <tgmath.h> , which automatically includes <math.h> and
<complex.h> .

The type-generic macros use the same names as the double version of the math or complex
functions to which they translate. (These are also the same names defined by C89.) Thus, the type-
generic macro for sin(), sinf(), and sinl() is sin(). The type-generic macro for csin(), csinf(), and
csinl() is also sin(). As explained, the proper function is called based upon the argument. For
example, given

long double ldbl;
float complex fcmplx;

then,

cos (ldbl)

translates into

cosl(ldbl)

and

cos(fcmplx)

translates into

ccosf(fcmplx)

Page 493

As these examples illustrate, the use of type-generic macros offers the programmer convenience
without loss of performance, precision, or portability.

The <stdbool.h> Header

C99 adds the header <stdbool.h>, which supports the _Bool data type. Although it does not define
any functions, it does define these four macros:

Macro Expands To

bool _Bool

true 1

false 0

_ _bool_true_false_are_defined 1

The reason that C99 specified _Bool rather than bool as a keyword is that many existing C programs
had already defined their own custom versions of bool. By defining the Boolean type as _Bool, C99
avoids breaking this preexisting code. The same reasoning goes for true and false. However, for
new programs, it is best to include <stdbool.h> and then use the bool, true, and false macros. One
advantage of doing so is that it allows you to create code that is compatible with C++.

Page 495

PART IV—
ALGORITHMS AND APPLICATIONS

The purpose of Part Four is to show how C can be applied to a wide range of programming tasks. In
the process, many useful algorithms and applications that illustrate several aspects of the C language
are presented. Many examples contained Part Four can be used as starting points for your own C
projects.

Page 497

Chapter 21—
Sorting and Searching

Page 498

In the world of computers, sorting and searching are two of the most fundamental and extensively
analyzed tasks. Sorting and searching routines are used in almost all database programs as well as in
compilers, interpreters, and operating systems. This chapter introduces the basics of sorting and
searching. As you will see, they illustrate several important C programming techniques. Since the
point of sorting data is generally to make searching that data easier and faster, sorting is discussed
first.

Sorting

Sorting is the process of arranging a set of similar information into an increasing or decreasing
order. Sorting is one of the most intellectually pleasing categories of algorithms because the process
is so well defined. Sorting algorithms have also been extensively analyzed and are well understood.
Unfortunately, because sorting is so well understood, it is sometimes taken for granted. When data
needs to be sorted, many programmers simply use the standard qsort() function provided by the C
standard library. However, different approaches to sorting have different characteristics. Although
some sorts may be better than others on average, no sort is perfect for all situations. Therefore, a
useful addition to any programmer's toolbox is a wide variety of sorts.

Before starting, it will be useful to explain briefly why qsort() is not the answer to all sorting tasks.
First, you cannot apply a generalized function like qsort() to every situation. For example, it will
only sort arrays in memory. It can't sort data stored in a linked list, for example. Second, qsort() is
parameterized so that it can operate on a wide variety of data, but this causes it to run more slowly
than would an equivalent sort that operates on only one type of data. Finally, as you will see,
although the quicksort algorithm used by qsort() is very effective in the general case, it may not be
the best sort for specialized situations.

There are two general categories of sorting algorithms: algorithms that sort random-access objects,
such as arrays or random-access disk files, and algorithms that sort sequential objects, such as disk
or tape files, or linked lists. This chapter is concerned only with the first category, because it is most
relevant to the average programmer.

Most often when information is sorted, only a portion of the information is used as the sort key. The
key is that part of the data that determines which item comes before another. Thus, the key is used in
comparisons, but when an exchange is made, the entire data structure is swapped. For example, in a
mailing list the postal code might be used as the key, but the entire address is sorted. For the sake of
simplicity, the next few examples will sort character arrays, in which the key and the data are the
same. Later, you will see how to adapt these methods to sort any type of data structure.

Classes of Sorting Algorithms

There are three general methods for sorting arrays:

• Exchange

Page 499

• Selection

• Insertion

To understand these three methods, imagine a deck of cards. To sort the cards by using exchange,
spread them on a table, face up, and then exchange out-of-order cards until the deck is ordered.
Using selection, spread the cards on the table, select the card of lowest value, take it out of the deck,
and hold it in your hand. Then, from the remaining cards on the table, select the lowest card and
place it behind the one already in your hand. This process continues until all the cards are in your
hand. The cards in your hand will be sorted when you finish the process. To sort the cards by using
insertion, hold all the cards in your hand. Place one card at a time on the table, always inserting it in
the correct position. The deck will be sorted when you have no cards in your hand.

Judging Sorting Algorithms

There are many different sorting algorithms. They all have some merit, but the general criteria for
judging a sorting algorithm are

• How fast can it sort information in an average case?

• How fast are its best and worst cases?

• Does it exhibit natural or unnatural behavior?

• Does it rearrange elements with equal keys?

Look closely at these criteria now. Clearly, how fast a particular algorithm sorts is of great concern.
The speed with which an array can be sorted is directly related to the number of comparisons and
the number of exchanges that take place, with exchanges taking more time. A comparison occurs
when one array element is compared to another; an exchange happens when two elements are
swapped. The run times of some sort routines increase exponentially, while others increase
logarithmically relative to the number of items being sorted.

The best- and worst-case run times are important if you expect to encounter one of these situations
frequently. Often a sort has a good average case but a terrible worst case.

A sort is said to exhibit natural behavior if it works least when the list is already in order, works
harder as the list becomes less ordered, and works hardest when a list is in inverse order. How hard a
sort works is based on the number of comparisons and exchanges that it makes.

To understand why rearranging elements with equal keys may be important, imagine a database
such as a mailing list, which is sorted on a main key and a subkey. The main sort key is the postal
code, and within postal codes, the last name is the subkey. When a new address is added to the list
and the list is re-sorted, you do not want the subkeys (that is, the last names within postal codes) to
be rearranged. To guarantee that this doesn't happen, a sort must not exchange keys of equal value.

Page 500

The discussion that follows first examines the representative sorts from each category and then
analyzes the efficiency of each. Later, you'll see improved sorting methods.

The Bubble Sort

The most well-known (and infamous) sort is the bubble sort. Its popularity is derived from its catchy
name and its simplicity. However, for general-purpose sorting, it is one of the worst sorts ever
conceived.

The bubble sort is an exchange sort. It involves the repeated comparison and, if necessary, the
exchange of adjacent elements. The elements are like bubbles in a tank of water— each seeks its own
level. A simple form of the bubble sort is shown here:

/* The Bubble Sort. */
void bubble(char *items, int count)
{
 register int a, b;
 register char t;

 for(a=1; a < count; ++a)
 for(b=count-1; b >= a; --b) {
 if(items[b-1] > items[b]) {
 /* exchange elements */
 t = items[b-1];
 items[b-1] = items[b];
 items[b] = t;
 }
 }
}

Here, items is a pointer to the character array to be sorted, and count is the number of elements in
the array. The bubble sort is driven by two loops. Given that there are count elements in the array,
the outer loop causes the array to be scanned count–1 times. This ensures that, in the worst case,
every element is in its proper position when the function terminates. The inner loop actually
performs the comparisons and exchanges. (A slightly improved version of the bubble sort terminates
if no exchanges occur, but this adds another comparison in each pass through the inner loop.)

You can use this version of the bubble sort to sort a character array into ascending order. For
example, the following short program sorts a string entered by the user:

TE
AM
FL
Y

Team-Fly®

Page 501

/* Sort Driver */

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

void bubble(char *items, int count);

int main (void)
{
 char s[255];

 printf("Enter a string:");
 gets(s);
 bubble(s, strlen(s));
 printf(''The sorted string is: %s.\n", s);

 return 0;
}

To see how the bubble sort works, assume that the array to be sorted is dcab. Each pass is shown
here:

Initial d c a b

Pass 1 a d c b

Pass 2 a b d c

Pass 3 a b c d

In analyzing any sort, it is useful to have an idea about how many comparisons and exchanges will
be performed for the best, average, and worst case. Because compiler optimizations, differences in
processors, and implementation details can affect the characteristics of the executable code, we
won't worry about precise values for these quantities. Instead, we will concentrate on the general
efficiency of each algorithm.

With the bubble sort, the number of comparisons is always the same because the two for loops
repeat the specified number of times whether the list is initially ordered or not. This means that the
bubble sort always performs

1/2(n2–n)

Page 502

comparisons, where n is the number of elements to be sorted. This formula is derived from the fact
that the outer loop executes n–1 times and the inner loop executes an average of n/2 times.
Multiplied together, these numbers result in the preceding formula.

Notice the n2 term in the preceding formula. The bubble sort is said to be an n-squared algorithm
because its execution time is proportional to the square of the number of elements that it is sorting.
Frankly, an n-squared algorithm is ineffective when applied to a large number of elements because
execution time grows exponentially relative to the number of elements being sorted. Figure 21-1
shows how execution time increases relative to the size of the array.

For the bubble sort, the number of exchanges is zero for the best case— an already sorted list.
However, the number of exchanges for the average- and worst-case exchanges are also on the order
of n-squared.

Figure 21-1
Execution time of an n2 sort

in relation to array size

Page 503

You can make slight improvements to the bubble sort in an attempt to speed it up. For example, the
bubble sort has one peculiarity: An out-of-order element at the large end (such as ''a" in the dcab
example) goes to its proper position in one pass, but a misplaced element in the small end (such as
"d") rises very slowly to its proper place. This suggests an improvement to the bubble sort. Instead
of always reading the array in the same direction, alternate passes could reverse direction. In this
way, greatly out-of-place elements travel quickly to their correct position. This version of the bubble
sort is called the shaker sort, because it imparts the effect of a shaking motion to the array. The code
that follows shows how a shaker sort can be implemented.

/* The Shaker Sort. */
void shaker(char *items, int count)
{

 register int a;
 int exchange;
 char t;

 do {
 exchange = 0;
 for(a=count-1; a > 0; --a) {
 if(items[a-1] > items[a]) {
 t = items[a-1];
 items[a-1] = items[a];
 items[a] = t;
 exchange = 1;
 }
 }

 for(a=1; a < count; ++a) {
 if(items[a-l] > items[a]) {
 t = items[a-l];
 items[a-1] = items[a];
 items[a] = t;
 exchange = 1;
 }
 }
 } while(exchange); /* sort until no exchanges take place */
}

Although the shaker sort improves the bubble sort, it still executes on the order of an n-squared
algorithm. This is because the number of comparisons has not been changed and the number of
exchanges has been reduced by only a relatively small constant. The shaker sort is better than the
bubble sort, but better sorts exist.

Page 504

Sorting by Selection

A selection sort selects the element with the lowest value and exchanges it with the first element.
Then, from the remaining n–1 elements, the element with the smallest key is found and exchanged
with the second element, and so forth. The exchanges continue to the last two elements. For
example, if the selection method were used on the array dcab, each pass would look like this:

Initial d c a b

Pass 1 a c d b

Pass 2 a b d c

Pass 3 a b c d

The code that follows shows the basic selection sort.

/* The Selection Sort. */
void select(char *items, int count)
{
 register int a, b, c;
 int exchange;
 char t;

 for(a=0; a < count-1; ++a) {
 exchange = 0;
 c = a;
 t = items[a];
 for(b=a+1; b < count; ++b) {
 if(items[b] < t) {
 c = b;
 t = items[b];
 exchange = 1;
 }
 }
 if(exchange) {
 items[c] = items[a];
 items[a] = t;
 }
 }
}

Page 505

Unfortunately, as with the bubble sort, the outer loop executes n–1 times and the inner loop averages
n/2 times. As a result, the selection sort requires

1/2(n2–n)

comparisons. Thus, this is an n-squared algorithm, which makes it too slow for sorting a large
number of items. Although the number of comparisons for both the bubble sort and the selection sort
is the same, the number of exchanges in the average case is far less for the selection sort.

Sorting by Insertion

The insertion sort is the third and last of the simple sorting algorithms. It initially sorts the first two
members of the array. Next, the algorithm inserts the third member into its sorted position in relation
to the first two members. Then it inserts the fourth element into the list of three elements. The
process continues until all elements have been sorted. For example, given the array dcab, each pass
of the insertion sort is shown here:

Initial d c a b

Pass 1 c d a b

Pass 2 a c d b

Pass 3 a b c d

The code for a version of the insertion sort is shown next.

/* The Insertion Sort. */
void insert (char *items, int count)
{

 register int a, b;
 char t;

 for(a=1; a < count; ++a) {
 t = items[a];
 for(b=a-1; (b >= 0) && (t < items[b]); b--)
 items[b+1] = items[b];
 items[b+1] = t;
 }
}

Page 506

Unlike the bubble and selection sorts, the number of comparisons that occur during an insertion sort
depends upon how the list is initially ordered. If the list is in order, the number of comparisons is n–
1; otherwise, its performance is on the order of n-squared.

In general, for worst cases the insertion sort is as bad as the bubble sort and selection sort, and for
average cases it is only slightly better. However, the insertion sort does have two advantages. First,
it behaves naturally. That is, it works the least when the array is already sorted and the hardest when
the array is sorted in inverse order. This makes the insertion sort excellent for lists that are almost in
order. The second advantage is that it leaves the order of equal keys the same. This means that if a
list is sorted by two keys, it remains sorted for both keys after an insertion sort.

Even though the number of comparisons may be fairly low for certain sets of data, the array must be
shifted over each time an element is placed in its proper location. As a result, the number of moves
can be significant.

Improved Sorts

All of the algorithms in the preceding sections have the fatal flaw of executing in n-squared time.
For large amounts of data, this makes the sorts very slow. In fact, at some point, the sorts would be
too slow to use. Unfortunately, horror stories of ''the sort that took three days" are often real. When a
sort takes too long, it is usually the fault of the underlying algorithm. However, the first response is
often "let's hand optimize," perhaps by using assembly language. Although manual optimization
does sometimes speed up a routine by a constant factor, if the underlying algorithm is inefficient, the
sort will be slow no matter how optimal the coding. Remember: When a routine is running relative
to n2, increasing the speed of the code or the computer only causes a small improvement because the
rate at which the run time is increasing is exponential. (In essence, the n2 curve in Figure 21-1 is
shifted to the right slightly, but is otherwise unchanged.) The rule of thumb is that if the underlying
algorithm is too slow, no amount of hand optimizations will make it fast enough. The solution is to
use a better sorting algorithm.

Two excellent sorts are described here. The first is the Shell sort. The second, the quicksort, is
usually considered the best sorting routine. Both of these improved sorts are substantially better in
their general performance than any of the simple sorts shown earlier.

The Shell Sort

The Shell sort is named after its inventor, D. L. Shell. However, the name probably stuck because its
method of operation is often described in terms of seashells piled upon one another. The general
sorting method is derived from the insertion sort and is based on diminishing increments. Consider
the diagram in Figure 21-2. First, all elements that are three positions apart are sorted. Then, all
elements that are two positions apart are sorted. Finally, all elements adjacent to each other are
sorted.

Page 507

Figure 21-2
The Shell sort

It is not easy to see that this method yields good results, or in fact that it even sorts the array. But it
does. Each sorting pass involves relatively few elements, or elements that are already in reasonable
order; so the Shell sort is efficient, and each pass increases order.

The exact sequence for the increments can be changed. The only rule is that the last increment must
be 1. For example, the sequence

9, 5, 3, 2, 1

works well and is used in the Shell sort shown here. Avoid sequences that are powers of 2— for
mathematically complex reasons, they reduce the efficiency of the sorting algorithm (but the sort
still works).

/* The Shell Sort. */
void shell(char *items, int count)
{
 register int i, j, gap, k;
 char x, a[5];

 a[0]=9; a[1]=5; a[2]=3; a[3]=2; a[4]=1;

 for(k=0; k < 5; k++) {
 gap = a[k];
 for(i=gap; i < count; ++i) {
 x = items[i];
 for(j=i-gap; (x < items[j]) && (j >= 0); j=j-gap)

Page 508

 items[j+gap] = items[j];
 items[j+gap] = x;
 }
 }
}

You may have noticed that the inner for loop has two test conditions. The comparison x<items[j] is
obviously necessary for the sorting process. The test j>=0 keeps the sort from overrunning the
boundary of the array items. These extra checks will degrade the performance of the Shell sort to
some extent.

Slightly different versions of the sort employ special array elements called sentinels, which are not
actually part of the array to be sorted. Sentinels hold special termination values that indicate the least
and greatest possible element. In this way, the bounds checks are unnecessary. However, using
sentinels requires a specific knowledge of the data, which limits the generality of the sort function.

The Shell sort presents some very difficult mathematical problems that are far beyond the scope of
this discussion. Take it on faith that execution time s proportional to

n1.2

for sorting n elements. This is a significant improvement over the n-squared sorts. To understand
how great the improvement is, see Figure 21-3, which graphs both an n2 and an n1.2 sort. However,
before getting too excited about the Shell sort, you should know that the quicksort is even better.

The Quicksort

The quicksort, invented and named by C. A. R. Hoare, is superior to all others in this book, and it is
generally considered the best general-purpose sorting algorithm currently available. It is based on
the exchange sort— surprising in light of the terrible performance of the bubble sort!

The quicksort is built on the idea of partitions. The general procedure is to select a value, called the
comparand, and then to partition the array into two sections. All elements greater than or equal to
the partition value are put on one side, and those less than the value are put on the other. This
process is then repeated for each remaining section until the array is sorted. For example, given the
array fedacb and using the value d as the comparand, the first pass of the quicksort would rearrange
the array as follows:

Initial f e d a c b

Pass1 b c a d e f

Page 509

Figure 21-3
The n2 amd n1.2 curves

This process is then repeated for each section— that is, bca and def. As you can see, the process is
essentially recursive in nature, and, indeed, the cleanest implementation of quicksort is as a
recursive function.

You can select the comparand value in two ways. You can either choose it at random, or you can
select it by averaging a small set of values taken from the array. For optimal sorting, you should
select a value that is precisely in the middle of the range of values. However, this is not easy to do
for most sets of data. In the worst case, the value chosen is at one extremity. Even in this case,
however, quicksort still

Page 510

performs correctly. The following version of quicksort selects the middle element of the array as the
comparand:

/* Quicksort setup function. */
void quick(char *items, int count)
{
 qs(items, 0, count-1);
}

/* The Quicksort. */
void qs(char *items, int left, int right)
{
 register int i, j;
 char x, y;

 i = left; j = right;
 x = items[(left+right)/2];

 do {
 while((items[i] < x) && (i < right)) i++;
 while((x < items[j]) && (j > left)) j--;

 if(i <= j) {
 y = items[i];
 items[i] = items[j];
 items[j] = y;
 i++; j--;
 }
 } while(i <= j);

 if(left < j) qs(items, left, j);
 if(i < right) qs(items, i, right);
}

In this version, the function quick() sets up a call to the main sorting function qs(). This enables
the same common interface of items and count to be maintained, but it is not essential because qs()
could have been called directly by using three arguments.

Deriving the number of comparisons and exchanges that quicksort performs requires mathematics
beyond the scope of this book. However, the average number of comparisons is

n log n

TE
AM
FL
Y

Team-Fly®

Page 511

and the average number of exchanges is approximately

n/6 log n

These numbers are significantly lower than those provided by any of the previous sorts.

You should be aware of one particularly problematic aspect of quicksort. If the comparand value for
each partition is the largest value, quicksort degenerates into ''slowsort" with an n-squared run time.
Therefore, be careful when you choose a method of defining the value of the comparand. The
method is frequently determined by the data that you are sorting. For example, in very large mailing
lists, in which the sorting is often by postal code, the selection is simple because the postal codes are
fairly evenly distributed— and a simple algebraic function can determine a suitable comparand.
However, in other databases, a random selection is often a better choice. A common and fairly
effective method is to sample three elements from a partition and take the middle value.

Choosing a Sort

Every programmer should have a wide selection of sorts from which to choose. Although quicksort
is the optimal sort for the average case, it will not be the best sort in all cases. For example, when
only very small lists are sorted (with, say, less than 100 items), the overhead created by quicksort's
recursive calls may offset the benefits of its superior algorithm. In rare cases like this, one of the
simpler sorts— perhaps even the bubble sort— may be quicker. Also, if you know that a list is
already nearly ordered or if you don't want like keys to be exchanged, then one of the other sorts
may out-perform quicksort. The point is that just because quicksort is the best general-purpose
sorting algorithm does not mean that you cannot do better with another approach in special
situations.

Sorting Other Data Structures

Until now, we have been sorting only arrays of characters. Obviously, arrays of any of the built-in
data types can be sorted by simply changing the data types of the parameters and variables to the
sort function. Generally, however, compound data types, such as strings, or groupings of
information, such as structures, need to be sorted. Most sorting involves a key and information
linked to that key. To change the algorithms to accommodate a key, you need to alter the
comparison section, the exchange section, or both. The algorithm itself remains unchanged.

Because quicksort is one of the best general-purpose routines available at this time, it is used in the
following examples. However, the same techniques apply to any of the sorts described earlier.

Page 512

Sorting Strings

Sorting strings is a common programming task. By far, strings are easiest to sort when they are
contained in a string table. A string table is simply an array of strings. And an array of strings is a
two-dimensional character array in which the number of strings in the table is determined by the size
of the left dimension and the maximum length of each string is determined by the size of the right
dimension. (Refer to Chapter 4 for information about arrays of strings.) The string version of
quicksort that follows accepts an array of strings in which each string is up to ten characters long.
(You can change this length if you want.) This version sorts the strings in dictionary order.

/* A Quicksort for strings. */
void quick_string(char items[][10], int count)
{
 qs_string(items, 0, count-1);
}

void qs_string(char items[][10], int left, int right)
{
 register int i, j;
 char *x;
 char temp[10];

 i = left; j = right;
 x = items[(left+right)/2];

 do {
 while((strcmp(items[i],x) < 0) && (i < right)) i++;
 while((strcmp(items[j],x) > 0) && (j > left)) j--;
 if(i <= j) {
 strcpy(temp, items[i]);
 strcpy(items[i], items[j]);
 strcpy(items[j], temp);
 i++; j--;
 }
 } while(i <= j);

 if(left < j) qs_string(items, left, j);
 if(i < right) qs_string(items, i, right);
}

Notice that the comparison step has been changed to use the function strcmp(). The function
returns a negative number if the first string is lexicographically less than the second, zero if the
strings are equal, and a positive number if the first string is

Page 513

lexicographically greater than the second. Also notice that when two strings must be swapped, three
calls to strcpy() are required.

Be aware that strcmp() slows down the sort for two reasons. First, it involves a function call, which
always takes time. Second, strcmp() itself performs several comparisons to determine the
relationship of the two strings. In the first case, if speed is absolutely critical, place the code for
strcmp() in line inside the routine by duplicating the strcmp() code. In the second case, there is no
way to avoid comparing the strings since, by definition, this is what the task involves. The same line
of reasoning also applies to the strcpy() function. The use of strcpy() to exchange two strings
involves a function call and a character-by-character exchange of the two strings— both of which
add time. The overhead of the function call could be eliminated through the use of in-line code.
However, the fact that exchanging two strings means exchanging their individual characters (one by
one) cannot be altered.

Here is a simple main() function that demonstrates quick_string():

#include <stdio.h>
#include <string.h>

void quick_string(char items[][10], int count);
void qs_string(char items[][10], int left, int right);

char str[][10] = { "one",
 ''two",
 "three",
 "four"
 };

int main(void)
{
 int i;

 quick_string(str, 4);

 for(i=0; i<4; i++) printf("%s ", str[i]);

 return 0;
}

Sorting Structures

Most application programs that require a sort probably need to have a collection of data sorted. For
example, mailing lists, inventory databases, and employee records all contain collections of data. As
you know, in C programs collections of data are typically stored in structures. Although a structure
will generally contain several

Page 514

members, it will usually be sorted on the basis of only one member, which is used as the sort key.
Aside from the selection of the key, the techniques used to sort other types of data also apply to
sorting structures.

To see an example of sorting structures, let's use a structure, called address, that is capable of
holding a mailing address. Such a structure could be used by a mailing list program. The address
structure is shown here:

struct address {
 char name[40];
 char street[40];
 char city[20];
 char state[3];
 char zip[11];
};

Since it is reasonable to arrange a mailing list as an array of structures, assume for this example that
the sort routine will sort an array of structures of type address. Such a routine is shown here. It sorts
the addresses by postal code.

/* A Quicksort for structures of type address. */
void quick_struct(struct address items[], int count)
{
 qs_struct(items, 0,count-1);
}

void qs_struct(struct address items[], int left, int right)
{

 register int i, j;
 char *x;
 struct address temp;

 i = left; j = right;
 x = items[(left+right)/2].zip;

 do {
 while((strcmp(items[i].zip,x) < 0) && (i < right)) i++;
 while((strcmp(items[j].zip,x) > 0) && (j > left)) j--;
 if(i <= j) {
 temp = items[i];
 items[i] = items[j];
 items[j] = temp;

Page 515

 i++; j--;
 }
 } while(i <= j);

 if(left < j) qs_struct(items, left, j);
 if(i < right) qs_struct(items, i, right);
}

Sorting Random-Access Disk Files

There are two types of disk files: sequential and random access. If either type of disk file is small
enough, it may be read into memory, and the array-sorting routines presented earlier will be able to
sort it. However, many disk files are too large to be sorted easily in memory and require special
techniques. Most database applications use random-access disk files. This section shows one way
random-access disk files may be sorted.

Random-access disk files have two major advantages over sequential disk files. First, they are easy
to maintain. You can update information without having to copy the entire list. Second, they can be
treated as a very large array on disk, which greatly simplifies sorting.

Treating a random-access file as an array means that you can use the quicksort with just a few
modifications. Instead of indexing an array, the disk version of the quicksort must use fseek() to
seek to the appropriate records on the disk.

In reality, each sorting situation differs in relation to the exact data structure that is sorted and the
key that is used. However, you can learn the general idea of sorting random-access disk files by
using a short program to sort structures of type address— the mailing list structure defined earlier.
The sample program that follows first creates a disk file that contains unsorted addresses. It then
sorts the file. The number of addresses to sort is specified by NUM_ELEMENTS (which is 4 for
this program). However, for a real-world application, a record count would have to be maintained
dynamically. You should experiment with this program on your own, trying different types of
structures, containing different types of data.

/* Disk sort for structures of type address. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define NUM_ELEMENTS 4 /* This is an arbitrary number
 that should be determined
 dynamically for each list. */

Page 516

struct address {
 char name[30];
 char street[40];
 char city[20];
 char state[3];
 char zip[11];
} ainfo;

struct address addrs[NUM_ELEMENTS] = {
 ''A. Alexander", "101 1st St", "Olney", "Ga", "55555",
 "B. Bertrand", "22 2nd Ave", "Oakland", "Pa", "34232",
 "C. Carlisle", "33 3rd Blvd", "Ava", "Or", "92000",
 "D. Dodger", "4 Fourth Dr", "Fresno", "Mi", "45678"
};

void quick_disk(FILE *fp, int count);
void qs_disk(FILE *fp, int left, int right);
void swap_all_fields(FILE *fp, long i, long j);
char *get_zip(FILE *fp, long rec);

int main(void)
{
 FILE *fp;

 /* first, create a file to sort */
 if((fp=fopen("mlist", "wb"))==NULL) {
 printf("Cannot open file for write.\n");
 exit(1);
 }
 printf("Writing unsorted data to disk.\n");
 fwrite(addrs, sizeof(addrs), 1, fp);
 fclose(fp);

 /* now, sort the file */
 if((fp=fopen("mlist", "rb+"))==NULL) {
 printf("Cannot open file for read/write.\n");
 exit(1);
 }

 printf("Sorting disk file.\n");
 quick_disk(fp, NUM_ELEMENTS);
 fclose(fp);

Page 517

 printf("List sorted.\n");

 return 0;
}

/* A Quicksort for files. */
void quick_disk(FILE *fp, int count)
{
 qs_disk(fp, 0, count-1);
}

void qs_disk(FILE *fp, int left, int right)
{
 long int i, j;
 char x[100];

 i = left; j = right;

 strcpy(x, get_zip(fp, (long)(i+j)/2)); /* get the middle zip */

 do {
 while((strcmp(get_zip(fp,i),x) < 0) && (i < right)) i++;
 while((strcmp(get_zip(fp,j),x) > 0) && (j > left)) j--;

 if(i <= j) {
 swap_all_fields(fp, i, j);
 i++; j--;
 }
 } while(i <= j);

 if(left < j) qs_disk(fp, left, (int) j);
 if(i < right) qs_disk(fp, (int) i, right);
}

void swap_all_fields(FILE *fp, long i, long j)
{
 char a[sizeof(ainfo)], b[sizeof(ainfo)];

 /* first read in record i and j */
 fseek(fp, sizeof(ainfo)*i, SEEK_SET);
 fread(a, sizeof(ainfo), 1, fp);

Page 518

 fseek(fp, sizeof(ainfo)*j, SEEK_SET);
 fread(b, sizeof(ainfo), 1, fp);

 /* then write them back in opposite slots */
 fseek(fp, sizeof(ainfo)*j, SEEK_SET);
 fwrite(a, sizeof(ainfo), 1, fp);
 fseek(fp, sizeof(ainfo)*i, SEEK_SET);
 fwrite(b, sizeof(ainfo), 1, fp);
}

/* Return a pointer to the zip code */
char *get_zip(FILE *fp, long rec)
{
 struct address *p;

 p = &ainfo;

 fseek(fp, rec*sizeof(ainfo), SEEK_SET);
 fread(p, sizeof(ainfo), 1, fp);

 return ainfo.zip;
}

As you can see, two support functions had to be written to sort the address records. In the
comparison section of the sort, the function get_zip() is used to return a pointer to the zip field of
the comparand and the record being checked. The function swap_all_fields() performs the actual
data exchange. The order of the reads and writes has a great impact on the speed of this sort. When
an exchange occurs, the code, as it is shown, forces a seek to record i, then to j. While the head of
the disk drive is still positioned at j, i's data is written. This means that the head does not need to
move a great distance. Had the code been written with i's data written first, an extra seek would have
been necessary.

Searching

Databases of information exist so that, from time to time, a user can locate a record by entering its
key. There is one method of finding information in an unsorted array and another for a sorted array.
C compilers supply the standard bsearch() function as part of the standard library. However, as
with sorting, general-purpose routines are sometimes too inefficient for use in demanding situations
because of the extra overhead created by their generalization. Also, bsearch() cannot be applied to
unsorted data.

Page 519

Searching Methods

Finding information in an unsorted array requires a sequential search starting at the first element and
stopping either when a match is found or at the end of the array. This method must be used on
unsorted data but can be applied to sorted data as well. However, if the data has been sorted, you can
use a binary search, which helps you locate the data more quickly.

The Sequential Search

The sequential search is simple to code. The following function searches a character array of known
length until a match of the specified key is found.

int sequential_search(char *items, int count, char key)
{

 register int t;

 for(t=0; t < count; ++t)
 if(key == items[t]) return t;
 return -1; /* no match */
}

Here, items is a pointer to the array that contains the information. This function returns the index
number of the matching entry if there is one; otherwise, it returns –1.

It is easy to see that a sequential search will, on the average, test n/2 elements. In the best case it
tests only one element, and in the worst case it tests n elements. If the information is stored on disk,
the search time can be lengthy. But if the data is unsorted, you can only search sequentially.

The Binary Search

If the data to be searched is sorted, you can use a vastly superior method to find a match. It is the
binary search, which uses the divide-and-conquer approach. To employ this method, test the middle
element. If it is larger than the key, test the middle element of the first half; otherwise, test the
middle element of the second half. Repeat this procedure until a match is found or there are no more
elements to test.

For example, to find the number 4 given the array

1 2 3 4 5 6 7 8 9

a binary search first tests the middle, which is 5. Since this is greater than 4, the search continues
with the first half, or

1 2 3 4 5

Page 520

The middle element is now 3. This is less than 4, so the first half is discarded. The search continues
with

4 5

This time the match is found.

In a binary search, the number of comparisons in the worst case is

log2n

In the average case, the number is somewhat lower, and in the best case the number of comparisons
is one.

A binary search function for character arrays follows. You can make this search for any arbitrary
data structure by changing the comparison portion of the routine.

/* The Binary search. */
int binary_search(char *items, int count, char key)
{
 int low, high, mid;

 low = 0; high = count-1;
 while(low <= high) {
 mid = (low+high)/2;
 if(key < items[mid]) high = mid-1;
 else if(key > items[mid]) low = mid+1;
 else return mid; /* found */
 }
 return -1;
}

TE
AM
FL
Y

Team-Fly®

Page 521

Chapter 22—
Queues, Stacks, Linked Lists, and Trees

Page 522

Programs consist of two things: algorithms and data structures. A good program is an effective
blend of both. The choice and implementation of a data structure are as important as the routines
that manipulate it. How information is organized and accessed is usually determined by the nature of
the programming problem. Thus, it is important for you to have on hand the right techniques for a
variety of situations.

How closely a data type is bound to its machine representation has an inverse correlation to its
abstraction. That is, as data types become more abstract, the way the programmer thinks of them
bears a decreasing resemblance to the way they are actually represented in memory. Simple types,
such as char and int, are tightly bound to their machine representation. For example, the machine
representation of an integer value closely approximates the programmer's concept of that value. As
data types become more complicated, they are conceptually less similar to their machine
equivalents. For example, floating-point values are more abstract than are integers. The actual
representation of a float inside the machine is little like the average programmer's conception of a
floating-point number. Even more abstract is the structure, which is an aggregate data type.

The next level of abstraction transcends the mere physical aspects of the data by adding the
mechanism by which that data may be accessed— that is, stored and retrieved. In essence, the
physical data is linked with a data engine, which controls the way information can be accessed by
your program. It is these data engines that are the subject of this chapter.

There are four basic types of data engines:

• A queue

• A stack

• A linked list

• A binary tree

Each of these methods provides a solution to a class of problems. These methods are essentially
devices that perform a specific storage-and-retrieval operation on the information that they are
given, based on the requests that they receive. They all store an item and retrieve an item, where an
item is one informational unit. The rest of this chapter shows you how to build these data engines
using the C language. In the process, several common C programming techniques are illustrated,
including dynamic allocation and pointer manipulation.

Queues

A queue is simply a linear list of information that is accessed in first-in, first-out order, which is
sometimes called FIFO. That is, the first item placed on the queue is the first

Page 523

item retrieved, the second item put in is the second item retrieved, and so on. This is the only means
of storage and retrieval in a queue; random access of any specific item is not allowed.

Queues are very common in real life. For example, lines at a bank or a fast-food restaurant are
queues. To visualize how a queue works, consider two functions: qstore() and qretrieve(). The
qstore() function places an item onto the end of the queue, and qretrieve() removes the first item
from the queue and returns its value. Table 22-1 shows the effect of a series of these operations.

Keep in mind that a retrieval operation removes an item from the queue and destroys it if it is not
stored elsewhere. Therefore, a queue will be empty after all items have been removed.

Queues are used in many programming situations. One of the most common is in simulations.
Queues are also used by the task scheduler of an operating system and for I/O buffering.

To see an example of a queue in action, we will use a simple appointment-scheduler program. This
program allows you to enter a number of appointments; then, as each appointment is met, it is taken
off the list. For the sake of simplicity, each appointment description will be limited to 255
characters, and the number of appointments is arbitrarily limited to 100.

First, the functions qstore() and qretrieve() shown here are needed for the simple scheduling
program. They will store pointers to the strings that describe the appointments.

Action Contents of Queue

qstore(A) A

qstore(B) A B

qstore(C) A B C

qretrieve() returns A B C

qstore(D) B C D

qretrieve() returns B C D

qretrieve() returns C D

Table 22-1. A Queue in Action

Page 524

#define MAX 100

char *p[MAX];
int spos = 0;
int rpos = 0;

/* Store an appointment. */
void qstore(char *q)
{
 if(spos==MAX) {
 printf(''List Full\n");
 return;
 }
 p[spos] = q;
 spos++;
}

/* Retrieve an appointment. */
char *qretrieve()
{
 if(rpos==spos) {
 printf("No more appointments. \n");
 return '\0';
 }
 rpos++;
 return p[rpos-1];
}

Notice that these functions require two global variables: spos (which holds the index of the next free
storage location) and rpos (which holds the index of the next item to retrieve). You can use these
functions to maintain a queue of other data types by simply changing the base type of the array that
they operate on.

The function qstore() places pointers to new appointments on the end of the list and checks to see if
the list is full. The function qretrieve() takes appointments off the queue while there are events to
perform. With each new appointment scheduled, spos is incremented, and with each appointment
completed, rpos is incremented. In essence, rpos chases spos through the queue. Figure 22-1 shows
how this may appear in memory as the program executes. If rpos and spos are equal, there are no
events left in the schedule. Even though the information stored in the queue is not actually destroyed
by qretrieve(), it is effectively destroyed because it can never be accessed again.

Page 525

Figure 22-1
The retrieve index chases the store index

The entire program for this simple appointment scheduler is listed here. You may want to enhance
this program for your own use.

/* Mini Appointment-Scheduler */

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>

#define MAX 100

char *p[MAX], *qretrieve(void);
int spos = 0;
int rpos = 0;

Page 526

void enter(void), qstore(char *q), review(void), delete_ap(void);

int main(void)
{
 char s[80];
 register int t;

 for(t=0; t < MAX; ++t) p[t] = NULL; /* init array to nulls */

 for(;;) {
 printf(''Enter, List, Remove, Quit: ");
 gets(s);
 *s = toupper(*s);

 switch(*s) {
 case 'E':
 enter();
 break;
 case 'L':
 review();
 break;
 case 'R':
 delete_ap();
 break;
 case 'Q':
 exit(0);
 }
 }
 return 0;
}

/* Enter appointments in queue. */
void enter(void)
{
 char s[256], *p;

 do {
 printf("Enter appointment %d: ", spos+1);
 gets(s);
 if(*s==0) break; /* no entry */
 p = (char *) malloc(strlen(s)+1);
 if(!p) {
 printf("Out of memory.\n");

Page 527

 return;
 }
 strcpy(p, s);
 if(*s) qstore(p);
 } while(*s);
}

/* See what's in the queue. */
void review(void)
{
 register int t;

 for(t=rpos; t < spos; ++t)
 printf(''%d. %s\n", t+1, p
[t]);
}

/* Delete an appointment from the queue. */
void delete_ap(void)
{
 char *p;

 if((p=qretrieve()) ==NULL) return;
 printf("%s\n", p);
}

/* Store an appointment. */
void qstore(char *q)
{
 if(spos==MAX) {
 printf ("List Full\n");
 return;
 }
 p[spos] = q;
 spos++;
}

/* Retrieve an appointment. */
char *qretrieve(void)
{
 if(rpos==spos) {
 printf("No more appointments.\n");
 return NULL;
 }

Page 528

 rpos++;
 return p[rpos-1];
}

The Circular Queue

In studying the preceding appointment-scheduler program, an improvement may have occurred to
you. Instead of having the program stop when the limit of the array used to store the queue is
reached, you could have both the store index (spos) and the retrieve index (rpos) loop back to the
start of the array. In this way, any number of items could be placed on the queue, so long as items
were also being taken off. This implementation of a queue is called a circular queue because it uses
its storage array as if it were a circle instead of a linear list.

To create a circular queue for use in the scheduler program, you need to change the functions qstore
() and qretrieve() as shown here:

void qstore(char *q)
{
 /* The queue is full if either spos is one less than rpos
 or if spos is at the end of the queue array and rpos
 is at the beginning.
 */
 if(spos+1= =rpos || (spos+1==MAX && !rpos)) {
 printf(''List Full\n");
 return;
 }

 p[spos] = q;
 spos++;
 if(spos==MAX) spos = 0; /* loop back */
}

char *qretrieve(void)
{
 if(rpos==MAX) rpos = 0; /* loop back */
 if(rpos==spos) {
 printf("No events to retrieve.\n");
 return NULL;
 }
 rpos++;
 return p[rpos-1];
}

Page 529

In this version, the queue is full when the store index is one less than the retrieve index; otherwise,
there is room in the queue for another event. The queue is empty when rpos equals spos.

Perhaps the most common use of a circular queue is in operating systems, where a circular queue
holds the information read from and written to disk files or the console. Circular queues are also
used in real-time application programs, which must continue to process information while buffering
I/O requests. Many word processors do this when they reformat a paragraph or justify a line. What is
being typed is not displayed until the other process is complete. To accomplish this, the application
program needs to check for keyboard entry during execution of the other process. If a key has been
typed, it is quickly placed in the queue, and the other process continues. Once the process is
complete, the characters are retrieved from the queue.

To get a feel for this use of a circular queue, consider a simple program that contains two processes.
The first process in the program prints the numbers 1 to 32,000 on the screen. The second process
places characters into a circular queue as they are typed, without echoing them to the screen, until
you press ENTER. The characters you type are not displayed because the first process is given priority
over the screen. Once you have pressed ENTER, the characters in the queue are retrieved and printed.

For the program to function as described, it must use two functions not defined by Standard C:
_kbhit() and _getch(). The _kbhit() function returns true if a key has been pressed; otherwise, it
returns false. The _getch() function reads a keystroke but does not echo the character to the screen.
Standard C does not define functions that check keyboard status or read keyboard characters without
echoing them to the display because these functions are highly operating-system dependent.
Nonetheless, most compilers supply routines to do these things. The short program shown here
works with the Microsoft compiler:

/* A circular queue example using a keyboard buffer. */
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

#define MAX 80

char buf[MAX+1];
int spos = 0;
int rpos = 0;

void qstore(char q);
char qretrieve(void);

int main(void)
{

Page 530

 register char ch;
 int t;

 buf[80] = '\0';

 /* Input characters until a carriage return is typed. */
 for(ch=' ',t=0; t<32000 && ch!='\r'; ++t) {
 if(_kbhit()) {
 ch = _getch();
 qstore(ch);
 }
 printf(''%d ", t);
 if(ch == '\r') {
 /* Display and empty the key buffer. */
 printf("\n");
 while((ch=qretrieve()) != '\0') printf("%c", ch);
 printf("\n");
 }
 }
 return 0;
}

/* Store characters in the queue. */
void qstore(char q)
{
 if(spos+1==rpos || (spos+1==MAX && !rpos)) {
 printf("List Full\n");
 return;
 }
 buf[spos] = q;
 spos++;
 if(spos==MAX) spos = 0; /* loop back */
}

/* Retrieve a character. */
char qretrieve(void)
{
 if(rpos==MAX) rpos = 0; /* loop back */
 if(rpos==spos) return '\0';

 rpos++;
 return buf[rpos-1];
}

TE
AM
FL
Y

Team-Fly®

Page 531

Stacks

A stack is the opposite of a queue because it uses last-in, first-out accessing, which is sometimes
called LIFO. To visualize a stack, just imagine a stack of plates. The first plate on the table is the
last to be used, and the last plate placed on the stack is the first to be used. Stacks are used
frequently in system software, including compilers and interpreters.

When working with stacks, the two basic operations— store and retrieve— are traditionally called
push and pop, respectively. Therefore, to implement a stack you need two functions: push(), which
places a value on the stack, and pop(), which retrieves a value from the stack. You also need a
region of memory to use as the stack. You can use an array for this purpose or allocate a region of
memory using C's dynamic allocation functions. As with the queue, the retrieval function takes a
value off the list and destroys it if it is not stored elsewhere. The general forms of push() and pop()
that use an integer array follow. You can maintain stacks of other data types by changing the base
type of the array on which push() and pop() operate.

int stack[MAX];
int tos=0; /* top of stack */

/* Put an element on the stack. */
void push(int i)
{

 if(t.os >= MAX) {
 printf (''Stack Full\n");
 return;
 }
 stack[tos] = i;
 tos++;
}

/* Retrieve the top element from the stack. */
int pop (void)
{
 tos--;
 if(tos < 0) {
 printf("Stack Underflow\n");
 return 0;
 }
 return stack[tos];
}

Page 532

The variable tos is the index of the top of the stack. When implementing these functions, you must
remember to prevent overflow and underflow. In these routines, an empty stack is signaled by tos
being zero and a full stack by tos being greater than the last storage location. To see how a stack
works, see Table 22-2.

An excellent example of stack usage is a four-function calculator. Most calculators today accept a
standard form of an expression called infix notation, which takes the general form operand-
operator-operand. For example, to add 200 to 100, enter 100, then press the plus (+) key, then 200,
and press the equals (=) key. In contrast, many early calculators (and some still made today) use
postfix notation, in which both operands are entered first, and then the operator is entered. For
example, to add 200 to 100 by using postfix notation, you enter 100, then 200, and then press the
plus key. In this method, as operands are entered, they are placed on a stack. Each time an operator
is entered, two operands are removed from the stack, and the result is pushed back on the stack. One
advantage of the postfix form is that long, complex expressions can be easily entered by the user.

The following example demonstrates a stack by implementing a postfix calculator for integer
expressions. To begin, the push() and pop() functions must be modified, as shown here. They also
will use dynamically allocated memory (instead of a fixed-size array) for the stack. Although the use
of dynamically allocated memory is not necessary for this simple example, it illustrates how
dynamically allocated memory can be used to support a stack.

Action Contents of Stack

push(A) A

push(B) B A

push(C) C B A

pop() retrieves C B A

push(F) F B A

pop() retrieves F B A

pop() retrieves B A

pop() retrieves A empty

Table 22-2. A Stack in Action

Page 533

int *p; /* will point to a region of free memory */
int *tos; /* points to top of stack */
int *bos; /* points to bottom of stack */

/* Store an element on the stack. */
void push(int i)
{
 if(p > bos) {
 printf (''Stack Full\n");
 return;
 }
 *p = i;
 p++;
}

/* Retrieve the top element from the stack. */
int pop(void)
{
 p--;
 if(p < tos) {
 printf ("Stack Underflow\n");
 return 0;
 }
 return *p;
}

Before these functions can be used, a region of free memory must be allocated with malloc(), the
address of the beginning of that region assigned to tos, and the address of the end assigned to bos.

The entire postfix-based calculator program is shown here:

/* A simple four-function calculator. */

#include <stdio.h>
#include <stdlib.h>

#define MAX 100

int *p; /* will point to a region of free memory */
int *tos; /* points to top of stack */
int *bos; /* points to bottom of stack */

Page 534

void push(int i);
int pop(void);

int main(void)
{
 int a, b;
 char s[80];

 p = (int *) malloc(MAX*sizeof(int)); /* get stack memory */
 if(!p)
 printf(''Allocation Failure\n");
 exit(1);
 }
 tos = p;
 bos = p + MAX-1;

 printf("Four Function Calculator\n");
 printf("Enter 'q' to quit\n");

 do {
 printf(": ");
 gets(s);
 switch(*s) {
 case '+':
 a = pop();
 b = pop();
 printf("%d\n", a+b);
 push(a+b);
 break;
 case '-':
 a = pop();
 b = pop();
 printf("%d\n", b-a);
 push(b-a);
 break;
 case '*':
 a = pop();
 b = pop();
 printf("%d\n", b*a);
 push(b*a);
 break;
 case '/':
 a = pop();

Page 535

 b = pop();
 if(a==0) {
 printf(''Divide by 0.\n");
 break;
 }
 printf("%d\n", b/a);
 push(b/a);
 break;
 case '.': /* show contents of top of stack */
 a = pop();
 push(a);
 printf("Current value on top of stack: %d\n", a);
 break;
 default:
 push(atoi(s));
 }
 } while(*s != 'q');

 return 0;
}

/* Put an element on the stack. */
void push(int i)
{

 if(p > bos) {
 printf("Stack Full\n");
 return;
 }
 *p = i;
 p++;
}

/* Retrieve the top element from the stack. */
int pop(void)
{
 p--;
 if(p < tos) {
 printf("Stack Underflow\n");
 return 0;
 }
 return *p;
}

Page 536

Linked Lists

Queues and stacks share two traits: They both have strict rules for accessing the data stored in them,
and the retrieval operations are, by nature, consumptive. In other words, accessing an item in a stack
or queue requires its removal, and unless the item is stored elsewhere, it is destroyed. Also, stacks
and queues both use a contiguous region of memory. Unlike a stack or a queue, a linked list can be
accessed in a flexible fashion, because each piece of information carries with it a link to the next
data item in the chain. In addition, a linked list retrieval operation does not remove and destroy an
item from the list. In fact, you need to add a specific deletion operation to do this.

Linked lists can be either singly linked or doubly linked. A singly linked list contains a link to the
next data item. A doubly linked list contains links to both the next and the previous element in the
list. You will use one or the other of these linked list types, depending upon your application.

Singly Linked Lists

A singly linked list requires that each item of information contain a link to the next element in the
list. Each data item usually consists of a structure that includes information fields and a link pointer.
Conceptually, a singly linked list looks like the one shown in Figure 22-2.

Basically, there are two ways to build a singly linked list. The first is simply to put each new item on
the end of the list. The other is to insert items into specific places in the list— in ascending sorted
order, for example. How you build the list determines the way the storage function is coded. Let's
start with the simpler case of creating a linked list by adding items on the end.

The items stored in a linked list generally consist of structures because each item must carry with it
a link to the next item in the list as well as the data itself. Therefore, we will need to define a
structure that will be used in the examples that follow. Since mailing lists are commonly stored in a
linked list, an address structure makes a good choice. The data structure for each element in the
mailing list is defined here:

struct address {
 char name[40];
 char street[40];
 char city[20];
 char state[3];
 char zip[11];
 struct address *next; /* link to next address */
} info;

Page 537

Figure 22-2
A singly linked list

The slstore() function, shown next, builds a singly linked list by placing each new element on the
end. It must be passed a pointer to a structure of type address that contains the new entry, and a
pointer to the last element in the list. If the list is empty, the pointer to the last element in the list
must be null.

void slstore(struct address *i,
 struct address **last)
{
 if(!*last) *last = i; /* first item in list */
 else (*last)->next = i;
 i->next = NULL;
 *last = i;
}

Although you can sort the list created with the function slstore() as a separate operation, it is easier
to sort the list while building it by inserting each new item in the proper sequence of the chain. Also,
if the list is already sorted, it would be advantageous to keep it sorted by inserting new items in their
proper location. You do this by sequentially scanning the list until the proper location is found,
inserting the new entry at that point, and rearranging the links as necessary.

Three possible situations can occur when you insert an item in a singly linked list. First, it may
become the new first item; second, it can go between two other items; or third, it can become the last
element. Figure 22-3 diagrams how the links are changed for each case.

Keep in mind that if you change the first item in the list, you must update the entry point to the list
elsewhere in your program. To avoid this overhead, you can use a sentinel as a first item. In this
case, choose a special value that will always be first in the list to keep the entry point to the list from
changing. This method has the disadvantage of using one extra storage location to hold the sentinel,
but this is usually not an important factor.

Page 538

Figure 22-3
Inserting an item into a singly linked list

The function shown next, sls_store(), will insert address structures into the mailing list in
ascending order based on the name field. The function must be passed a pointer to the pointer to the
first element and the last element in the list along with a pointer to the information to be stored.
Since the first or last element in the list could change, sls_store() automatically updates the pointers
to the beginning and end of the list if necessary. The first time your program calls sls_store(), first
and last must point to null.

Page 539

/* Store in sorted order. */
void sls_store(struct address *i, /* new element to store */
 struct address **start, /* start of list */
 struct address **last) /* end of list */
{
 struct address *old, *p;

 p = *start;

 if(!*last) { /* first element in list */
 i->next = NULL;
 *last = i;
 *start = i;
 return;
 }

 old = NULL;
 while(p) {
 if(strcmp(p->name, i->name)<0) {
 old = p;
 p = p->next;
 }
 else {
 if(old) { /* goes in middle */
 old->next = i;
 i->next = p;
 return;
 }
 i->next = p; /* new first element */
 *start = i;
 return;
 }
 }
 (*last)->next = i; /* put on end */
 i->next = NULL;
 *last = i;
}

It is quite easy to step through a linked list: Begin at the top of the list, and then follow the links.
Usually this code is so short that it is simply placed inside another routine such as a search, delete,
or display function. For example, the routine shown here displays all of the names in a mailing list:

Page 540

void display(struct address *start)
{
 while(start) {
 printf(''%s\n", start->name);
 start = start->next;
 }
}

When display() is called, start must be a pointer to the first structure in the list. After that, the next
field points to the next item. The process stops when next is null.

Retrieving items from the list is as simple as following a chain. A search routine based on the name
field could be written like this:

struct address *search(struct address *start, char *n)
{
 while(start) {
 if(!strcmp(n, start->name)) return start;
 start = start->next;
 }
 return NULL; /* no match */
}

Because search() returns a pointer to the list item that matches the search name, it must be declared
as returning a structure pointer of type address. If there is no match, null is returned.

Deleting an item from a singly linked list is straightforward. As with insertion, there are three cases:
deleting the first item, deleting an item in the middle, and deleting the last item. Figure 22-4 shows
each of these operations.

The function that follows deletes a given item from a list of structures of type address:

void sldelete(
 struct address *p, /* previous item */
 struct address *i, /* item to delete */
 struct address **start, /* start of list */
 struct address **last) /* end of list */
{
 if(p) p->next = i->next;
 else *start = i->next;

 if(i==*last && p) *last = p;
}

TE
AM
FL
Y

Team-Fly®

Page 541

Figure 22-4
Deleting an item form a singly linked list

sldelete() must be sent pointers to the deleted item, the item before it in the chain, and the first and
last items in the list. If the first item is to be removed, the previous pointer must be null. The
function automatically updates start and last when the item one of them points to is deleted.

Singly linked lists have one major drawback that prevents their extensive use: The list cannot be
read in reverse order. For this reason, doubly linked lists are usually used.

Doubly Linked Lists

Doubly linked lists consist of data plus links to the next item as well as the preceding item. Figure
22-5 shows how these links are arranged.

Having two links instead of just one has several advantages. Perhaps the most important is that the
list can be read in either direction. This simplifies list management, making insertions and deletions
easier. It also allows a user to scan the list in either direction. Another advantage is meaningful only
in the case of some type of failure. Since the entire list can be read using either forward links or
backward links, should one of the links become invalid, the list could be reconstructed by using the
other.

Page 542

Figure 22-5
A doubly linked list

A new element can be inserted into a doubly linked list in three ways: insert a new first element,
insert in the middle, and insert a new last element. These operations are illustrated in Figure 22-6.

Building a doubly linked list is similar to building a singly linked list except that two links are
maintained. Therefore, the structure must have room for both links. Using the mailing list example
again, you can modify the structure address as shown here to accommodate both links:

struct address {
 char name[40];
 char street[40];
 char city[20];
 char state[3];
 char zip[11];
 struct address *next;
 struct address *prior;
} info;

Using address as the basic data item, the following function, dlstore(), builds a doubly linked list:

void dlstore(struct address *i, struct address **last)
{

 if(!*last) *last = i; /* is first item in list */
 else (*last)->next = i;
 i->next = NULL;
 i->prior = *last;
 *last = i;
}

Page 543

Figure 22-6
Operations on a doubly linked list

The function dlstore() puts each new entry on the end of the list. You must call it with a pointer to
the data to be stored as well as a pointer to the end of the list, which must be null on the first call.

Page 544

Like singly linked lists, a doubly linked list can be built by a function that stores each element in a
specific location in the list instead of always placing each new item on the end. The function shown
here, dls_store(), creates a list that is sorted in ascending order:

/* Create a doubly linked list in sorted order. */
void dls_store(
 struct address *i, /* new element */
 struct address **start, /* first element in list */
 struct address **last /* last element in list */
}
{
 struct address *old, *p;

 if(*last==NULL) { /* first element in list */
 i->next = NULL;
 i->prior = NULL;
 *last = i;
 *start = i;
 return;
 }

 p = *start; /* start at top of list */

 old = NULL;
 while(p) {
 if(strcmp(p->name, i->name)<O){
 old = p;
 p = p->next;
 }
 else {
 if(p->prior) {
 p->prior->next = i;
 i->next = p;
 i->prior = p->prior;
 p->prior = i;
 return;
 }
 i->next = p; /* new first element */
 i->prior = NULL;
 p->prior = i;
 *start = i;

Page 545

 return;
 }
 }
 old->next = i; /* put on end */
 i->next = NULL;
 i->prior = old;
 *last = i;
}

Because the first or last element in the list can change, the dls_store() function automatically
updates pointers to the beginning and ending elements of the list through the start and last
parameters. You must call the function with a pointer to the data to be stored and a pointer to the
pointers to the first and last items in the list. When called the first time, the objects pointed to by
first and last must be null.

As in singly linked lists, retrieving a specific data item in a doubly linked list is simply the process
of following the links until the proper element is found.

There are three cases to consider when deleting an element from a doubly linked list: deleting the
first item, deleting an item from the middle, and deleting the last item. Figure 22-7 shows how the
links are rearranged. The function dldelete(), shown here, deletes an item from a doubly linked list:

void dldelete(
 struct address *i, /* item to delete */
 struct address **start, /* first item */
 struct address **last) /* last item */
{
 if(i->prior) i->prior->next = i->next;
 else { /* new first item */
 *start = i->next;
 if(start) start->prior = NULL;
 }

 if(i->next) i->next->prior = i->prior;
 else /* deleting last element */
 *last = i->prior;
}

Because the first or last element in the list could be deleted, the dldelete() function automatically
updates pointers to the beginning and ending elements of the list through the start and last
parameters. You must call the function with a pointer to the data to be deleted and a pointer to the
pointers to the first and last items in the list.

Page 546

Figure 22-7
Deletion in a doubly linked list

A Mailing List Example

To finish the discussion of doubly linked lists, this section presents a simple but complete mailing
list program. The entire list is kept in memory while in use. However, it can be stored in a disk file
and loaded for later use.

/* A simple mailing list program that illustrates the
 use and maintenance of doubly linked lists.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct address {
 char name[30];
 char street[40];
 char city[20];
 char state[3];
 char zip[11];
 struct address *next; /* pointer to next entry */

Page 547

 struct address *prior; /* pointer to previous record */
};

struct address *start; /* pointer to first entry in list */
struct address *last; /* pointer to last entry */
struct address *find(char *);

void enter(void), search(void), save(void);
void load(void), list(void);
void mldelete(struct address **, struct address **);
void dls_store(struct address *i, struct address **start,
 struct address **last);

void inputs(char *, char *, int), display(struct address *);
int menu_select (void);

int main(void)
{
 start = last = NULL; /* initialize start and end pointers */

 for(;;) {
 switch (menu_select ()) {
 case 1: enter(); /* enter an address */
 break;
 case 2: mldelete(&start, &last); /* remove an address */
 break;
 case 3: list(); /* display the list */
 break;
 case 4: search(); /* find an address */
 break;
 case 5: save(); /* save list to disk */
 break;
 case 6: load(); /* read from disk */
 break;
 case 7: exit(0);
 }
 }
 return 0;
}

/* Select an operation. */
int menu_select (void)
{

Page 548

 char s[80];
 int c;

 printf("1. Enter a name\n");
 printf(''2. Delete a name\n");
 printf("3. List the file\n");
 printf("4. Search\n");
 printf("5. Save the file\n");
 printf("6. Load the file\n");
 printf("7. Quit\n");
 do {
 printf("\nEnter your choice: ");
 gets(s);
 c = atoi(s);
 } while(c<0 || c>7);
 return c;
}

/* Enter names and addresses. */
void enter(void)
{
 struct address *info;

 for(;;) {
 info = (struct address *)malloc(sizeof(struct address));
 if(!info) {
 printf("\nout of memory");
 return;
 }

 inputs("Enter name: ", info->name, 30);
 if(!info->name[0]) break; /* stop entering */
 inputs("Enter street: ", info->street, 40);
 inputs("Enter city: ", info->city, 20);
 inputs("Enter state: ", info->state, 3);
 inputs("Enter zip: ", info->zip, 10);

 dls_store
(info, &start, &last);
 } /* entry loop */
}

/* This function will input a string up to

Page 549

 the length in count and will prevent
 the string from being overrun. It will also
 display a prompting message. */
void inputs(char *prompt, char *s, int count)
{
 char p[255];

 do {
 printf (prompt);
 fgets (p, 254, stdin);
 if(strlen(p) > count) printf(''\nToo Long\n");
 } while (strlen(p) > count);

 p[strlen(p)-
1] = 0; /* remove newline character */
 strcpy(s, p);
}

/* Create a doubly linked list in sorted order. */
void dls_store(
 struct address *i, /* new element */
 struct address **start, /* first element in list */
 struct address **last /* last element in list */
}
{
 struct address *old, *p;

 if(*last==NULL) { /* first element in list */
 i->next = NULL;
 i->prior = NULL;
 *last = i;
 *start = i;
 return;
 }
 p = *start; /* start at top of list */

 old = NULL;
 while (p) {
 if(strcmp(p->name, i->name)<0)
{
 old = p;
 p = p->next;
 }
 else {

Page 550

 if(p->prior) {
 p->prior->next = i;
 i->next = p;
 i->prior = p->prior;
 p->prior = i;
 return;
 }
 i->next = p; /* new first element */
 i->prior = NULL;
 p->prior = i;
 *start = i;
 return;
 }
 }
 old->next = i; /* put on end */
 i->next = NULL;
 i->prior = old;
 *last = i;
}

/* Remove an element from the list. */
void mldelete(struct address **start, struct address **last)
{
 struct address *info;
 char s[80];

 inputs("Enter name: ", s, 30);
 info = find(s);
 if(info) {
 if(*start==info) {
 *start=info->next;
 if(*start) (*start)->prior = NULL;
 else *last = NULL;
 }
 else {
 info->prior->next = info->next;
 if(info!=*last)
 info->next->prior = info->prior;
 else
 *last = info->prior;
 }
 free(info); /* return memory to system */

TE
AM
FL
Y

Team-Fly®

Page 551

 }
}

/* Find an address. */
struct address *find(char *name)
{
 struct address *info;

 info = start;
 while(info) {
 if(!strcmp(name, info->name)) return info;
 info = info->next; /* get next address */
 }
 printf(''Name not found.\n");
 return NULL; /* not found */
}

/* Display the entire list. */
void list(void)
{
 struct address *info;

 info = start;
 while (info) {
 display (info);
 info = info->next; /* get next address */
 }
 printf("\n\n");
}

/* This function actually prints the fields in each address. */
void display(struct address *info)
{
 printf("%s\n", info->name);
 printf("%s\n", info->street);
 printf("%s\n", info->city);
 printf("%s\n", info->state);
 printf("%s\n", info->zip);
 printf("\n\n");
}

/* Look for a name in the list. */

Page 552

void search(void)
{
 char name[40];
 struct address *info;

 printf("Enter name to find: ");
 gets(name);
 info = find(name);
 if(!info) printf
(''Not Found\n");
 else display(info);
}

/* Save the file to disk. */
void save(void)
{
 struct address *info;

 FILE *fp;

 fp = fopen("mlist", "wb");
 if(!fp) {
 printf("Cannot open file.\n");
 exit(1);
 }
 printf("\nSaving File\n");

 info = start;
 while(info) {
 fwrite(info, sizeof(struct address), 1, fp);
 info = info->next; /* get next address */
 }
 fclose(fp);
}

/* Load the address file. */
void load()
{
 struct address *info;
 FILE *fp;

 fp = fopen("mlist", "rb");
 if(!fp) {

Page 553

 printf("Cannot open file.\n");
 exit (1);
 }

 /* free any previously allocated memory */
 while(start) {
 info = start->next;
 free (info);
 start = info;
 }

 /* reset top and bottom pointers */
 start = last = NULL;

 printf("\nLoading File\n");
 while(!feof(fp)) {
 info = (struct address *) malloc(sizeof(struct address));
 if(!info) {
 printf(''Out of Memory");
 return;
 }
 if(1 != fread(info, sizeof(struct address), 1, fp)) break;
 dls_store(info, &start, &last);
 }
 fclose (fp);
}

Binary Trees

The final data structure to be examined is the binary tree. Although there can be many different
types of trees, binary trees are special because, when sorted, they lend themselves to rapid searches,
insertions, and deletions. Each item in a tree consists of information along with a link to the left
member and a link to the right member. Figure 22-8 shows a small tree.

Special terminology is needed when discussing trees. Computer scientists are not known for their
grammar, and terminology for trees is a classic case of a confused metaphor. The root is the first
item in the tree. Each data item is called a node of the tree, and any piece of the tree is called a
subtree. A node that has no subtrees attached to it is called a terminal node or leaf. The height of the
tree is equal to the number of layers deep that its roots grow. When working with trees, you can
think of them existing in memory looking the way they do on paper. But remember: A tree is only a
way to logically organize data in memory, and memory is linear.

Page 554

Figure 22-8
A sample binary tree with height of three

In a sense, the binary tree is a special form of linked list. Items can be inserted, deleted, and
accessed in any order. Also, the retrieval operation is nondestructive. Although trees are easy to
visualize, they present some difficult programming problems. This discussion only scratches the
surface.

Most functions that use trees are recursive because the tree itself is a recursive data structure. That
is, each subtree is itself a tree. Therefore, the routines that this discussion develops will be recursive.
Remember, nonrecursive versions of these functions exist, but their code is much harder to
understand.

How a tree is ordered depends on how it is going to be accessed. The process of accessing each node
in a tree is called a tree traversal. Consider the following tree:

Page 555

There are three ways to traverse a tree: inorder, preorder, and postorder. Using inorder, you visit
the left subtree, the root, and then the right subtree. In preorder, you visit the root, the left subtree,
and then the right subtree. With postorder, you visit the left subtree, the right subtree, and then the
root. Using each method, the order of access for the tree shown is

inorder a b c d e f g

preorder d b a c f e g

postorder a c b e g f d

Although a tree need not be sorted, most uses require this. Of course, what constitutes a sorted tree
depends on how you will be traversing the tree. The rest of this chapter assumes inorder. Therefore,
a sorted binary tree is one where the subtree on the left contains nodes that are less than or equal to
the root, and those on the right are greater than the root.

The following function, stree(), builds a sorted binary tree:

struct tree {
 char info;
 struct tree *left;
 struct tree *right;
};

struct tree *stree(
 struct tree *root,
 struct tree *r,
 char info)
{
 if(!r) {
 r = (struct tree *) malloc(sizeof
(struct tree));
 if(!r) {
 printf (''Out of Memory\n");
 exit(0);
 }
 r->left = NULL;
 r->right = NULL;
 r->info = info;
 if(!root) return r; /* first entry */
 if(info < root->info) root->left = r;
 else root->right = r;
 return r;

Page 556

 }
 if(info < r->info)
 stree(r,r->left,info);
 else
 stree(r,r->right,info);

 return root;
}

The preceding algorithm simply follows the links through the tree going left or right based on the
info field until it finds the correct location for the new entry. To use this function, you need a global
variable that points to the root of the tree. This pointer must initially be set to null. The first call to
stree() will return a pointer to the root of the tree, and it must be assigned to the root pointer.
Subsequent calls will continue to return a pointer to the root. Assuming the name of this global root
pointer is rt, here is how to call stree():

/* call stree() */
rt = stree(rt, rt, info);

The function stree() is a recursive algorithm, as are most tree routines. The same routine would be
several times longer if you employed iterative methods. The function must be called with the
following arguments (proceeding left to right): a pointer to the root of the entire tree, a pointer to the
root of the next subtree to search, and the information to be stored. The first time the function is
called, the first two parameters are both pointers to the root of the entire tree. For the sake of clarity,
only a character is used as the information stored in the tree. However, you could substitute any
other data type.

To traverse inorder the tree built by using stree(), and to print the info field of each node, you could
use the inorder() function shown here:

void inorder(struct tree *root)
{
 if(!root) return;

 inorder(root->left);
 if(root->info) printf(''%c ", root->info);
 inorder(root->right);
}

This recursive function returns when a terminal node (a null pointer) is encountered.

Page 557

The functions for traversing the tree in preorder and postorder are shown in the following listing:

void preorder(struct tree *root)
{
 if (!root) return;

 if(root->info) printf(''%c ", root->info);
 preorder(root->left);
 preorder (root->right);
}

void postorder(struct tree *root)
{
 if(!root) return;
 postorder (root->left);
 postorder (root->right);
 if(root->info) printf("%c ", root->info);
}

Now consider a short but interesting program that builds a sorted binary tree and then prints that tree
inorder, sideways on your screen. The program requires only a small modification to the function
inorder() to print the tree. Because the tree is printed sideways on the screen, the right subtree must
be printed before the left subtree for the tree to look correct. (This is technically the opposite of an
inorder traversal.) This new function is called print_tree() and is shown here:

void print__tree(struct tree *r, int l)
{
 int i;

 if(r == NULL) return;

 print_tree(r->right, l+1);
 for(i=0; i<l; ++i) printf(" ");
 printf("%c\n", r->info);
 print_tree(r->left, l+1);
}

The entire tree-printing program follows. Try entering various trees to see how each one is built.

Page 558

/* This program displays a binary tree. */

#include <stdlib.h>
#include <stdio.h>

struct tree {
 char info;
 struct tree *left;
 struct tree *right;
};

struct tree *root; /* first node in tree */
struct tree *stree(struct tree *root,
 struct tree *r, char info);
void print_tree(struct tree *root, int l);

int main(void)
{
 char s[80];

 root = NULL; /* initialize the root */

 do {
 printf(''Enter a letter: ");
 gets(s);
 root = stree(root, root, *s);
 } while(*s);

 print_tree(root, 0);

 return 0;
}

struct tree *stree(
 struct tree *root,
 struct tree *r,
 char info)
{

 if(!r) {
 r = (struct tree *) malloc(sizeof
(struct tree));

Page 559

 if(!r) {
 printf (''Out of Memory\n");
 exit(0);
 }
 r->left = NULL;
 r->right = NULL;
 r->info = info;
 if(!root) return r; /* first entry */
 if(info < root->info) root->left = r;
 else rcot->right = r;
 return r;
 }

 if(info < r->info)
 stree(r, r->left, info);
 else
 stree(r, r->right, info);

 return root;
}

void print_tree(struct tree *r, int l)
{
 int i;

 if(!r) return;

 print_tree(r->right, l+1);
 for(i=0; i<l; ++i) printf(" ");
 printf("%c\n", r->info);
 print_tree(r->left, l+1);
}

This program. is actually sorting the information that you give it. It is essentially a variation of the
insertion sort that you saw in the previous chapter. In the average case, its performance can be quite
good.

If you have run the tree-printing program, you have probably noticed that some trees are balanced—
that is, each subtree is the same or nearly the same height as any other— and that others are very far
out of balance. In fact, if you entered the tree abcd, it would have looked like this:

Page 560

There would have been no left subtrees. This is called a degenerate tree because it has degenerated
into a linear list. In general, if the data you are using as input to build a binary tree is fairly random,
the tree produced approximates a balanced tree. However, if the information is already sorted, a
degenerate tree results. (It is possible to readjust the tree with each insertion to keep the tree in
balance, but this process is fairly complicated and beyond the scope of this chapter.)

Search functions are easy to implement for binary trees. The following function returns a pointer to
the node in the tree that matches the key; otherwise, it returns a null.

struct tree *search_tree(struct tree *root, char key)
{
 if(!root) return root; /* empty tree */
 while(root->info != key) {
 if(key<root->info) root = root->left;
 else root = root->right;
 if(root == NULL) break;
 }
 return root;
}

Unfortunately, deleting a node from a tree is not as simple as searching a tree. The deleted node may
be either the root, a left node, or a right node. Also, the node may have from zero to two subtrees
attached to it. The process of rearranging the pointers lends itself to a recursive algorithm, which is
shown here:

struct tree *dtree(struct tree *root, char key)
{
 struct tree *p,*p2;

 if(!root) return root; /* not found */

 if(root->info == key) { /* delete root */
 /* this means an empty tree */

TE
AM
FL
Y

Team-Fly®

Page 561

 if(root->left == root->right){
 free(root);
 return NULL;
 }
 /* or if one subtree is null */
 else if (root->left == NULL) {
 p = root->right;
 free(root);
 return p;
 }
 else if(root->right == NULL) {
 p = root->left;
 free(root);
 return p;
 }
 /* or both subtrees present */
 else {
 p2 = root->right;
 p = root->right;
 while(p->left) p = p->left;
 p->left = root->left;
 free(root);
 return p2;
 }
 }
 if(root->info < key) root->right = dtree(root->right, key);
 else root->left = dtree(root->left, key);
 return root;
}

Remember to update the pointer to the root in the rest of your program code because the node
deleted could be the root of the tree. The best way to accomplish this is to assign the return value
from dtree() to the variable in your program that points to the root, using a call similar to the
following:

root = dtree(root, key);

Binary trees offer tremendous power, flexibility, and efficiency. Because a balanced binary tree
performs, as a worst case, log2 n comparisons when searching, it is far better than a linked list, which
must rely on a sequential search.

Page 563

Chapter 23—
Sparse Arrays

Page 564

One of the more intriguing programming problems is the implementation of a sparse array. A sparse
array is one in which not all the elements of the array are actually in use, present, or needed. Sparse
arrays are valuable when both of the following conditions are met: The size of the array required by
an application is quite large (possibly exceeding available memory), and not all array locations will
be used. Thus, a sparse array is typically a thinly populated, large array. As you will see, there are
several ways in which sparse arrays can be implemented. Before we begin, let's examine the
problem that sparse arrays are designed to solve.

Understanding the Need for Sparse Arrays

To understand the need for sparse arrays, consider the following two points:

• When you declare a normal C array, all of the memory required by the array is allocated when that
array comes into existence.

• Large arrays— especially multidimensional arrays— can consume vast quantities of memory.

The fact that memory for an array is allocated when the array is created means that the largest array
that you can declare within your program is limited (in part) by the amount of available memory. If
you need an array larger than will fit within the physical confines of your computer, you must use
some other mechanism to support the array. (For example, a fully populated large array typically
uses some form of virtual memory.) Even if the large array will fit in memory, declaring it may not
always be a good idea because the memory consumed by the large array is not available to the rest
of your program or to other processes running within the system. This may degrade the overall
performance of your program or the computer itself. In situations in which not all array locations
will actually be used, allocating memory for a large array is especially wasteful of system resources.

To solve the problems caused by large, thinly populated arrays, several sparse array techniques have
been invented. All sparse array techniques share one thing in common: they allocate memory for
elements of the array only as needed. Therefore, the advantage of a sparse array is that it requires
memory only for elements actually in use. This leaves the rest of memory free for other uses. It also
allows extremely large arrays— larger than would normally be allowed by the system— to be
employed.

There are numerous examples of applications that require sparse-array processing. Many apply to
matrix operations, or to scientific and engineering problems that are easily understood only by
experts in those fields. However, one very familiar application typically uses a sparse array: a
spreadsheet program. Even though the matrix of the average spreadsheet is very large, only a portion
of the matrix is actually in use at any one time. Spreadsheets use the matrix to hold formulas, values,
and strings associated with each location. Using a sparse array, storage for each element is allocated
from the pool of free memory as it is needed. Because only a small portion of

Page 565

the array elements are actually in use, the array (that is, the spreadsheet) may appear very large
while requiring memory only for those cells actually in use.

Two terms will be used repeatedly in this chapter: logical array and physical array. The logical
array is the array that you think of as existing in the system. For example, if a spreadsheet matrix has
dimensions of 1,000 by 1,000, then the logical array that supports that matrix also has dimensions of
1,000 by 1,000— even though this array does not physically exist within the computer. The physical
array is the array that actually exists inside the computer. Thus, if only 100 elements of a
spreadsheet matrix are in use, the physical array requires memory for only these 100 elements. The
sparse-array techniques developed in this chapter provide the link between the logical and physical
arrays.

This chapter examines four distinct techniques for creating a sparse array: the linked list, the binary
tree, a pointer array, and hashing. Although no spreadsheet program is actually developed, all
examples relate to a spreadsheet matrix that is organized as shown in Figure 23-1. In the figure, the
X is located in cell B2.

The Linked-List Sparse Array

When you implement a sparse array by using a linked list, the first thing you must do is create a
structure that holds the following items:

• The data that is being stored

• Its logical position in the array

• Links to the previous and next element

Figure 23-1
Organization of a simple spreadsheet

Page 566

Each new structure is placed in the list with the elements inserted in sorted order based on the array
index. The array is accessed by following the links.

For example, you can use the following structure as the basis of a sparse array in a spreadsheet
program:

struct cell {
 char cell_name[9]; /* cell name e.g., A1, B34 */
 char formula[128]; /* info e.g., 10/B2 */
 struct cell *next; /* pointer to next entry */
 struct cell *prior; /* pointer to previous record */
} ;

The field cell_name holds a string that contains a cell name such as A1, B34, or Z19. The string
formula holds the formula (data) that is assigned to each spreadsheet location.

An entire spreadsheet program would be far too large to use as an example. Instead this chapter
examines the key functions that support the linked-list sparse array. Remember, there are many
ways to implement a spreadsheet program. The data structure and routines here are just examples of
sparse-array techniques.

The following global variables point to the beginning and end of the linked-list array:

struct cell *start = NULL; /* first element in list */
struct cell *last = NULL; /* last element in list */

When you enter a formula into a cell in most spreadsheets, you are, in effect, creating a new element
in the sparse array. If the spreadsheet uses a linked list, that new cell is inserted into it via a function
similar to dls_store(), which was developed in Chapter 22. Remember that the list is sorted
according to the cell name; that is, A12 precedes A13, and so on.

/* Store cells in sorted order. */
void dls_store(struct cell *i, /* pointer to new cell to insert */
 struct cell **start,
 struct cell **last)
{
 struct cell *old, *p;

 if(!*last) { /* first element in list */
 i->next = NULL;
 i->prior = NULL;
 *last = i;

Page 567

 *start = i;
 return;
 }

 p = *start; /* start at top of list */

 old = NULL;
 while (p) {
 if(strcmp(p->cell_name, i->cell_name) < 0){
 old = p;
 p = p->next;
 }
 else {
 if(p->prior) { /* is a middle element */
 p->prior->next = i;
 i->next = p;
 i->prior = p->prior;
 p->prior = i;
 return;
 }
 i->next = p; /* new first element */
 i->prior = NULL;
 p->prior = i;
 *start = i;
 return;
 }
 }
 old->next = i; /* put on end */
 i->next = NULL;
 i->prior = old;
 *last = i;
 return;
}

Here, the parameter i is a pointer to the new cell to insert. The start and last parameters are pointers
to pointers that point to the beginning and end of the list, respectively.

The deletecell() function, which follows, removes from the list the cell whose name is an argument
to the function.

void deletecell(char *cell_name,
 struct cell **start,
 struct cell **last)

Page 568

{
 struct cell *info;

 info = find(cell_name, *start);
 if(info) {
 if(*start==info) {
 *start = info->next;
 if(*start) (*start)->prior = NULL;
 else *last = NULL;
 }
 else {
 if(info->prior) info->prior->next = info->next;
 if(info != *last)
 info->next->prior = info->prior;
 else
 *last = info->prior;
 }
 free(info); /* return memory to system */
 }
}

The final function that you need in order to support a linked-list sparse array is find(), which locates
any specific cell. The function requires a linear search to locate each item; and, as you saw in
Chapter 21, the average number of comparisons in a linear search is n/2, where n is the number of
elements in the list. Here is find():

struct cell *find(char *cell_name, struct cell *start)
{
 struct cell *info;

 info = start;
 while(info) {
 if(!strcmp(cell_name, info->cell_name)) return info;
 info = info->next; /* get next cell */
 }
 printf(''Cell not found.\n");
 return NULL; /* not found */
}

Analysis of the Linked-List Approach

The principal advantage of the linked-list approach to sparse arrays is that it makes efficient use of
memory— memory is used only for those elements in the array that

Page 569

actually contain information. It is also simple to implement. However, it has one major drawback: It
must use a linear search to access cells in the list. Also, the store routine uses a linear search to find
the proper place to insert a new cell into the list. You can solve these problems by using a binary
tree to support the sparse array, as shown next.

The Binary-Tree Approach to Sparse Arrays

In essence, the binary tree is simply a modified doubly linked list. Its major advantage over a list is
that it can be searched quickly, which means that insertions and lookups are very fast. In
applications where you want a linked-list structure but need fast search times, the binary tree is
perfect.

To use a binary tree to support the spreadsheet example, you must change the structure cell as
shown in the code that follows:

struct cell {
 char cell_name[9]; /* cell name e.g., A1, B34 */
 char formula[128]; /* info e.g., 10/B2 */
 struct cell *left; /* pointer to left subtree */
 struct cell *right; /* pointer to right subtree */
} list_entry;

You can modify the stree() function from Chapter 22 so that it builds a tree based on the cell name.
Notice that the following assumes that the parameter n is a pointer to a new entry in the tree.

struct cell *stree(
 struct cell *root,
 struct cell *r,
 struct cell *n)
{
 if(!r) { /* first node in subtree */
 n->left = NULL;
 n->right = NULL;
 if(!root) return n; /* first entry in tree */
 if(strcmp(n->cell_name, root->cell_name) < 0)
 root->left = n;
 else
 root->right = n;
 return n;
 }

 if(strcmp(r->cell_name, n->cell name) <= 0)

Page 570

 stree(r, r->right, n);
 else
 stree(r, r->left, n);

 return root;
}

The stree() function must be called with a pointer to the root node for the first two parameters and a
pointer to the new cell for the third. It returns a pointer to the root.

To delete a cell from the spreadsheet, modify the dtree() function, as shown here, to accept the
name of the cell as a key:

struct cell *dtree(
 struct cell *root,
 char *key)
{
 struct cell *p, *p2;

 if(!root) return root; /* item not found */

 if(!strcmp(root->cell_name, key)) { /* delete root */
 /* this means an empty tree */
 if(root->left == root->right){
 free(root);
 return NULL;
 }
 /* or if one subtree is null */
 else if(root->left == NULL) {
 p = root->right;
 free(root);
 return p;
 }
 else if(root->right == NULL) {
 p = root->left;
 free(root);
 return p;
 }
 /* or both subtrees present */
 else {

Page 571

 p2 = root->right;
 p = root->right;
 while(p->left) p = p->left;
 p->left = root->left;
 free(root);
 return p2;
 }
 }
 if(strcmp(root->cell_name, key)<=0)
 root->right = dtree(root->right, key);
 else root->left = dtree(root->left, key);
 return root;
}

Finally, you can use a modified version of the search() function to quickly locate any cell in the
spreadsheet if you specify its cell name.

struct cell *search_tree(
 struct cell *root,
 char *key)
{
 if(!root) return root; /* empty tree */
 while(strcmp(root->cell_name, key)) {
 if(strcmp(root->cell_name, key) <= 0)
 root = root->right;
 else root = root->left;
 if(root == NULL) break;
 }
 return root;
}

Analysis of the Binary-Tree Approach

A binary tree results in much faster insert and search times than a linked list. Remember, a
sequential search requires, on average, n/2 comparisons, where n is the number of elements in the
list. A binary search, in contrast, requires only log2 n comparisons (assuming a balanced tree). Also,
the binary tree is as memory-efficient as a doubly linked list. However, in some situations, there is a
better alternative than the binary tree.

TE
AM
FL
Y

Team-Fly®

Page 572

The Pointer-Array Approach to Sparse Arrays

Suppose your spreadsheet has the dimensions 26 by 100 (A1 through Z100), or a total of 2,600
elements. In theory, you could use the following array of structures to hold the spreadsheet entries:

struct cell {
 char cell_name[9];
 char formula[128];
} list_entry[2600]; /* 2,600 cells */

However, 2,600 multiplied by 137 (the raw size of the structure) amounts to 356,200 bytes of
memory. This is a lot of memory to waste on an array that is not fully populated. However, you
could create an array of pointers to structures of type cell. This array of pointers would require a
significantly smaller amount of permanent storage than the actual array. Each time an array location
is assigned data, memory would be allocated for that data and the appropriate pointer in the pointer
array would be set to point to that data. This scheme offers superior performance over the linked-list
and binary-tree methods. The declaration that creates such an array of pointers is

struct cell {
 char cell_name[9];
 char formula[128];
} list_entry;

struct cell *sheet[2600]; /* array of 2,600 pointers */

You can use this smaller array to hold pointers to the information that is actually entered by the
spreadsheet user. As each entry is made, a pointer to the information about the cell is stored in the
proper location in the array. Figure 23-2 shows how this might appear in memory, with the pointer
array providing support for the sparse array.

Before the pointer array can be used, each element must be initialized to null, which indicates that
there is no entry in that location. The function that does this is

void init_sheet(void)
{
 register int t;

 for(t=0; t < 2600; ++t) sheet[t] = NULL;
}

Page 573

Figure 23-2
A pointer array as support for a sparse array

When the user enters a formula for a cell, the cell location (which is defined by its name) is used to
produce an index for the pointer array sheet. The index is derived from the cell name by converting
the name into a number, as shown in the following listing:

void store(struct cell *i)
{
 int loc;
 char *p;

 /* compute index given cell name */
 loc = *(i->cell_name) - 'A'; /* column */
 p = &(i->cell_name[1]);
 loc += (atoi(p)-1) * 26; /* number of rows * row width + column */

 if(loc >= 2600) {
 printf(''Cell out of bounds.\n");
 return;
 }
 sheet[loc] = i; /* place pointer in the array */
}

When computing the index, store() assumes that all cell names start with a capital letter and are
followed by an integer— for example, B34, C19, and so on. Therefore, using the formula shown in
store(), the cell name Al produces an index of 0, B1

Page 574

produces an index of 1, A2 produces an index of 26, and so on. Because each cell name is unique,
each index is also unique, and the pointer to each entry is stored in the proper array element. If you
compare this procedure to the linked-list or binary-tree version, you will see how much shorter and
simpler it is.

The deletecell() function also becomes very short. Called with the name of the cell to remove, it
simply zeroes the pointer to the element and returns the memory to the system.

void deletecell(struct cell *i)
{
 int loc;
 char *p;

 /* compute index given cell name */
 loc = *(i->cell_name) - 'A'; /* column */
 p = &(i->cell_name[1]);
 loc += (atoi(p)-1) * 26; /* number of rows * row width + column */

 if(loc >= 2600) {
 printf(''Cell out of bounds.\n");
 return;
 }
 if(!sheet[loc]) return; /* don't free a null pointer */

 free(sheet[loc]); /* return memory to system */
 sheet[loc] = NULL;
}

Once again, this code is much faster and simpler than the linked-list version.

The process of locating a cell given its name is simple because the name itself directly produces the
array index. Therefore, the function find() becomes

struct cell *find(char *cell_name)
{
 int loc;
 char *p;

 /* compute index given name */
 loc = *(cell_name) - 'A'; /* column */
 p = &(cell_name[1]);
 loc += (atoi(p)-1) * 26; /* number of rows * row width + column */

Page 575

 if(loc>=2600 || !sheet[loc]) { /* no entry in that cell */
 printf(''Cell not found.\n");
 return NULL; /* not found */
 }
 else return sheet[loc];
}

Analysis of the Pointer-Array Approach

The pointer-array method of sparse-array handling provides much faster access to array elements
than either the linked-list or binary-tree method. Unless the array is very large, the memory used by
the pointer array is not usually a significant drain on the free memory of the system. However, the
pointer array itself uses some memory for every location— whether the pointers are pointing to
actual information or not. This may be a limitation for certain applications, but it is not a problem in
general.

Hashing

Hashing is the process of extracting the index of an array element directly from the information that
is stored there. The index generated is called the hash. Traditionally, hashing has been applied to
disk files as a means of decreasing access time. However, you can use the same general methods to
implement sparse arrays. The preceding pointer-array example used a special form of hashing called
direct indexing, where each key maps onto one and only one array location. In other words, each
hashed index is unique. (The pointer-array method does not require a direct indexing hash— this was
just an obvious approach given the spreadsheet problem.) In actual practice, such direct hashing
schemes are few, and a more flexible method is required. This section shows how hashing can be
generalized to allow greater power and flexibility.

The spreadsheet example makes clear that even in the most rigorous environments, not every cell in
the sheet will be used. Suppose that for virtually all cases, no more than 10 percent of the potential
locations are occupied by actual entries. Therefore, if the spreadsheet has dimensions 26 by 100
(2,600 locations), only about 260 are actually used at any one time. This implies that the largest
array necessary to hold all the entries will normally consist of only 260 elements. But how do the
logical array locations get mapped onto and accessed from this smaller physical array? And what
happens when this array is full? The following discussion describes one possible solution.

When data for a cell is entered by the user of the spreadsheet (which is the logical array), the cell
location, defined by its name, is used to produce an index (a hash) into the smaller physical array.
As it relates to hashing, the physical array is also called the primary array. The index is derived
from the cell name, which is converted into a number, as in the pointer-array example. However,
this number is then divided by 10 to produce an initial entry point into the primary array.
(Remember, in this example

Page 576

the size of the physical array is only 10 percent of the logical array.) If the location referenced by
this index is free, the logical index and the value are stored there. However, since 10 logical
locations actually map onto one physical location, hash collisions can occur. When this happens, a
linked list, sometimes called the collision list, is used to hold the entry. A separate collision list is
associated with each entry in the primary array. Of course, these lists are zero length until a collision
occurs, as depicted in Figure 23-3.

Suppose you want to find an element in the physical array, given its logical array index. First,
transform the logical index into its hash value, and check the physical array at the index generated
by the hash to see if the logical index stored there matches the one that you are searching for. If it
does, return the information. Otherwise, follow the collision list until either the proper index is
found or the end of the chain is reached.

Figure 23-3
A hashing example

Page 577

The hashing example uses an array of structures, called primary, shown here:

#define MAX 260

struct htype {
 int index; /* logical index */
 int val; /* actual value of the array element */
 struct htype *next; /* pointer to next value with same hash */
} primary[MAX];

Before this array can be used, it must be initialized. The following function initializes the index
field to –1 (a value that, by definition, cannot be generated) to indicate an empty element. A NULL
in the next field indicates an empty hash chain.

/* Initialize the hash array. */
void init(void)
{
 register int i;

 for (i=0; i<MAX; i++) {
 primary[i].index =-1;
 primary[i].next = NULL; /* null chain */
 primary[i].val = 0;
 }
}

The store() procedure converts a cell name into a hashed index into the primary array. If the
location directly pointed to by the hashed value is occupied, the procedure automatically adds the
entry to the collision list using a modified version of slstore() developed in the preceding chapter.
The logical index must be stored because it will be needed when that element is accessed again.
These functions are shown here:

/* Compute hash and store value. */
void store(char *cell_name, int v)
{
 int h, loc;
 struct htype *p;

 /* produce the hash value */
 loc = *cell_name - 'A'; /* column */
 loc += (atoi(&cell_name[1])-1) * 26; /* rows * width + columns */
 h = loc/10; /* hash */

Page 578

 /* Store in the location unless full or
 store there if logical indexes agree - i.e., update.
 */
 if(primary[h].index==-1 || primary[h].index==loc) {
 primary[h].index = loc;
 primary[h].val = v;
 return;
 }

 /* otherwise, create or add to collision list */
 p = (struct htype *) malloc(sizeof
(struct htype));
 if(!p) {
 printf(''Out of Memory\n");
 return;
 }
 p->index = loc;
 p->val = v;
 slstore(p, &primary[h]);
}

/* Add elements to the collision list. */
void slstore(struct htype *i,
 struct htype *start)
{
 struct htype *old, *p;

 old = start;
 /* find end of list */
 while (start) {
 old = start;
 start = start->next;
 }
 /* link in new entry */
 old->next = i;
 i->next = NULL;
}

Before finding the value of an element, your program must first compute the hash and then check to
see if the logical index stored in the physical array matches the index of the logical array that is
requested. If it does, that value is returned; otherwise, the collision chain is searched. The find()
function, which performs these tasks, is shown here:

Page 579

/* Compute hash and return value. */
int find(char *cell_name)
{
 int h, loc;
 struct htype *p;

 /* produce the hash value */
 loc = *cell_name - 'A'; /* column */
 loc += (atoi(&cell_name[1])-1) * 26; /* rows * width + column */
 h = loc/10;

 /* return the value if found */
 if(primary[h].index == loc) return(primary[h].val);
 else { /* look in collision list */
 p = primary[h].next;
 while (p) {
 if(p->index == loc) return p->val;
 p = p->next;
 }
 printf(''Not in Array\n");
 return -1;
 }
}

Creating a deletion function is left to you as an exercise. (Hint: Just reverse the insertion process.)

Keep in mind that the preceding hashing algorithm is very simple. Generally, you would use a more
complex method to provide a more even distribution of indexes in the primary array, thus avoiding
long hash chains. However, the basic principle is the same.

Analysis of Hashing

In its best case (quite rare), each physical index created by the hash is unique, and access times
approximate that of direct indexing. This means that no collision lists are created, and all lookups
are essentially direct accesses. However, this will seldom be the case because it requires that the
logical indexes be evenly distributed throughout the physical index space. In a worst case (also rare),
a hashed scheme degenerates into a linked list. This can happen when the hashed values of the
logical indexes are all the same. In the average (and the most likely) case, the hash method can
access any specific element in the time it takes to use a direct index plus some constant that is
proportional to the average length of the hash chains. The most critical factor in using hashing to
support a sparse array is to make sure that the hashing algorithm spreads the physical index evenly
so that long collision lists are avoided.

Page 580

Choosing an Approach

You must consider speed and the efficient use of memory when deciding whether to use a linked
list, a binary tree, a pointer array, or a hashing approach to implement a sparse array. Further, you
must consider whether your sparse array will most likely be thinly populated or thickly populated.

When the logical array is very sparse, the most memory-efficient approaches are the linked lists and
binary trees, because only array elements that are actually in use have memory allocated to them.
The links themselves require very little additional memory and generally have a negligible effect.
The pointer-array design requires that the entire pointer array exist, even if some of its elements are
not used. Not only must the entire pointer array be in memory, but enough memory must be left over
for the application to use. This could be a serious problem for certain applications, whereas it may
not be a problem at all for others. Usually you can calculate the approximate amount of free memory
and determine whether it is sufficient for your program. The hashing method lies somewhere
between the pointer-array and the linked-list/binary-tree approaches. Although it requires that all of
the primary array exist even if it is not all used, it will still be smaller than a pointer array.

When the logical array is fairly full, the situation changes substantially. In this case, the pointer
array and hashing become more appealing. Further, the time it takes to find an element in the pointer
array is constant no matter how full the logical array is. While not constant, the search time for the
hashing approach is bounded by some low value. However, for the linked list and binary tree,
average search time increases as the array becomes more heavily populated. You will want to keep
this in mind if consistent access times are important.

Page 581

Chapter 24—
Expression Parsing and Evaluation

TE
AM
FL
Y

Team-Fly®

Page 582

How do you write a program that will take as input a string containing a numeric expression, such as
(10 – 5) * 3, and compute the proper answer? If there is still a ''high priesthood" among
programmers, it must be those few who know how to do this. Many otherwise accomplished
programmers are mystified by the way a high-level language converts algebraic expressions into
instructions that a computer can execute. This procedure is called expression parsing, and it is the
backbone of all language compilers and interpreters, spreadsheets, and anything else that needs to
convert numeric expressions into a form that the computer can use.

Although mysterious, expression parsing is actually quite straightforward and is, in many ways,
easier than several other programming tasks. The reason for this is that the problem is well defined
and works according to the strict rules of algebra. This chapter will develop what is commonly
referred to as a recursive-descent parser and all the necessary support routines that enable you to
evaluate numeric expressions. Once you have mastered the operation of the parser, you can easily
enhance and modify it to suit your needs.

NOTE

The C interpreter presented in Part Six of this book uses an enhanced form of the
parser developed here. If you will be exploring the C interpreter, you will find the
material in this chapter especially useful.

Expressions

Although expressions can be made up of all types of information, this chapter deals only with
numeric expressions. For our purposes, numeric expressions are composed of the following items:

• Numbers

• The operators +,–, /, *, ^, %, =

• Parentheses

• Variables

The operator ^ indicates exponentiation, as in BASIC, and = is the assignment operator. These items
can be combined in expressions according to the rules of algebra. Here are some examples:

10 – 8
(100 – 5) * 14/6
a + b – c
10^5
a = 10 – b

Page 583

Assume this precedence for each operator:

highest unary + and –

^

* / %

+ –

lowest =

Operators of equal precedence evaluate from left to right.

In the examples in this chapter, all variables are single letters (in other words, 26 variables, A
through Z, are available). The variables are not case sensitive (a and A are treated as the same
variable). Each numeric value is a double, although you could easily write the routines to handle
other types of values. Finally, to keep the logic clear and easy to understand, only a minimal amount
of error checking is included.

In case you have not thought much about the process of expression parsing, try to evaluate this
sample expression:

10 – 2 * 3

You know that this expression is equal to the value 4. Although you could easily create a program
that would compute that specific expression, the question is how to create a program that gives the
correct answer for any arbitrary expression. At first you might think of a routine something like
this:

a = get first operand
while(operands present) {
 op = get operator
 b = get second operand
 a = a op b
}

This routine gets the first operand, the operator, and the second operand to perform the first
operation and then gets the next operator and operand— if any— to perform the next operation, and
so on.

However, if you use this approach, the expression 10 – 2 * 3 evaluates to 24 (that is, 8 * 3) instead
of 4 because this procedure neglects the precedence of the operators. You cannot just take the
operands and operators in order from left to right because the rules of algebra dictate that
multiplication must be done before subtraction. Some beginners think that this problem can be easily
overcome, and sometimes— in very restricted cases— it can. But the problem only gets worse when
you add parentheses, exponentiation, variables, function calls, and the like.

Page 584

Although there are a few ways to write a routine that evaluates expressions, the one developed here
is most easily written by a person. It is also the most common. (Some of the other methods used to
write parsers employ complex tables that must be generated by another computer program. These
are sometimes called table-driven parsers.) The method used here is called a recursive-descent
parser, and in the course of this chapter, you will see how it got its name.

Dissecting an Expression

Before you can develop a parser to evaluate expressions, you need to be able to break an expression
into its components. For example, the expression

A * B – (W + 10)

contains the components A, *, B, –, (, W, +, 10, and). Each component represents an indivisible unit
of the expression. In general, you need a function that returns each item in the expression
individually. This function must also be able to skip over spaces and tabs and detect the end of the
expression.

Each component of an expression is called a token. Therefore, the function that returns the next
token in the expression is often called get_token(). get_token() requires a global character pointer
to the string that holds the expression. In the version of get_token() shown here, prog is the global
character pointer. prog

 if(strchr('' +-/*%^=()", c) || c==9 || c=='\r' || c=0)
 if(strchr(’’ +-/*%^=()", c) || c==9 || c=='\r' || c=0)
 if(strchr(‘‘ +-/*%^=()", c) || c==9 || c=='\r' || c=0)
 if(strchr('' +-/*%^=()", c) || c==9 || c=='\r' || c=0)

Page 585

 tok_type = 0;
 temp = token;
 *temp = '\0';

 if(!*prog) return; /* at end of expression */
 while(isspace(*prog)) ++prog; /* skip over white space */

 if(strchr("+-*/%^=()", *prog)){
 tok_type = DELIMITER;
 /* advance to next char */
 *temp++ = *prog++;
 }
 else if(isalpha(*prog)) {
 while(!isdelim(*prog)) *temp++ = *prog++;
 tok_type = VARIABLE;
 }
 else if(isdigit(*prog)) {
 while(!isdelim(*prog)) *temp++ = *prog++;
 tok_type = NUMBER;
 }

 *temp = '\0';
}

/* Return true if c is a delimiter. */
int isdelim(char c)
{
 if(strchr(" +-/*%^=()", c) || c==9 || c=='\r' || c=0)
 return 1;
 return 0;
}

Look closely at the preceding functions. After the first few initializations, get_token() checks to see
if the null terminating the expression has been found. If it has, the end of the expression has been
reached. If there are still more tokens to retrieve from the expression, get_token() first skips over
any leading spaces. Once the spaces have been skipped, prog is pointing to either a number, a
variable, an operator, or— if trailing spaces end the expression— a null. If the next character is an
operator, it is returned as a string in the global variable token, and DELIMITER is placed in
tok_type. If the next character is a letter instead, it is assumed to be one of the variables. It is
returned as a string in token, and tok_type is assigned the value VARIABLE. If the next character
is a digit, the entire number is read and placed in the string token, and its type is

Page 586

NUMBER. Finally, if the next character is none of the preceding, it is assumed that the end of the
expression has been reached. In this case, token is null, which signals the end of the expression.

As stated earlier, to keep the code in this function clean, a certain amount of error checking has been
omitted, and some assumptions have been made. For example, any unrecognized character can end
an expression. Also, in this version, variables can be of any length, but only the first letter is
significant. You can add more error checking and other details as your specific application dictates.
You can easily modify or enhance get_token() to enable character strings, other types of numbers,
or whatever, to be returned one token at a time from an input string.

To understand better how get_token() works, study what it returns for each token and type in the
following expression:

A + 100 – (B * C) /2

Token Token Type

A VARIABLE

+ DELIMITER

100 NUMBER

– DELIMITER

(DELIMITER

B VARIABLE

* DELIMITER

C VARIABLE

) DELIMITER

/ DELIMITER

2 NUMBER

null Null

Remember that token always holds a null -terminated string, even if it contains only a single
character.

Expression Parsing

There are a number of ways to parse and evaluate an expression. When working with a recursive-
descent parser, think of expressions as recursive data structures— that is,

Page 587

expressions that are defined in terms of themselves. If, for the moment, expressions can only use +,
–, *, /, and parentheses, all expressions can be defined with the following rules:

expression -> term[+ term][– term]
term -> factor[* factor][/ factor]
factor -> variable, number, or (expression)

The square brackets designate an optional element, and -> means ''produces." In fact, the rules are
usually called the production rules of an expression. Therefore, you could say: "Term produces
factor times factor or factor divided by factor" for the definition of term. Notice that the precedence
of the operators is implicit in the way an expression is defined.

Let's look at an example. The expression

10 + 5 * B

has two terms: 10 and 5 * B. The second term contains two factors: 5 and B. These factors consist of
one number and one variable.

On the other hand, the expression

14 * (7 – C)

has two factors: 14 and (7 – C). The factors consist of one number and one parenthesized
expression. The parenthesized expression contains two terms: one number and one variable.

This process forms the basis for a recursive-descent parser, which is essentially a set of mutually
recursive functions that work in a chainlike fashion. At each appropriate step, the parser performs
the specified operations in the algebraically correct sequence. To see how this process works, parse
the input expression that follows, using the preceding production rules, and perform the arithmetic
operations at the appropriate time.

9 / 3 – (100 + 56)

If you parsed the expression correctly, you followed these steps:

1. Get the first term, 9 / 3.

2. Get each factor and divide the integers. The resulting value is 3.

3. Get the second term, (100 + 56). At this point, start recursively analyzing the second
subexpression.

4. Get each term and add. The resulting value is 156.

5. Return from the recursive call and subtract 156 from 3. The answer is –153.

If you are a little confused at this point, don't feel bad. Expression parsing is a fairly complex
concept that takes some getting used to. There are two basic things to

Page 588

remember about this recursive view of expressions. First, the precedence of the operators is implicit
in the way the production rules are defined. Second, this method of parsing and evaluating
expressions is very similar to the way humans evaluate mathematical expressions.

A Simple Expression Parser

The remainder of this chapter develops two parsers. The first will parse and evaluate only constant
expressions— that is, expressions with no variables. This example shows the parser in its simplest
form. The second parser will include the 26 variables A through Z.

Here is the entire version of the simple recursive-descent parser for floating-point
expressions:

/* This module contains a simple expression parser
 that does not recognize variables.
*/

#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>
#include <string.h>

#define DELIMITER 1
#define VARIABLE 2
#define NUMBER 3

extern char *prog; /* holds expression to be analyzed */
char token[80];
char tok_type;

void eval_exp(double *answer), eval_exp2(double *answer);
void eval_exp3(double *answer), eval_exp4(double *answer);
void eval_exp5(double *answer), eval_exp6(double *answer);
void atom(double *answer);
void get_token(void), putback(void);
void serror(int error);
int isdelim(char c);

/* Parser entry point. */
void eval_exp(double *answer)
{

Page 589

 get_token();
 if(!*token) {
 serror(2);
 return;
 }
 eval_exp2 (answer);

 if(*token) serror(0); /* last token must be null */
}

/* Add or subtract two terms. */
void eval_exp2(double *answer)
{
 register char op;
 double temp;

 eval_exp3(answer);
 while((op = *token) == '+' || op == '-') {
 get_token();
 eval_exp3(&temp);
 switch(op) {
 case '-':
 *answer = *answer - temp;
 break;
 case '+':
 *answer = *answer + temp;
 break;
 }
 }
}

/* Multiply or divide two factors. */
void eval_exp3 (double *answer)
{
 register char op;
 double temp;

 eval_exp4(answer);
 while((op = *token) == '*' || op == '/' || op == '%') {
 get_token();
 eval_exp4(&temp);
 switch(op) {

Page 590

 case '*':
 *answer = *answer * temp;
 break;
 case '/':
 if(temp == 0.0) {
 serror(3); /* division by zero */
 *answer = 0.0;
 } else *answer = *answer / temp;
 break;
 case '%':
 *answer = (int) *answer % (int) temp;
 break;
 }
 }
}

/* Process an exponent */
void eval_exp4(double *answer)
{
 double temp, ex;
 register int t;

 eval_exp5(answer);

 if(*token == '^') {
 get_token();
 eval_exp4(&temp);
 ex = *answer;
 if(temp==0.0) {
 *answer = 1.0;
 return;
 }
 for(t=temp-1; t>0; --t) *answer = (*answer) * (double)ex;
 }
}

/* Evaluate a unary + or -. */
void eval_exp5(double *answer)
{
 register char op;

 op = 0;

TE
AM
FL
Y

Team-Fly®

Page 591

 if((tok_type == DELIMITER) && *token=='+' || *token == '-') {
 op = *token;
 get_token();
 }
 eval_exp6(answer);
 if(op == '-') *answer = -(*answer);
}

/* Process a parenthesized expression. */
void eval_exp6(double *answer)
{
 if((*token == '(')) {
 get_token();
 eval_exp2(answer);
 if(*token != ')')
 serror(1);
 get_token();
 }
 else
 atom(answer);
}

/* Get the value of a number. */
void atom(double *answer)
{
 if(tok_type == NUMBER) {
 *answer = atof(token);
 get_token();
 return;
 }
 serror(0); /* otherwise syntax error in expression */
}

/* Return a token to the input stream. */
void putback(void)
{
 char *t;

 t = token;
 for(; *t; t++) prog--;
}

Page 592

/* Display a syntax error. */
void serror(int error)
{
 static char *e[]= {
 ''Syntax Error",
 "Unbalanced Parentheses",
 "No Expression Present",
 "Division by Zero"
 };
 printf("%s\n", e[error]);
}

/* Return the next token. */
void get_token(void)
{
 register char *temp;

 tok_type = 0;
 temp = token;
 *temp = '\0';

 if(!*prog) return; /* at end of expression */
 while(isspace(*prog)) ++prog; /* skip over white space */

 if(strchr("+-*/%^=()", *prog)){
 tok_type = DELIMITER;
 /* advance to next char */
 *temp++ = *prog++;
 }
 else if(isalpha(*prog)) {
 while(!isdelim(*prog)) *temp++ = *prog++;
 tok_type = VARIABLE;
 }
 else if(isdigit(*prog)) {
 while(!isdelim(*prog)) *temp++ = *prog++;
 tok_type = NUMBER;
 }

 *temp = '\0';
}

/* Return true if c is a delimiter. */

Page 593

int isdelim(char c)
{

 if(strchr(" +-/*%^=()", c) || c==9 || c=='\r' || c==0)
 return 1;
 return 0;
}

The parser as it is shown can handle the following operators: +, –, *, /, %. In addition, it can handle
integer exponentiation (^) and the unary minus. The parser can also deal with parentheses correctly.
Notice that it has six levels as well as the atom() function, which returns the value of a number. As
discussed, the two globals token and tok_type return, respectively, the next token and its type from
the expression string. The pointer prog points to the string that holds the expression.

The simple main() function that follows demonstrates the use of the
parser:

/* Parser demo program. */
#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>
#include <string.h>

char *prog;
void eval_exp(double *answer);

int main(void)
{
 double answer;
 char *p;

 p = (char *) malloc(100);
 if(!p) {
 printf(''Allocation failure.\n");
 exit(1);
 }

 /* Process expressions until a blank line
 is entered.
 */
 do {
 prog = p;

Page 594

 printf("Enter expression: ");
 gets(prog);
 if(!*prog) break;
 eval_exp(&answer);
 printf(''Answer is: %.2f\n", answer);
 } while(*p);

 return 0;
}

To understand exactly how the parser evaluates an expression, work through the following
expression. (Assume that prog points to the start of the expression.)

10 – 3 * 2

When eval_exp(), the entry point into the parser, is called, it gets the first token. If the token is null,
the function prints the message No Expression Present and returns. However, in this case, the
token contains the number 10. Since the token is not null, eval_exp2() is called. As a result,
eval_exp2() calls eval_exp3(), and eval_exp3() calls eval_exp4() , which in turn calls eval_exp5
(). Then eval_exp5() checks whether the token is a unary plus or minus, which in this case, it is
not, so eval_exp6() is called. At this point eval_exp6() recursively calls either eval_exp2() (in the
case of a parenthesized expression) or atom() to find the value of a number. Since the token is not a
left parentheses, atom() is executed, and *answer is assigned the value 10. Next, another token is
retrieved, and the functions begin to return up the chain. The token is now the operator –, and the
functions return up to eval_exp2().

What happens next is very important. Because the token is –, it is saved in op. The parser then gets
the next token, which is 3, and the descent down the chain begins again. As before, atom() is
entered. The value 3 is returned in *answer, and the token * is read. This causes a return back up the
chain to eval_exp3(), where the final token 2 is read. At this point, the first arithmetic operation
occurs— the multiplication of 2 and 3. The result is returned to eval_exp2() , and the subtraction is
performed. The subtraction yields the answer 4. Although this process may seem complicated at
first, working through some other examples on your own will clarify the parser's operation.

This parser would be suitable for use by a desktop calculator, as illustrated by the previous program.
It also could be used in a limited database. Before it could be used in a computer language or in a
sophisticated calculator, however, it would need the ability to handle variables. This is the subject of
the next section.

Page 595

Adding Variables to the Parser

All programming languages, many calculators, and spreadsheets use variables to store values for
later use. The simple parser in the preceding section needs to be expanded to include variables
before it can store values. To include variables, you need to add several things to the parser. First, of
course, are the variables themselves. As stated earlier, the parser recognizes only the variables A
through Z (although you could expand that capability if you wanted to). Each variable uses one
array location in a 26-element array of doubles. Therefore, add the following to the parser:

double vars[26] = { /* 26 user variables, A-Z */
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

As you can see, the variables are initialized to zero as a courtesy to the
user.

You also need a routine to look up the value of a given variable. Because the variables are named A
through Z, they can easily be used to index the array vars by subtracting the ASCII value for A
from the variable name. The function find_var() is shown here:

/* Return the value of a variable. */
double find_var(char *s)
{
 if(isalpha(*s)){
 serror(1);
 return 0;
 }
 return vars[toupper(*token)-'A'];
}

As this function is written, it will actually accept long variable names, but only the first letter is
significant. You can modify this to fit your needs.

You must also modify the atom() function to handle both numbers and variables. The new version
is shown here:

/* Get the value of a number or a variable. */
void atom(double *answer)

Page 596

{
 switch(tok_type) {
 case VARIABLE:
 *answer = find_var(token);
 get_token();
 return;
 case NUMBER:
 *answer = atof(token);
 get_token();
 return;
 default:
 serror(0);
 }
}

Technically, these additions are all that is needed for the parser to use variables correctly; however,
there is no way for these variables to be assigned a value. Often this is done outside the parser, but
you can treat the equal sign as an assignment operator and make it part of the parser. There are
various ways to do this. One method is to add eval_exp1() to the parser, as shown here:

/* Process an assignment. */
void eval_expl(double *result)
{
 int slot, ttok_type;
 char temp_token[80];

 if(tok_type == VARIABLE) {
 /* save old token */
 strcpy(temp_token, token);
 ttok_type = tok_type;

 /* compute the index of the variable */
 slot = toupper(*token)-'A';

 get_token();
 if(*token != '=') {
 putback(); /* return current token */
 /* restore old token - not assignment */
 strcpy(token, temp_token);
 tok_type = ttok_type;

Page 597

 }
 else {
 get_token(); /* get next part of exp */
 eval_exp2(result);
 vars[slot] = *result;
 return;
 }
 }

 eval_exp2(result);
}

As you can see, the function needs to look ahead to determine whether an assignment is actually
being made. This is because a variable name always precedes an assignment, but a variable name
alone does not guarantee that an assignment expression follows. That is, the parser will accept A =
100 as an assignment, but it is also smart enough to know that A/10 is not. To accomplish this,
eval_exp1() reads the next token from the input stream. If it is not an equal sign, the token is
returned to the input stream for later use by calling putback(), shown here:

/* Return a token to the input stream. */
void putback(void)
{
 char *t;

 t = token;
 for(; *t; t++) prog--;
}

Here is the entire enhanced parser:

/* This module contains the recursive descent
 parser that recognizes variables.
*/

#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>
#include <string.h>

#define DELIMITER 1

Page 598

#define VARIABLE 2
#define NUMBER 3

extern char *prog; /* points to the expression to be analyzed */
char token[80];
char tok_type;

double vars[26] = { /* 26 user variables, A-Z */
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

void eval_exp(double *answer), eval_exp2(double *answer);
void eval_exp1(double *result);
void eval_exp3(double *answer), eval_exp4(double *answer);
void eval_exp5(double *answer), eval_exp6(double *answer);
void atom(double *answer);
void get_token(void), putback(void);
void serror(int error);
double find_var(char *s);
int isdelim(char c);

/* Parser entry point. */
void eval_exp(double *answer)
{

 get_token();
 if(!*token) {
 serror(2);
 return;
 }
 eval_expl(answer);
 if(*token) serror(0); /* last token must be null */
}

/* Process an assignment. */
void eval_exp1(double *answer)
{
 int slot;
 char ttok_type;
 char temp_token[80];

Page 599

 if(tok_type == VARIABLE) {
 /* save old token */
 strcpy(temp_token, token);
 ttok_type = tok_type;
 /* compute the index of the variable */
 slot = toupper(*token) - 'A';

 get_token();
 if(*token != '=') {
 putback(); /* return current token */
 /* restore old token - not assignment */
 strcpy(token, temp_token);
 tok_type = ttok_type;
 }
 else {
 get_token(); /* get next part of exp */
 eval_exp2 (answer);
 vars[slot] = *answer;
 return;
 }
 }
 eval_exp2(answer);
}

/* Add or subtract two terms. */
void eval_exp2(double *answer)
{
 register char op;
 double temp;

 eval_exp3(answer);
 while((op = *token) == '+' || op == '-') {
 get_tcken();
 eval_exp3(&temp);
 switch(op) {
 case '-':
 *answer = *answer - temp;
 break;
 case '+':
 *answer = *answer + temp;
 break;
 }

Page 600

 }
}

/* Multiply or divide two factors. */
void eval_exp3(double *answer)
{
 register char op;
 double temp;

 eval_exp4(answer);
 while((op = *token) == '*' || op == '/' || op == '%') {
 get_token();
 eval_exp4(&temp);
 switch(op) {
 case '*':
 *answer = *answer * temp;
 break;
 case '/':
 if(temp == 0.0) {
 serror(3); /* division by zero */
 *answer = 0.0;
 } else *answer = *answer / temp;
 break;
 case '%':
 *answer = (int) *answer % (int) temp;
 break;
 }
 }
}

/* Process an exponent */
void eval_exp4(double *answer)
{
 double temp, ex;
 register int t;

 eval_exp5(answer);
 if(*token == '^') {
 get_token();
 eval_exp4(&temp);
 ex = *answer;
 if(temp==0.0) {

TE
AM
FL
Y

Team-Fly®

Page 601

 *answer = 1.0;
 return;
 }
 for(t=temp-1; t>0; --t) *answer = (*answer) * (double)ex;
 }
}

/* Evaluate a unary + or-. */
void eval_exp5(double *answer)
{
 register char op;

 op = 0;
 if((tok_type == DELIMITER) && *token=='+' || *token == '-') {
 op = *token;
 get_token();
 }
 eval_exp6(answer);
 if(op == '-') *answer = -(*answer);
}

/* Process a parenthesized expression. */
void eval_exp6(double *answer)
{
 if((*token == '(')) {
 get_token();
 eval_exp2(answer);
 if(*token != ')')
 serror(1);
 get_token();
 }
 else atom(answer);
}

/* Get the value of a number or a variable. */
void atom(double *answer)
{
 switch(tok_type) {
 case VARIABLE:
 *answer = find_var(token);
 get_token();
 return;

Page 602

 case NUMBER:
 *answer = atof(token);
 get_token();
 return;
 default:
 serror(0);
 }
}

/* Return a token to the input stream. */
void putback(void)
{
 char *t;

 t = token;
 for(; *t; t++) prog--;
}

/* Display a syntax error. */
void serror(int error)
{
 static char *e[]= {
 ''Syntax Error",
 "Unbalanced Parentheses",
 "No Expression Present",
 "Division by Zero"
 };
 printf("%s\n", e[error]);
}

/* Return the next token. */
void get_token(void)
{
 register char *temp;

 tok_type = 0;
 temp = token;
 *temp = '\0';

 if(!*prog) return; /* at end of expression */

 while(isspace(*prog)) ++prog; /* skip over white space */

 if(strchr('' +-/*%^=()", c) || c==9 || c=='\r' || c==0)
 if(strchr(’’ +-/*%^=()", c) || c==9 || c=='\r' || c==0)
 if(strchr(‘‘ +-/*%^=()", c) || c==9 || c=='\r' || c==0)
 if(strchr('' +-/*%^=()", c) || c==9 || c=='\r' || c==0)

Page 603

 if(strchr("+-*/%^=()", *prog)){
 tok_type = DELIMITER;
 /* advance to next char */
 *temp++ = *prog++;
 }
 else if(isalpha(*prog)) {
 while(!isdelim(*prog)) *temp++ = *prog++;
 tok_type = VARIABLE;
 }
 else if(isdigit(*prog)) {
 while(!isdelim(*prog)) *temp++ = *prog++;
 tok_type = NUMBER;
 }

 *temp = '\0';
}

/* Return true if c is a delimiter. */
int isdelim(char c)
{
 if(strchr(" +-/*%^=()", c) || c==9 || c=='\r' || c==0)
 return 1;
 return 0;
}

/* Return the value of a variable. */
double find_var(char *s)
{
 if(!isalpha(*s)){
 serror(1);
 return 0.0;
 }
 return vars[toupper(*token)-'A'];
}

You can still use the same main() function that you used for the simple parser. With the enhanced
parser, you can now enter expressions like

A = 10/4
A – B
C = A * (F – 21)

Page 604

Syntax Checking in a Recursive-Descent Parser

In expression parsing, a syntax error is simply a situation in which the input expression does not
conform to the strict rules required by the parser. Most of the time, this is caused by human error—
usually typing mistakes. For example, the following expressions are not valid for the parsers in this
chapter:

10 ** 8
(10 – 5) * 9)
/8

The first contains two operators in a row, the second has unbalanced parentheses, and the last has a
division sign at the start of an expression. None of these conditions is allowed by the parsers in this
chapter. Because syntax errors can cause the parser to give erroneous results, you need to guard
against them.

As you studied the code of the parsers, you probably noticed the serror() function, which is called
under certain situations. This function is used to report errors. Unlike many other parsers, the
recursive-descent method makes syntax checking easy because, for the most part, it occurs in atom
(), find_var(), or eval_exp6() , where parentheses are checked. The only problem with the syntax
checking as it now stands is that the entire parser is not aborted on syntax error. This can lead to
multiple error messages.

The best way to implement the serror() function is to have it execute some sort of reset. For
example, all modern compilers come with a pair of companion functions called setjmp() and
longjmp(). These two functions allow a program to branch to a different function. Therefore,
serror() could execute a longjmp() to some safe point in your program outside the parser.

If you leave the code the way it is, multiple syntax-error messages may be issued. This can be an
annoyance in some situations, but it can be a blessing in others because multiple errors may be
caught. Generally, however, you will want to enhance the parser's syntax checking before using it in
commercial programs.

Page 605

Chapter 25—
AI-Based Problem Solving

Page 606

The field of artificial intelligence (AI) comprises several different and exciting aspects, but
fundamental to most AI applications is problem solving. Essentially, there are two types of
problems. The first type can be solved through the use of some sort of deterministic procedure that
is guaranteed success— in other words, a computation. The methods used to solve these types of
problems are often easily translated into an algorithm that a computer can execute. However, few
real-world problems lend themselves to computational solutions. In fact, many problems are
noncomputational. These problems are solved by searching for a solution— the method of problem
solving with which AI is concerned.

One of the goals of AI is the creation of a general problem solver. A general problem solver is a
program that can produce solutions to all sorts of different problems about which it has no specific
designed-in knowledge. This chapter shows why the goal is as tantalizing as it is difficult to realize.

In early AI research, developing good search methods was a primary objective. There are two
reasons for this: necessity and desire. One of the most difficult obstacles when applying AI
techniques to real-world problems is the sheer magnitude and complexity of most situations. Solving
these problems requires good search techniques. In addition, researchers believed then as they do
now that searching is central to problem solving, which is a crucial ingredient of intelligence.

Representation and Terminology

Imagine that you have lost your car keys. You know that they are somewhere in your house, which
looks like this:

You are standing at the front door (where the X is). As you begin your search, you check the living
room. Then you go down the hall to the first bedroom, through the

Page 607

hall to the second bedroom, back to the hall, and to the master bedroom. Not having found your
keys, you backtrack further by going back through the living room. You find your keys in the
kitchen. This situation is easily represented by a graph, as shown in Figure 25-1.

The fact that search problems can be represented by a graph is important because a graph provides a
means to visualize the way the different search techniques work. (Also, being able to represent
problems by graphs allows AI researchers to apply various theorems from graph theory. However,
these theorems are beyond the scope of this book.) With this in mind, study the following
definitions:

Node A discrete point

Terminal
node

A node that ends a path

Search space The set of all nodes

Goal The node that is the object of the search

Heuristics Information about whether any specific node is a better next
choice than another

Solution path A directed graph of the nodes visited en route to a solution

Figure 25-1
The solution path to find the missing keys

Page 608

In the example of the lost keys, each room in the house is a node; the entire house is the search
space; the goal, as it turns out, is the kitchen; and the solution path is shown in Figure 25-1. The
bedrooms, kitchen, and the bath are terminal nodes because they lead nowhere. This example doesn't
use heuristics, but you will see some later in this chapter.

Combinatorial Explosions

At this point, you may think that searching for a solution is easy— you start at the beginning and
work your way to the conclusion. In the extremely simple case of the lost keys, this is not a bad
method. But for most problems that you would use a computer to solve, the situation is much
different. In general, you use a computer to solve problems where the number of nodes in the search
space is very large, and as the search space grows, so does the number of different possible paths to
the goal. The trouble is that each node added to the search space adds more than one path. That is,
the number of potential pathways to the goal increases faster as each node is added.

For instance, consider the number of ways three objects— A, B, and C— can be arranged on a table.
The six possible permutations are

A B C

A C B

B C A

B A C

C B A

C A B

You can quickly prove to yourself that these six are the only ways that A, B, and C can be arranged.
However, you can derive the same number by using a theorem from the branch of mathematics
called combinatorics— the study of the way things can be combined. According to the theorem, the
number of ways that N objects can be arranged is equal to N! (N factorial). The factorial of a number
is the product of all whole numbers equal to or less than itself down to 1. Therefore, 3! is 3 x 2 x 1,
or 6. If you had four objects to arrange, there would be 4!, or 24, permutations. With five objects,
the number is 120, and with six it is 720. With 1,000 objects, the number of possible permutations is
huge!

The graph in Figure 25-2 gives you a visual feel for what AI researchers commonly refer to as a
combinatoric explosion. Once there are more than a handful of possibilities, it very quickly becomes
difficult to examine (indeed, even to enumerate) all the arrangements. In other words, each
additional node in the search space increases the number of possible solutions by a number far
greater than one. Hence, at some point

Page 609

Figure 25-2
A combinatoric explosion with factorials

Page 610

there are too many possibilities to work with. Because the number of possibilities grows so quickly,
only the simplest problems lend themselves to exhaustive searches. An exhaustive search is one that
examines all nodes— think of it as a ''brute-force" technique. Brute force always works, but is not
often practical because it consumes far too much time, too many computing resources, or both. For
this reason, researchers have developed other search techniques.

Search Techniques

There are several ways to search for a solution. The four most fundamental are

• Depth-first

• Breadth-first

• Hill-climbing

• Least-cost

This chapter examines each of these searches.

Evaluating a Search

Evaluating the performance of a search technique can be very complicated. In fact, the evaluation of
searches forms a large part of AI. However, for our purposes there are two important measurements:

• How quickly the search finds a solution

• How good the solution is

There are several types of problems for which all that matters is that a solution, any solution, be
found with the minimum effort. For these problems, the first measurement is especially important.
However, in other situations, the solution must be good, perhaps even optimal.

The speed of a search is determined both by the length of the solution path and by the number of
nodes actually traversed in the process of finding the solution. Remember that backtracking from
dead ends is essentially wasted effort, so you want a search that seldom backtracks.

You should understand that there is a difference between finding an optimal solution and finding a
good solution. Finding an optimal solution can imply an exhaustive search because sometimes this is
the only way to know that the best

TE
AM
FL
Y

Team-Fly®

Page 611

solution has been found. Finding a good solution, in contrast, means finding a solution that is within
a set of constraints— it does not matter if a better solution exists.

As you will see, the search techniques described in this chapter all work better in certain situations
than in others. So, it is difficult to say whether one search method is always superior to another. But
some search techniques have a greater probability of being better for the average case. In addition,
the way a problem is defined can sometimes help you choose an appropriate search method.

Let us now consider a problem that we will use various searches to solve. Imagine that you are a
travel agent and a rather quarrelsome customer wants you to book a flight from New York to Los
Angeles with XYZ Airlines. You try to tell the customer that XYZ does not have a direct flight from
New York to Los Angeles, but the customer insists that XYZ is the only airline that he will fly.
XYZ's scheduled flights are as follows:

Flight Distance

New York to Chicago 1,000 miles

Chicago to Denver 1,000 miles

New York to Toronto 800 miles

New York to Denver 1,900 miles

Toronto to Calgary 1,500 miles

Toronto to Los Angeles 1,800 miles

Toronto to Chicago 500 miles

Denver to Urbana 1,000 miles

Denver to Houston 1,500 miles

Houston to Los Angeles 1,500 miles

Denver to Los Angeles 1,000 miles

You quickly see that there is a way to fly from New York to Los Angeles by using XYZ if you book
connecting flights, and you book the fellow his flights.

Your task is to write C programs that do the same thing even better.

A Graphic Representation

The flight information in XYZ's schedule can be translated into the directed graph shown in Figure
25-3. A directed graph is simply a graph in which the lines connecting

Page 612

Figure 25-3
A directed graph of XYZ's flight schedule

each node include an arrow to indicate the direction of motion. In a directed graph, you cannot travel
in the direction against the arrow.

To make things easier to understand, this graph is redrawn as the tree in Figure 25-4. Refer to this
version for the rest of this chapter. The goal, Los Angeles, is circled. Also notice that various cities
appear more than once to simplify the construction of the graph.

Now you are ready to develop the various search programs that will find paths from New York to
Los Angeles.

Page 613

Figure 25-4
A tree version of XYZ's flight schdule

The Depth-First Search

The depth-first search explores each possible path to its conclusion before another path is tried. To
understand exactly how this works, consider the tree that follows. F is the goal.

Page 614

A depth-first search traverses the graph in the following order: ABDBEBACF. If you are familiar
with trees, you recognize this type of search as a variation of an inorder tree traversal. That is, the
path goes left until a terminal node is reached or the goal is found. If a terminal node is reached, the
path backs up one level, goes right, and then left until either the goal or a terminal node is
encountered. This procedure is repeated until the goal is found or the last node in the search space
has been examined.

As you can see, a depth-first search is certain to find the goal because in the worst case it
degenerates into an exhaustive search. In this example, an exhaustive search would result if G were
the goal.

Writing a C program to find a route from New York to Los Angeles requires a database that
contains the information about XYZ's flights. Each entry in the database must contain the departure
and destination cities, the distance between them, and a flag that aids in backtracking (as you will
see shortly). The following structure holds such information:

#define MAX 100

/* structure of the flight database */
struct FL {
 char from[20];
 char to[20];
 int distance;

Page 615

 char skip; /* used in backtracking */
};

struct FL flight
[MAX]; /* array of db structures */

int f_pos = 0; /* number of entries in flight db */
int find_pos = 0; /* index for searching flight db */

Individual entries are placed into the database using the function assert_flight(), and setup()
initializes all the flight information. The global f_pos holds the index of the last item in the database.
These routines are shown here:

void setup(void)
{
 assert_flight(''New York", "Chicago", 1000);
 assert_flight("Chicago", "Denver", 1000);
 assert_flight("New York", "Toronto", 800);
 assert_flight("New York", "Denver", 1900);
 assert_flight("Toronto", "Calgary", 1500);
 assert_flight("Toronto", "Los Angeles", 1800);
 assert_flight("Toronto", "Chicago", 500);
 assert_flight("Denver", "Urbana", 1000);
 assert_flight("Denver", "Houston", 1500);
 assert_flight("Houston", "Los Angeles", 1500);
 assert_flight("Denver", "Los Angeles", 1000);
}

/* Put facts into the database. */
void assert_flight(char *from, char *to, int dist)
{
 if(f_pos < MAX) {
 strcpy(flight[f_pos].from, from);
 strcpy(flight[f_pos].to, to);
 flight[f_pos].distance = dist;
 flight[f_pos].skip = 0;
 f_pos++;
 }
 else printf("Flight database full.\n");
}

In keeping with the spirit of AI, think of the database as containing facts. The program to be
developed will use these facts to arrive at a solution. For this reason,

Page 615

 char skip; /* used in backtracking */
};

struct FL flight
[MAX]; /* array of db structures */

int f_pos = 0; /* number of entries in flight db */
int find_pos = 0; /* index for searching flight db */

Individual entries are placed into the database using the function assert_flight(), and setup()
initializes all the flight information. The global f_pos holds the index of the last item in the database.
These routines are shown here:

void setup(void)
{
 assert_flight(''New York", "Chicago", 1000);
 assert_flight("Chicago", "Denver", 1000);
 assert_flight("New York", "Toronto", 800);
 assert_flight("New York", "Denver", 1900);
 assert_flight("Toronto", "Calgary", 1500);
 assert_flight("Toronto", "Los Angeles", 1800);
 assert_flight("Toronto", "Chicago", 500);
 assert_flight("Denver", "Urbana", 1000);
 assert_flight("Denver", "Houston", 1500);
 assert_flight("Houston", "Los Angeles", 1500);
 assert_flight("Denver", "Los Angeles", 1000);
}

/* Put facts into the database. */
void assert_flight(char *from, char *to, int dist)
{
 if(f_pos < MAX) {
 strcpy(flight[f_pos].from, from);
 strcpy(flight[f_pos].to, to);
 flight[f_pos].distance = dist;
 flight[f_pos].skip = 0;
 f_pos++;
 }
 else printf("Flight database full.\n");
}

In keeping with the spirit of AI, think of the database as containing facts. The program to be
developed will use these facts to arrive at a solution. For this reason,

Page 617

As you can see, cities that have the skip field set to 1 are not valid connections. Also, if a connection
is found, its skip field is marked as active— this controls backtracking from dead ends.

Backtracking is a crucial ingredient in many AI techniques. Backtracking is accomplished through
the use of recursive routines and a backtrack stack. Almost all backtracking situations are stacklike
in operation— that is, they are first-in, last-out. As a path is explored, nodes are pushed onto the
stack as they are encountered. At each dead end, the last node is popped off the stack and a new
path, from that point, is tried. This process continues until either the goal is reached or all paths have
been exhausted. The functions push() and pop(), which manage the backtrack stack, follow. They
use the globals tos and bt_stack to hold the top-of-stack pointer and the stack array, respectively.

/* Stack Routines */
void push(char *from, char *to, int dist)
{
 if(tos < MAX) {
 strcpy(bt_stack[tos].from, from);
 strcpy(bt_stack[tos].to, to);
 bt_stack[tos].dist = dist;
 tos++;
 }
 else printf(''Stack full.\n");
}

void pop(char *from, char *to, int *dist)
{
 if(tos > 0) {
 tos--;
 strcpy(from, bt_stack[tos].from);
 strcpy(to, bt_stack[tos].to);
 *dist = bt_stack[tos].dist;
 }
 else printf("Stack underflow.\n")
}

Now that the required support routines have been developed, consider the code that follows. It
defines the isflight() function— the key routine in finding a route between New York and Los
Angeles.

Page 618

/* Determine if there is a route between from and to. */
void isflight(char *from, char *to)
{
 int d, dist;
 char anywhere[20];

 /* see if at destination */
 if(d=match(from, to)) {
 push(from, to, d);
 return;
 }

 /* try another connection */
 if(dist=find(from, anywhere)) {
 push(from, to, dist);
 isflight(anywhere, to);
 }
 else if(tos > 0) {
 /* backtrack */
 pop(from, to, &dist);
 isflight(from, to);
 }
}

The routine works as follows: First, the database is checked by match() to see if there is a flight
between from and to. If there is, the goal has been reached— the connection is pushed onto the stack
and the function returns. Otherwise, find() checks if there is a connection between from and any
place else. If there is, this connection is pushed onto the stack and isflight() is called recursively.
Otherwise, backtracking takes place. The previous node is removed from the stack and isflight() is
called recursively. This process continues until the goal is found. The skip field is necessary to
backtracking to prevent the same connections from being tried over and over again.

Therefore, if called with Denver and Houston, the first if would succeed and isflight() would
terminate. Say, however, that isflight() is called with Chicago and Houston. In this case, the first if
would fail because there is no direct flight connecting these two cities. Then, the second if is tried by
attempting to find a connection between the origin city and any other city. In this case, Chicago
connects with Denver; therefore, isflight() is called recursively with Denver and Houston. Once
again, the first condition is tested. A connection is found this time. Finally, the recursive calls
unravel and isflight() terminates. Verify in your mind that, as isflight() is presented here, it
performs a depth-first search of the knowledge base.

It is important to understand that isflight() does not actually return the solution— it generates it.
Upon exit from isflight(), the backtrack stack contains the route between

Page 619

Chicago and Houston— that is, the solution. In fact, the success or failure of isflight() is determined
by the state of the stack. An empty stack indicates failure; otherwise, the stack holds a solution.
Thus, you need one more function to complete the entire program. The function is called route(),
and it prints the path as well as the total distance. The route() function is shown here:

/* Show the route and total distance. */
void route(char *to)
{
 int dist, t;

 dist = 0;
 t = 0;
 while(t < tos) {
 printf(''%s to ", bt_stack[t].from);
 dist += bt_stack[t].dist;
 t++;
 }
 printf("%s\n", to);
 printf("Distance is %d.\n", dist);
}

The entire depth-first search program follows.

/* Depth-first search. */
#include <stdio.h>
#include <string.h>

 #define MAX 100

/* structure of the flight database */
struct FL {
 char from[20];
 char to[20];
 int distance;
 char skip; /* used in backtracking */
};

struct FL flight[MAX]; /* array of db structures */

int f_pos = 0; /* number of entries in flight db */
int find_pos = 0; /* index for searching flight db */

TE
AM
FL
Y

Team-Fly®

Page 620

int tos = 0; /* top of stack */
struct stack {
 char from[20];
 char to[20];
 int dist;
};
struct stack bt_stack[MAX]; /* backtrack stack */

void setup(void), route(char *to);
void assert_flight(char *from, char *to, int dist);
void push(char *from, char *to, int dist);
void pop(char *from, char *to, int *dist);
void isflight(char *from, char *to);
int find(char *from, char *anywhere);
int match(char *from, char *to);

int main(void)
{
 char from[20], to[20];

 setup();

 printf("From? ");
 gets(from);
 printf(''To? ");
 gets(to);

 isflight(from,to);
 route(to);

 return 0;
}

/* Initialize the flight database. */
void setup(void)
{
 assert_flight("New York", "Chicago", 1000);
 assert_flight("Chicago", "Denver", 1000);
 assert_flight("New York", "Toronto", 800);
 assert_flight("New York", "Denver", 1900);
 assert_flight("Toronto", "Calgary", 1500);
 assert_flight("Toronto", "Los Angeles", 1800);

Page 621

 assert_flight("Toronto", "Chicago", 500);
 assert_flight(''Denver", "Urbana", 1000);
 assert_flight("Denver", "Houston", 1500);
 assert_flight("Houston", "Los Angeles", 1500);
 assert_flight("Denver", "Los Angeles", 1000);
}

/* Put facts into the database. */
void assert_flight(char *from, char *to, int dist)
{

 if(f_pos < MAX) {
 strcpy(flight[f_pos].from, from);
 strcpy(flight[f_pos].to, to);
 flight[f_pos].distance = dist;
 flight[f_pos].skip = 0;
 f_pos++;
 }
 else printf("Flight database full.\n");
}

/* Show the route and total distance. */
void route(char *to)

{
 int dist, t;

 dist = 0;
 t = 0;
 while(t < tos) {
 printf("%s to ", bt_stack[t].from);
 dist += bt_stack[t].dist;
 t++;
 }
 printf("%s\n", to);
 printf("Distance is %d.\n", dist);
}

/* If flight between from and to, then return
 the distance of flight; otherwise, return 0. */
int match(char *from, char *to
{

Page 622

 register int t;

 for(t=f_pos-1; t > -1; t--)
 if(!strcmp(flight[t].from, from) &&
 !strcmp(flight[t].to, to)) return flight[t].distance;

 return 0; /* not found */
}

/* Given from, find anywhere. */
int find(char *from, char *anywhere)
{
 find_pos = 0;
 while(find_pos < f_pos) {
 if(!strcmp(flight[find_pos].from,from) &&
 !flight[find_pos].skip) {
 strcpy(anywhere,flight[find_pos].to);
 flight[find_pos].skip = 1; /* make active */
 return flight[find_pos].distance;
 }
 find_pos++;
 }
 return 0;
}

/* Determine if there is a route between from and to. */
void isflight(char *from, char *to)
{
 int d, dist;
 char anywhere[20];

 /* see if at destination */
 if(d=match(from, to)) {
 push(from, to, d);
 return;
 }
 /* try another connection */
 if(dist=find(from, anywhere)) {
 push(from, to, dist);
 isflight(anywhere, to);
 }
 else if(tos > 0) {

Page 623

 /* backtrack */
 pop(from, to, &dist);
 isflight(from, to);
 }
}

/* Stack Routines */
void push(char *from, char *to, int dist)
{
 if(tos < MAX) {
 strcpy(bt_stack[tos].from,from);
 strcpy(bt_stack[tos].to,to);
 bt_stack[tos].dist = dist;
 tos++;
 }
 else printf(''Stack full.\n");
}

void pop(char *from, char *to, int *dist)
{
 if(tos > 0) {
 tos--;
 strcpy(from,bt_stack[tos].from);
 strcpy(to,bt_stack[tos].to);
 *dist = bt_stack[tos].dist;

 }
 else printf ("Stack underflow.\n");
}

Notice that main() prompts you for both the city of origin and the city of destination. This means
that you can use the program to find routes between any two cities. However, the rest of this chapter
assumes that New York is the origin and Los Angeles is the destination.

When run with New York as the origin and Los Angeles as the destination, the solution
is

New York to Chicago to Denver to Los Angeles
Distance is 3000.

Figure 25-5 shows the path of the search.

Page 624

Figure 25-5
The depth-first path to a solution

If you refer to Figure 25-5, you see that this is indeed the first solution that would be found by a
depth-first search. It is not the optimal solution— which is New York to Toronto to Los Angeles
with a distance of 2,600 miles— but it is not bad.

Analysis of the Depth-First Search

The depth-first approach found a fairly good solution. Also, relative to this specific problem, depth-
first searching found a solution on its first try with no backtracking— this is very good. But it would
have had to traverse nearly all the nodes to arrive at the optimal solution— this is not so good.

Note that the performance of depth-first searches can be quite poor when a particularly long branch
with no solution at the end is explored. In this case, a

Page 625

depth-first search wastes considerable time not only exploring this chain, but also backtracking to
the goal.

The Breadth-First Search

The opposite of the depth-first search is the breadth-first search. In this method, each node on the
same level is checked before the search proceeds to the next deeper level. This traversal method is
shown here with C as the goal:

To make the route-seeking program perform a breadth-first search, you only need to alter the
procedure isflight(), as shown here:

void isflight(char *from, char *to)
{
 int d, dist;
 char anywhere[20];

 while(dist=find(from, anywhere)) {
 /* breadth-first modification */
 if(d=match(anywhere, to)) {
 push(from, to, dist);
 push(anywhere, to, d);

Page 626

 return;
 }
 }
 /* try any connection */
 if(dist=find(from, anywhere)) {
 push(from, to, dist);
 isflight(anywhere, to);
 }
 else if(tos>0) {
 pop(from, to, &dist);
 isflight(from, to);
 }
}

As you can see, only the first condition has been altered. Now all connecting cities to the departure
city are checked to see if they connect with the destination city.

Substitute this version of isflight() in the program and run it. The solution is

New York to Toronto to Los Angeles
Distance is 2600

The solution is optimal. Figure 25-6 shows the breadth-first path to the solution.

Analysis of the Breadth-First Search

In this example, the breadth-first search performed very well by finding the first solution without
backtracking. As it turned out, this was also the optimal solution. In fact, the first three solutions that
would be found are the best three routes there are. However, remember that this result does not
generalize to other situations because the path depends upon the physical organization of the
information as it is stored in the computer. The example does illustrate, however, how radically
different depth-first and breadth-first searches are.

A disadvantage to breadth-first searching becomes apparent when the goal is several layers deep. In
this case, a breadth-first search expends substantial effort to find the goal. In general, you choose
between depth-first and breadth-first searching by making an educated guess about the most likely
position of the goal.

Adding Heuristics

You have probably guessed by now that both the depth-first and breadth-first search routines are
blind. They are methods of looking for a solution that rely solely upon

Page 627

Figure 25-6
The breadth-first path to a solution

moving from one goal to the other without any educated guesswork on the part of the computer.
This may be fine for certain controlled situations where you know that one method is better than the
other. However, a generalized AI program needs a search procedure that is on the average superior
to either of these two techniques. The only way to achieve such a search is to add heuristic
capabilities.

Heuristics are simply rules that qualify the possibility that a search is proceeding in the correct
direction. For example, imagine that you are lost in the woods and need a drink of water. The woods
are so thick that you cannot see far ahead, and the trees are too big to climb and get a look around.
However, you know that rivers, streams, and ponds are most likely in valleys; that animals
frequently make paths to their watering

Page 628

places; that when you are near water it is possible to ''smell" it; and that you can hear running water.
So, you begin by moving downhill because water is unlikely to be uphill. Next you come across a
deer trail that also runs downhill. Knowing that this may lead to water, you follow it. You begin to
hear a slight rushing off to your left. Knowing that this may be water, you cautiously move in that
direction. As you move, you begin to detect the increased humidity in the air; you can smell the
water. Finally, you find a stream and have your drink. As you can see, heuristic information,
although neither precise nor guaranteed, increases the chances that a search method will find a goal
quickly, optimally, or both. In short, it increases the odds in favor of a quick success.

You may think that heuristic information could easily be included in programs designed for specific
applications, but that it would be impossible to create generalized heuristic searches. This is not the
case. Most often, heuristic search methods are based on maximizing or minimizing some aspect of
the problem. In fact, the two heuristic approaches that we will look at use opposite heuristics and
yield different results. Both of these searches will be built upon the depth-first search routines.

The Hill-Climbing Search

In the problem of scheduling a flight from New York to Los Angeles, there are two possible
constraints that a passenger may want to minimize. The first is the number of connections that have
to be made. The second is the length of the route. Remember, the shortest route does not necessarily
imply the fewest connections. A search algorithm that attempts to find as a first solution a route that
minimizes the number of connections uses the heuristic that the longer the length of the flight, the
greater the likelihood that it takes the traveler closer to the destination; therefore, the number of
connections is minimized.

In the language of AI, this is called hill climbing. The hill-climbing algorithm chooses as its next
step the node that appears to place it closest to the goal (that is, farthest away from the current
position). It derives its name from the analogy of a hiker being lost in the dark, halfway up a
mountain. Assuming that the hiker's camp is at the top of the mountain, even in the dark the hiker
knows that each step that goes up is a step in the right direction.

Working only with the information contained in the flight-scheduling knowledge base, here is how
to incorporate the hill-climbing heuristic into the routing program: Choose the connecting flight that
is as far away as possible from the current position in the hope that it will be closer to the
destination. To do this, modify the find() routine as shown here:

/* Given from, find the farthest away "anywhere". */
int find(char *from, char *anywhere)
{

Page 629

 int pos, dist;

 pos=dist = 0;
 find_pos = 0;

 while(find_pos < f_pos) {
 if(!strcmp(flight[find_pos].from, from) &&
 !flight[find_pos].skip) {
 if(flight[find_pos].distance>dist) {
 pos = find_pos;
 dist = flight[find_pos].distance;
 }
 }
 find_pos++;
 }
 if(pos) {
 strcpy(anywhere, flight[pos].to);
 flight[pos].skip = 1;
 return flight[pos].distance;
 }
 return 0
}

The find() routine now searches the entire database, looking for the connection that is farthest away
from the departure city.

The entire hill-climbing program follows.

/* Hill-climbing */
#include <stdio.h>
#include <string.h>

 #define MAX 100

/* structure of the flight database */
struct FL {
 char from[20];
 char to[20];
 int distance;
 char skip; /* used for backtracking */
};

struct FL flight[MAX]; /* array of db structures */

TE
AM
FL
Y

Team-Fly®

Page 630

int f_pos = 0; /* number of entries in flight db */
int find_pos = 0; /* index for searching flight db */

int tos = 0; /* top of stack */
struct stack {
 char from[20];
 char to[20];
 int dist;
} ;

struct stack bt_stack[MAX]; /* backtrack stack */

void setup(void), route(char *to);
void assert_flight(char *from, char *to, int dist);
void push(char *from, char *to, int dist);
void pop(char *from, char *to, int *dist);
void isflight(char *from, char *to);
int find(char *from, char *anywhere);
int match(char *from, char *to);

int main(void)
{
 char from[20], to[20];

 setup();

 printf("From? ");
 gets(from);
 printf(''To? ");
 gets(to);

 isflight(from,to);
 route(to);

 return 0;
}

/* Initialize the flight database. */
void setup(void)
{
 assert_flight("New York", "Chicago", 1000);
 assert_flight("Chicago", "Denver", 1000);
 assert_flight("New York", "Toronto", 800);

Page 631

 assert_flight("New York", "Denver", 1900);
 assert_flight(''Toronto", "Calgary", 1500);
 assert_flight("Toronto", "Los Angeles", 1800);
 assert_flight("Toronto", "Chicago", 500);
 assert_flight("Denver", "Urbana", 1000);
 assert_flight("Denver", "Houston", 1500);
 assert_flight("Houston", "Los Angeles", 1500);
 assert_flight("Denver", "Los Angeles", 1000);

}

/* Put facts into the database. */
void assert_flight(char *from, char *to, int dist)
{

 if(f_pos < MAX) {
 strcpy(flight[f_pos].from, from);
 strcpy(flight[f_pos].to, to);
 flight[f_pos].distance = dist;
 flight[f_pos].skip = 0;
 f_pos++;
 }
 else printf("Flight database full.\n");

}

/* Show the route and the total distance. */
void route(char *to)
{
 int dist, t;

 dist = 0;
 t = 0;
 while(t < tos) {
 printf("%s to ", bt_stack[t].from);
 dist += bt_stack[t].dist;
 t++;
 }
 printf("%s\n", to);
 printf("Distance is %d.\n", dist);
}

/* If flight between from and to, then return
 the distance of flight; otherwise, return 0. */
int match(char *from, char *to)

Page 632

{
 register int t;

 for(t=f_pos-1; t > -1; t--)
 if(!strcmp(flight[t].from, from) &&
 !strcmp(flight[t].to, to)) return flight[t].distance;

 return 0; /* not found */
}

/* Given from, find the farthest away "anywhere". */
int find(char *from, char *anywhere)
{
 int pos, dist;

 pos=dist = 0;
 find_pos = 0;

 while(find_pos < f_pos) {
 if(!strcmp(flight[find_pos].from, from) &&
 !flight[find_pos].skip) {
 if(flight[find_pos].distance>dist) {
 pos = find_pos;
 dist = flight[find_pos].distance;
 }
 }
 find_pos++;

 }
 if(pos) {
 strcpy(anywhere, flight[pos].to);
 flight[pos].skip = 1;
 return flight[pos].distance;
 }
 return 0;
}

/* Determine if there is a route between from and to. */
void isflight(char *from, char *to)
{
 int d, dist;
 char anywhere[20];

 if(d=match(from, to)) {

Page 633

 /* is goal */
 push(from, to, d);
 return;
 }

 /* find any connection */
 if(dist=find(from, anywhere)) {
 push(from, to, dist);
 isflight(anywhere, to);
 }
 else if(tos > 0) {
 pop(from, to, &dist);
 isflight(from, to);
 }
}

/* Stack Routines */
void push(char *from, char *to, int dist)
{
 if(tos < MAX) {
 strcpy(bt_stack[tos].from, from);
 strcpy(bt_stack[tos].to, to);
 bt_stack[tos].dist = dist;
 tos++;
 }
 else printf(''Stack full.\n");
}

void pop(char *from, char *to, int *dist)
{
 if(tos > 0) {
 tos--;
 strcpy(from, bt_stack[tos].from);
 strcpy(to, bt_stack[tos].to);
 *dist = bt_stack[tos].dist;
 }
 else printf("Stack underflow.\n");
}

When the program is run, the solution is

New York to Denver to Los Angeles
Distance is 2900.

Page 634

This is quite good! The route contains the minimal number of stops on the way (only one), and it is
very close to the shortest route. Furthermore, the program arrives at the solution with no time or
effort wasted through extensive backtracking.

However, if the Denver to Los Angeles connection did not exist, the solution would not be quite so
good. It would be New York to Denver to Houston to Los Angeles— a distance of 4,900 miles! This
solution climbs a ''false peak." As you can easily see, the route to Houston does not take us closer to
the goal of Los Angeles. Figure 25-7 shows the first solution as well as the path to the false peak.

Figure 25-7
The hill-climbing path to a solution and to a false peak

Page 635

Analysis of Hill Climbing

Hill climbing provides fairly good solutions in many circumstances because it tends to reduce the
number of nodes that need to be visited before a solution is reached. However, it can suffer from
three maladies. First, there is the problem of false peaks, as you saw in the second solution in the
example. In this case, extensive backtracking must be used to find the solution. The second problem
relates to plateaus— a situation in which all next steps look equally good (or bad). In this case, hill
climbing is no better than depth-first searching. The final problem is that of a ridge. In this case, hill
climbing performs poorly because the algorithm causes the ridge to be crossed several times as
backtracking occurs.

In spite of these potential troubles, hill climbing generally leads to a closer-to-optimal solution more
quickly than any of the nonheuristic methods.

The Least-Cost Search

The opposite of a hill-climbing search is a least-cost search. This strategy is similar to standing in
the middle of a street on a big hill while wearing roller skates. You have the definite feeling that it's
a lot easier to go down than up! In other words, a least-cost search takes the path of least resistance.

Applying a least-cost search to the flight -scheduling problem implies that the shortest connecting
flight is taken in all cases so that the route found has a good chance of covering the shortest
distance. Unlike hill climbing, which minimized the number of connections, a least-cost search
minimizes the number of miles.

To use a least-cost search, you must again alter find(), as shown here:

/* Find closest "anywhere". */
int find(char *from, char *anywhere)
{
 int pos, dist;

 pos = 0;
 dist = 32000; /* larger than the longest route */
 find_pos = 0;

 while(find_pos < f_pos) {
 if(!strcmp(flight[find_pos].from, from) &&
 !flight[find_pos].skip) {
 if(flight[find_pos].distance<dist) {
 pos = find_pos;
 dist = flight[find_pos].distance;
 }

Page 636

 }
 find_pos++;
 }
 if(pos) {
 strcpy(anywhere, flight[pos].to);
 flight[pos].skip = 1;
 return flight[pos].distance;
 }
 return 0;
}

Using this version of find(), the solution is

New York to Toronto to Los Angeles
Distance is 2600.

As you can see, this search found the shortest route. Figure 25-8 shows the least-cost path to the
goal.

Analysis of the Least-Cost Search

The least-cost search and hill climbing have the same advantages and disadvantages, but in reverse.
There can be false valleys, lowlands, and gorges, but a least-cost search usually works fairly well.
However, don't assume that just because the least-cost search performed better than hill climbing in
this problem that it is better in general. All that can be said is that on average it will outperform a
blind search.

Choosing a Search Technique

As you have seen, the heuristic techniques tend, on the average, to work better than blind searching.
However, it is not always possible to use a heuristic search because there may not be enough
information to qualify the likelihood of the next node being on a path to the goal. Therefore, the
rules for choosing a search method are separated into two categories: one for problems that can
utilize a heuristic search and one for those that cannot.

If you cannot apply heuristics to a problem, depth-first searching is usually the best approach. The
only exception to this is when you know something that indicates that a breadth-first search will be
better.

The choice between hill climbing and a least-cost search is really one of deciding what constraint
you are trying to minimize or maximize. In general, hill climbing produces a solution with the least
nodes visited, but a least-cost search finds a path that requires the least effort.

Page 637

Figure 25-8
The least-cost path to a solution

If you are seeking a near-optimal solution but cannot apply an exhaustive search for the reasons
already stated, an effective method is to apply each of the four searches, and then use the best
solution. Since the searches all work in substantially different ways, one should produce better
results than the others.

Finding Multiple Solutions

Sometimes it is valuable to find several solutions to the same problem. This is not the same as
finding all solutions (an exhaustive search), however. For instance, think about designing your
dream house. You want to sketch several different floor plans to help you decide upon the best
design, but you don't need sketches of all possible houses. In

Page 638

essence, multiple solutions can help you see many different ways to approach a solution before
implementing one.

There are several ways to generate multiple solutions, but only two are examined here. The first is
path removal, and the second is node removal. As their names imply, generating multiple solutions
without redundancy requires that already found solutions be removed from the system. Remember
that neither of these methods attempts (nor can even be used) to find all solutions. Finding all
solutions is a different problem that is usually not attempted because it implies an exhaustive search.

Path Removal

The path-removal method of generating multiple solutions removes all nodes that form a current
solution from the database and then attempts to find another solution. In essence, path removal
prunes limbs from the tree.

To find multiple solutions by using path removal, you need to alter main() in the depth-first search,
as shown here:

int main(void)
{
 char from[20], to[20];

 setup();

 printf("From? ");
 gets(from);
 printf(''To? ");
 gets(to);
 do {
 isflight(from, to);
 route(to);
 tos = 0; /* reset the backtrack stack */
 } while(getchar() != 'q');

 return 0;
}

Any connection that is part of a solution will have its skip field marked.

Consequently, such a connection can no longer be found by find(), and all connections in a solution
are effectively removed. You just need to reset tos, which effectively clears the backtrack stack,
before finding the next solution.

Page 639

The path-removal method finds the following
solutions:

New York to Chicago to Denver to Los Angeles
Distance is 3000.
New York to Toronto to Los Angeles
Distance is 2600.
New York to Denver to Los Angeles
Distance is 2900.

The search found the three best solutions. However, this result cannot be generalized because it is
based upon how the data is placed in the database and the actual situation under study.

Node Removal

The second way to force the generation of additional solutions, node removal, simply removes the
last node in the current solution path and tries again. To do this, the function main() must pop the
last node off the backtrack stack and remove it from the database by using a new function called
retract(). Also, all the skip fields must be reset by using clearmarkers(), and the backtrack stack
must be cleared. The functions main(), clearmarkers(), and retract() are shown here:

int main (void)
{
 char from[20], to[20], c1[20], c2[20];
 int d;

 setup();

 printf("From? ");
 gets(from);
 printf(''To? ");
 gets(to);
 do {
 isflight(from, to);
 route(to);
 clearmarkers(); /* reset the database */
 if(tos > 0) pop(c1, c2, &d);
 retract(c1, c2); /* remove last node from database */
 tos = 0; /* reset the backtrack stack */
 } while(getchar() != 'q');

TE
AM
FL
Y

Team-Fly®

Page 640

 return 0;
}

/* Reset the "skip" field - i.e., re-activate all nodes, */
void clearmarkers()
{
 int t;

 for(t=0; t < f_pos; ++t) flight[t].skip = 0;
}

/* Remove an entry from the database. */
void retract(char *from, char *to)

{
 int t;

 for(t=0; t < f_pos; t++)
 if(!strcmp(flight[t].from, from) &&
 !strcmp(flight[t].to, to)) {
 strcpy(flight[t].from, ''");
 return;
 }
}

As you can see, retracting an entry is accomplished by using zero-length strings for the names of the
cities. For your convenience, the entire node-removal program is shown here:

/* Depth-first with multiple solutions
 using node removal */
#include <stdio.h>
#include <string.h>

#define MAX 100

/* structure of the flight database */
struct FL {
 char from[20];
 char to[20];
 int distance;

Page 641

 char skip; /* used in backtracking */
};

struct FL flight[MAX];

int f_pos = 0; /* number of entries in flight db */
int find_pos = 0; /* index for searching flight db */

int tos = 0; /* top of stack */
struct stack {
 char from[20];
 char to[20];
 int dist;
} ;
struct stack bt_stack[MAX]; /* backtrack stack */

void retract(char *from, char *to);
void clearmarkers(void);
void setup(void), route(char *to);
void assert_flight(char *from, char *to, int dist);
void push(char *from, char *to, int dist);
void pop(char *from, char *to, int *dist);
void isflight(char *from, char *to);
int find(char *from, char *anywhere);
int match(char *from, char *to);

int main(void)
{
 char from[20],to[20], c1[20], c2[20];
 int d;

 setup();

 printf("From? ");
 gets(from);
 printf(''To? ");
 gets(to);
 do {
 isflight(from,to);
 route(to);
 clearmarkers(); /* reset the database */
 if(tos > 0) pop(c1,c2,&d);

Page 642

 retract(c1,c2); /* remove last node from database */
 tos = 0; /* reset the backtrack stack */
 } while(getchar() != 'q');

 return 0;
}

/* Initialize the flight database. */
void setup(void)
{
 assert_flight(''New York", "Chicago", 1000);
 assert_flight("Chicago", "Denver", 1000);
 assert_flight("New York", "Toronto", 800);
 assert_flight("New York", "Denver", 1900);
 assert_flight("Toronto", "Calgary", 1500);
 assert_flight("Toronto", "Los Angeles", 1800);
 assert_flight("Toronto", "Chicago", 500);
 assert_flight("Denver", "Urbana", 1000);
 assert_flight("Denver", "Houston", 1500);
 assert_flight("Houston", "Los Angeles", 1500);
 assert_flight("Denver", "Los Angeles", 1000);
}

/* Put facts into the database. */
void assert_flight(char *from, char *to, int dist)
{
 if(f_pos < MAX) {
 strcpy(flight[f_pos].from, from);
 strcpy(flight[f_pos].to, to);
 flight[f_pos].distance = dist;
 flight[f_pos].skip = 0;
 f_pos++;
 }
 else printf("Flight database full.\n");
}
/* Reset the "skip" field - i.e., re-activate all nodes. */
void clearmarkers()
{
 int t;

 for(t=0; t < f_pos; ++t) flight[t].skip = 0;
}

Page 643

/* Remove an entry from the database. */
void retract(char *from, char *to)
{
 int t;

 for(t=0; t < f_pos; t++)
 if(!strcmp(flight[t].from, from) &&
 !strcmp(flight[t].to, to)) {
 strcpy(flight[t].from,''");
 return;

 }
}

/* Show the route and the total distance. */
void route(char *to)
{
 int dist, t;

 dist = 0;
 t = 0;
 while(t < tos) {
 printf("%s to ", bt_stack[t].from);
 dist += bt_stack[t].dist;
 t++;
 }
 printf("%s\n",to);
 printf("Distance is %d.\n", dist);
}

/* Given from, find anywhere. */
int find(char *from, char *anywhere)
{
 find_pos = 0;
 while(find_pos < f_pos) {
 if(!strcmp(flight[find_pos].from, from) &&
 !flight[find_pos].skip) {
 strcpy(anywhere, flight[find_pos].to);
 flight[find_pos].skip = 1;
 return flight[find_pos].distance;
 }
 find_pos++;
 }

Page 644

 return 0;
}

/* If flight between from and to, then return
 the distance of flight; otherwise, return 0. */
int match(char *from, char *to)
{
 register int t;

 for(t=f_pos-1; t > -1; t--)
 if(!strcmp(flight[t].from, from) &&
 !strcmp(flight[t].to, to)) return flight[t].distance;

 return 0; /* not found */
}

/* Determine if there is a route between from and to. */
void isflight(char *from, char *to)
{
 int d, dist;
 char anywhere[20];

 if(d=match(from, to)) {
 push(from, to, d); /* distance */
 return;
 }

 if(dist=find(from, anywhere)) {
 push(from, to, dist);
 isflight(anywhere, to);
 }
 else if(tos > 0) {
 pop(from, to, &dist);
 isflight(from, to);
 }
}

/* Stack Routines */
void push(char *from, char *to, int dist)
{
 if(tos < MAX) {
 strcpy(bt_stack[tos].from, from);

Page 645

 strcpy(bt_stack[tos].to, to);
 bt_stack[tos].dist = dist;
 tos++;
 }
 else printf(''Stack full.\n");
}

void pop(char *from, char *to, int *dist)
{
 if(tos > 0) {
 tos--;
 strcpy(from, bt_stack[tos].from);
 strcpy(to, bt_stack[tos].to);
 *dist = bt_stack[tos].dist;
 }
 else printf("Stack underflow.\n");
}

Using this method produces the following solutions:

New York to Chicago to Denver to Los Angeles
Distance is 3000.
New York to Chicago to Denver to Houston to Los Angeles
Distance is 5000.
New York to Toronto to Los Angeles
Distance is 2600

In this case, the second solution is the worst possible route, but the optimal solution is still found.
However, remember that you cannot generalize these results because they are based upon both the
physical organization of data in the database and the specific situation under study.

Finding the "Optimal" Solution

All of the previous search techniques were concerned, first and foremost, with finding a solution—
any solution. As you saw with the heuristic searches, efforts can be made to improve the likelihood
of finding a good solution. But no attempt was made to ensure that an optimal solution was found.
However, at times you may want only the optimal solution. Keep in mind, however, that optimal, as
it is used here, simply means the best route that can be found by using one of the various multiple-
solution generation techniques— it may not actually be the best solution. (Finding the true

Page 646

optimal solution would, of course, require the prohibitively time-consuming exhaustive search.)

Before leaving the well-worked scheduling example, consider a program that finds the optimal flight
schedule given the constraint that distance is to be minimized. To do this, the program employs the
path-removal method of generating multiple solutions and uses a least-cost search to minimize
distance. The key to finding the shortest path is to keep a solution that is shorter than the previously
generated solution. When there are no more solutions to generate, the optimal solution remains.

To accomplish this, you must make a major change to the function route() and create an additional
stack. The new stack holds the current solution and, upon completion, the optimal solution. The new
stack is called solution, and the modified route() is shown here:

/* Find the shortest distance. */
int route(void)
{
 int dist, t;
 static int old_dist = 32000;

 if(!tos) return 0; /* all done */
 t = 0;
 dist = 0;
 while(t < tos) {
 dist += bt_stack[t].dist;
 t++;
 }

 /* if shorter, then make new solution */
 if(dist<old_dist && dist) {
 t = 0;
 old_dist = dist;
 stos = 0; /* clear old route from location stack */
 while(t < tos) {
 spush(bt_stack[t].from, bt_stack[t].to, bt_stack[t].dist);
 t++;
 }
 }
 return dist;
}

The entire program follows. Notice the changes in main() and the addition of spush(), which
places the new solution nodes onto the solution stack.

Page 647

/* Optimal solution using least-cost with
 route removal.
*/
#include <stdio.h>
#include <string.h>

#define MAX 100

/* structure of the flight database */
struct FL {
 char from[20];
 char to[20];
 int distance;
 char skip; /* used for backtracking */
};

struct FL flight[MAX]; /* array of db structures */

int f_pos = 0; /* number of entries in flight db */
int find_pos = 0; /* index for searching flight db */

int tos = 0; /* top of stack */
int stos = 0; /* top of solution stack */

struct stack {
 char from[20];
 char to[20];
 int dist;
} ;

struct stack bt_stack[MAX]; /* backtrack stack */
struct stack solution[MAX]; /* hold temporary solutions */

void setup(void);
int route(void);
void assert_flight(char *from, char *to, int dist);
void push(char *from, char *to, int dist);
void pop(char *from, char *to, int *dist);
void isflight(char *from, char *to);
void spush(char *from, char *to, int dist);
int find(char *from, char *anywhere);
int match(char *from, char *to);

Page 648

int main(void)
{
 char from[20], to[20];
 int t, d;

 setup();

 printf("From? ");
 gets(from);
 printf(''To? ");
 gets(to);
 do {
 isflight(from, to);
 d = route();
 tos = 0; /* reset the backtrack stack */
 } while(d != 0); /* while still finding solutions */

 t = 0;
 printf("Optimal solution is:\n");
 while(t < stos) {
 printf("%s to ", solution[t].from);
 d += solution[t].dist;
 t++;
 }
 printf("%s\n", to);
 printf("Distance is %d.\n", d);

 return 0;
}

/* Initialize the flight database. */
void setup(void)
{
 assert_flight("New York", "Chicago", 1000);
 assert_flight("Chicago", "Denver", 1000);
 assert_flight("New York", "Toronto", 800);
 assert_flight("New York", "Denver", 1900);
 assert_flight("Toronto", "Calgary", 1500);
 assert_flight("Toronto", "Los Angeles", 1800);
 assert_flight("Toronto", "Chicago", 500);
 assert_flight("Denver", "Urbana", 1000);
 assert_flight("Denver", "Houston", 1500);

Page 649

 assert_flight("Houston", "Los Angeles", 1500);
 assert_flight(''Denver", "Los Angeles", 1000);
}

/* Put facts into the database. */
void assert_flight(char *from, char *to, int dist)
{
 if(f_pos < MAX) {
 strcpy(flight[f_pos].from, from);
 strcpy(flight[f_pos].to, to);
 flight[f_pos].distance = dist;
 flight[f_pos].skip = 0;
 f_pos++;
 }
 else printf("Flight database full.\n");
}

/* Find the shortest distance. */
int route(void)
{
 int dist, t;
 static int old_dist=32000;

 if(!tos) return 0; /* all done */
 t = 0;
 dist = 0;
 while(t < tos) {
 dist += bt_stack[t].dist;
 t++;
 }

 /* if shorter then make new solution */
 if(dist<old_dist && dist) {
 t = 0;
 old_dist = dist;
 stos = 0; /* clear old route from location stack */
 while(t < tos) {
 spush(bt_stack[t].from, bt_stack[t].to, bt_stack[t].dist);
 t++;
 }
 }
 return dist;

TE
AM
FL
Y

Team-Fly®

Page 650

}

/* If flight between from and to, then return
 the distance of flight; otherwise, return 0. */
int match(char *from, char *to)
{
 register int t;

 for(t=f_pos-1; t > -1; t--)
 if(!strcmp(flight[t].from, from) &&
 !strcmp(flight[t].to, to)) return flight[t].distance;

 return 0; /* not found */
}

/* Given from, find anywhere. */
int find(char *from, char *anywhere)
{
 find_pos = 0;
 while(find_pos < f_pos) {
 if(!strcmp(flight[find_pos].from, from) &&
 !flight[find_pos].skip) {
 strcpy(anywhere, flight[find_pos].to);
 flight[find_pos].skip = 1;
 return flight[find_pos].distance;
 }
 find_pos++;
 }
 return 0;
}

/* Determine if there is a route between from and to. */
void isflight(char *from, char *to)
{
 int d, dist;
 char anywhere[20];

 if(d=match(from, to)) {
 push(from, to, d); /* distance */
 return;
 }

Page 651

 if(dist=find(from, anywhere)) {

 push(from, to, dist);
 isflight(anywhere, to);
 }
 else if(tos > 0) {
 pop(from, to, &dist);
 isflight(from, to);
 }
}

/* Stack Routines */
void push(char *from, char *to, int dist)
{
 if(tos < MAX) {
 strcpy(bt_stack[tos].from, from);
 strcpy(bt_stack[tos].to, to);
 bt_stack[tos].dist = dist;
 tos++;
 }
 else printf(''Stack full.\n");
}

void pop(char *from, char *to, int *dist)
{
 if(tos > 0) {
 tos--;
 strcpy(from, bt_stack[tos].from);
 strcpy(to, bt_stack[tos].to);
 *dist = bt_stack[tos].dist;
 }
 else printf("Stack underflow.\n");
}

/* Solution Stack */
void spush(char *from, char *to, int dist)
{
 if(stos < MAX) {
 strcpy(solution[stos].from, from);
 strcpy(solution[stos].to, to);
 solution[stos].dist = dist;
 stos++;

Page 652

}
 else printf(''Shortest distance stack full.\n");
}

The one inefficiency in the preceding method is that all paths are followed to their conclusion. An
improved method would stop following a path as soon as the length equaled or exceeded the current
minimum. You might want to modify this program to accommodate such an enhancement.

Back to the Lost Keys

To conclude this chapter on problem solving, it seems only fitting to provide a C program that finds
the lost car keys described in the first example. The accompanying code employs the same
techniques used in the problem of finding a route between two cities. By now, you should have a
fairly good understanding of how to use C to solve problems, so the program is presented without
further explanation.

/* Find the keys using a depth-first search. */
#include <stdio.h>
#include <string.h>

#define MAX 100

/* structure of the keys database */
struct FL {
 char from[20];
 char to[20];
 char skip;
};

struct FL keys[MAX]; /* array of db structures */

int f_pos = 0; /* number of rooms in house */
int find_pos = 0; /* index for searching keys db */

int tos = 0; /* top of stack */
struct stack {
 char from[20];
 char to[20];
} ;

Page 653

struct stack bt_stack[MAX]; /* backtrack stack */

void setup(void), route(void);
void assert_keys(char *from, char *to);
void push(char *from, char *to);
void pop(char *from, char *to);
void iskeys(char *from, char *to);
int find(char *from, char *anywhere);
int match(char *from, char *to);

int main(void)
{
 char from[20] = ''front_door";
 char to[20] = "keys";

 setup();
 iskeys (from, to);
 route();

 return 0;
}

/* Initialize the database. */
void setup(void)
{
 assert_keys("front_door", "lr");
 assert_keys("lr", "bath");
 assert_keys("lr", "hall");
 assert_keys("hall", "bdl");
 assert_keys("hall", "bd2");
 assert_keys("hall", "mb");
 assert_keys("lr", "kitchen");
 assert_keys("kitchen", "keys");
}

/* Put facts into the database. */
void assert_keys(char *from, char *to)
{
 if(f_pos < MAX) {
 strcpy(keys[f_pos].from, from);
 strcpy(keys[f_pos].to, to);
 keys[f_pos].skip = 0;

Page 654

 f_pos++;
 }
 else printf(''Keys database full.\n");
}

/* Show the route to the keys. */
void route(void)
{
 int t;

 t = 0;
 while(t < tos) {
 printf("%s", bt_stack
[t].from);
 t++;
 if(t < tos) printf(" to ");
 }
 printf("\n");
}

/* See if there is a match. */
int match(char *from, char *to)
{
 register int t;

 for(t=f_pos-1; t > -1; t--)
 if(!strcmp(keys[t].from, from) &&
 !strcmp(keys[t].to, to)) return 1;

 return 0; /* not found */
}

/* Given from, find anywhere. */
int find(char *from, char *anywhere)
{
 find_pos = 0;

 while(find_pos < f_pos) {
 if(!strcmp(keys[find_pos].from, from) &&
 !keys[find_pos].skip) {
 strcpy(anywhere, keys[find_pos].to);

Page 655

 keys[find_pos].skip = 1;
 return 1;
 }
 find_pos++;
 }
 return 0;
}

/* Determine if there is a route between from and to. */
void iskeys(char *from, char *to)
{
 char anywhere[20];

 if(match(from, to)) {
 push(from, to); /* distance */
 return;
 }

 if(find(from, anywhere)) {
 push(from, to);
 iskeys (anywhere, to);
 }
 else if(tos > 0) {
 pop(from, to);
 iskeys(from, to);
 }
}

/* Stack Routines */
void push(char *from, char *to)
{
 if(tos < MAX) {
 strcpy(bt_stack[tos].from, from);
 strcpy(bt_stack[tos].to, to);
 tos++;
 }
 else printf(''Stack full.\n");
}

void pop(char *from, char *to)

Page 656

{
 if(tos > 0) {
 tos--;
 strcpy(from, bt_stack[tos].from);
 strcpy(to, bt_stack[tos].to);
 }
 else printf(''Stack underflow.\n");
}

Page 657

PART V—
SOFTWARE DEVELOPMENT USING C

This part of the book examines various aspects of the software development process as they relate to
the C programming environment. Chapter 26 shows how to use C to create a skeletal application for
the Windows 2000 environment. Chapter 27 presents an overview of the design process using C.
Chapter 28 looks at porting, efficiency, and debugging.

Page 659

Chapter 26—
Building a Windows 2000 Skeleton

Page 660

C is one of the primary languages used for Windows programming. As such, it seems only fitting to
include an example of Windows programming in this book. However, Windows is a large and
complex programming environment, and it is, of course, not possible to describe all the details
necessary to write a Windows application in one chapter. It is possible, though, to introduce the
basic elements common to all applications. Further, these elements can be combined into a minimal
Windows application skeleton that forms the foundation for your own Windows applications.

Windows has gone through several incarnations since it was first introduced. At the time of this
writing, the current version is Windows 2000. The material in this chapter is specifically tailored to
this version of Windows. However, if you have a newer or older version of Windows, most of the
discussion will still be applicable.

NOTE

This chapter is adapted from my book Windows 2000 Programming from the
Ground Up (Berkeley, CA: Osborne/McGraw-Hill, 2000). If you are interested in
learning more about Windows 2000 programming , you will find this book especially
useful.

Windows 2000 Programming Perspective

At its most fundamental level, the goal of Windows 2000 (and Windows in general) is to enable a
person who has basic familiarity with the system to sit down and run virtually any application
without prior training. Toward this end, Windows provides a consistent interface to the user. In
theory, if you can run one Windows-based program, you can run them all. Of course, in actuality,
most useful programs will still require some sort of training in order to be used effectively, but at
least this training can be restricted to what the program does, not how the user must interact with it.
In fact, much of the code in a Windows application is there just to support the user interface.

It is important to understand that not every program that runs under Windows 2000 will
automatically present the user with a Windows-style interface. Windows defines an environment
that encourages consistency, but does not enforce it. For example, it is possible to write Windows
programs that do not take advantage of the standard Windows interface elements. To create a
Windows-style program, you must purposely do so. Only those programs written to take advantage
of Windows will look and feel like Windows programs. Although you can override the basic
Windows design philosophy, you had better have a good reason to do so, because your program will
be violating the most fundamental goal of Windows: a consistent user interface. In general, if you
are writing application programs for Windows 2000, they should conform to the standard Windows
style guidelines and design practices.

Let's look at some of the essential elements that define the Windows 2000 application environment.

TE
AM
FL
Y

Team-Fly®

Page 661

The Desktop Model

With few exceptions, the point of a window-based user interface is to provide on the screen the
equivalent of a desktop. On a desk may be found several different pieces of paper, one on top of
another, often with fragments of different pages visible beneath the top page. The equivalent of the
desktop in Windows 2000 is the screen. The equivalents of pieces of paper are windows on the
screen. On a desk you may move pieces of paper about, maybe switching which piece of paper is on
top or how much of another is exposed to view. Windows 2000 allows the same type of operations
on its windows. By selecting a window, you can make it current, which means putting it on top of
all other windows. You can enlarge or shrink a window, or move it about on the screen. In short,
Windows lets you control the surface of the screen the way you control the surface of your desk. All
conforming programs must allow these types of user interactions.

The Mouse

Like all preceding versions of Windows, Windows 2000 uses the mouse for almost all control,
selection, and drawing operations. Of course, the keyboard may also be used, but Windows is
optimized for the mouse. Thus, your programs must support the mouse as an input device wherever
possible. Fortunately, most of the common tasks, such as menu selection, scroll bars, and the like,
automatically utilize the mouse.

Icons, Bitmaps, and Graphics

Windows 2000 encourages the use of icons, bitmaps, and other types of graphics. The theory behind
the use of these items is found in the old adage: A picture is worth a thousand words. An icon is a
small symbol that is used to represent some operation, resource, or program. A bitmap is a
rectangular graphics image often used to convey information quickly to the user. However, bitmaps
can also be used as menu elements. Windows 2000 supports a full range of graphics capabilities,
including the ability to draw lines, rectangles, and circles. The proper use of these graphical
elements is an important part of successful Windows programming.

Menus, Controls, and Dialog Boxes

Windows provides several standard items that allow user input. These include the menu, various
types of controls, and the dialog box. Briefly, a menu displays options from which the user makes a
selection. Since menus are standard elements in Windows programming, built-in menu-selection
functions are provided in Windows. This means your program does not need to handle all of the
clerical overhead associated with menus, itself.

Page 662

A control is a special type of window that allows a specific type of user interaction. Examples are
push buttons, scroll bars, edit windows, and check boxes. Like menus, the controls defined by
Windows are nearly completely automated. Your program can use one without having to handle the
details.

A dialog box is a special window that enables more complex interaction with the application than
that allowed by a menu. For example, your application might use a dialog box that allows users to
enter a filename. Dialog boxes are typically used to house controls. With few exceptions, nonmenu
input is accomplished via a dialog box.

The Win32 Application Programming Interface

From the programmer's point of view, Windows 2000 is defined by the way a program interacts with
it. All application programs communicate with Windows 2000 through a call-based interface. The
Windows 2000 call-based interface is an extensive set of system-defined functions that provides
access to operating system features. Collectively, these functions are termed the Application
Programming Interface, or API for short. The API contains several hundred functions that your
application program uses to perform all necessary operating system–related activities, such as
allocating memory, outputting to the screen, creating windows, and the like. A subset to the API
called the GDI (Graphics Device Interface) is the part of Windows that provides device-independent
graphics support.

There are two basic flavors of the API in common use: Win16 and Win32. Win16 is the older, 16-
bit version of the API. Win32 is the modern, 32-bit version. Win16 is used by Windows 3.1.
Windows 2000 programs use Win32. (Win32 is also used by Windows 95 and Windows 98.) In
general, Win32 is a superset of Win16. Indeed, for the most part, the functions are called by the
same name and are used in the same way. However, even though similar in spirit and purpose, the
two APIs differ in two fundamental ways. First, Win32 supports 32-bit, flat addressing while Win16
supports only the 16-bit, segmented memory model. This difference means that Win32 often uses
32-bit arguments and return values in places where Win16 uses 16-bit values. Second, Win32
includes API functions that support thread-based multitasking, security, and the other enhanced
features that are not available in Win16. If you are new to Windows programming in general, these
changes will not affect you significantly. However, if you will be porting 16-bit code to Windows
2000, you will need to carefully examine the arguments you pass to each API function.

Components of a Window

Before moving on to specific aspects of Windows 2000 programming, a few important terms need
to be defined. Figure 26-1 shows a standard window with each of its elements pointed out.

Page 663

Figure 26-1
Elements of a standard window

All windows have a border that defines the limits of the window and is used to resize the window.
At the top of the window are several items. On the far left is the system menu icon (also called the
title bar icon). Clicking on this box causes the system menu to be displayed. To the right of the
system menu box is the window's title. At the far right are the minimize, maximize, and close boxes.
The client area is the part of the window in which your program activity takes place. Most windows
also have horizontal and vertical scroll bars that are used to move text through the window.

How Windows and Your Program Interact

When you write a program for many operating systems, it is your program that initiates interaction
with the operating system. For example, in a DOS program, it is the program that requests such
things as input and output. Put differently, programs written in the ''traditional" way call the
operating system; the operating system does not call your program. In a large measure, Windows
works in the opposite way. It is Windows that calls your program. The process works like this: A
program waits until it

Page 664

is sent a message by Windows. The message is passed to your program through a special function
that is called by Windows. Once a message is received, your program is expected to take an
appropriate action. Although your program may call one or more API functions when responding to
a message, it is still Windows that initiates the activity. More than anything else, it is the message-
based interaction with Windows that dictates the general form of all Windows programs.

There are many different types of messages that Windows 2000 may send your program. For
example, each time the mouse is clicked on a window belonging to your program, a mouse-clicked
message will be sent. Another type of message is sent each time a window belonging to your
program must be redrawn. Still another message is sent each time the user presses a key when your
program is the focus of input. Keep one fact firmly in mind: As far as your program is concerned,
messages arrive randomly. This is why Windows programs resemble interrupt-driven programs.
You can't know what message will be next.

Some Windows 2000 Application Basics

Before developing the Windows 2000 application skeleton, some basic concepts common to all
Windows programs need to be discussed.

WinMain()

All Windows 2000 programs begin execution with a call to WinMain(). (Windows programs do
not have a main() function.) WinMain() has some special properties that differentiate it from other
functions in your application. First, it must be compiled using the WINAPI calling convention. By
default, functions use the C calling convention, but it is possible to compile a function so that it uses
a different calling convention. For example, a common alternative is to use the Pascal calling
convention. For various technical reasons, the calling convention used by Windows 2000 to call
WinMain() is WINAPI. The return type of WinMain() must be int.

The Window Procedure

All Windows programs must contain a special function that is not called by your program, but is
called by Windows. This function is generally called the window procedure or window function. It is
through this function that Windows 2000 communicates with your program. The window function is
called by Windows 2000 when it needs to pass a message to your program. The window function
receives the message in its parameters. All window functions must be declared as returning type
LRESULT CALLBACK. The type LRESULT is a 32-bit integer. The CALLBACK calling
convention is used with those functions that will be called by Windows. In Windows terminology,
any function that is called by Windows is referred to as a callback function.

Page 665

In addition to receiving the messages sent by Windows 2000, the window function must initiate any
actions indicated by a message. Typically, a window function's body consists of a switch statement
that links a specific response to each message that the program will respond to. Your program need
not respond to every message that it is sent. For messages that your program doesn't care about, you
can let Windows 2000 provide default processing. Since Windows can generate hundreds of
different messages, it is common for most messages to be processed by Windows and not your
program.

All messages are 32-bit integer values. Further, all messages are accompanied by any additional
information that the message requires.

Window Classes

When your Windows 2000 program begins execution, it will need to define and register a window
class, which means the style or type of the window. When you register a window class, you are
telling Windows about the form and function of the window. However, registering the window class
does not cause a window to come into existence. To actually create a window requires additional
steps.

The Message Loop

As explained earlier, Windows 2000 communicates with your program by sending it messages. All
Windows applications must establish a message loop inside the WinMain() function. This loop
reads any pending message from the application's message queue and then dispatches that message
back to Windows, which then calls your program's window function with that message as a
parameter. This may seem to be an overly complex way of passing messages, but it is, nevertheless,
the way that all Windows programs must function. (Part of the reason for this is to return control to
Windows so that the scheduler can allocate CPU time as it sees fit rather than waiting for your
application's time slice to end.)

Windows Data Types

The Windows API functions do not make extensive use of standard C data types, such as int or char
*. Instead, many data types used by Windows have been typdefed within the WINDOWS.H file
and/or its related files. This file is supplied by Microsoft (and any other company that makes a
Windows-based C compiler) and must be included in all Windows programs. Some of the most
common types are HANDLE , HWND, UINT, BYTE , WORD, DWORD, LONG, BOOL,
LPSTR, and LPCSTR. HANDLE is a 32-bit integer that is used as a handle. There are a number of
handle types, but they are all the same size as HANDLE. A handle is simply a value that identifies
some resource. For example, HWND is a 32-bit integer that is used as a window handle. Also, all
handle types begin with an H. BYTE is an 8-bit unsigned character. WORD is a 16-bit unsigned
short integer. DWORD is an unsigned 32-bit integer. UINT is an unsigned

Page 666

32-bit integer. LONG is a signed 32-bit integer. BOOL is an integer type used to indicate values
that are either true or false. LPSTR is a pointer to a string, and LPCSTR is a const pointer to a
string.

In addition to the basic types described above, Windows 2000 defines several structures. The two
that are needed by the skeleton program are MSG and WNDCLASSEX. The MSG structure holds
a Windows 2000 message, and WNDCLASSEX is a structure that defines a window class. These
structures will be discussed later in this chapter.

A Windows 2000 Skeleton

Now that the necessary background information has been covered, we can develop a minimal
Windows 2000 application. As stated, all Windows 2000 programs have certain things in common.
The Windows 2000 skeleton developed here provides these necessary features. In the world of
Windows programming, application skeletons are commonly used because there is a substantial
''price of admission" when creating a Windows program. Unlike DOS programs, for example, in
which a minimal program is about 5 lines long, a minimal Windows program is approximately 50
lines long.

A minimal Windows 2000 program contains two functions: WinMain() and the window function.
The WinMain() function must perform the following general steps:

1. Define a window class.

2. Register that class with Windows 2000.

3. Create a window of that class.

4. Display the window.

5. Begin running the message loop.

The window function must respond to all relevant messages. Since the skeleton program does
nothing but display its window, the only message to which it must respond is the one that tells the
application that the user has terminated the program.

Before we get into the specifics, examine the following program, which is a minimal Windows 2000
skeleton. It creates a standard window that includes a title, a system menu, and the standard
minimize, maximize and close boxes. The window is, therefore, capable of being minimized,
maximized, moved, resized, and closed.

/* A minimal Windows 2000 skeleton. */

#include <windows.h>

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPARAM);

Page 667

char szWinName[] = "MyWin"; /* name of window class */

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst,
 LPSTR lpszArgs, int nWinMode)
{
 HWND hwnd;
 MSG msg;
 WNDCLASSEX wcl;

 /* Define a window class. */
 wcl.cbSize = sizeof(WNDCLASSEX);

 wcl.hInstance = hThisInst; /* handle to this instance */
 wcl.lpszClassName = szWinName; /* window class name */
 wcl.lpfnWndProc = WindowFunc; /* window function */
 wcl.style = 0; /* default style */

 wcl.hIcon = LoadIcon(NULL, IDI_APPLICATION); /* large icon */
 wcl.hIconSm = NULL; /* use small version of large icon */
 wcl.hCursor = LoadCursor(NULL, IDC_ARROW); /* cursor style */

 wcl.lpszMenuName = NULL; /* no class menu */
 wcl.cbClsExtra = 0; /* no extra memory needed */
 wcl.cbWndExtra = 0;

 /* Make the window background white. */
 wcl.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH);

 /* Register the window class. */
 if(!RegisterClassEx(&wcl)) return 0;

 /* Now that a window class has been registered, a window
 can be created. */
 hwnd = CreateWindow(
 szWinName, /* name of window class */
 ''Windows 2000 Skeleton", /* title */
 WS_OVERLAPPEDWINDOW, /* window style - normal */
 CW_USEDEFAULT, /* X coordinate - let Windows decide */
 CW_USEDEFAULT, /* Y coordinate - let Windows decide */
 CW_USEDEFAULT, /* width - let Windows decide */
 CW_USEDEFAULT, /* height - let Windows decide */
 NULL, /* no parent window */

Page 668

 NULL, /* no menu */
 hThisInst, /* instance handle */
 NULL /* no additional arguments */
);

 /* Display the window. */
 ShowWindow(hwnd, nWinMode);
 UpdateWindow(hwnd);

 /* Create the message loop. */
 while(GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg); /* translate keyboard messages */
 DispatchMessage(&msg); /* return control to Windows 2000 */
 }
 return msg.wParam;
}

/* This function is called by Windows 2000 and is passed
 messages from the message queue.
*/
LRESULT CALLBACK WindowFunc(HWND hwnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 switch(message) {
 case WM_DESTROY: /* terminate the program */
 PostQuitMessage(0);
 break;
 default:
 /* Let Windows 2000 process any messages not specified in
 the preceding switch statement. */
 return DefWindowProc(hwnd, message, wParam, lParam);
 }
 return 0;
}

Let's go through this program step by step. First, all Windows programs must include the header file
WINDOWS.H. As stated, this file (along with its support files) contains the API function prototypes
and various types, macros, and definitions used by Windows. For example, the data types HWND
and WNDCLASSEX are defined in WINDOWS.H (or its subordinate files).

Page 669

The window function used by the program is called WindowFunc(). It is declared as a callback
function because this is the function that Windows calls to communicate with the program.

As stated, program execution begins with WinMain(). WinMain() is passed four parameters.
hThisInst and hPrevInst are handles. hThisInst refers to the current instance of the program.
Remember, Windows 2000 is a multitasking system, so more than one instance of your program
may be running at the same time. For Windows 2000, hPrevInst will always be NULL. The
lpszArgs parameter is a pointer to a string that holds any command line arguments specified when
the application was begun. In Windows 2000, the string contains the entire command line, including
the name of the program itself. The nWinMode parameter contains a value that determines how the
window will be displayed when your program begins execution.

Inside the function, three variables are created. The hwnd variable will hold the handle to the
program's window. The msg structure variable will hold window messages, and the wcl structure
variable will be used to define the window class.

Defining the Window Class

The first two actions that WinMain() takes is to define a window class and then register it. A
window class is defined by filling in the fields defined by the WNDCLASSEX structure. Its fields
are shown here:

UINT cbSize; /* size of the WNDCLASSEX structure */
UINT style; /* type of window */
WNDPROC lpfnWndProc; /* address to window func */
int cbClsExtra; /* extra class memory */
int cbWndExtra; /* extra window memory */
HINSTANCE hInstance; /* handle of this instance */
HICON hIcon; /* handle of large icon */
HICON hIconSm; /* handle of small icon */
HCURSOR hCursor; /* handle of mouse cursor */
HBRUSH hbrBackground; /* background color */
LPCSTR lpszMenuName; /* name of main menu */
LPCSTR lpszClassName; /* name of window class */

As you can see by looking at the program, cbSize is assigned the size of the WNDCLASSEX
structure. The hInstance member is assigned the current instance handle as specified by hThisInst.
The name of the window class is pointed to by lpszClassName, which points to the string ''MyWin"
in this case. The address of the window function is assigned to lpfnWndProc. In the program, no
default style is specified, no extra information is needed, and no main menu is specified. Although
most programs will contain a main menu, the skeleton does not require one.

Page 670

All Windows applications need to define a default shape for the mouse cursor and for the
application's icons. An application can define its own custom version of these resources, or it may
use one of the built-in styles, as the skeleton does. In either case, handles to these resources must be
assigned to the appropriate members of the WNDCLASSEX structure. To see how this is done, let's
begin with icons.

A Windows 2000 application has two icons associated with it: one large and one small. The small
icon is used when the application is minimized, and it is also the icon that is used for the system
menu. The large icon is displayed when you move or copy an application to the desktop. Typically,
large icons are 32-by-32 bitmaps, and small icons are 16-by-16 bitmaps. The large icon is loaded by
the API function LoadIcon(), whose prototype is shown here:

HICON LoadIcon(HINSTANCE hInst, LPCSTR lpszName);

This function returns a handle to an icon, or NULL on failure. Here, hInst specifies the handle of the
module that contains the icon, and its name is specified in lpszName. However, to use one of the
built-in icons, you must use NULL for the first parameter and specify one of the following macros
for the second:

Icon Macro Shape

IDI_APPLICATION Default icon

IDI_ERROR Error symbol

IDI_INFORMATION Information

IDI_QUESTION Question mark

IDI_WARNING Exclamation point

IDI_WINLOGO Windows logo

Here are two important points about loading icons: First, if your application does not specify a small
icon, the large icon's resource file is examined. If it contains a small icon, then this icon is used.
Otherwise, the large icon is simply shrunk when the small icon is needed. If you don't want to
specify a small icon, assign the value NULL to hIconSm, as the skeleton does. Second, in general,
LoadIcon() can only be used to load the large icon. You can use LoadImage() to load icons of
differing sizes.

To load the mouse cursor, use the API LoadCursor() function. This function has the following
prototype:

HCURSOR LoadCursor(HINSTANCE hInst, LPCSTR lpszName);

This function returns a handle to a cursor resource, or NULL on failure. Here, hInst specifies the
handle of the module that contains the mouse cursor, and its name is specified in lpszName. To use
one of the built-in cursors, you must use NULL for the

TE
AM
FL
Y

Team-Fly®

Page 671

first parameter and specify one of the built-in cursors using its macros for the second parameter.
Here are a few of the built-in cursors:

Cursor Macro Shape

IDC_ARROW Default arrow pointer

IDC_CROSS Cross hairs

IDC_HAND Hand

IDC_IBEAM Vertical I-beam

IDC_WAIT Hourglass

The background color of the window created by the skeleton is specified as white, and a handle to
this brush is obtained using the API function GetStockObject(). A brush is a resource that paints
the screen using a predetermined size, color, and pattern. The function GetStockObject() is used to
obtain a handle to a number of standard display objects, including brushes, pens (which draw lines),
and character fonts. It has this prototype:

HGDIOBJ GetStockObject(int object);

The function returns a handle to the object specified by object. NULL is returned on failure. (The
type HGDIOBJ is a GDI handle.) Here are some of the built-in brushes available to your program:

Macro Name Background Type

BLACK_BRUSH Black

DKGRAY_BRUSH Dark gray

HOLLOW_BRUSH See-through window

LTGRAY_BRUSH Light gray

WHITE_BRUSH White

You may use these macros as parameters to GetStockObject() to obtain a brush.

Once the window class has been fully specified, it is registered with Windows 2000 using the API
function RegisterClassEx(), whose prototype is shown here:

ATOM RegisterClassEx(CONST WNDCLASSEX *lpWClass);

The function returns a value that identifies the window class. ATOM is a typedef that means
WORD. Each window class is given a unique value. lpWClass must be the address of a

WNDCLASSEX structure.

Page 672

Creating a Window

Once a window class has been defined and registered, your application can actually create a window
of that class using the API function CreateWindow(), whose prototype is shown here:

HWND CreateWindow(
 LPCSTR lpszClassName, /* name of window class */
 LPCSTR lpszWinName, /* title of window */
 DWORD dwStyle, /* type of window */
 int X, int Y, /* upper-left coordinates */
 int Width, int Height, /* dimensions of window */
 HWND hParent, /* handle of parent window */
 HMENU hMenu, /* handle of main menu */
 HINSTANCE hThisInst, /* handle of creator */
 LPVOID lpszAdditional /* pointer to additional info */
);

As you can see by looking at the skeleton program, many of the parameters to CreateWindow()
may be defaulted or specified as NULL. In fact, most often the X, Y, Width, and Height parameters
will simply use the macro CW_USEDEFAULT, which tells Windows 2000 to select an appropriate
size and location for the window. If the window has no parent, which is the case in the skeleton,
then hParent can be specified as NULL. (You can also use HWND_DESKTOP for this parameter.)
If the window does not contain a main menu or uses the main menu defined by the window class,
then hMenu must be NULL . (The hMenu parameter has other uses, too.) Also, if no additional
information is required, as is most often the case, then lpszAdditional is NULL . (The type LPVOID
is typedefed as void *. Historically, LPVOID stands for long pointer to void.)

The remaining four parameters must be explicitly set by your program. First, lpszClassName must
point to the name of the window class. (This is the name you gave it when it was registered.) The
title of the window is a string pointed to by lpszWinName. This can be a null string, but usually a
window will be given a title. The style (or type) of window actually created is determined by the
value of dwStyle. The macro WS_OVERLAPPEDWINDOW specifies a standard window that has
a system menu, a border, and minimize, maximize, and close boxes. Although this style of window
is the most common, you can construct one to your own specifications. To accomplish this, simply
OR together the various style macros that you want. Some other common styles are shown here:

Page 673

Style Macro Window Feature

WS_OVERLAPPED Overlapped window with border

WS_MAXIMIZEBOX Maximize box

WS_MINIMIZEBOX Minimize box

WS_SYSMENU System menu

WS_HSCROLL Horizontal scroll bar

WS_VSCROLL Vertical scroll bar

The hThisInst parameter is ignored by Windows 2000, but for Windows 95/98 it must contain the
current instance handle of the application. Thus, to ensure portability to those environments— and to
prevent future problems— hThisInst should be assigned the current instance handle, as in the
skeleton.

The CreateWindow() function returns the handle of the window it creates or NULL if the window
cannot be created.

Once the window has been created, it is still not displayed on the screen. To cause the window to be
displayed, call the ShowWindow() API function. This function has the following prototype:

BOOL ShowWindow(HWND hwnd, int nHow);

The handle of the window to display is specified in hwnd. The display mode is specified in nHow.
The first time the window is displayed, you will want to pass WinMain() 's nWinMode as the
nHow parameter. Remember, the value of nWinMode determines how the window will be
displayed when the program begins execution. Subsequent calls can display (or remove) the window
as necessary. Some common values for nHow are shown here:

Display Macro Effect

SW_HIDE Removes the window

SW_MINIMIZE Minimizes the window into an icon

SW_MAXIMIZE Maximizes the window

SW_RESTORE Returns a window to normal size

Page 674

The ShowWindow() function returns the previous display status of the window. If the window was
displayed, nonzero is returned. If the window was not displayed, zero is returned.

Although not technically necessary for the skeleton, a call to UpdateWindow() is included because
it is needed by virtually every Windows 2000 application that you will create. It essentially tells
Windows 2000 to send a message to your application that the main window needs to be updated.

The Message Loop

The final part of the skeletal WinMain() is the message loop. The message loop is a part of all
Windows applications. Its purpose is to receive and process messages sent by Windows 2000. When
an application is running, it is continually being sent messages. These messages are stored in the
application's message queue until they can be read and processed. Each time your application is
ready to read another message, it must call the API function GetMessage(), which has this
prototype:

BOOL GetMessage(LPMSG msg, HWND hwnd, UINT min, UINT max);

The message will be received by the structure pointed to by msg. All Windows messages are of
structure type MSG, shown here:

/* Message structure
typedef struct tagMSG
{
 HWND hwnd; /* window that message is for */
 UINT message; /* message */
 WPARAM wParam; /* message-dependent info */
 LPARAM lParam; /* more message-dependent info */
 DWORD time; /* time message posted */
 POINT pt; /* X,Y location of mouse */
} MSG;

In MSG, the handle of the window for which the message is intended is contained in hwnd. All
Windows 2000 messages are 32-bit integers, and the message is contained in message. Additional
information relating to each message is passed in wParam and lParam. The types WPARAM and
LPARAM are both 32-bit quantities.

The time the message was sent (posted) is specified in milliseconds in the time field.

The pt member will contain the coordinates of the mouse when the message was sent. The
coordinates are held in a POINT structure, which is defined like this:

typedef struct tagPOINT {
 LONG x, y;
} POINT;

Page 675

If there are no messages in the application's message queue, a call to GetMessage() will pass
control back to Windows 2000.

The hwnd parameter to GetMessage() specifies for which window messages will be obtained. It is
possible (even likely) that an application will contain several windows, and you may only want to
receive messages for a specific window. If you want to receive all messages directed at your
application, this parameter must be NULL .

The remaining two parameters to GetMessage() specify a range of messages that will be received.
Generally, you want your application to receive all messages. To accomplish this, specify both min
and max as 0, as the skeleton does.

GetMessage() returns zero when the user terminates the program, causing the message loop to
terminate. Otherwise it returns nonzero. It will return –1 if an error occurs. Errors can occur only
under unusual circumstances that do not apply to most programs.

Inside the message loop two functions are called. The first is the API function TranslateMessage().
This function translates the virtual key codes generated by Windows 2000 into character messages.
Although not necessary for all applications, most call TranslateMessage() because it is needed to
allow full integration of the keyboard into your application program.

Once the message has been read and translated, it is dispatched back to Windows 2000 using the
DispatchMessage() API function. Windows 2000 then holds this message until it can pass it to the
program's window function.

Once the message loop terminates, the WinMain() function ends by returning the value of
msg.wParam to Windows 2000. This value contains the return code generated when your program
terminates.

The Window Function

The second function in the application skeleton is its window function. In this case the function is
called WindowFunc(), but it could have any name you like. The window function is passed
messages by Windows 2000. The first four members of the MSG structure are its parameters. For
the skeleton, the only parameter that is used is the message itself.

The skeleton's window function responds to only one message explicitly: WM_DESTROY . This
message is sent when the user terminates the program. When this message is received, your program
must execute a call to the API function PostQuitMessage(). The argument to this function is an
exit code that is returned in msg.wParam inside WinMain(). Calling PostQuitMessage() causes a
WM_QUIT message to be sent to your application, which causes GetMessage() to return false and
thus stops your program.

Any other messages received by WindowFunc() are passed along to Windows 2000, via a call to
DefWindowProc(), for default processing. This step is necessary because all messages must be
dealt with in one way or another.

Each message specifies the value that must be returned by the window function after the message
has been processed. Most of the commonly handled messages require that you return zero. But a few
require a different return value.

Page 676

Definition File No Longer Needed

If you are familiar with 16-bit Windows programming, you have used definition files. For 16-bit
versions of Windows, all programs need to have a definition file associated with them. A definition
file is simply a text file that specifies certain information and settings needed by the 16-bit
environment. Because of the 32-bit architecture of Windows 2000 (and other improvements),
definition files are not usually needed for Windows 2000 programs. If you are new to Windows
programming in general and you don't know what a definition file is, the following discussion will
give you a brief overview.

All definition files use the extension .DEF. For example, the definition file for the skeleton program
could be called SKEL.DEF. Here is a definition file that you can use to provide downward
compatibility to Windows 3.1:

DESCRIPTION 'Skeleton Program'
EXETYPE WINDOWS
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 8192
STACKSIZE 8192
EXPORTS WindowFunc

This file specifies the name of the program and its description, both of which are optional. It also
states that the executable file will be compatible with Windows (rather than DOS, for example). The
CODE statement tells Windows 2000 to load all of the program at startup (PRELOAD), that the
code may be moved in memory (MOVEABLE), and that the code may be removed from memory
and reloaded if (and when) necessary (DISCARDABLE). The file also states that your program's
data must be loaded upon execution and may be moved about in memory. It also specifies that each
instance of the program has its own data (MULTIPLE). Next, the size of the heap and stack
allocated to the program are specified. Finally, the name of the window function is exported.
Exporting allows Windows 3.1 to call the function.

Remember: Definition files are seldom used when programming for 32-bit versions of Windows.

Naming Conventions

Before finishing this chapter, a brief comment on naming functions and variables needs to be made.
If you are new to Windows programming, several of the variable and parameter names in the
skeleton program and its description probably seem rather

Page 677

unusual. The reason for this is that they follow a set of naming conventions that was invented by
Microsoft for Windows programming. For functions, the name consists of a verb followed by a
noun. The first character of the verb and noun is capitalized.

For variable names, Microsoft chose to use a rather complex system of imbedding the data type into
a variable's name. To accomplish this, a lowercase type prefix is added to the start of the variable's
name. The name itself begins with a capital letter. The type prefixes are shown in Table 26-1. The
use of type prefixes is controversial and is not universally accepted. Many Windows programmers
use this method; many do not. You are, of course, free to use any naming convention you like.

Prefix Data Type

b boolean (1 byte)

c character (1 byte)

dw long unsigned integer

f 16-bit bit -field (flags)

fn function

h handle

l long integer

lp long pointer

n short integer

p pointer

pt long integer holding screen coordinates

w short unsigned integer

sz pointer to null -terminated string

lpsz long pointer to null -terminated string

rgb long integer holding RGB color values

Table 26-1. Variable Type Prefix Characters

Page 679

Chapter 27—
Software Engineering Using C

Page 680

Creating a large computer program is a little like designing a large building. In fact, the term
''architect" is commonly applied to software designers these days. Of course, what makes the
creation of a large building possible is the same thing that makes the creation of a large program
possible: the application of the proper engineering methods. In this chapter, several techniques that
relate specifically to the C programming environment and that make the creation and maintenance
of a program much easier will be examined.

This chapter is written mostly for the benefit of those readers who are newcomers to programming.
If you're an experienced pro, you will be familiar with much of the material in this chapter.

Top-Down Design

Without a doubt, the single most important thing that you can do to simplify the creation of a large
program is to apply a solid approach. There are three general ways to write a program: top-down,
bottom-up, and ad hoc. In the top-down approach, you start with the top-level routines and move
downward to the low-level routines. The bottom-up approach works in the opposite direction: You
begin with specific routines and build them progressively into more complex structures, ending at
the top. The ad hoc approach has no predetermined method.

As a structured language, C lends itself to a top-down approach. The top-down method can produce
clean, readable code that you can easily maintain. This approach also helps you clarify the overall
structure of the program before you code low-level functions, reducing time wasted by false starts.

Outlining Your Program

Like an outline, the top-down method starts with a general description and works toward specifics.
In fact, a good way to design a program is to first define exactly what the program will do at its top
level and then fill in the details relating to each action. For example, assume that you have to write a
mailing list program. First you should make a list of the operations that the program will perform.
Each entry in the list should contain only one functional unit. (You can think of a functional unit as
a black box that performs a single task.) For example, your list might look like this:

• Enter a new address.

• Delete an address.

• Print the list.

• Search for a name.

• Save the list.

TE
AM
FL
Y

Team-Fly®

Page 681

• Load the list.

• Quit the program.

After you have defined the overall functionality of the program, you can sketch in the details of each
functional unit, beginning with the main loop. One way to write the main loop of the mailing list
program is like this:

main loop
{
 do {
 display menu
 get user selection
 process the selection
 } while selection does not equal quit
}

This type of algorithmic notation (sometimes called pseudocode) can help you clarify the general
structure of your program before you sit down at the computer. C-like syntax has been used because
it is familiar, but you can use any type of syntax that you like.

You should give a similar definition to each functional area. For example, you can define the
function that writes the mailing list to a disk file like this:

save to disk {
 open disk file
 while data left to write {
 write data to disk
 }
 close disk file
}

At this point, the save-to-disk function has created new, more specific functional units. These units
open a disk file, write data to disk, and close the disk file. You must define each of these. If, in the
course of their definition, new functional units are created, they must also be defined, and so on.
This process stops when no new functional units are created and all that is left to do is to actually
write the C code that implements an action. For example, the unit that closes a disk file will
probably translate into a call to fclose().

Notice that the definition does not mention data structure or variables. This is intentional. So far,
you only want to define what your program will do, not how it will actually do it. This definition
process will help you decide on the actual structure of the data. (Of course, you need to determine
the data structure before you can code the functional units.)

Page 682

Choosing a Data Structure

After you have determined your program's general outline, you must decide how the data will be
structured. The selection of a data structure and its implementation are critical because they help
determine the design limits of your program.

A mailing list deals with collections of information: names, street addresses, cities, states, and postal
codes. Using a top-down approach, this immediately suggests the use of a structure to hold the
information. However, how will these structures be stored and manipulated? For a mailing list
program, you could use a fixed-size array of structures. But a fixed-size array has a serious
drawback: The size of the array arbitrarily limits the length of the mailing list. A better solution is to
allocate memory for each address dynamically, storing each address in some form of dynamic data
structure (such as a linked list), which can grow or shrink as needed. In this way the list can be as
large or small as needed.

Although dynamic storage allocation has been chosen over a fixed-size array, the exact form of the
data still has not been decided. There are several possibilities: You could use a singly linked list, a
doubly linked list, a binary tree, or even a hashing method. Each method has its merits and
drawbacks. For the sake of discussion, assume that your particular mail list application requires
especially fast search times, so you choose a binary tree. Now you can define the structure that holds
each name and address in the list, as shown here:

struct addr {
 char name[30];
 char street[40];
 char city[20];
 char state[3];
 char zip[11];
 struct addr *left; /* pointer to left subtree */
 struct addr *right; /* pointer to right subtree */
}

Once the data structure has been defined, you are ready to code your program. To do so, simply fill
in the details described in the pseudocode outline you created earlier. If you follow the top-down
approach, your programs will not only be much easier to read, but will also take less time to develop
and less effort to maintain.

Bulletproof Functions

In large programs, especially those that control potentially life-threatening devices, the potential for
error has to be very slight. Although small programs can be verified as correct, this is not the case
for large ones. (A verified program is proved to be free of errors and will never malfunction— in
theory at least.) For example, consider a

Page 683

program that controls the wing flaps of a modern jet airplane. You cannot test all possible
interactions of the numerous forces that will be exerted on the plane. This means that you cannot test
the program exhaustively. At best, all you can say is that it performed correctly in such and such
situations. In a program of this type, the last thing that you (as a passenger or programmer) want is a
crash (of the program or the plane)!

After you have programmed for a few years, you learn that most program failures can be attributed
to one of a relatively few types of programmer errors. For example, many catastrophic program
errors are caused by one of these relatively common mistakes:

• Some condition causes an unintended infinite loop to be entered.

• An array boundary has been violated, causing damage to adjacent code or
data.

• A data type unexpectedly overflows.

In theory, these types of errors can be avoided by careful and thoughtful design and programming
practices. (Indeed, professionally written programs should be reasonably free of these types of
errors.)

However, another type of error often appears after the initial development stage of a program,
occurring either during final ''fine tuning" or during the maintenance phase of the program. This
error is caused by one function inadvertently interfering with another function's code or data. This
type of error is especially hard to find because the code in both functions may appear to be correct.
Instead, it is the interaction of the functions that causes the error. Therefore, to reduce the chance of
a catastrophic failure, you will want your functions and their data to be as "bulletproof" as possible.
The best way to achieve this is to keep the code and data related to each function hidden from the
rest of the program.

Hiding code and data is similar to telling a secret only to those who need to know. Simply put, if a
function does not need to know about another function or variable, don't let the function have access
to it. You must follow four rules to accomplish this:

1. Each functional unit must have one entry point and one exit point.

2. Wherever possible, pass information to functions instead of using global variables.

3. Where global variables are required by a few related functions, you should place both the
variables and the functions in a separate file. Also, the global variables must be declared as static.

4. Each function must be able to report the success or failure of its intended operation to the caller.
That is, the code that calls a function must be able to know if that function succeeded or failed.

Rule 1 states that each functional area has one entry point and one exit point. This means that
although a functional unit may contain several functions, the rest of the program communicates
through only one of them. Think about the mailing list

Page 684

program discussed earlier. There are seven functional areas. You could put all of the functions
needed by each functional area in their own files and compile them separately. If done correctly, the
only way in or out of each functional unit is through its top-level function. And, in the mailing list
program, these top-level functions are called only by main(), thereby preventing one functional unit
from accidentally damaging another. This situation is depicted in Figure 27-1.

Although it decreases performance in some cases, the best way to reduce the possibility of side
effects is to always pass all information needed by a function to that function. Avoid the use of
global data. This is rule 2, and if you have ever written a large program in standard BASIC— where
every variable is global— you already understand its importance.

Rule 3 states that when global data must be used, the global data and the functions that need to
access it should be put in one file and compiled separately. The key is to declare the global data as
static, thereby keeping knowledge of it from the other files. Also, the functions that access the static
data can, themselves, be declared as static, preventing them from being called by other functions not
declared within the same file.

Put simply, rule 4 ensures that programs get a second chance by allowing the caller of a function to
respond in a reasonable manner to an error condition. For example, if the function that controls the
flaps on the airplane experiences an out-of-range condition, you do not want the entire program to
fail (and the plane to crash). Rather, you want the program to know that an error occurred within the
function. Since an out-of-range condition may be a temporary situation for a program that operates
on real-time data, the program could respond to such an error by simply waiting a few clock ticks
and trying again.

Figure 27-1
Each functional unit has only one entry point

Page 685

Keep in mind that strict adherence to these rules will not be applicable in every situation, but you
should follow the rules whenever possible. The goal of this approach is to create a program that has
the highest likelihood of recovering unharmed from an error condition.

NOTE

If you are especially interested in the concepts supporting bulletproof functions, you
will want to explore C++. C++ provides an even stronger protection mechanism
called encapsulation, which further decreases the chance of one function damaging
another.

Using MAKE

Another type of error that tends to affect the creation of large programs occurs mostly during the
development stage and can bring a project to a near standstill. This error occurs when one or more
source files are out-of-date with their respective object files when the program is compiled and
linked. When this happens, the executable form of the program will not act in accordance with the
current state of the source code. Anyone who has ever been involved with the creation or
maintenance of a large software project has probably experienced this problem. To help eliminate
this type of frustrating error, most C compilers include a utility called MAKE that helps synchronize
source and object files. (The exact name of the MAKE utility for your compiler may differ slightly
from MAKE, so be sure to check your compiler's documentation.)

MAKE automates the recompilation process for large programs comprised of several files. Often,
many small changes will be made to many files in the course of program development. After the
changes have been made, the program is recompiled and tested. Unfortunately, it is easy to forget
which of the files need to be recompiled. In this situation, you can either recompile all the files— a
waste of time— or accidentally miss a file that should be recompiled, potentially adding several
hours of frustrating debugging. The MAKE program solves this problem by automatically
recompiling only those files that have been altered.

The examples presented in this section are compatible with the MAKE programs supplied with
Microsoft C/C++. Currently, Microsoft's version of MAKE is called NMAKE. The examples will
also work with most other mainstream MAKE utilities, and the general concepts described are
applicable to all MAKE programs.

NOTE

In recent years, MAKE programs have become very sophisticated. The examples
presented here illustrate the essence of MAKE. You will want to explore the MAKE
utility supported by your compiler. It may contain features that are especially useful
to your development environment.

MAKE is driven by a make file, which contains a list of target files, dependent files, and commands.
A target file requires its dependent files to produce it. For example, T.C

Page 686

would be a dependent file of T.OBJ because T.C is required to make T.OBJ. MAKE works by
comparing the dates between a dependent file and its target file. (As used here, the term ''date"
includes both the calendar date and the time.) If the target file has a date that is older than its
dependent file (or if the target does not exist), the specified command sequence is executed. If that
command sequence contains target files defined by other dependencies, then those dependencies are
also updated, as needed. When the MAKE process is over, all target files have been updated.
Therefore, in a correctly constructed make file, all source files that require compilation are
automatically compiled and linked, forming the new executable file. In this way, source files are
kept in synchronization with object files.

The general form of the make file is

target_file1: dependent_file list
 command_sequence

target_file2: dependent_file list
 command_sequence

target_file3: dependent_file list
 command_sequence

·
·
·
target_fileN: dependent_file list
 command_sequence

The target filename must start in the leftmost column and be followed by a colon and its list of
dependent files. The command sequence associated with each target must be preceded by at least
one space or a tab. Comments are preceded by a # and may follow the dependent file list and/or the
command sequence. They can also appear on a line of their own. Each target-file specification must
be separated from the next by at least one blank line.

The most important thing that you need to understand about a make file is this: Execution of a make
file stops as soon as the first dependency succeeds. This means that you must design your make files
in such a way that the dependencies are hierarchical. Remember that no dependency can succeed
until all subordinate dependencies relating to it are also resolved.

To see how MAKE works, consider a very simple program. The program is divided into four files
called TEST.H, TEST.C, TEST2.C, and TEST3.C. This situation is illustrated in Figure 27-2. (To
follow along, enter each part of the program into the indicated files.)

Page 687

 TEST.H:

 extern int count;

 TEST.C:

 #include <stdio.h>
void test2(void), test3(void);

int count = 0;

int main(void)
{
 printf(''count = %d\n", count);
 test2();
 printf("count = %d\n", count);
 test3();
 printf("count = %d\n", count);

 return 0;
}

 TEST2.C:

 #include <stdio.h>
#include "test.h"

void test2(void)
{
 count = 30;
}

 TEST3.C:

#include <stdio.h>
#include "test.h"

void test3(void)
{
 count = -100;
}

Figure 27-2
A simple four-file program

Page 688

If you are using Visual C++, the following make file will recompile the program when you make
changes:

test.exe: test.h test.obj test2.obj test3.obj
 cl test.obj test2.obj test3.obj

test.obj: test.c test.h
 cl -c test.c

test2.obj: test2.c test.h
 cl -c test2.c

test3.obj: test3.c test.h
 cl -c test3.c

By default, a MAKE program will use the directives contained in a file called MAKEFILE.
However, you will usually want to use another name for your make file. When using another name
for the make file, you must use the –f option on the command line. For example, if the name of the
preceding make file is TEST, for Microsoft's NMAKE program, you would type something like

nmake –f test

at the command prompt to compile the necessary modules and create an executable program. (This
applies to Microsoft's NMAKE. A different option may be needed if you use a different MAKE
utility.)

Order is very important in the make file because, as stated earlier, MAKE stops processing the
directives contained in the file as soon as the first dependency is satisfied. For example, if the
preceding make file were changed to look like this:

This is an incorrect make file.
test.obj: test.c test.h
 cl -c test.c

test2.obj: test2.c test.h
 cl -c test2.c

test3.obj: test3.c test.h
 cl -c test3.c

test.exe: test.h test.obj test2.obj test3.obj
 cl test.obj test2.obj test3.obj

Page 689

it would no longer work correctly when the file TEST.H (or any other source file) was changed.
This is because the final directive (which creates a new TEST.EXE) will no longer be executed.

Using Macros in MAKE

MAKE allows macros to be defined in the make file. These macro names are simply placeholders
for the information that will actually be determined either by a command line specification or by the
macro's definition in the make file. Macros are defined according to this general form:

macro_name = definition

If there is to be any white space in the macro definition, you must enclose the definition within
double quotation marks.

Once a macro has been defined, it is used in the make file like this:

$(macro_name)

Each time this statement is encountered, the definition linked to the macro is substituted. For
example, this make file uses the macro LIBFIL to determine which library is used by the linker:

LIBFIL = graphics.lib

prog.exe: prog.obj prog2.obj prog3.obj
 cl prog.obj prog2.obj prog3.obj $(LIBFIL)

Many MAKE programs have additional features, so it is very important to consult your compiler's
documentation.

Using an Integrated Development Environment

Most modern compilers are supplied in two different forms. The first form is the standalone,
command line compiler. Using this form, you use a separate editor to create your program, then you
compile your program, and, finally, you execute your program. These events all occur as separate
commands given by you on the command line. Any debugging or source file control (such as using
MAKE) also occurs separately. The command line compiler is the traditional way compilers were
implemented.

The second form of a compiler is found in an integrated development environment (IDE), such as
the Visual C++ IDE. In this form, the compiler is integrated with an editor, a debugger, a project
manager (that takes the place of a separate MAKE utility), and

Page 690

a run-time support system. Using an IDE, you edit, compile, and run your program without ever
leaving the IDE. When IDEs were first invented, they were somewhat cumbersome to use and
tedious to work with. However, today the IDEs provided by the major compiler manufacturers have
much to offer the programmer. If you take the time to set the IDE's options so that it is optimized for
your needs, you will find that using the IDE streamlines the development process.

Of course, whether you use an IDE or the traditional command line approach is also a matter of
taste. If you like using the command line, then by all means, use it. Also, one point that is still in
favor of the traditional approach is that you can personally select every tool you use, rather than
taking what the IDE has to offer.

TE
AM
FL
Y

Team-Fly®

Page 691

Chapter 28—
Efficiency, Porting, and Debugging

Both statements assign to a the value of a + b and then increase the value of b by 1. However, using
the second way is often more efficient because the compiler may be able

Page 692

The ability to write programs that make efficient use of system resources, are bug free, and can be
ported to new environments is the mark of a professional programmer. It is also in these areas that
computer science becomes the ''art of computer science." In this chapter we will explore some of the
methods that help achieve these goals.

Efficiency

This section explores several techniques that can improve the efficiency of your programs. In
programming, the term "efficiency" can refer to the speed of execution, the use of system resources,
or both. System resources include such things as memory, disk space, CPU time, and the like—
basically anything that you can allocate and use up. Whether a program is efficient or not is
sometimes a subjective judgment that can change from situation to situation. For example, the same
programming techniques used to create a user-oriented program, such as a word processor, may not
be appropriate for a piece of system code, such as a network router.

Efficiency often involves trade-offs. For example, making a program execute faster often means
making it bigger when you use in-line code to eliminate the overhead of a function call. By the same
token, making a program smaller by replacing in-line code with function calls sometimes makes the
program run slower. In the same vein, making more efficient use of disk space might mean
compacting the data, which might make accessing that data slower because of the extra processing
overhead. These and other types of efficiency trade-offs can be very frustrating— especially to
nonprogrammers and end users who cannot see why one thing should affect the other. Fortunately,
there are a few techniques that can increase speed and reduce size at the same time.

Whether you are optimizing for speed or size, C is a language that lets you effectively implement
your optimizations. The following sections present several of the most commonly used techniques,
but the enterprising programmer is certain to discover more.

The Increment and Decrement Operators

Discussions of the efficient use of C almost always start with the increment and decrement
operators. In some situations, the use of these operators may allow the compiler to create more
efficient object code. For example, consider the following statement sequences:

/* first way */
a = a + b;
b = b + 1;

/* second way */
a = a + b++;

Page 693

to avoid using redundant load and store instructions when accessing b. That is, b won't have to be
loaded into a register twice— once to add it to a and once to increment it. Although some compilers
will automatically optimize both ways into the same object code, this cannot be taken for granted. In
general, the careful use of the ++ and – – operators can improve the execution speed of your
program and at the same time reduce its size. You should look for ways to employ them.

Using Register Variables

One of the most effective ways to speed up your code is through the use of register variables.
Although register variables are effective in other uses, they are particularly well suited for loop
control. Recall that any variable specified as register is stored in a manner that produces the shortest
access time. For integer types, this usually means a register of the CPU. This is important because
the speed with which the critical loops of a program execute sets the pace for the overall program
speed. For example:

for(i=0; i < MAX; i++) {
 /* do something */
}

Here, i is being repeatedly tested and set. That is, each time the loop iterates, the value of i is tested,
and if it has not yet reached the target value, it is incremented. Since this happens over and over
again, the speed with which i can be accessed governs the speed of the entire loop.

In addition to loop control variables, any variables used inside the body of a loop are also good
candidates for the register modifier. For example:

for(i=0; i < MAX; i++) {
 sum = a + b;
 /* . . .*/
}

Here, the variables sum, a, and b are accessed each time the loop repeats. Also, sum is assigned a
value with each iteration. Thus, the speed with which these variables can be accessed affects the
overall performance of the loop.

Although you can declare as many variables as you like using register, in reality, within any single
function, most compilers can optimize the access time of only a few. In general, you can expect that
at least two integer variables can be held in registers of the CPU at any one time. Other types of fast
storage, such as cache memory, may also be used, but it too is limited. Since it may not be possible
to optimize every variable that you modify with register, C allows the compiler to disregard the
register specifier and simply handle the variable normally. This provision also enables code created
for one environment to be compiled in another environment in which there are fewer

Page 694

fast-access storage locations. Since fast-access storage is always limited, it is best to choose
carefully those variables that you want to be optimized for fast access.

Pointers Vs. Array Indexing

In some cases you can substitute pointer arithmetic for array indexing. Doing so might produce
smaller and faster code. For example, the following two code fragments do the same thing:

Array Indexing Pointer Arithmetic

 p = array;
for(;;) { for(;;) {
 a = array[t++]; a = *(p++);
 · ·
 · ·
 · ·
} }

The advantage of the pointer method is that once p has been loaded with the address of array, only
an increment must be performed each time the loop repeats. However, the array index version must
always compute the array index based on the value of t— a more complex task.

Be careful. You should use array indexes when the index is derived through a complex formula and
pointer arithmetic would obscure the meaning of the program. It is usually better to degrade
performance slightly than to sacrifice clarity. Also, the disparity between array indexing and pointer
arithmetic may not be significant for highly optimizing compilers or on all processor types or in all
environments.

Use of Functions

Remember at all times that the use of stand-alone functions with local variables helps form the basis
of structured programming. Functions are the building blocks of C programs and are one of C's
strongest assets. Do not let anything that is discussed in this section be construed otherwise. Having
been warned, there are a few things about C functions and their ramifications on the size and speed
of your code that are worthy of consideration when optimizing your programs.

When a C compiler compiles a function, it uses the stack to hold the parameters (if any) to the
function and any local variables used by the function. When a function is called, the return address
of the calling routine is placed on the stack as well. (This enables the subroutine to return to the
location from which it was called.) When a function returns, this address and all local variables and
parameters have to be removed from the stack. The process of pushing this information is generally
referred to as the calling sequence, and the popping process is called the returning sequence. These
sequences take time— sometimes quite a bit of time.

Page 695

To understand how a function call can slow down your program, look at these two code fragments:

Version 1 Version 2
for(x=1; x < 100; ++x) { for(x=1; x < 100; ++x) {
 t = compute(x); t = fabs(sin(x)/100/3.1416);
} }

double compute(int q)
{
 return fabs(sin(q)/100/3.1416);
}

Although each loop performs the same operation, Version 2 is faster because the overhead of the
calling and returning sequence has been eliminated through the use of in-line code. (That is, the
code for compute() is simply replicated inside the loop, rather than called.)

To fully understand the overhead associated with a function call, we will look at the assembly code
instructions required to call and return from a function. As you may know, many C compilers
provide an option that causes the compiler to create an assembly code file rather than an object code
file. Using this option allows us to examine the code produced by the compiler. For the example that
follows, we will use the assembly code file created by Visual C++ when the -Fa option is specified.
We can examine this file to see precisely what code is generated for the calling and returning
sequence. Given this program,

int max(int a, int b);

int main (void)
{
 int x;

 x = max(10, 20);

 return 0;
}

int max(int a, int b)
{
 return a>b ? a : b;
}

the following assembly code file is produced. The calling and returning sequences are indicated by
comments beginning with asterisks added by the author. As you can see, the calling and returning
sequences amount to a sizable part of the program code.

Page 696

 TITLE test.c
 .386P
include listing.inc
if @Version gt 510
.model FLAT
else
_TEXT SEGMENT PARA USE32 PUBLIC 'CODE'
_TEXT ENDS
_DATA SEGMENT DWORD USE32 PUBLIC 'DATA'
_DATA ENDS
CONST SEGMENT DWORD USE32 PUBLIC 'CONST'
CONST ENDS
_BSS SEGMENT DWORD USE32 PUBLIC 'BSS'
_BSS ENDS
_TLS SEGMENT DWORD USE32 PUBLIC 'TLS'
_TLS ENDS
FLAT GROUP _DATA, CONST, _BSS
 ASSUME CS: FLAT, DS: FLAT, SS: FLAT
endif
PUBLIC _max
PUBLIC _main
_TEXT SEGMENT
_x$ = –4
_main PROC NEAR
; File ex2.c
; Line 4
 push ebp
 mov ebp, esp
 push ecx
; Line 7
; **
; This is the start of the calling sequence.
; **
 push 20 ; 00000014H
 push 10 ; 0000000aH
 call _max
; **
;
; **
; The next line is part of the returning sequence.
; **
 add esp, 8

Page 697

 mov DWORD PTR _x$[ebp], eax
; Line 9
 xor eax, eax
; Line 10
 mov esp, ebp
 pop ebp
 ret 0
_main ENDP
_a$ = 8
_b$ = 12
_max PROC NEAR
; Line 13
; **
; More of the calling sequence.
; **
 push ebp
 mov ebp, esp
 push ecx
; **
; Line 14
 mov eax, DWORD PTR _a$[ebp]
 cmp eax, DWORD PTR _b$[ebp]
 jle SHORT $L48
 mov ecx, DWORD PTR _a$[ebp]
 mov DWORD PTR –4+[ebp], ecx
 jmp SHORT $L49
$L48:
 mov edx, DWORD PTR _b$[ebp]
 mov DWORD PTR –4+[ebp], edx
$L49:
; **
; The returning sequence.
; **

 mov eax, DWORD PTR -4+[ebp]
; Line 15
 mov esp, ebp
 pop ebp
 ret 0
_max ENDP
_TEXT ENDS
END

Page 698

The actual code produced depends on how the compiler is implemented and what processor is being
used, but it will generally be similar to this.

The preceding discussion is not to suggest that you should write programs with only a few very
large functions so that they run quickly. Doing so would be bad practice. First, in the vast majority
of cases the slight time differential gained by avoiding function calls is not meaningful and the loss
of structure is acute. But there is another problem. Replacing functions that are used by several
routines with in-line code causes your program to become larger because the same code is
duplicated several times. Keep in mind that subroutines were invented in part as a way to make
efficient use of memory. In fact, this is why, as a rule of thumb, making a program faster means
making it bigger, while making it smaller means making it slower.

If you are going to use in-line code as a means of improving the run-time performance of a program,
and if you are using a C99-compatible compiler, then you should use the inline keyword to create
in-line functions, rather than actually copying the source code by hand. If you are not using a C99-
compatible compiler, then you should use function-like macros to achieve a similar result, where
possible. Of course, function-like macros do not provide the flexibility of inline functions.

Porting Programs

It is common for a program written on one machine to be ported to another computer with a
different processor, operating system, or both. This process is called porting, and it can be very easy
or extremely hard, depending upon how the program was originally written. A program that can be
easily ported is called portable. When a program is not portable, this is usually because it contains
numerous machine dependencies— that is, it has code fragments that work only with one specific
operating system or processor. C allows you to create portable code, but achieving this goal requires
care and attention to detail. This section examines a few specific problem areas and offers some
solutions.

Using #define

Perhaps the single most effective way to make programs portable is to make every system- or
processor-dependent ''magic number" a #define macro. These magic numbers include things like
buffer sizes for disk accesses, special screen and keyboard commands, memory allocation
information— anything that has the possibility of changing when the program is ported. These
#defines not only make all magic numbers obvious to the person doing the porting, but also simplify
the job because their values have to be changed only once instead of throughout the program.

For example, here is an fread() statement that is inherently nonportable:

fread(buf, 128, 1, fp);

Page 699

The problem is that the buffer size, 128, is hard-coded into fread(). This might work for one
operating system but be less than optimal for another. Here is a better way to code this function:

#define BUF_SIZE 128

fread(buf, BUF_SIZE, 1, fp);

In this case, when moving to a different system, only the #define has to change and all references to
BUF_SIZE are automatically corrected. This not only makes it easier to change, but also avoids
many editing errors. Remember that there will probably be many references to BUF_SIZE in a real
program, so the gain in portability is often great.

Operating-System Dependencies

Virtually all commercial programs contain code specific to the operating system that they are
designed to run under. For example, a program written for Windows 2000 can use multithreaded
multitasking, but a program written for 16-bit Windows 3.1 can't. The point is that some operating-
system dependencies are necessary for truly good, fast, and commercially viable programs.
However, operating-system dependencies also make your programs harder to port.

Although there is no hard-and-fast rule that you can follow to minimize your operating-system
dependencies, let me offer one piece of advice: Separate the parts of your program that relate
directly to your application from those parts that interface with the operating system. In this way, if
you port your program to a new environment, only the interfacing modules will need to be changed.

Differences in Data Sizes

If you want to write portable code, you must never make assumptions about the size of a data type.
For example, consider the difference between 16- and 32-bit environments. The size of a word for a
16-bit processor is 16 bits; for a 32-bit processor it is 32 bits. Because the size of a word tends to be
the size of the int data type, code that assumes that ints are 16 bits, for example, will not work when
ported to a 32-bit environment. To avoid size dependencies, use sizeof whenever your program
needs to know how many bytes long something is. For example, this statement writes an int to a
disk file and works in any environment:

fwrite(&i, sizeof(int), 1, stream);

into the following:

Page 700

Debugging

To paraphrase Thomas Edison, programming is 10 percent inspiration and 90 percent debugging.
All really good programmers are good debuggers. To help avoid bugs, it is useful to review some
the common ways in which bugs can occur.

Order-of-Evaluation Errors

The increment and decrement operators are used in most C programs, and the order in which the
operations take place is affected by whether these operators precede or follow the variable. Consider
the following:

y = 10; y = 10;
x = y++; x = ++y;

These two sequences are not the same. The one on the left assigns the value of 10 to x and then
increments y. The one on the right increments y to 11 and then assigns the value 11 to x. Therefore,
in the first case x contains 10; in the second, x contains 11. In the general case, a prefix increment
(or decrement) operation occurs before the value of the operand is obtained for use in the larger
expression. A postfix increment (or decrement) occurs after the value of the operand is obtained for
use in the larger expression. If you forget these rules, problems will result.

The way an order-of-evaluation error usually occurs is through changes to an existing statement
sequence. For example, when optimizing a piece of code, you might change this sequence

/* original code */
x = a + b;
a = a + 1;

/* "improved" code -- wrong! */
x = ++a + b;

The trouble is that the two code fragments do not produce the same results. The reason is that the
second way increments a before it is added to b. This was not the case in the original code!

Errors like this can be very hard to find. There may be clues such as loops that don't run right or
routines that are off by one. If you have any doubt about a statement, recode it in a way that you are
sure about.

TE
AM
FL
Y

Team-Fly®

Page 701

Pointer Problems

A very common error in C programs is the misuse of pointers. Pointer problems fall into two general
categories: misunderstanding indirection and the pointer operators, and accidentally using invalid or
uninitialized pointers. The solution to the first problem is easy: Simply be clear on what the * and &
operators mean! The second type of pointer problems is a bit trickier.

Here is a program that illustrates both types of pointer errors:

/* This program has an error. */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *p;

 *p = (char *) malloc(100); /* this line is wrong */
 gets(p);
 printf (p);

 return 0;
}

This program will most likely crash. The reason is that the address returned by malloc() was not
assigned to p but rather to the memory location pointed to by p, which in this case is completely
unknown. This type of error represents a fundamental misunderstanding of the * pointer operator. It
is usually created by novice C programmers— and sometimes by experienced pros who just make a
silly mistake! To correct this program, substitute

p = (char *) malloc(100); /* this is correct */

for the wrong line.

The program also contains a second and more insidious error. There is no runtime check on the
address returned by malloc(). Remember, if memory is exhausted, malloc() returns NULL, and the
pointer should not be used. Using a NULL pointer is invalid and nearly always leads to a program
crash. Here is a corrected version of the program, which includes a check for pointer validity:

/* This program is now correct. */

Page 702

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char *p;

 p = (char *) malloc(100); /* this is correct */

 if(!p) {
 printf(''Out of memory.\n");
 exit(1);
 }

 gets(p);
 printf(p);

 return 0;
}

Another common error is forgetting to initialize a pointer before using it. Consider the following
code fragment:

int *x;
*x = 100;

This will cause trouble because x has not been initialized to point to anything. Thus, you don't know
where x is pointing. Assigning a value to that unknown location may destroy something of value,
such as other code or data.

The troublesome thing about wild pointers is that they are so hard to track down. If you are making
assignments through a pointer that does not contain a valid address, your program may appear to
function correctly some of the time and crash at other times. The smaller your program, the more
likely it will run correctly, even with a stray pointer. This is because very little memory is in use,
and the odds are that the offending pointer is pointing to memory that is not being used. As your
program grows, failures will become more common, but you will be thinking about current
additions or changes to your program, not about pointer errors. Hence, you will tend to look in the
wrong spot for the bug.

The way to recognize a pointer problem is that errors are often erratic. Your program will work
correctly one time, wrong another. Sometimes other variables will contain garbage for no apparent
reason. If these problems begin to occur, check your pointers. As a matter of procedure, you should
always check all pointers when bugs begin to occur.

Page 703

As a consolation, remember that although pointers can be troublesome, they are also one of the most
powerful aspects of the C language and are worth whatever trouble they may cause you. Make the
effort early on to learn to use them correctly.

Interpreting Syntax Errors

Once in a while you will see a syntax error that does not make sense. Either the error message is
cryptic, or the error being reported doesn't seem like an error at all. However, in most cases the
compiler is right about detecting an error; it is just that the error message is less than perfect!
Finding the cause of unusual syntax errors usually requires some backtracking on your part. If you
encounter an error message that doesn't seem to make sense, try looking for a syntax error one or
two lines earlier in your program.

One particularly unsettling error occurs when you try to compile the following code:

char *myfunc (void);

int main (void)
{
 /* . . . */
}

int myfunc(void) /* error reported here */
{
 /* . . . */
}

Your compiler will issue an error message along the lines of that shown here,

Type mismatch in redeclaration of myfunc(void)

in reference to the line indicated in the listing. How can this be? There are not two myfunc()s. The
answer is that the prototype at the top of the program shows myfunc() having a character pointer
return type. This caused a symbol table entry to be made with that information. When the compiler
encountered myfunc() later in the program, the return type was specified as int. Therefore, you
were ''redeclaring" or "redefining" the function.

Another syntax error that is difficult to understand is generated with the following code:

/* This program has a syntax error in it. */
#include <stdio.h>

The for loop in this program is wrong in two ways. First, it does not initialize num[0], the first
element of array num. Second, it goes one past the end of the array because num[99] is the last
element and the loop runs to 100. The correct way to write this program is

Page 704

void func1(void);

int main(void)
{
 func1();

 return 0;
}

void func1(void);
{
 printf(''This is in func1.\n");
}

The error here is the semicolon after the definition of func1(). The compiler will see this as a
statement outside of any function, which is an error. However, the way that various compilers report
this error differs. Some compilers issue an error message like bad declaration syntax while
pointing at the first open brace after func1(). Because you are used to seeing semicolons after
statements, it can be very hard to see the source of this error.

One-Off Errors

As you know, in C all array indexes start at 0. However, even experienced pros have been known to
forget this well-known fact while in the heat of programming! Consider the following program,
which is supposed to initialize an array of 100 integers:

/* This program will not work. */

int main(void)
{
 int x, num[100];

 for(x=1; x <= 100; ++x) num[x] = x;

 return 0;
}

Page 705

/* This is right. */

int main (void)
{
 int x, num[100];

 for(x=0; x < 100; ++x) num[x] = x;

 return 0;
}

Remember, an array of 100 has elements 0 through 99.

Boundary Errors

Both the C run-time environment and many standard library functions have very little or no run-time
bounds checking. For example, you can easily overrun arrays. Consider the following program,
which is supposed to read a string from the keyboard and display it on the screen:

#include <stdio.h>

int main (void)
{
 int var1;
 char s[10];
 int var2;

 var1 = 10; var2 = 10;
 gets(s);
 printf(''%s %d %d", s, var1, var2);

 return 0;
}

Here, there are no direct coding errors. Indirectly, however, calling gets() with s may cause a bug.
In the program, s is declared to be 10 characters long, but what if the user enters more than 10
characters? This causes s to be overrun, and the value of var1, var2, or both will be overwritten.
Thus, var1 and/or var2 will not contain the correct value. This is because all C compilers use the
stack to store local variables. The variables var1, var2, and s might be located in memory as shown
in Figure 28-1. (Your C compiler may exchange the order of var1, var2, and s.)

Page 706

Figure 28-1
The variables var1, var2, and s in
memory, assuming 2-byte integers

Assuming the order shown in Figure 28-1, when s is overrun, the additional information is placed
into the area that is supposed to be var2, destroying any previous contents. Therefore, instead of
printing the number 10 for both integer variables, the variable destroyed by the overrun of s displays
something else. This makes you look for the problem in the wrong place.

In the case of the preceding program, the potential boundary error can be eliminated by using the
fgets() function rather than gets(). The fgets() function lets you specify the maximum number of
characters to read. The only trouble is that fgets() also reads and stores the newline character, so
you will need to strip that off in most applications.

Function Prototype Omissions

In today's programming environment, failure to use full function prototyping is an inexcusable lapse
of judgment. To understand why, consider the following program, which multiplies two floating-
point numbers:

/* This program is wrong. */
#include <stdio.h>

Page 707

int main(void)
{
 float x, y;

 scanf("%f%f", &x, &y);
 printf(''%f", mul(x, y));

 return 0;
}

double mul(float a, float b)
{
 return a*b;
}

Here, since no prototype for mul() is used, main() expects an integer value to be returned from
mul(). But in reality, mul() returns a floating-point number. Assuming 4-byte integers and 8-byte
doubles, this means that only 4 bytes out of the 8 needed for a double are actually used by the
printf() statement within main(). This causes the wrong answer to be displayed.

The way to correct this program is to prototype mul(). The corrected version follows.

/* This program is correct. */
#include <stdio.h>

double mul(float a, float b);

int main(void)
{
 float x, y;

 scanf("%f%f", &x, &y);
 printf("%f", mul(x, y));

 return 0;
}

double mul(float a, float b)
{
 return a*b;
}

Here, the prototype tells main() to expect mul() to return a double value.

Page 708

Argument Errors

You must be sure to match whatever type of argument a function expects with the type you give it.
While function prototypes catch many argument/parameter type mismatches, they can't catch all.
Furthermore, when a function takes a variable number of arguments, it is not possible for the
compiler to catch argument/parameter type mismatches. For example, consider scanf(), which takes
a variable number of arguments. Remember that scanf() expects to receive the addresses of its
arguments, not their values. However, there is nothing that enforces this. For example,

int x;
scanf(''%d", x);

is wrong because the value (not the address) of x is being passed. However, this call to scanf() will
be compiled without error, and executing this statement will cause a run-time error. The corrected
call to scanf() is shown here:

scanf("%d", &x);

Stack Overruns

All C compilers use the stack to store local variables, return addresses, and parameters passed to
functions. However, the stack is not infinite and it can be exhausted. This results in a stack overrun.
When this happens, the program either dies completely or continues executing in a bizarre fashion.
The worst thing about stack overruns is that they generally occur without any warning and affect the
program so profoundly that determining what went wrong is sometimes difficult. The only advice
that can be offered is that some stack overruns are caused by runaway recursive functions. If your
program uses recursion and you experience unexplainable failures, check the terminating conditions
in your recursive functions.

One other point: With some compilers you can increase the amount of memory set aside for the
stack. If your program is otherwise correct, but runs out of stack space (possibly due to deeply
nested, recursive functions), then you will need to increase the stack size.

Using a Debugger

Many compilers provide a debugger, which is a program that helps you debug your code. In general,
debuggers work by allowing you to execute your code step by step, set breakpoints, and inspect the
contents of variables. Modern debuggers, such as that provided by Visual C++, are truly wonderful
tools that can help find problems in your code. A good debugger is worth the time and effort it takes
to learn to use it effectively. However, a good programmer never substitutes a debugger for solid
design and craftsmanship.

Page 709

Debugging Theory in General

Everyone has a different approach to programming and debugging. However, certain techniques
have, over time, proven to be better than others. In the case of debugging, incremental testing is
considered to be the most cost- and time-effective method, even though it can appear to slow the
development process at first. Incremental testing is the process of always having a working
program. That is, very early in the development process, an operational unit is established. An
operational unit is simply a piece of working code. As new code is added to this unit, it is tested and
debugged. In this way, the programmer can easily find errors because the errors probably occur in
the newly added code or in the way that it interacts with the operational unit.

Debugging time is proportional to the total number of lines of code in which a bug could reside.
With incremental testing, you can often restrict the number of lines of code that may contain a bug
to only those that are newly added— that is, those not part of the operational unit. This situation is
shown in Figure 28-2. As a programmer, you want to deal with the smallest possible area while
debugging. Through incremental testing, you can subtract the area already tested from the total area,
thereby reducing the region in which a bug is most likely to occur.

In large projects, there are often several modules that have little interaction. In these cases, you can
establish several operational units to allow concurrent development.

Incremental testing is simply the process of always having working code. As soon as it is possible to
run a piece of your program, you should do so, testing that section completely. As you add to the
program, continue to test the new sections as well as the way they connect to the known operational
code. In this way, you concentrate most bugs in a small area of code. Of course, you must always be
alert to the possibility that a bug may have been overlooked in the operational unit, but you have
reduced the likelihood of this being the case.

Figure 28-2
The most likely location of a bug
when incremental testing is used

Page 711

PART VI—
A C INTERPRETER

Part Six concludes this book by developing an interpreter for C. This accomplishes two important
things. First, it illustrates several aspects of C programming that are common to most larger projects.
Second, it gives insight into the nature and design of the C language.

TE
AM
FL
Y

Team-Fly®

Page 713

Chapter 29—
A C Interpreter

Page 714

Language interpreters are fun! And what could be more fun for a C programmer than a C
interpreter?

To end this book I wanted a topic that would be of interest to virtually all C programmers and, at the
same time, illustrate several features of the C language. I also wanted the topic to be fresh, exciting,
and useful. After rejecting many ideas, I finally decided upon the creation of the Little C interpreter.
Here's why.

As valuable and important as compilers are, the creation of a compiler can be a difficult and lengthy
process. In fact, just the creation of a compiler's run-time library is a large job in itself. By contrast,
the creation of a language interpreter is an easier, more manageable task. Also, if it is correctly
designed, the operation of an interpreter can be easier to understand than that of a comparable
compiler. Beyond ease of development, language interpreters offer an interesting feature not found
in compilers— an engine that actually executes the program. Remember, a compiler only translates
your program's source code into a form that the computer can execute. An interpreter actually
executes the program. It is this distinction that makes interpreters interesting.

If you are like most C programmers, you use C not only for its power and flexibility but also
because the language itself represents an almost intangible, formal beauty that can be appreciated for
its own sake. In fact, C is often referred to as ''elegant" because of its consistency and purity. Much
has been written about the C language from the "outside looking in," but seldom has it been
explored from the "inside." Therefore, what better way to end this book than to create a C program
that interprets a subset of the C language?

In the course of this chapter an interpreter is developed that can execute a subset of the C language.
Not only is the interpreter functional, but it is also designed so that you can easily enhance it, extend
it, and even add features not found in C. If you haven't thought about how C really works, you will
be pleasantly surprised to see how straightforward it is. The C language is one of the most
theoretically consistent computer languages ever developed. By the time you finish this chapter, you
will not only have a C interpreter that you can use and enlarge, but you will also have gained
considerable insight into the structure of the C language itself. Of course, if you're like me, you'll
find the C interpreter presented here just plain fun to play with!

NOTE

The source code to the C interpreter presented in this chapter is fairly long, but
don't be intimidated by it. If you read through the discussion, you will have no
trouble understanding it and following its execution.

The Practical Importance of Interpreters

Although the Little C interpreter is interesting in and of itself, language interpreters do have some
practical importance in computing.

Page 715

As you know, C programs are usually compiled. The main reason for this is that C is a language
used to produce commercially salable programs. Compiled code is desirable for commercial
software products because it protects the privacy of the source code, prevents the user from
changing the source code, and allows the programs to make the most efficient use of the host
computer, to name a few reasons. Frankly, compilers will always dominate C-based software
development, as they should; however, any computer language can be compiled or interpreted. In
fact, in recent years a few C interpreters have appeared on the market.

There are two traditional reasons that interpreters have been used: They can be easily made
interactive, and they can support substantial debugging aids. However, in recent years, compiler
developers have created Integrated Development Environments (IDEs) that provide as much
interactivity and debugging capability as any interpreter. Therefore, these two traditional reasons for
using an interpreter no longer apply in any real sense. However, interpreters have their uses. For
example, most database query languages are interpreted. Also, many industrial robotic control
languages are interpreted.

In recent years, another benefit of interpretation has emerged: cross-platform portability. The
quintessential example of this is Java. Java was designed as an interpreted language because it
allowed the same Java program to run on any environment that provided a Java interpreter. Such a
capability is valuable when you want to run the same program on many different types of
computers, such as in a networked environment like the Internet. The creation of Java and the
success of the Internet have sparked new interest in interpreters in general.

There is another reason why language interpreters are interesting: They are easy to modify, alter, or
enhance. This means that if you want to create, experiment with, and control your own language, it
is easier to do so with an interpreter than with a compiler. Interpreters make great language
prototyping environments because you can change the way the language works and see the effects
very quickly.

Interpreters are (relatively) easy to create, easy to modify, easy to understand, and, perhaps most
important, fun to play with. For example, you can rework the interpreter presented in this chapter to
execute your program backward— that is, executing from the closing brace of main() and
terminating when the opening brace is encountered! Or, you can add a special feature to C that you
have always wanted. The point is that while compilers are needed for commercial software
development, interpreters let you really have fun with the C language. It is in this spirit that this
chapter was written. I hope you will enjoy reading it as much as I enjoyed writing it!

The Little C Specifications

Despite the fact that C has only a few keywords, C is a very rich and powerful language. It would
take far more than a single chapter to fully describe and implement an interpreter for the entire C
language. Instead, the Little C interpreter understands a

Page 716

fairly narrow subset of the language. However, this particular subset includes many of C's most
important aspects. What to include in the subset was decided mostly by whether it fit one (or both)
of these two criteria:

• Is the feature fundamentally inseparable from the C language?

• Is the feature necessary to demonstrate an important aspect of the language?

For example, features such as recursive functions and global and local variables meet both criteria.
The Little C interpreter supports all three loop constructs (not because of the first criterion, but
because of the second criterion). However, the switch statement is not implemented because it is
neither necessary (nice, but not necessary) nor does it demonstrate anything that the if statement
(which is implemented) does not. (Implementation of switch is left to you for entertainment!)

For these reasons, I implemented the following features in the Little C interpreter:

• Parameterized functions with local variables

• Recursion

• The if statement

• The do-while, while, and for loops

• Local and global variables of type int and char

• Function parameters of type int and char

• Integer and character constants

• String constants (limited implementation)

• The return statement, both with and without a value

• A limited number of standard library functions

• These operators: +, –, *, /, %, <, >, <=, >=, ==, !=, unary –, and unary +

• Functions returning integers

• /* . . . */-style comments

Even though this list may seem short, it takes a relatively large amount of code to implement it. One
reason for this is that a substantial ''price of admission" must be paid when interpreting a structured
language such as C.

Some Little C Restrictions

The source code for the Little C interpreter is quite long— longer, in fact, than I would normally put
in a book. In order to simplify and shorten the source code for Little C, I have imposed a few small
restrictions on the C grammar. The first is that the targets of if, while, do, and for must be blocks of
code surrounded by beginning and ending

Page 717

curly braces. You cannot use a single statement. For example, Little C will not correctly interpret
code such as this:

for(a=0; a < 10; a=a+1)
 for(b=0; b < 10; b=b+1)
 for(c=0; c < 10; c=c+1)
 puts (''hi");

if(. . .)
 if(. . .) x = 10;

Instead, you must write the code like this:

for(a=0; a < 10; a=a+1) {
 for(b=0; b < 10; b=b+1) {
 for(c=0; c < 10; c=c+1) {
 puts("hi");
 }
 }
}

if(. . .) {
 if(. . .) {
 x = 10;;
 }
}

This restriction makes it easier for the interpreter to find the end of the code that forms the target of
one of these program control statements. However, since the objects of the program control
statements are often blocks of code anyway, this restriction does not seem too harsh. (With a little
effort, you can remove this restriction, if you like.)

Another restriction is that prototypes are not supported. All functions are assumed to return an
integer type (char return types are allowed, but elevated to int), and no parameter type checking is
performed.

All local variables must be declared at the start of a function, immediately after the opening brace.
Local variables cannot be declared within any other block. Thus, the following function is invalid:

int myfunc()
{
int i; /* this is valid */

Page 718

 if(1) {
 int i; /* not allowed in Little C */
 /* . . . */
 }
}

Here, the declaration of i within the if block is invalid for Little C. The requirement that local
variables be declared at the start of the function block makes it a bit easier to implement the
interpreter. This is a restriction that you can remove with a little effort.

Finally, all functions must be preceded by either an int or char type specifier. Therefore, the Little
C interpreter does not support the old ''default-to-int" (or "implicit int") rule. Thus, this declaration
is valid:

int main()
{
 /* ... */
}

But this one isn't:

main ()
{
 /* . . . */
}

Dropping default-to-int for function declarations brings Little C in line with the C99/C++
approach.

Interpreting a Structured Language

As you know, C is structured: It allows stand-alone subroutines with local variables. It also supports
recursion. What you might find interesting is that, in some areas, it is easier to write a compiler for a
structured language than it is to write an interpreter for it. For example, when a compiler generates
code to call a function, it simply pushes the calling arguments onto the system stack and executes a
machine language CALL to the function. To return, the function puts the return value in a register of
the CPU, clears the stack, and executes a machine language RET. However, when an interpreter
must "call" a function, it has to stop what it is doing, save its current state, find the location of the
function, execute the function, save the return value, and return to the original point, restoring the
old environment. (You will see an example of this in the interpreter that follows.) In essence, the
interpreter must emulate the equivalent of a machine

Page 719

language CALL and RET. Also, while support for recursion is easy in a compiled language, it
requires some effort in an interpreted one.

Several years ago, in my book The Art of C (Berkeley, CA: Osborne/McGraw-Hill, 1991), I
introduced the subject of language interpreters by developing a small BASIC interpreter. In that
book, I stated that it is easier to interpret a language such as traditional BASIC than C because
BASIC was designed to be interpreted. What makes traditional BASIC easy to interpret is that it is
not structured. All variables are global, and there are no stand-alone subroutines. I still stand by this
statement; however, once you have created the support for functions, local variables, and recursion,
the C language is actually easier to interpret than BASIC. This is because a language such as BASIC
is full of exceptions at the theoretical level. For example, in BASIC the equal sign is an assignment
operator in an assignment statement, but an equality operator in a relational statement. C has few of
these inconsistencies.

NOTE

Readers interested in interpreters will find my implementation of a small BASIC
interpreter useful. The current version of the small BASIC interpreter is found in
The C/C++ Annotated Archives (Berkeley, CA: Osborne/McGraw-Hill, 1999).

An Informal Theory of C

Before we can begin to develop the C interpreter, it is necessary to understand how the C language
is structured. If you have ever seen a formal specification for the C language (such as that found in
the ANSI/ISO C standard), you know that it is quite long and filled with rather cryptic statements.
Don't worry— we won't need to deal this formally with the C language to design our interpreter,
because most of the C language is so straightforward. Although the formal specification of a
language is necessary for the creation of a commercial compiler, it is not needed for the creation of
the Little C interpreter. (Frankly, there isn't space in this chapter to explain how to understand the C
formal syntax definition; it could fill a book!)

This chapter is designed to be understood by the widest variety of readers. It is not intended to be a
formal introduction to the theory of structured languages in general or C in particular. As such, it
intentionally simplifies a few concepts. As you will see, the creation of an interpreter for a subset of
C does not require formal training in language theory.

Although you do not need to be a language expert to implement and understand the Little C
interpreter, you will still need a basic understanding of how the C language is defined. For our
purposes, the discussion that follows is sufficient. Those of you who want a more formal discussion
should refer to the ANSI/ISO standard for C.

To begin, all C programs consist of a collection of one or more functions, plus global variables (if
any exist). A function is composed of a function name, its parameter list, and the block of code
associated with the function. A block begins with a { , is followed by one or more statements, and
ends with a }. In C, a statement either begins with a C keyword, such as if, or it is an expression.
(We will see what constitutes an

Page 720

expression in the next section.) Summarizing, we can write the following transformations
(sometimes called production rules):

All C programs begin with a call to main() and end when either the last } or a return has been
encountered in main()— assuming that exit() or abort() has not been called elsewhere. Any other
functions contained in the program must be either directly or indirectly called by main(); thus, to
execute a C program, simply begin at the start of the main() function and stop when main() ends.
This is precisely what Little C does.

C Expressions

C expands the role of expressions relative to many other computer languages. In general terms, a
statement is either a C keyword statement, such as while or switch, or it is an expression. For the
sake of discussion, let's categorize all statements that begin with C keywords as keyword statements.
Any statement in C that is not a keyword statement is, by definition, an expression statement.
Therefore, in C the following statements are all expressions:

count = 100; /* line 1 */
sample = i / 22 * (c-10); /* line 2 */
printf(''This is an expression."); /* line 3 */

Let's look more closely at each of these expression statements. In C, the equal sign is an assignment
operator. C does not treat the assignment operation the way a language such as BASIC would, for
example. In BASIC, the value produced by the right side of the equal sign is assigned to the variable
on the left. But, and this is important, in BASIC, the entire statement does not have a value. In C, the
equal sign is an assignment operator, and the value produced by the assignment operation is equal to
that produced by the right side of the expression. Therefore, an assignment statement is actually an
assignment expression in C; because it is an expression, it has a value. This is why it is legal to write
expressions such as the following:

Page 721

a = b = c =: 100;
printf(''%d", a=4+5);

The reason these work in C is that an assignment is an operation that produces a value.

Line 2 of the sample expressions shows a more complex assignment. In line 3, printf() is called to
output a string. In C, all non-void functions return values, whether explicitly specified or not. Thus,
a non-void function call is an expression that returns a value— whether the value is actually assigned
to something or not. Calling a void function also constitutes an expression. It is just that the outcome
of the expression is void.

Evaluating Expressions

Before we can develop code that will correctly evaluate C expressions, you need to understand in
more formal terms how expressions are defined. In virtually all computer languages, expressions are
defined recursively using a set of production rules. The Little C interpreter supports the following
operations: +, –, *, /, %, =, the relational operators (<, = =, >, and so forth), and parentheses.
Therefore, we can use these production rules to define Little C expressions:

Here, rel-op refers to any of C's relational operators. The terms lvalue and rvalue refer to objects
that can occur on the left side and right side of an assignment statement, respectively. One thing that
you should be aware of is that the precedence of the operators is built into the production rules. The
higher the precedence, the farther down the list the operator will be.

To see how these rules work, let's evaluate this C expression:

count = 10 - 5 * 3;

Page 722

First, we apply rule 1, which dissects the expression into these three parts:

Since there are no relational operators in the ''rvalue" part of the subexpression, the "term"
production rule is invoked:

Of course, the second term is composed of the following two factors: 5 and 3. These two factors are
constants and represent the lowest level of the production rules.

Next, we must begin moving back up the rules to compute the value of the expression. First, we
multiply 5*3, which yields 15. Next, we subtract that value from 10, yielding –5. Finally, this value
is assigned to count and is also the value of the entire expression.

The first thing we need to do to create the Little C interpreter is to construct the computerized
equivalent of the expression evaluation we just performed in our minds.

The Expression Parser

The piece of code that reads and analyzes expressions is called an expression parser. Without a
doubt, the expression parser is the single most important subsystem needed by the Little C
interpreter. Because C defines expressions more broadly than do many other languages, a substantial
amount of the code that constitutes a C program is actually executed by the expression parser.

There are several different ways to design an expression parser for C. Many commercial compilers
use a table-driven parser, which is usually created by a parser-generator program. Although table-
driven parsers are generally faster than

TE
AM
FL
Y

Team-Fly®

Page 723

other methods, they are very hard to create by hand. For the Little C interpreter developed here, we
will use a recursive-descent parser, which implements in logic the production rules discussed in the
previous section.

A recursive-descent parser is essentially a collection of mutually recursive functions that process an
expression. If the parser is used in a compiler, it generates the proper object code that corresponds to
the source code. However, in an interpreter, the object of the parser is to evaluate a given
expression. In this section, the Little C parser is developed.

NOTE

Expression parsing is introduced in Chapter 24. The parser used in this chapter
expands upon that simple foundation.

Reducing the Source Code to Its Components

Fundamental to all interpreters (and compilers, for that matter) is a special function that reads the
source code and returns the next logical symbol from it. For historical reasons, these logical symbols
are generally referred to as tokens. Computer languages in general, and C in particular, define
programs in terms of tokens. You can think of a token as an indivisible program unit. For example,
the equality operator = = is a token. The two equal signs cannot be separated without changing the
meaning. In the same vein, if is a token. Neither ''i" nor "f" by itself has any meaning to C.

In C, tokens are defined as belonging to one of these groups:

keywords identifiers constants

strings operators punctuation

The keywords are those tokens that make up the C language, such as while. Identifiers are the names
of variables, functions, and user-types (not implemented by Little C). Constants and strings are self-
explanatory, as are operators. Punctuation includes several items, such as semicolons, commas,
braces, and parentheses. (Some of these are also operators, depending upon their use.) Given the
statement

for(x=0; x<10; x=x+1) printf("hello %d", x);

the following tokens are produced, reading left to right:

Token Category

for keyword

(punctuation

x identifier

= operator

Page 724

Token Category

0 constant

; punctuation

x identifier

< operator

10 constant

; punctuation

x identifier

= operator

x identifier

+ operator

1 constant

) punctuation

printf identifier

(punctuation

''hello %d" string

, punctuation

x identifier

) punctuation

; punctuation

However, in order to make the interpretation of C easier, Little C categorizes tokens as shown
here:

Token Type Includes

delimiter punctuation and operators

keyword keywords

string quoted strings

identifier variable and function names

number numeric constant

block { or }

Page 725

The function that returns tokens from the source code for the Little C interpreter is called get_token
(), and it is shown here:

/* Get a token. */
int get_token(void)
{

 register char *temp;

 token_type = 0; tok = 0;

 temp = token;
 *temp = '\0';

 /* skip over white space */
 while(iswhite(*prog) && *prog) ++prog;

 if(*prog == '\r') {
 ++prog;
 ++prog;
 /* skip over white space */
 while(iswhite(*prog) && *prog) ++prog;
 }

 if(*prog == '\0') { /* end of file */
 *token = '\0';
 tok = FINISHED;
 return (token_type = DELIMITER);
 }

 if(strchr("{}", *prog)) { /* block delimiters */
 *temp = *prog;
 temp++;
 *temp = '\0';
 prog++;
 return (token_type = BLOCK);
 }

 /* look for comments */
 if(*prog == '/')
 if(*(prog+1) == '*') { /* is a comment */
 prog += 2;
 do { /* find end of comment */

Page 726

 while(*prog != '*') prog++;
 prog++;
 } while (*prog != '/');
 prog++;
 }

if(strchr("!<>=", *prog)) { /* is or might be
 a relational operator */
 switch(*prog) {
 case '=': if(*(prog+1) == '=') {
 prog++; prog++;
 *temp = EQ;
 temp++; *temp = EQ; temp++;
 *temp = '\0';
 }
 break;
 case '!': if(*(prog+1) == '=') {
 prog++; prog++;
 *temp = NE;
 temp++; *temp = NE; temp++;
 *temp = '\0';
 }
 break;
 case '<': if(*(prog+1) == '=') {
 prog++; prog++;
 *temp = LE; temp++; *temp = LE;
 }
 else {
 prog++;
 *temp = LT;
 }
 temp++;
 *temp = '\0';
 break;
 case '>': if(*(prog+1) == '=') {
 prog++; prog++;
 *temp = GE; temp++; *temp = GE;
 }
 else {
 prog++;
 *temp = GT;
 }
 temp++;

Page 727

 *temp = '\0';
 break;
 }
 if(*token) return (token_type = DELIMITER);
 }

 if(strchr("+-*^/%=;(),'", *prog)){ /* delimiter */
 *temp = *prog;
 prog++; /* advance to next position */
 temp++;
 *temp = '\0';
 return (token_type = DELIMITER);
 }

 if(*prog=='"') { /* quoted string */
 prog+--;
 while(*prog != ''''&& *prog != '\r') *temp++ = *prog++;
 if(*prog == '\r') sntx_err(SYNTAX);
 prog++; *temp = '\0';
 return (token_type = STRING);
 }

 if(isdigit(*prog)) { /* number */
 while(!isdelim(*prog)) *temp++ = *prog++;
 *temp = '\0';
 return (token_type = NUMBER);
 }

 if(isalpha(*prog)) { /* var or command */
 while(!isdelim(*prog)) *temp++ = *prog++;
 token_type = TEMP;
 }

 *temp = '\0';

 /* see if a string is a command or a variable */
 if(token_type==TEMP) {
 tok = look_up(token); /* convert to internal rep */
 if(tok) token_type = KEYWORD; /* is a keyword */
 else token_type = IDENTIFIER;

 }
 return token_type;
}

Page 728

The get_token() function uses the following global data and enumeration types:

extern char *prog; /* current location in source code */
extern char *p_buf; /* points to start of program buffer */

extern char token[80]; /* string representation of token */
extern char token_type; /* contains type of token */
extern char tok; /* internal representation of token */

enum tok_types {DELIMITER, IDENTIFIER, NUMBER, KEYWORD,
 TEMP, STRING, BLOCK};

enum double_ops {LT=1, LE, GT, GE, EQ, NE};
/* These are the constants used to call sntx_err() when
 a syntax error occurs. Add more if you like.
 NOTE: SYNTAX is a generic error message used when
 nothing else seems appropriate.
*/
enum error_msg
 {SYNTAX, UNBAL_PARENS, NO_EXP, EQUALS_EXPECTED,
 NOT_VAR, PARAM_ERR, SEMI_EXPECTED,
 UNBAL_BRACES, FUNC_UNDEF, TYPE_EXPECTED,
 NEST_FUNC, RET_NOCALL, PAREN_EXPECTED,
 WHILE_EXPECTED, QUOTE_EXPECTED, NOT_TEMP,
 TOO_MANY_LVARS, DIV_BY_ZERO};

The current location in the source code is pointed to by prog. The p_buf pointer is unchanged by
the interpreter and always points to the start of the program being interpreted. The get_token()
function begins by skipping over all white space, including carriage returns and linefeeds. Since no
C token (except for a quoted string or character constant) contains a space, spaces must be bypassed.
The get_token() function also skips over comments. (Remember, only /* */ comments are
accepted.) Next, the string representation of each token is placed into token; its type (as defined by
the tok_types enumeration) is put into token_type; and, if the token is a keyword, its internal
representation is assigned to tok via the look_up() function (shown in the full parser listing that
follows). The reason for the internal representation of keywords will be discussed later. As you can
see by looking at get_token(), it converts C's two-character relational operators into their
corresponding enumeration value. Although not technically necessary, this step makes the parser
easier to implement. Finally, if the parser encounters a syntax error, it calls the function sntx_err()
with an enumerated value that corresponds to the type of error found. The sntx_err() function

Page 729

is also called by other routines in the interpreter whenever an error occurs. The sntx_err() function
is shown here:

/* Display an error message. */
void sntx_err(int error)
{
 char *p, *temp;
 int linecount = 0;
 register int i;

 static char *e[]= {
 ''syntax error",
 "unbalanced parentheses",
 "no expression present",
 "equals sign expected",
 "not a variable",
 "parameter error",
 "semicolon expected",
 "unbalanced braces",
 "function undefined",
 "type specifier expected",
 "too many nested function calls",
 "return without call",
 "parentheses expected",
 "while expected",
 "closing quote expected",
 "not a string",
 "too many local variables",
 "division by zero"
 };
 printf("\n%s", e[error]);
 p = p_buf;
 while(p !
= prog) { /* find line number of error */
 p++;
 if(*p == '\r') {
 linecount++;
 }
 }
 printf(" in line %d\n", linecount);

 temp = p;
 for(i=0; i < 20 && p > p_buf && *p != '\n'; i++, p--);

Page 730

 for(i=0; i < 30 && p <= temp; i++, p++) printf("%c", *p);

 longjmp(e_buf, 1); /* return to safe point */
}

Notice that sntx_err() also displays the line number in which the error was detected (which may be
one line after the error actually occurred) and displays the line in which it occurred. Further, notice
that sntx_err() ends with a call to longjmp(). Because syntax errors are frequently encountered in
deeply nested or recursive routines, the easiest way to handle an error is simply to jump to a safe
place. Although it is possible to set a global error flag and interrogate the flag at various points in
each routine, this adds unnecessary overhead.

The Little C Recursive-Descent Parser

The entire code for the Little C recursive-descent parser is shown here, along with some necessary
support functions, global data, and data types. This code, as shown, is designed to go into its own
file. For the sake of discussion, call this file PARSER.C. (Because of its size, the Little C interpreter
is spread among three separate files.)

/* Recursive descent parser for integer expressions
 which may include variables and function calls.
*/
#include <setjmp.h>
#include <math.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#define NUM_FUNC 100
#define NUM_GLOBAL_VARS 100
#define NUM_LOCAL_VARS 200
#define ID_LEN 31
#define FUNC_CALLS 31
#define PROG_SIZE 10000
#define FOR_NEST 31

enum tok_types {DELIMITER, IDENTIFIER, NUMBER, KEYWORD,
 TEMP, STRING, BLOCK};

enum tokens {ARG, CHAR, INT, IF, ELSE, FOR, DO, WHILE,

TE
AM
FL
Y

Team-Fly®

Page 731

 SWITCH, RETURN, EOL, FINISHED, END};

enum double_ops {LT=1, LE, GT, GE, EQ, NE};

/* These are the constants used to call sntx_err() when
 a syntax error occurs. Add more if you like.
 NOTE: SYNTAX is a generic error message used when
 nothing else seems appropriate.
*/
enum error_msg
 {SYNTAX, UNBAL_PARENS, NO_EXP, EQUALS_EXPECTED,
 NOT_VAR, PARAM_ERR, SEMI_EXPECTED,
 UNBAL_BRACES, FUNC_UNDEF, TYPE_EXPECTED,
 NEST_FUNC, RET_NOCALL, PAREN_EXPECTED,
 WHILE_EXPECTED, QUOTE_EXPECTED, NOT_TEMP,
 TOO_MANY_LVARS, DIV_BY_ZERO};

extern char *prog; /* current location in source code */
extern char *p_buf; /* points to start of program buffer */
extern jmp_buf e_buf; /* hold environment for longjmp() */

/* An array of these structures will hold the info
 associated with global variables.
*/
extern struct var_type {
 char var_name[32];
 int v_type;
 int value;
} global_vars[NUM_GLOBAL_VARS];

/* This is the function call stack. */
extern struct func_type {
 char func_name[32];
 int ret_type;
 char *loc; /* location of function entry point in file */
} func_stack[NUM_FUNC];

/* Keyword table */
extern struct commands {
 char command[20];
 char tok;
} table[];

Page 732

/* "Standard library" functions are declared here so
 they can be put into the internal function table that
 follows.
 */
int call_getche(void), call_putch(void);
int call_puts(void), print(void), getnum(void);

struct intern_func_type {
 char *f_name; /* function name */
 int (*p)(); /* pointer to the function */
} intern_func[] = {
 ''getche", call_getche,
 "putch", call_putch,
 "puts", call_puts,
 "print", print,
 "getnum", getnum,
 "", 0 /* null terminate the list */
};
extern char token[80]; /* string representation of token */
extern char token_type; /* contains type of token */
extern char tok; /* internal representation of token */

extern int ret_value; /* function return value */

void eval_exp0(int *value);
void eval_exp(int *value);
void eval_exp1(int *value);
void eval_exp2(int *value);
void eval_exp3(int *value);
void eval_exp4(int *value);
void eval_exp5(int *value);
void atom(int *value);
void sntx_err(int error), putback(void);
void assign_var(char *var_name, int value);
int isdelim(char c), look_up(char *s), iswhite(char c);
int find_var(char *s), get_token(void);
int internal_func(char *s);
int is_var(char *s);
char *find_func(char *name);
void call(void)

Page 733

/* Entry point into parser. */
void eval_exp(int *value)
{
 get_token();
 if(!*token) {
 sntx_err(NO_EXP);
 return;
 }
 if(*token == ';') {
 value = 0; / empty expression */
 return;
 }
 eval_exp0 (value);
 putback(); /* return last token read to input stream */
}

/* Process an assignment expression */
void eval_exp0(int *value)
{
 char temp
[ID_LEN]; /* holds name of var receiving
 the assignment */
 register int temp_tok;

 if(token_type == IDENTIFIER) {
 if(is_var(token)) { /* if a var, see if assignment */
 strcpy(temp, token);
 temp_tok = token_type;
 get_token();
 if(*token == '=') { /* is an assignment */
 get_token();
 eval_exp0(value); /* get value to assign */
 assign_var(temp, *value); /* assign the value */
 return;
 }
 else { /* not an assignment */
 putback(); /* restore original token */
 strcpy(token, temp);
 token_type = temp_tok;
 }
 }
 }
 eval_exp1(value);

Page 734

}

/* Process relational operators. */
void eval_exp1(int *value)
{
 int partial_value;
 register char op;
 char relops[7] = {
 LT, LE, GT, GE, EQ, NE, 0
 };

 eval_exp2(value);
 op = *token;
 if(strchr(relops, op)) {
 get_token();
 eval_exp2(&partial_value);
 switch(op) { /* perform the relational operation */
 case LT:
 *value = *value < partial_value;
 break;
 case LE:
 *value = *value <= partial_value;
 break;
 case GT:
 *value = *value > partial_value;
 break;
 case GE:
 *value = *value >= partial_value;
 break;
 case EQ:
 *value = *value == partial_value;
 break;
 case NE:
 *value = *value != partial_value;
 break;
 }
 }
}

/* Add or subtract two terms. */
void eval_exp2(int *value)
{

Page 735

 register char op;
 int partial_value;

 eval_exp3(value);
 while((op = *token) == '+' || op == '-') {
 get_token();
 eval_exp3(&partial_value);
 switch(op) { /* add or subtract */
 case '-':
 *value = *value - partial_value;
 break;
 case '+':
 *value = *value + partial_value;
 break;
 }
 }
}

/* Multiply or divide two factors. */
void eval_exp3(int *value)
{
 register char op;
 int partial_value, t;

 eval_exp4 (value);
 while((op = *token) == '*' || op == '/' || op == '%') {
 get_token ();
 eval_exp4 (&partial_value);
 switch(op) { /* mul, div, or modulus */
 case '*':
 *value = *value * partial_value;
 break;
 case '/':
 if(partial_value == 0) sntx_err(DIV_BY_ZERO);
 *value = (*value) / partial_value;
 break;
 case '%':
 t = (*value) / partial_value;
 *value = *value-(t * partial_value);
 break;
 }
}

Page 736

}

/* Is a unary + or -. *
void eval_exp4(int *value)
{
 register char op;

 op = '\0';
 if(*token == '+' || *token == '-') {
 op = *token;
 get_token();
 }
 eval_exp5(value);
 if(op)
 if(op == '-') *value = -(*value);
}

/* Process parenthesized expression. */
void eval_exp5(int *value)
{
 if((*token == '(')) {
 get_token();
 eval_exp0(value); /* get subexpression */
 if(*token != ')') sntx_err(PAREN_EXPECTED);
 get_token();
 }
 else
 atom(value);
}

/* Find value of number, variable, or function. */
void atom(int *value)
{
 int i;

 switch(token_type) {
 case IDENTIFIER:
 i = internal_func(token);
 if(i!= -1) { /* call ''standard library" function */
 *value = (*intern_func[i].p)();
 }
 else

Page 737

 if(find_func(token)) { /* call user-defined function */
 call();
 *value = ret_value;
 }
 else *value = find_var(token); /* get var's value */
 get_token();
 return;
 case NUMBER: /* is numeric constant */
 *value = atoi(token);
 get_token();
 return;
 case DELIMITER: /* see if character constant */
 if(*token == '\'') {
 *value = *prog;
 prog++;
 if (*prog!='\'') sntx_err(QUOTE_EXPECTED);
 prog++;
 get_token();
 return
 }
 if(*token==')') return; /* process empty expression */
 else sntx_err(SYNTAX); /* syntax error */
 default:
 sntx_err(SYNTAX); /* syntax error */
 }
}

/* Display an error message. */
void sntx_err(int error)
{
 char *p, *temp;
 int linecount = 0;
 register int i;

 static char *e[]= {
 ''syntax error",
 "unbalanced parentheses",
 "no expression present",
 "equals sign expected",
 "not a variable",
 "parameter error",
 "semicolon expected",

Page 738

 "unbalanced braces",
 ''function undefined",
 "type specifier expected",
 "too many nested function calls",
 "return without call",
 "parentheses expected",
 "while expected",
 "closing quote expected",
 "not a string",
 "too many local variables",
 "division by zero"
 };
 printf("\n%s", e[error]);
 p = p_buf;
 while(p != prog) { /* find line number of error */
 p++;
 if(*p == '\r') {
 linecount++;
 }
 }
 printf(" in line %d\n", linecount);

 temp = p;
 for(i=0; i < 20 && p > p_buf && *p != '\n'; i++, p--);
 for(i=0; i < 30 && p <= temp; i++, p++) printf("%c", *p);

 longjmp(e_buf, 1); /* return to safe point */
}

/* Get a token. */
int get_token(void)
{

 register char *temp;

 token_type = 0; tok = 0;

 temp = token;
 *temp = '\0';

 /* skip over white space */
 while(iswhite(*prog) && *prog) ++prog;

Page 739

 if(*prog == '\r') {
 ++prog;
 ++prog;
 /* skip over white space */
 while(iswhite(*prog) && *prog) ++prog;
}

if(*prog == '\0') { /* end of file */
 *token = '\0';
 tok = FINISHED;
 return (token_type = DELIMITER);
}

if(strchr("{}", *prog)) { /* block delimiters */
 *temp = *prog;
 temp++;
 *temp = '\0';
 prog++;
 return (token_type = BLOCK);
}

/* look for comments */
if(*prog == '/')
 if(*(prog+1) == '*') { /* is a comment */
 prog += 2;
 do { /* find end of comment */
 while(*prog != *') prog++;
 prog++;
 } while (*prog != '/');
 prog++;
 }

if(strchr("!<>=", *prog)) { /* is or might be
 a relational operator */
 switch(*prog) {
 case '=': if(*(prog+1) == '=') {
 prog++; prog++;
 *temp = EQ;
 temp++; *temp = EQ; temp++;
 *temp = '\0';
 }
 break;

Page 740

 case '!': if(*(prog+1) == '=') {
 prog++; prog++;
 *temp = NE;
 temp++; *temp = NE; temp++;
 *temp = \0';
 }
 break;
 case '<': if(*(prog+1) == '=') {
 prog++; prog++;
 *temp = LE; temp++; *temp = LE;
 }
 else {
 prog++;
 *temp = LT;
 }
 temp++;
 *temp = '\0';
 break;
 case '>': if(*(prog+1) == '=') {
 prog++; prog++;
 *temp = GE; temp++; *temp = GE;
 }
 else {
 prog++;
 *temp = GT;
 }
 temp++;
 *temp = '\0';
 break;
 }
 if(*token) return(token_type = DELIMITER);
}

if(strchr("+-*^/%=;(),'", *prog)){ /* delimiter */
 *temp = *prog;
 prog++; /* advance to next position */
 temp++;
 *temp = '\0';
 return (token_type = DELIMITER);
}

if(*prog=='"') { /* quoted string */

TE
AM
FL
Y

Team-Fly®

Page 741

 prog++;
 while(*prog != ''''&& *prog != '\r') *temp++ = *prog++;
 if(*prog == '\r') sntx_err(SYNTAX);
 prog++; *temp = '\0';
 return (token_type = STRING);
 }

 if(isdigit(*prog)) { /* number */
 while(!isdelim(*prog)) *temp++ = *prog++;
 *temp = '\0';
 return (token_type = NUMBER);
 }

 if(isalpha(*prog)) { /* var or command */
 while(!isdelim(*prog)) *temp++ = *prog++;
 token_type = TEMP;
 }

 *temp = '\0';

 /* see if a string is a command or a variable */
 if(token_type==TEMP) {
 tok = look_up(token); /* convert to internal rep */
 if(tok) token_type = KEYWORD; /* is a keyword */
 else token_type = IDENTIFIER;
 }
 return token_type;
}

/* Return a token to input stream. */
void putback(void)
{
 char *t;

 t = token;
 for(; *t; t++) prog--;
}

/* Look up a token's internal representation in the
 token table.
*/
int look_up(char *s)

 if(strchr('' !;,+-<>'/*%^=()", c) || c == 9 ||
 if(strchr(’’ !;,+-<>'/*%^=()", c) || c == 9 ||
 if(strchr(‘‘ !;,+-<>'/*%^=()", c) || c == 9 ||
 if(strchr('' !;,+-<>'/*%^=()", c) || c == 9 ||

Page 742

{
 register int i;
 char *p;

 /* convert to lowercase */
 p = s;
 while(*p) { *p = tolower(*p); p++; }

 /* see if token is in table */
 for(i=0; *table[i].command; i++) {
 if(!strcmp(table[i].command, s)) return table[i].tok;
 }
 return 0; /* unknown command */
}

/* Return index of internal library function or -1 if
 not found.
*/
int internal_func(char *s)
{
 int i;

 for(i=0; intern_func[i].f_name[0]; i++) {
 if(!strcmp(intern_func[i].f_name, s)) return i;
 }
 return -1;
}

/* Return true if c is a delimiter. */
int isdelim(char c)
{
 if(strchr(" !;,+-<>'/*%^=()", c) || c == 9 ||
 c == '\r' || c == 0) return 1;
 return 0;
}

/* Return 1 if c is space or tab. */
int iswhite(char c)
{
 if(c == ' ' || c == '\t') return 1;
 else return 0;
}

Page 743

The functions that begin with eval_exp and the atom() function implement the production rules for
Little C expressions. To verify this, you might want to execute the parser mentally, using a simple
expression.

The atom() function finds the value of an integer constant or variable, a function, or a character
constant. There are two kinds of functions that may be present in the source code: user defined or
library. If a user-defined function is encountered, its code is executed by the interpreter in order to
determine its return value. (The calling of a function will be discussed in the next section.) However,
if the function is a library function, first its address is looked up by the internal_func() function,
and then it is accessed via its interface function. The library functions and the addresses of their
interface functions are held in the intern_func array shown here:

/* "Standard library" functions are declared here so
 they can be put into the internal function table that
 follows.
 */
int call_getche(void), call_putch(void);
int call_puts(void), print(void), getnum(void);

struct intern_func_type {
 char *f_name; /* function name */
 int (*p)(); /* pointer to the function */
} intern_func[] = {
 ''getche", call_getche,
 "putch", call_putch,
 "puts", call_puts,
 "print", print,
 "getnum", getnum,
 "", 0 /* null terminate the list */
};

As you can see, Little C knows only a few library functions, but you will soon see how easy it is to
add any others that you might need. (The actual interface functions are contained in a separate file,
which is discussed in the section "The Little C Library Functions.")

One final point about the routines in the expression parser file: To correctly parse the C language
occasionally requires what is called one-token lookahead. For example, given

alpha = count();

in order for Little C to know that count is a function and not a variable, it must read both count and
the next token, which in this case is a parenthesis. However, if the statement had read

Page 744

alpha = count * 10;

then the next token after count is an *, which would need to be returned to the input stream for later
use. For this reason, the expression parser file includes the putback() function, which returns the
last token read to the input stream.

There may be functions in the expression parser file that you don't fully understand at this time, but
their operation will become clear as you learn more about Little C.

The Little C Interpreter

In this section, the heart of the Little C interpreter is developed. Before jumping right into the actual
code of the interpreter, it will help if you understand how an interpreter operates. In many ways, the
code of the interpreter is easier to understand than the expression parser because, conceptually, the
act of interpreting a C program can be summed up by the following algorithm:

while(tokens_present) {
 get next token;
 take appropriate action;
}

This algorithm may seem unbelievably simple when compared to the expression parser, but this
really is exactly what all interpreters do! One thing to keep in mind is that the ''take appropriate
action" step may also involve reading additional tokens from the input stream. To understand how
the algorithm actually works, let's manually interpret the following C code fragment:

int a;

a = 10;

if(a < 100) printf("%d", a);

Following the algorithm, read the first token, which is int. The appropriate action given this token is
to read the next token in order to find out what the variable being declared is called (in this case a)
and then to store it. The next token is the semicolon that ends the line. The appropriate action here is
to ignore it. Next, go back and get another token. This token is a. Since this line does not begin with
a keyword, it must begin a C expression. Thus, the appropriate action is to evaluate the expression
using the parser. This process eats up all the tokens in that line. Finally, we read the if token. This
signals the beginning of an if statement. The appropriate action is to process the if. The sort of
process described here takes place for any C program until the last token has been read. With this
basic algorithm in mind, let's begin building the interpreter.

Page 745

The Interpreter Prescan

Before the interpreter can actually start executing a program, a few clerical tasks must be performed.
One characteristic of languages that were designed with interpretation rather than compilation in
mind is that they begin execution at the top of the source code and end when the end of the source
code is reached. This is the way traditional BASIC works. However, C (or any other structured
language) does not lend itself to this approach for three main reasons. First, all C programs begin
execution at the main() function. There is no requirement that main() be the first function in the
program; therefore, it is necessary that the location of the main() function within the program's
source code be known so that execution can begin at that point. (Remember also that global
variables may precede main(), so even if it is the first function, it is not necessarily the first line of
code.) Some method must be devised to allow execution to begin at the right spot.

Another problem that must be overcome is that all global variables must be known and accounted
for before main() begins executing. Global variable declaration statements are never executed by
the interpreter, because they exist outside of all functions. (Remember: In C all executable code
exists inside functions, so there is no reason for the Little C interpreter to go outside a function once
execution has begun.)

Finally, in the interest of speed of execution, it is important (although not technically necessary) that
the location of each function defined in the program be known so that a call to a function can be as
fast as possible. If this step is not performed, a lengthy sequential search of the source code will be
needed to find the entry point to a function each time it is called.

The solution to these problems is the interpreter prescan. Prescanners (or preprocessors, as they are
sometimes called, although they have little resemblance to a C compiler's preprocessor) are used by
all commercial interpreters regardless of what language they are interpreting. A prescanner reads the
source code to the program before it is executed and performs whatever tasks can be done prior to
execution. In our Little C interpreter, it performs two important jobs: First, it finds and records the
location of all user-defined functions, including main(); second, it finds and allocates space for all
global variables. In the Little C interpreter, the function that performs the prescan is called prescan
(). It is shown here:

/* Find the location of all functions in the program
 and store global variables. */
void prescan(void)
{
 char *p, *tp;
 char temp[32];
 int datatype;
 int brace = 0; /* When 0, this var tells us that
 current source position is outside

Page 746

 of any function. */

 p = prog;
 func_index = 0;
 do {
 while(brace) { /* bypass code inside functions */
 get_token();
 if(*token == '{') brace++;
 if(*token == '}') brace--;
 }

 tp = prog; /* save current position */
 get_token();
 /* global var type or function return type */
 if(tok==CHAR || tok==INT) {
 datatype = tok; /* save data type */
 get_token();
 if(token_type == IDENTIFIER) {
 strcpy(temp, token);
 get_token();
 if(*token != '(') { /* must be global var */
 prog = tp; /* return to start of declaration */
 decl_global();
 }
 else if(*token == '(') { /* must be a function */
 func_table[func_index].loc = prog;
 func_table[func_index].ret_type = datatype;
 strcpy(func_table[func_index].func_name, temp);
 func_index++;
 while(*prog != ')') prog++;
 prog++;
 /* now prog points to opening curly
 brace of function */
 }
 else putback();
 }
 }
 else if(*token == '{') brace++;
 } while(tok != FINISHED);
 prog = p;
}

Page 747

The prescan() function works like this: Each time an opening curly brace is encountered, brace is
incremented. Whenever a closing curly brace is read, brace is decremented. Therefore, whenever
brace is greater than zero, the current token is being read from within a function. However, if brace
equals zero when a variable is found, the prescanner knows that it must be a global variable. By the
same method, if a function name is encountered when brace equals zero, it must be that function's
definition. (Remember, Little C does not support function prototypes.)

Global variables are stored in a global variable table called global_vars by decl_global(), shown
here:

/* An array of these structures will hold the info
 associated with global variables.
*/
struct var_type {
 char var__name[ID_LEN];
 int v_type;
 int value;
} global_vars[NUM_GLOBAL_VARS] ;

int gvar_index; /* index into global variable table */

/* Declare a global variable. */
void decl_global(void)
{
 int vartype;

 get_token(); /* get type */

 vartype = tok; /* save var type */

 do { /* process comma-separated list */
 global_vars[gvar_index].v_type = vartype;
 global_vars[gvar_index].value = 0; /* init to 0 */
 get_token(); /* get name */
 strcpy(global_vars[gvar_index].var_name, token);
 get_token();
 gvar_index++;
 } while(*token == ',');
 if(*token != ';') sntx_err(SEMI_EXPECTED);
}

The integer gvar_index holds the location of the next free element in the array.

Page 748

The location of each user-defined function is put into the func_table array, shown here:

struct func_type {
 char func_name[ID_LEN];
 int ret_type;
 char *loc; /* location of entry point in file */
} func_table[NUM_FUNC];

int func_index; /* index into function table */

The func_index variable holds the index of the next free location in the table.

The main() Function

The main() function to the Little C interpreter, shown here, loads the source code, initializes the
global variables, calls prescan(), ''primes" the interpreter for the call to main(), and then executes
call(), which begins execution of the program. The operation of the call() function will be
discussed shortly.

int main(int argc, char *argv[])
{
 if(argc != 2) {
 printf("Usage: littlec <filename>\n");
 exit(1);
 }

 /* allocate memory for the program */
 if((p_buf = (char *) malloc(PROG_SIZE))==NULL) {
 printf("Allocation Failure");
 exit(1);
 }

 /* load the program to execute */
 if(!load_program(p_buf, argv[1])) exit(1);
 if(setjmp(e_buf)) exit(1); /* initialize long jump buffer */

 gvar_index = 0; /* initialize global variable index */

 /* set program pointer to start of program buffer */
 prog = p_buf;
 prescan(); /* find the location of all functions

Page 749

 and global variables in the program */

 lvartos = 0; /* initialize local variable stack index */
 functos = 0; /* initialize the CALL stack index */

 /* setup call to main() */
 prog = find_func(''main"); /* find program starting point */

 if(!prog) { /* incorrect or missing main() function in program */
 printf("main() not found.\n");
 exit(1);
 }

 prog--; /* back up to opening (*/
 strcpy(token, "main");
 call(); /* call main() to start interpreting */

 return 0;
}

The interp_block() Function

The interp_block() function is the heart of the interpreter. It is the function that decides what action
to take based upon the next token in the input stream. The function is designed to interpret one block
of code and then return. If the "block" consists of a single statement, that statement is interpreted
and the function returns. By default, interp_block() interprets one statement and returns. However,
if an opening curly brace is read, the flag block is set to 1 and the function continues to interpret
statements until a closing curly brace is read. The interp_block() function is shown here:

/* Interpret a single statement or block of code. When
 interp_block() returns from its initial call, the final
 brace (or a return) in main() has been encountered.
*/
void interp_block(void)
 int value;
 char block = 0;

 do {

Page 750

 token_type = get_token();

 /* If interpreting single statement, return on
 first semicolon.
 */

 /* see what kind of token is up */
 if(token_type == IDENTIFIER) {
 /* Not a keyword, so process expression. */
 putback(); /* restore token to input stream for
 further processing by eval_exp() */
 eval_exp(&value); /* process the expression */
 if(*token!=';') sntx_err(SEMI_EXPECTED);
 }
 else if(token_type==BLOCK) { /* if block delimiter */
 if(*token == '{') /* is a block */
 block = 1; /* interpreting block, not statement */
 else return; /* is a }, so return */
 }
 else /* is keyword */
 switch(tok) {
 case CHAR:
 case INT: /* declare local variables */
 putback();
 decl_local();
 break;
 case RETURN: /* return from function call */
 func_ret();
 return;
 case IF: /* process an if statement */
 exec_if();
 break;
 case ELSE: /* process an else statement */
 find_eob(); /* find end of else block
 and continue execution */
 break;
 case WHILE: /* process a while loop */
 exec_while();
 break;
 case DO: /* process a do-while loop */
 exec_do();
 break;

TE
AM
FL
Y

Team-Fly®

Page 751

 case FOR: /* process a for loop */
 exec_for ();
 break;
 case END:
 exit (0);
 }
 } while (tok != FINISHED && block);
}

Calls to functions like exit() excepted, a C program ends when the last curly brace (or a return) in
main() is encountered— not necessarily at the last line of source code. This is one reason that
interp_block() executes only a statement or a block of code, and not the entire program. Also,
conceptually, C consists of blocks of code. Therefore, interp_block() is called each time a new
block of code is encountered. This includes both function blocks as well as blocks begun by various
C statements, such as if. This means that in the process of executing a program, the Little C
interpreter may call interp_block() recursively.

The interp_block() function works like this: First, it reads the next token from the program. If the
token is a semicolon and only a single statement is being interpreted, the function returns.
Otherwise, it checks to see if the token is an identifier; if so, the statement must be an expression, so
the expression parser is called. Since the expression parser expects to read the first token in the
expression itself, the token is returned to the input stream via a call to putback(). When eval_exp()
returns, token will hold the last token read by the expression parser, which must be a semicolon if
the statement is syntactically correct. If token does not contain a semicolon, an error is reported.

If the next token from the program is a curly brace, then either block is set to 1 in the case of an
opening brace, or, if it is a closing brace, the function returns.

Finally, if the token is a keyword, the switch statement is executed, calling the appropriate routine to
handle the statement. The reason that keywords are given integer equivalents by get_token() is to
allow the use of the switch statement instead of requiring a sequence of if statements involving
string comparisons (which are quite slow).

The interpreter file is shown here. You should call this file LITTLEC.C. In the sections that follow,
we will examine the functions that actually execute C keyword statements.

/* A Little C interpreter. */

#include <stdio.h>
#include <setjmp.h>

Page 752

#include <math.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>

#define NUM_FUNC 100
#define NUM_GLOBAL_VARS 100
#define NUM_LOCAL_VARS 200
#define NUM_BLOCK 100
#define ID_LEN 31
#define FUNC_CALLS 31
#define NUM_PARAMS 31
#define PROG_SIZE 10000
#define LOOP_NEST 31

enum tok_types {DELIMITER, IDENTIFIER, NUMBER, KEYWORD,
 TEMP, STRING, BLOCK};

/* add additional C keyword tokens here */
enum tokens {ARG, CHAR, INT, IF, ELSE, FOR, DO, WHILE,
 SWITCH, RETURN, EOL, FINISHED, END};

/* add additional double operators here (such as ->) */
enum double_ops {LT=1, LE, GT, GE, EQ, NE};

/* These are the constants used to call sntx_err() when
 a syntax error occurs. Add more if you like.
 NOTE: SYNTAX is a generic error message used when
 nothing else seems appropriate.
*/
enum error_msg
 {SYNTAX, UNBAL_PARENS, NO_EXP, EQUALS_EXPECTED,
 NOT_VAR, PARAM_ERR, SEMI_EXPECTED,
 UNBAL_BRACES, FUNC_UNDEF, TYPE_EXPECTED,
 NEST_FUNC, RET_NOCALL, PAREN_EXPECTED,
 WHILE_EXPECTED, QUOTE_EXPECTED, NOT_TEMP,
 TOO_MANY_LVARS, DIV_BY_ZERO);

char *prog; /* current location in source code */
char *p_buf; /* points to start of program buffer */
jmp_buf e_buf; /* hold environment for longjmp() */

Page 753

/* An array of these structures will hold the info
 associated with global variables.
*/
struct var_type {
 char var_name[ID_LEN];
 int v_type;
 int value;
} global_vars[NUM_GLOBAL_VARS];

struct var_type local_var_stack[NUM_LOCAL_VARS];

struct func_type {
 char func_name[ID_LEN];
 int ret_type;
 char *loc; /* location of entry point in file */
} func_table[NUM_FUNC];

int call_stack[NUM_FUNC];

struct commands { /* keyword lookup table */
 char command[20];
 char tok;
} table[] = { /* Commands must be entered lowercase */
 ''if", IF, /* in this table. */
 "else", ELSE,
 "for", FOR,
 "do", DO,
 "while", WHILE,
 "char", CHAR,
 "int", INT,
 "return", RETURN,
 "end", END,
 "", END /* mark end of table */
};

char token[80];
char token_type, tok;

int functos; /* index to top of function call stack */
int func_index; /* index into function table */
int gvar_index; /* index into global variable table */
int lvartos; /* index into local variable stack */

Page 754

int ret_value; /* function return value */

void print(void), prescan(void);
void decl_global(void), call(void), putback(void);
void decl_local(void), local_push(struct var_type i);
void eval_exp(int *value), sntx_err(int error);
void exec_if(void), find_eob(void), exec_for(void);
void get_params(void), get_args(void);
void exec_while(void), func_push(int i), exec_do(void);
void assign_var(char *var_name, int value);
int load_program(char *p, char *fname), find_var(char *s);
void interp_block(void), func_ret(void);
int func_pop(void), is_var(char *s), get_token(void);
char *find_func(char *name);

int main(int argc, char *argv[])
{
 if(argc != 2) {
 printf(''Usage: littlec <filename>\n");
 exit(1);
 }

 /* allocate memory for the program */
 if((p_buf = (char *) malloc(PROG_SIZE))==NULL) {
 printf("Allocation Failure");
 exit(1);
 }

 /* load the program to execute */
 if(!load_program(p_buf, argv[1])) exit(1);
 if(setjmp(e_buf)) exit(1); /* initialize long jump buffer */

 gvar_index = 0; /* initialize global variable index */

 /* set program pointer to start of program buffer */
 prog = p_buf;
 prescan(); /* find the location of all functions
 and global variables in the program */

 lvartos = 0; /* initialize local variable stack index */
 functos = 0; /* initialize the CALL stack index */

Page 755

 /* setup call to main() */
 prog = find_func(''main"); /* find program starting point */

 if(!prog) { /* incorrect or missing main() function in program */
 printf("main() not found.\n");
 exit(1);
 }

 prog--; /* back up to opening (*/
 strcpy(token, "main");
 call(); /* call main() to start interpreting */

 return 0;
}

/* Interpret a single statement or block of code. When
 interp_block() returns from its initial call, the final
 brace (or a return) in main() has been encountered.
*/
void interp_block(void)
{
 int value;
 char block = 0;

 do {
 token_type = get_token();

 /* If interpreting single statement, return on
 first semicolon.
 */

 /* see what kind of token is up */
 if(token_type == IDENTIFIER) {
 /* Not a keyword, so process expression. */
 putback(); /* restore token to input stream for
 further processing by eval_exp() */
 eval_exp(&value); /* process the expression */
 if(*token!=';') sntx_err(SEMI_EXPECTED);
 }
 else if(token_type==BLOCK) { /* if block delimiter */
 if(*token == '{') /* is a block */
 block = 1; /* interpreting block, not statement */

Page 756

 else return; /* is a }, so return */
 }
 else /* is keyword */
 switch(tok) {
 case CHAR:
 case INT: /* declare local variables */
 putback();
 decl_local();
 break;
 case RETURN: /* return from function call */
 func_ret();
 return;
 case IF: /* process an if statement */
 exec_if();
 break;
 case ELSE: /* process an else statement */
 find_eob(); /* find end of else block
 and continue execution */
 break;
 case WHILE: /* process a while loop */
 exec_while();
 break;
 case DO: /* process a do-while loop */
 exec_do();
 break;
 case FOR: /* process a for loop */
 exec_for();
 break;
 case END:
 exit(0);
 }
 } while (tok != FINISHED && block);
}

/* Load a program. */
int load_program(char *p, char *fname)
{
 FILE *fp;
 int i=0;

 if((fp=fopen(fname, "rb"))==NULL) return 0;

Page 757

 i = 0;
 do {
 *p = getc(fp);
 p++; i++;
 } while(!feof(fp) && i<PROG_SIZE);

 if(*(p-2) == 0x1a) *(p-2) = '\0'; /* null terminate the program */
 else *(p-1) = '\0';
 fclose(fp);
 return 1;
}

/* Find the location of all functions in the program
 and store global variables. */
void prescan(void)
{
 char *p, *tp;
 char temp[32];
 int datatype;
 int brace = 0; /* When 0, this var tells us that
 current source position is outside
 of any function. */

 p = prog;
 func_index = 0;
 do {
 while(brace) { /* bypass code inside functions */
 get_token();
 if(*token == '{') brace++;
 if(*token == '}') brace--;
 }

 tp = prog; /* save current position */
 get_token();
 /* global var type or function return type */
 if(tok==CHAR || tok==INT) {
 datatype = tok; /* save data type */
 get_token();
 if(token_type == IDENTIFIER) {
 strcpy(temp, token);
 get_token();

Page 758

 if(*token != '(') { /* must be global var */
 prog = tp; /* return to start of declaration */
 decl_global();
 }
 else if(*token == '(') { /* must be a function */
 func_table[func_index].loc = prog;
 func_table[func_index].ret_type = datatype;
 strcpy(func_table[func_index].func_name, temp);
 func_index++;
 while(*prog != ')') prog++;
 prog++;
 /* now prog points to opening curly
 brace of function */
 }
 else putback();
 }
 }
 else if(*token == '{') brace++;
 } while(tok != FINISHED);
 prog = p;
}

/* Return the entry point of the specified function.
 Return NULL if not found.
*/
char *find_func(char *name)
{
 register int i;

 for(i=0; i < func_index; i++)
 if(!strcmp(name, func_table[i].func_name))
 return func_table[i].loc;

 return NULL;
 }

/* Declare a global variable. */
void decl_global(void)
{
 int vartype;

 get_token(); /* get type */

Page 759

 vartype = tok; /* save var type */

 do { /* process comma-separated list */
 global_vars[gvar_index].v_type = vartype;
 global_vars[gvar_index].value = 0; /* init to 0 */
 get_token(); /* get name */
 strcpy(global_vars[gvar_index].var name, token);
 get_token();
 gvar_index++;
 } while(*token == ',');
 if(*token != ';') sntx_err(SEMI_EXPECTED);
}

/* Declare a local variable. */
void decl_local(void)
{
 struct var_type i;

 get_token(); /* get type */

 i.v_type = tok;
 i.value = 0; /* init to 0 */

 do { /* process comma-separated list */
 get_token(); /* get var name */
 strcpy(i.var_name, token);
 local_push(i);
 get_token ();
 } while(*token == ',');
 if(*token != ';') sntx_err(SEMI_EXPECTED);
}

/* Call a function. */
void call (void)
{
 char *loc, *temp;
 int lvartemp;

 loc = find_func(token); /* find entry point of function */
 if(loc == NULL)
 sntx_err(FUNC_UNDEF); /* function not defined */
 else {

Page 760

 lvartemp = lvartos; /* save local var stack index */
 get_args(); /* get function arguments */
 temp = prog; /* save return location */
 func_push(lvartemp); /* save local var stack index */
 prog = loc; /* reset prog to start of function */
 get_params(); /* load the function's parameters with
 the values of the arguments */
 interp_block(); /* interpret the function */
 prog = temp; /* reset the program pointer */
 lvartos = func_pop(); /* reset the local var stack */
 }
}

/* Push the arguments to a function onto the local
 variable stack. */
void get_args(void)
{
 int value, count, temp[NUM_PARAMS];
 struct var_type i;

 count = 0;
 get_token();
 if(*token != '(') sntx_err(PAREN_EXPECTED);

 /* process a comma-separated list of values */
 do {
 eval_exp(&value);
 temp[count] = value; /* save temporarily */
 get_token();
 count++;
 }while(*token = ',');
 count--;
 /* now, push on local_var_stack in reverse order */
 for(; count>=0; count--) {
 i.value = temp[count];
 i.v_type = ARG;
 local_push(i);
 }
}

/* Get function parameters. */
void get_params(void)

TE
AM
FL
Y

Team-Fly®

Page 761

{
 struct var_type *p;
 int i;

 i = lvartos-l;
 do { /* process comma-separated list of parameters */
 get_token();
 p = &local_var_stack[i];
 if(*token != ')') {
 if(tok != INT && tok != CHAR)
 sntx_err(TYPE_EXPECTED);

 p->v_type = token_type;
 get_token();

 /* link parameter name with argument already on
 local var stack */
 strcpy(p->var_name, token);
 get_token();
 i--;
 }
 else break;
 } while(*token == ',');
 if(*token != ')') sntx_err(PAREN_EXPECTED);
}

/* Return from a function. */
void func_ret(void)
{
 int value;

 value = 0;
 /* get return value, if any */
 eval_exp(&value);

 ret_value = value;
}

/* Push a local variable. */
void local_push(struct var_type i)
{
 if(lvartos > NUM_LOCAL_VARS)

Page 762

 sntx_err(TOO_MANY_LVARS);

 local_var_stack[lvartos] = i;
 lvartos++;
}

/* Pop index into local variable stack. */
int func_pop(void)
{
 functos--;
 if(functos < 0) sntx_err(RET_NOCALL);
 return call_stack[functos];
}

/* Push index of local variable stack. */
void func_push(int i)
{
 if(functos>NUM_FUNC)
 sntx_err(NEST_FUNC);
 call_stack[functos] = i;
 functos++;
}

/* Assign a value to a variable. */
void assign_var(char *var_name, int value)
{
 register int i;

 /* first, see if it's a local variable */
 for(i=lvartos-1; i >= call_stack[functos-1]; i--) {
 if(!strcmp(local_var_stack[i].var_name, var_name)) {
 local_var_stack[i].value = value;
 return;
 }
 }
 if(i < call_stack[functos-1])
 /* if not local, try global var table */
 for(i=0; i < NUM_GLOBAL_VARS; i++)
 if(!strcmp(global_vars[i].var_name, var_name)) {
 global_vars[i].value = value;
 return;
 }

Page 763

 sntx_err(NOT_VAR); /* variable not found */
}

/* Find the value of a variable. */
int find_var(char *s)
{
 register int i;

 /* first, see if it's a local variable */
 for(i=lvartos-1; i >= call_stack[functos-1]; i--)
 if(!strcmp(local_var_stack[i].var name, token))
 return local_var_stack[i].value;

 /* otherwise, try global vars */
 for(i=0; i < NUM_GLOBAL_VARS; i++)
 if(!strcmp(global_vars[i].var_name, s))
 return global_vars[i].value;

 sntx_err(NOT_VAR); /* variable not found */
 return -1;
}

/* Determine if an identifier is a variable. Return
 1 if variable is found; 0 otherwise.
*/
int is_var(char *s)
{
 register int i;

 /* first, see if it's a local variable */
 for(i=lvartos-1; i >= call_stack[functos-1]; i--)
 if(!strcmp(local_var_stack[i].var_name, token))
 return 1;

 /* otherwise, try global vars */
 for(i=0; i < NUM_GLOBAL_VARS; i++)
 if(!strcmp(global_vars[i].var_name, s))
 return 1;

 return 0;
}

Page 764

/* Execute an if statement. */
void exec_if(void)
{
 int cond;

 eval_exp(&cond); /* get if expression */

 if(cond) { /* is true so process target of IF */
 interp_block();
 }
 else { /* otherwise skip around IF block and
 process the ELSE, if present */
 find_eob(); /* find start of next line */
 get_token();

 if(tok != ELSE) {
 putback); /* restore token if
 no ELSE is present */
 return;
 }
 interp_block();
 }
}

/* Execute a while loop. */
void exec_while(void)
{
 int cond;
 char *temp;

 putback();
 temp = prog; /* save location of top of while loop */
 get_token();
 eval_exp(&cond); /* check the conditional expression */
 if(cond) interp_block(); /* if true, interpret */
 else { /* otherwise, skip around loop */
 find_eob();
 return;
 }
 prog = temp; /* loop back to top */
}

Page 765

/* Execute a do loop. */
void exec_do(void)
{
 int cond;
 char *temp;

 putback();
 temp = prog; /* save location of top of do loop */

 get_token(); /* get start of loop */
 interp_block(); /* interpret loop */
 get_token();
 if(tok != WHILE) sntx_err(WHILE_EXPECTED);
 eval_exp(&cond); /* check the loop condition */
 if(cond) prog = temp; /* if true loop; otherwise,
 continue on */
}

/* Find the end of a block. */
void find_eob(void)
{
 int brace;

 get_token();
 brace = 1;
 do {
 get_token();
 if(*token == '{') brace++;
 else if(*token == '}') brace--
;
 } while(brace);
}

/* Execute a for loop. */
void exec_for(void)
{
 int cond;
 char *temp, *temp2;
 int brace ;

 get_token();
 eval_exp(&cond); /* initialization expression */
 if(*token != ';') sntx_err(SEMI_EXPECTED);

Page 766

 prog++; /* get past the ; */
 temp = prog;
 for(;;) {
 eval_exp(&cond); /* check the condition */
 if(*token != ';') sntx_err(SEMI_EXPECTED);
 prog++; /* get past the ; */
 temp2 = prog;

 /* find the start of the for block */
 brace = 1;
 while(brace) {
 get_token();
 if(*token == '(') brace++;
 if(*token == ')') brace--;
 }

 if(cond) interp_block(); /* if true, interpret */
 else { /* otherwise, skip around loop */
 find_eob();
 return;
 }
 prog = temp2;
 eval_exp(&cond); /* do the increment */
 prog = temp; /* loop back to top */
 }
}

Handling Local Variables

When the interpreter encounters an int or char keyword, it calls decl_local() to create storage for a
local variable. As stated earlier, no global variable declaration statement will be encountered by the
interpreter once the program is executing, because only code within a function is executed.
Therefore, if a variable declaration statement is found, it must be for a local variable (or a parameter,
which will be discussed in the next section). In structured languages, local variables are stored on a
stack. If the language is compiled, the system stack is generally used; however, in an interpreted
mode, the stack for local variables must be maintained by the interpreter. The stack for local
variables is held by the array local_var_stack. Each time a local variable is encountered, its name,
type, and value (initially zero) are pushed onto the stack using local_push(). The global variable
lvartos indexes the stack. (For reasons that will become clear, there is no corresponding ''pop"
function. Instead, the local variable stack is reset each time a function returns.) The decl_local and
local_push() functions are shown here:

The decl_local () function first reads the type of the variable or variables being declared and sets
the initial value to zero. Next, it enters a loop, which reads a comma-separated list of identifiers.
Each time through the loop, the information about each variable is pushed onto the local variable
stack. At the end, the final token is checked to make sure that it contains a semicolon.

Page 767

/* Declare a local variable. */
void decl_local(void)
{
 struct var_type i;

 get_token(); /* get type */

 i.v_type = tok;
 i.value = 0; /* init to 0 */

 do { /* process comma-separated list */
 get_token(); /* get var name */
 strcpy(i.var_name, token);
 local_push(i);
 get_token ();
 } while(*token == ',');
 if(*token != ';') sntx_err(SEMI_EXPECTED);
}

/* Push a local variable. */
void local_push(struct var_type i)
{
 if(lvartos > NUM_LOCAL_VARS)
 sntx_err(TOO_MANY_LVARS);

 local_var_stack[lvartos] = i;
 lvartos++;
}

Calling User-Defined Functions

Probably the most difficult part of implementing an interpreter for C is the execution of user-defined
functions. Not only does the interpreter need to begin reading the source code at a new location and
then return to the calling routine after the function terminates, but it must also deal with these tasks:
the passing of arguments, the allocation of parameters, and the return value of the function.

All function calls (except the initial call to main()) take place through the expression parser from
the atom() function by a call to call(). It is the call() function

Page 768

that actually handles the details of calling a function. The call() function is shown here, along with
two support functions. Let's examine these functions closely.

/* Call a function. */
void call(void)
{
 char *loc, *temp;
 int lvartemp;

 loc = find_func(token); /* find entry point of function */
 if(loc == NULL)
 sntx_err(FUNC_UNDEF); /* function not defined */
 else {
 lvartemp = lvartos; /* save local var stack index */
 get_args(); /* get function arguments */
 temp = prog; /* save return location */
 func_push(lvartemp); /* save local var stack index */
 prog = loc; /* reset prog to start of function */
 get_params(); /* load the function's parameters with
 the values of the arguments */
 interp_block(); /* interpret the function */
 prog = temp; /* reset the program pointer */
 lvartos = func_pop(); /* reset the local var stack */
 }
}

/* Push the arguments to a function onto the local
 variable stack. */
void get_args(void)
{
 int value, count, temp[NUM_PARAMS];
 struct var_type i;

 count = 0;
 get_token();
 if(*token != '(') sntx_err(PAREN_EXPECTED);

 /* process a comma-separated list of values */
 do {
 eval_exp(&value);
 temp[count] = value; /* save temporarily */
 get_token();

Page 769

 count++;
 } while(*token == ',');
 count--;
 /* now, push on local_var_stack in reverse order */
 for(; count>=0; count--) {
 i.value = temp[count];
 i.v_type = ARG;
 local_plush(i);
 }
}

/* Get function parameters. */
void get_params(void)
{
 struct var_type *p;
 int i;

 i = lvartos-1;
 do { /* process comma-separated list of parameters */
 get_token();
 p = &local_var_stack[i];
 if(*token != ')') {
 if(tok != INT && tok != CHAR)
 sntx_err(TYPE_EXPECTED);

 p->v_type = token_type;
 get_token();

 /* link parameter name with argument already on
 local var stack */
 strcpy(p->var_name, token);
 get_token();
 i--;
 }
 else break;
 } while(*token == ',');
 if(*token != ')') sntx_err(PAREN_EXPECTED);
}

The first thing that call() does is find the location of the entry point in the source code to the
specified function by calling find_func(). Next, it saves the current value of the local variable stack
index, lvartos, into lvartemp; then it calls get_args() to process

Page 770

any function arguments. The get_args() function reads a comma-separated list of expressions and
pushes them onto the local variable stack in reverse order. (The expressions are pushed in reverse
order so that they can be more easily matched with their corresponding parameters.) When the
values are pushed, they are not given names. The names of the parameters are given to them by the
get_params() function, which will be discussed in a moment.

Once the function arguments have been processed, the current value of prog is saved in temp. This
location is the return point of the function. Next, the value of lvartemp is pushed onto the function
call stack. The routines func_push() and func_pop() maintain this stack. Its purpose is to store the
value of lvartos each time a function is called. This value represents the starting point on the local
variable stack for variables (and parameters) relative to the function being called. The value on the
top of the function call stack is used to prevent a function from accessing any local variables other
than those it declares.

The next two lines of code set the program pointer to the start of the function and link the name of
its formal parameters with the values of the arguments already on the local variable stack with a call
to get_params(). The actual execution of the function is performed through a call to interp_block
(). When interp_block() returns, the program pointer (prog) is reset to its return point, and the
local variable stack index is reset to its value before the function call. This final step effectively
removes all of the function's local variables from the stack.

If the function being called contains a return statement, then interp_block() calls func_ret() prior
to returning to call(). This function processes any return value. It is shown here:

/* Return from a function. */
void func_ret(void)
{
 int value;

 value = 0;
 /* get return value, if any */
 eval_exp(&value);

 ret_value = value;
}

The variable ret_value is a global integer that holds the return value of a function. At first glance,
you might wonder why the local variable value is first assigned the return value of the function and
then is assigned to ret_value. The reason is that functions can be recursive and eval_exp() may
need to call the same function in order to obtain its value.

TE
AM
FL
Y

Team-Fly®

Page 771

Assigning Values to Variables

Let's return briefly to the expression parser. When an assignment statement is encountered, the value
of the right side of the expression is computed, and this value is assigned to the variable on the left
using a call to assign_var(). However, as you know, the C language is structured and supports
global and local variables. Thus, given a program such as this

int count;

int main()
{
 int count, i;

 count = 100;

 i = f();

 return 0;
}

int f()
{
 int count;
 count = 99;
 return count;
}

how does the assign_var() function know which variable is being assigned a value in each
assignment? The answer is simple: First, in C, local variables take priority over global variables of
the same name; second, local variables are not known outside their own function. To see how we
can use these rules to resolve the above assignments, examine the assign_var() function, shown
here:

/* Assign a value to a variable. */
void assign_var(char *var_name, int value)
{
 register int i;

 /* first, see if it's a local variable */
 for(i=lvartos-1; i >= call_stack[functos-1]; i--) {
 if(!strcmp(local_var_stack[i].var_name, var_name)) {

Page 772

 local_var_stack[i].value = value;
 return;
 }
 }
 if(i < call_stack[functos-1])
 /* if not local, try global var table */
 for(i=0; i < NUM_GLOBAL_VARS; i++)
 if(!strcmp(global_vars[i].var_name, var_name)) {
 global_vars[i].value = value;
 return;
 }
 sntx_err(NOT_VAR); /* variable not found */
}

As explained in the previous section, each time a function is called, the current value of the local
variable stack index (lvartos) is pushed onto the function call stack. This means that any local
variables (or parameters) defined by the function will be pushed onto the stack above that point.
Therefore, the assign_var() function first searches local_var_stack, beginning with the current top-
of-stack value and stopping when the index reaches that value saved by the latest function call. This
mechanism ensures that only those variables local to the function are examined. (It also helps
support recursive functions because the current value of lvartos is saved each time a function is
invoked.) Therefore, the line ''count = 100;" in main() causes assign_var() to find the local
variable count inside main(). In f(), assign_var() finds its own count and does not find the one in
main().

If no local variable matches the name of a variable, the global variable list is searched.

Executing an if Statement

Now that the basic structure of the Little C interpreter is in place, it is time to add some control
statements. Each time a keyword statement is encountered inside interp_block(), an appropriate
function is called, which processes that statement. One of the easiest is the if. The if statement is
processed by exec_if(), shown here:

/* Execute an if statement. */
void exec_if(void)
{
 int cond;

 eval_exp(&cond); /* get if expression */

Page 773

 if(cond) { /* is true so process target of IF */
 interp_block();
 }
 else { /* otherwise skip around IF block and
 process the ELSE, if present */
 find_eob(); /* find start of next line */
 get_token();

 if(tok != ELSE) {
 putback(); /* restore token if
 no ELSE is present */
 return;
 }
 interp_block();
 }
}

Let's look closely at this function. The first thing the function does is to compute the value of the
conditional expression by calling eval_exp(). If the condition (cond) is true (nonzero), the function
calls interp_block() recursively, allowing the if block to execute. If cond is false, the function
find_eob() is called, which advances the program pointer to the location immediately after the end
of the if block. If an else is present, the else is processed by exec_if(), and the else block is
executed. Otherwise, execution simply begins with the next line of code.

If the if block executes and there is an else block present, there must be some way for the else block
to be bypassed. This is accomplished in interp_block() by simply calling find_eob() to bypass the
block when an else is encountered. Remember, the only time an else will be processed by
interp_block() (in a syntactically correct program) is after an if block has been executed. When an
else block executes, the else is processed by exec_if().

Processing a while Loop

A while loop, like the if, is quite easy to interpret. The function that actually performs this task,
exec_while(), is shown here:

/* Execute a while loop. */
void exec_while(void)
{
 int cond;
 char *temp;

Page 774

 putback();
 temp = prog; /* save location of top of while loop */
 get_token();
 eval_exp(&cond); /* check the conditional expression */
 if(cond) interp_block(); /* if true, interpret */
 else { /* otherwise, skip around loop */
 find_eob();
 return;

 }
 prog = temp; /* loop back to top */
}

The exec_while() works like this: First, the while token is put back into the input stream, and the
location of the while is saved into temp. This address will be used to allow the interpreter to loop
back to the top of the while. Next, the while is reread to remove it from the input stream, and
eval_exp() is called to compute the value of the while's conditional expression. If the conditional
expression is true, then interp_block() is called recursively to interpret the while block. When
interp_block() returns, prog (the program pointer) is loaded with the location of the start of the
while loop, and control returns to interp_block(), where the entire process repeats. If the
conditional expression is false, the end of the while block is found, and the function returns.

Processing a do-while Loop

A do-while loop is processed much like the while. When interp_block() encounters a do
statement, it calls exec_do(), shown here:

/* Execute a do loop. */
void exec_do(void)
{
 int cond;
 char *temp;

 putback();
 temp = prog; /* save location of top of do loop */

 get_token(); /* get start of loop */
 interp_block(); /* interpret loop */
 get_token();
 if(tok != WHILE) sntx_err(WHILE_EXPECTED);

Page 775

 eval_exp(&cond); /* check the loop condition */
 if(cond) prog = temp; /* if true loop; otherwise,
 continue on */
}

The main difference between the do-while and the while loops is that the do-while always executes
its block of code at least once because the conditional expression is at the bottom of the loop.
Therefore, exec_do() first saves the location of the top of the loop into temp and then calls
interp_block() recursively to interpret the block of code associated with the loop. When
interp_block() returns, the corresponding while is retrieved, and the conditional expression is
evaluated. If the condition is true, prog is reset to the top of the loop; otherwise, execution will
continue on.

The for Loop

The interpretation of the for loop poses a more difficult challenge than the other constructs. Part of
the reason for this is that the structure of the C for is definitely designed with compilation in mind.
The main trouble is that the conditional expression of the for must be checked at the top of the loop,
but the increment portion occurs at the bottom of the loop. Therefore, even though these two pieces
of the for loop occur next to each other in the source code, their interpretation is separated by the
block of code being iterated. However, with a little work, the for can be correctly interpreted.

When interp_block() encounters a for statement, exec_for() is called. This function is shown here:

/* Execute a for loop. */
void exec_for(void)
{
 int cond;
 char *temp, *temp2;
 int brace ;

 get_token();
 eval_exp(&cond); /* initialization expression */
 if(*token != ';') sntx_err(SEMI_EXPECTED);
 prog++; /* get past the ; */
 temp = prog;
 for(;;) {
 eval_exp(&cond); /* check the condition */
 if(*token != ';') sntx_err(SEMI_EXPECTED);
 prog++; /* get past the ; */

Page 776

 temp2 = prog;

 /* find the start of the for block */
 brace = 1;
 while(brace) {
 get_token();
 if(*token == '(') brace++;
 if(*token == ')') brace--;
 }

 if(cond) interp_block(); /* if true, interpret */
 else { /* otherwise, skip around loop */
 find_eob();
 return;
 }
 prog = temp2;
 eval_exp(&cond); /* do the increment */
 prog = temp; /* loop back to top */
 }
}

This function begins by processing the initialization expression in the for. The initialization portion
of the for is executed only once and does not form part of the loop. Next, the program pointer is
advanced to a point immediately after the semicolon that ends the initialization statement, and its
value is assigned to temp. A loop is then established, which checks the conditional portion of the
for loop and assigns temp2 a pointer to the start of the increment portion. The beginning of the loop
code is found, and, finally, if the conditional expression is true, the loop block is interpreted.
(Otherwise, the end of the block is found, and execution continues on after the for loop.) When the
recursive call to interp_block() returns, the increment portion of the loop is executed, and the
process repeats.

The Little C Library Functions

Because the C programs executed by Little C are never compiled and linked, any library routines
they use must be handled directly by Little C. The best way to do this is to create an interface
function that Little C calls when a library function is encountered. This interface function sets up the
call to the library function and handles any return values.

Because of space limitations, Little C contains only five ''library" functions: getche(), putch(),
puts(), print(), and getnum() . Of these, only puts(), which outputs a string

Page 777

to the screen, is part of Standard C. The getche() function is a common extension to C for
interactive environments. It waits for and returns a key struck at the keyboard. This function is
found in many compilers. putch() is also defined by many compilers that are designed for use in an
interactive environment. It outputs a single character argument to the console. It does not buffer
output. The functions getnum() and print() are my own creations. The getnum() function returns
the integer equivalent of a number entered at the keyboard. The print() function is a very handy
function that can output either a string or an integer argument to the screen. The five library
functions are shown here in their prototype forms:

int getche(void); /* read a character from keyboard and
 return its value */
int putch(char ch); /* write a character to the screen */
int puts(char *s); /* write a string to the screen */
int getnum(void); /* read an integer from the keyboard and
 return its value */
int print(char *s); /* write a string to the screen */
or
int print(int i); /* write an integer to the screen */

The Little C library routines are shown here. You should call the file LCLIB.C.

/****** Internal Library Functions *******/

/* Add more of your own, here. */

#include <conio.h> /* if your compiler does not
 support this header file,
 remove it */
#include <stdio.h>
#include <stdlib.h>

extern char *prog; /* points to current location in program */
extern char token[80]; /* holds string representation of token */
extern char token_type; /* contains type of token */
extern char tok; /* holds the internal representation of token */

enum tok_types {DELIMITER, IDENTIFIER, NUMBER, KEYWORD,
 TEMP, STRING, BLOCK};

/* These are the constants used to call sntx_err() when
 a syntax error occurs. Add more if you like.

Page 778

 NOTE: SYNTAX is a generic error message used when
 nothing else seems appropriate.
*/
enum error_msg
 {SYNTAX, UNBAL_PARENS, NO_EXP, EQUALS_EXPECTED,
 NOT_VAR, PARAM_ERR, SEMI_EXPECTED,
 UNBAL_BRACES, FUNC_UNDEF, TYPE_EXPECTED,
 NEST_FUNC, RET_NOCALL, PAREN_EXPECTED,
 WHILE_EXPECTED, QUOTE_EXPECTED, NOT_STRING,
 TOO_MANY_LVARS, DIV_BY_ZERO};

int get_token(void);
void sntx_err(int error), eval_exp(int *result);
void putback(void);

/* Get a character from console. (Use getchar() if
 your compiler does not support _getche().) */
int call_getche()
{
 char ch;
 ch = _getche();
 while(*prog!=') ') prog++;
 prog++; /* advance to end of line */
 return ch;
}

/* Put a character to the display. */
int call_putch()
{
 int value;

 eval_exp(&value);
 printf(''%c", value);
 return value;
}

/* Call puts(). */
int call_puts(void)
{
 get_token();
 if(*token!='(') sntx_err(PAREN_EXPECTED);
 get_token();

Page 779

 if(token_type!= STRING) sntx_err(QUOTE_EXPECTED);
 puts(token);
 get_token();
 if(*token!=')') sntx_err(PAREN_EXPECTED);

 get_token();
 if(*token!=';') sntx_err(SEMI_EXPECTED);
 putback();
 return 0;
}

/* A built-in console output function. */
int print(void)
{
 int i;

 get_token();
 if(token!='(') sntx_err(PAREN_EXPECTED);

 get_token();
 if(token_type==STRING) { /* output a string */
 printf(''%s ", token);
 }
 else { /* output a number */
 putback();
 eval_exp(&i);
 printf("%d ", i);
 }

 get_token();

 if(*token!= ')') sntx_err(PAREN_EXPECTED);

 get_token();
 if(*token!=';') sntx_err(SEMI_EXPECTED);
 putback();
 return 0;
}

/* Read an integer from the keyboard. */
int getnum(void)
{

Page 780

 char s[80];

 gets(s);
 while(*prog != ')') prog++;
 prog++; /* advance to end of line */
 return atoi(s);
}

To add library functions, first enter their names and the addresses of their interface functions into the
intern_func array. Next, following the lead of the functions shown previously, create appropriate
interface functions.

Compiling and Linking the Little C Interpreter

Once you have entered all three files that make up Little C, compile and link them together. You can
use just about any modern C compiler, including Visual C++. If you use Visual C++, you can use a
sequence such as the following:

cl -c parser.c
cl -c lclib.c
cl littlec.c parser.obj lclib.obj

For some versions of Visual C++, Little C may not be given sufficient stack space. You can use
the /F option to increase the stack. Specifying /F 6000 will be sufficient for most uses. However,
you might need to increase the size of the stack even more when interpreting highly recursive
programs.

If you use a different C compiler, simply follow the instructions that come with it.

Demonstrating Little C

The following C programs demonstrate Little C. The first demonstrates all features supported by
Little C.

/* Little C Demonstration Program #1.

 This program demonstrates all features
 of C that are recognized by Little C.
*/

TE
AM
FL
Y

Team-Fly®

Page 781

int i, j; /* global vars */
char ch;

int main()
{
 int i, j; /* local vars */

 puts("Little C Demo Program.");

 print_alpha();

 do {
 puts(''enter a number (0 to quit): ");
 i = getnum();
 if(i < 0) {
 puts("numbers must be positive, try again");
 }
 else {
 for(j = 0; j < i; j=j+1) {
 print(j);
 print("summed is");
 print(sum(j));
 puts("");
 }
 }
 } while(i!=0);

 return 0;
}

/* Sum the values between 0 and num. */
int sum(int num)
{
 int running_sum;

 running_sum = 0;

 while(num) {
 running_sum = running_sum + num;
 num = num - 1;
 }
 return running_sum;

Page 782

}

/* Print the alphabet. */
int print_alpha()
{
 for(ch = 'A'; ch<='Z'; ch = ch + 1) {
 putch(ch);
 }
 puts(''");

 return 0;
}

The next example demonstrates nested loops.

/* Nested loop example. */
int main()
{
 int i, j, k;

 for(i = 0; i < 5; i = i + 1) {
 for(j = 0; j < 3; j = j + 1)
 for(k = 3; k ; k = k - 1)
 print(i);
 print(j);
 print(k);
 puts("");
 }
 }
 }
 puts("done");

 return 0;
}

The next program demonstrates the assignment operator.

/* Assignments as operations. */
int main()
{
 int a, b;

Page 783

 a = b = 10;

 print(a); print(b);

 while(a=a-1) {
 print(a);
 do {
 print(b);
 } while((b=b-1) > -10);
 }

 return 0;
}

Recursive functions are demonstrated by the next program. In it, the function factr() computes the
factorial of a number.

/* This program demonstrates recursive functions. */

/* return the factorial of i */
int factr(int i)
{
 if(i<2) {
 return 1;
 }
 else {
 return i * factr(i-1);
 }
}

int main()
{
 print(''Factorial of 4 is: ");
 print(factr(4));

 return 0;
}

The next program fully demonstrates function arguments.

/* A more rigorous example of function arguments. */

int f1(int a, int b)

Page 784

 {
 int count;

 print("in f1");

 count = a;
 do {
 print(count);
 } while(count=count-1);

 print(a); print(b);
 print(a*b);
 return a*b;
}

int f2(int a, int x, int y)
{
 print(a); print(x);
 print(x / a);
 print(y*x);

 return 0;
}

int main()
{
 f2(10, f1(10, 20), 99);

 return 0;
}

The final program exercises the loop statements.

/* The loop statements. */
int main()
{
 int a;
 char ch;

 /* the while */
 puts(''Enter a number: ");
 a = getnum();
 while(a) {

Page 785

 print(a);
 print(a*a);
 puts(''");
 a = a - 1;
 }

 /* the do-while */
 puts("enter characters, 'q' to quit");
 do {
 ch = getche();
 } while(ch !='q');

 /* the for */
 for(a=0; a<10; a = a + 1) {
 print(a);
 }

 return 0;
}

Improving Little C

The Little C interpreter presented in this chapter was designed with transparency of operation in
mind. The goal was to develop an interpreter that could be easily understood with the least amount
of effort. It was also designed in such a way that it could be easily expanded. As such, Little C is not
particularly fast or efficient; however, the basic structure of the interpreter is correct, and you can
increase its speed of execution by following the steps described in this section.

Virtually all commercial interpreters expand the role of the prescanner. The entire source program
being interpreted is converted from its ASCII human-readable form into an internal form. In this
internal form, all but quoted strings and constants are transformed into single-integer tokens, much
the way that Little C converts the C keywords into single-integer tokens. It may have occurred to
you that Little C performs a number of string comparisons. For example, each time a variable or
function is searched for, several string comparisons take place. String comparisons are very costly in
terms of time; however, if each token in the source program is converted into an integer, much faster
integer comparisons can be used. The conversion of the source program into an internal form is the
single most important change you can make to Little C in order to improve its efficiency. Frankly,
the increase in speed will be dramatic.

Another area of improvement, meaningful mostly for large programs, is the lookup routines for
variables and functions. Even if you convert these items into integer tokens, the current approach to
searching for them relies upon a sequential search. You could, however, substitute some other, faster
method, such as a binary tree or some sort of hashing method.

Page 786

As stated earlier, one restriction that Little C has relative to the full C grammar is that the objects of
statements such as if— even if single statements— must be blocks of code enclosed between curly
braces. The reason for this is that it greatly simplifies the find_eob() function, which is used to find
the end of a block of code after one of the control statements executes. The find_eob() function
simply looks for a closing curly brace to match the one that starts the block. You might find it an
interesting exercise to remove this restriction. One approach to this is to redesign find_eob() so that
it finds the end of a statement, expression, or block. Keep in mind, however, that you will need to
use a different approach to finding the end of the if, while, do-while, and for statements when they
are used as single statements.

Expanding Little C

There are two general areas in which you can expand and enhance the Little C interpreter: C features
and ancillary features. Some of these are discussed briefly in the following sections.

Adding New C Features

There are two basic categories of C statements you can add to Little C. The first is additional action
statements, such as the switch, the goto, and the break and continue statements. You should have
little trouble adding any of these if you study closely the construction of the statements that Little C
does interpret.

The second category of C statement you can add is support for new data types. Little C already
contains the basic ''hooks" for additional data types. For example, the var_type structure already
contains a field for the type of variable. To add other elementary types (for example, float, double,
and long), simply increase the size of the value field to the size of the largest element you wish to
hold.

Supporting pointers is no more difficult than supporting any other data type. However, you will need
to add support for the pointer operators to the expression parser.

Once you have implemented pointers, arrays will be easy. Space for an array should be allocated
dynamically using malloc(), and a pointer to the array should be stored in the value field of
var_type.

The addition of structures and unions poses a slightly more difficult problem. The easiest way to
handle them is to use malloc() to allocate space for an object and then store a pointer to the object
in the value field of the var_type structure. (You will also need special code to handle the passing
of structures and unions as parameters.)

To handle different return types for functions, you will need to make use of the ret_type field in the
func_type structure. This field defines what type of data a function returns. It is currently set, but
otherwise unused.

You might also want to try allowing Little C to accept //-style comments. This change takes place
within get_token() and is easy to implement.

One final thought— if you like to experiment with language constructs, don't be afraid to add a non-
C extension. By far the most fun I've had with language

Page 787

interpreters is making them do things not specified by the language. If you want to add a Pascal-like
REPEAT-UNTIL construct, for example, go ahead and do it! If something doesn't work the first
time, try finding the problem by printing out each token as it is processed.

Adding Ancillary Features

Interpreters give you the opportunity to add several interesting and useful features. For example, you
can add a trace facility that displays each token as it is executed. You can also add the ability to
display the contents of each variable as the program executes. Another feature you might want to
add is an integrated editor so that you can ''edit and go" instead of having to use a separate editor to
create your C programs.

Page 789

INDEX

& (bitwise operator), 49, 50

& (pointer operator), 53-55, 121, 186, 189

&&, 46, 47, 48

< >, 265, 266

->, 56-57, 189-190, 192, 194, 197

* (multiplication operator), 43

* (pointer operator), 53-55, 121, 131, 189

* (printf() placeholder), 220-221

|, 49, 50

| |, 46, 47, 48

[], 57, 96

^, 49, 50, 225

:, 53

, (comma operator), 56

{ }, 8, 22, 28, 64, 88, 93, 111, 290, 719

. (dot operator), 56-57, 176-177, 192, 194, 197

!, 46, 47, 48

!=, 47, 48

=, 36, 40

= =, 47, 48

<, 47, 48

<<, 49, 51-52

<=, 47, 48

-, 43, 44

--, 44-45, 692-693, 700

(), 57, 61, 135

% (format specifier), 213, 221

% (modulus operator), 43

+, 43

++, 44-45, 692-693, 700

(preprocessor directive), 262

Page 790

(preprocessor operator), 272-273

(printf() modifier), 220

(preprocessor operator), 272-273

?, 53, 69-71, 72

>, 47, 48

>>, 49, 51-52

>=, 47, 48

;(semicolon), 76, 93, 174

/, 43

/* */, 274-275

/ /, 275

~, 49, 52-53

A

abort(), 440-441

abs(), 441

acos(), 386-387

acosh(), 387

Ada, 5, 6

Address, memory

& operator used to return, 54

displaying, 215

inputting, 224

pointer as, 53

Addressing, 32-bit versus 16-bit, 662

ALGOL, 6

AND

& bitwise operator, 49, 50

&& logical operator, 47

ANSI C standard, 4

TE
AM
FL
Y

Team-Fly®

API (Application Program Interface), 304, 662

argc, 155-158

Arguments, function, 149-155

call by reference passing convention, 150-151

call by value passing convention, 149-150

command line, 155-158

passing arrays as, 152-155

argv, 130, 155-158

Arithmetic operators, 43-46

precedence of, 45

Array(s)

accessing with pointers, 109, 128-129

bounds checking on, 6, 97, 354, 705-706

declaration, using type qualifiers in, 286

definition of, 96

designated initializers and, 291-292

dynamically allocated, 140-142

generating pointer to, 97-98

indexing versus pointer arithmetic, 694

initialization, 110-113

logical versus physical, 565

multidimensional, 107-108

passing, to functions, 98-99, 103, 107-108, 152-155

of pointers, 129-130, 572-575

single-dimension, 96-97

sorting, 498-511

square brackets for indexing, 57

of strings, 106-107

of structures, 178-185

within structures, 192, 291

two-dimensional, 101-105

unsized, 112-113

variable-length, 113-114, 285

See also Sparse arrays

Arrow operator (->), 56-57, 189-190, 192, 194, 197

Art of C (Schildt), The, 719

Page 791

Artificial intelligence (AI) and problem solving. See Problem solving, AI-based

asctime(), 418-419

asin(), 387-388

asinh(), 388

Assembly language, 5, 8

assert(), 441-442

<assert.h> header, 442

Assignment

compound, 42-43

multiple, 42

operator, 40

pointer, 122-123

shorthand, 43

structure, 177

type conversion in, 40-42

atan(), 388-389

atan2(), 390

atanh(), 389-390

atexit(), 442-443

atof(), 443-444

atoi(), 444-445

atol(), 445-446

atoll(), 446

auto keyword, 22

Automatic variables, 22

B

B language, 4

Backslash character constants, table of, 39

BASIC, 5, 7, 8

BCPL language, 4

Binary

code, 9

search, 519-520

trees, 553-561, 569-571

Bit shift operators (>> and <<), 51-52

Bit-fields, 174, 195-198

Bitmaps, 660

Bitwise operation, definition of, 48-49

Bitwise operators, 48-53

table of, 49

Block

scope, 28, 148

statements, 93-94

structured language, 6, 149

_Bool data type, 18, 46, 65, 284, 493

bool macro, 284, 493

_ _bool_true_false_are_defined macro, 493

break statement, 73, 74, 75, 89-90

bsearch(), 446-448, 518

Bubble sort, 500-503

C

C, informal theory of, 719-722

C versus C++, 14

C Programming Language (Kernighan & Ritchie), The, 4

C89, 1-2, 4

C99, 2, 4, 278-297

C/C++ Annotated Archives (Schildt), The, 719

C++, 1-2, 4, 5, 9

C++: The Complete Reference (Schildt), 14

Call by reference, 150-152, 189

Call by value, 149-150

CALLBACK calling convention, 664

Callback function, 664

Calling sequence, 694, 695

calloc(), 434-435

cbrt(), 391

Case sensitivity in C, 11, 21

case statement, 73-75

Page 792

Casts, 60-61

ceil(), 391-392

cgets(), 209

char data type, 18, 19, 20

Character(s)

in console I/O, 206-209, 223

constants, 37

constants, table of backslash, 39

control, 354

in file I/O, 235-236

functions, wide-, 472-482

handling functions, 354-365, 381-382

printable, 354

clearerr(), 310-312

clock(), 419-420

clock_t type, 418

CLOCKS_PER_SEC macro, 418

COBOL, 5, 8

Code

absolute, 281

block, 8, 22, 719, 720

compartmentalization of, 6-8

and declarations, interspersed, 286-287

hiding, 683-685

in-line, 695, 698

object. See Object code

portable, creating, 698-699

relocatable, 281

source. See Source code

Combinatorics, 608

Comma operator, 56

Command line arguments, 155-158

Comments, 274-275, 286

Compilation

of C program with C++ compiler, 14

conditional, 266-270

methods of, 13

separate, 12-13, 302-303

Compile time, 15

Compilers versus interpreters, 9-10, 714, 715

_Complex data type, 18, 284, 484

Complex library, 484

math functions, table of, 485-487

complex macro, 484

<complex.h> header, 284, 293, 484

_Complex_I macro, 484

Compound statements, 64, 93

Conditional expression, 72

const type qualifier, 28-30, 286

Constants, 37-39

continue statement, 91-93

copysign(), 392

cos(), 392-393

cosh(), 393-394

CreateWindow() API function, 672-

cscanf(), 209

ctime(), 420-421

<ctype.h> header, 354

D

Data

compartmentalization of, 6-8

engines, 522

in expressions, 18

hiding, 683-685

Data types

C, table of, 19

basic, 18

conversion of, in assignments, 40-42

conversion of, in expressions, 59-60

custom, creating, 174

Page 793

definition of, 6

machine representations of, 522

modifiers for basic, 18-20

portability and sizes of, 201-203, 699

_ _DATE_ _ predefined macro, 273, 274

Debugging

debugger for, 708

theory, 709

See also Errors

Decrement operator (—), 44-45, 692-693,

default statement, 73

#define directive, 262-265

and function-like macros, 264-265

and preprocessor operators # and ##, 272-273

using, to make programs portable, 698-699

defined compile-time operator, 270-271

Definition file, 676

DefWindowProc() API function, 675

difftime(), 421

DispatchMessage() API function, 675

div(), 440, 448-449

div_t type, 440, 448

DLLs (Dynamic Link Libraries), 304

do-while loop, 86-87, 92

Dot operator (.), 56-57, 176-177, 192, 194, 197

double data type, 18, 19

Dynamic allocation, 138-142

functions for, 434-438

Dynamic Link Libraries (DLLs), 304

E

EDOM macro, 385

Efficiency, programming techniques for, 692-698

#elif directive, 266, 267-269

else, 64, 65, 66, 68

#else directive, 266, 267-269

#endif, 266-269

enum keyword, 198, 201

Enumerations, 198-200

EOF macro, 207, 232, 310

ERANGE macro, 385

erf(), 394

erfc(), 394

errno global variable, 310, 385

<errno.h> header, 385

Error checking, run-time, 6

#error directive, 265

Errors

argument, 708

boundary, 705-706

function prototype omission, 706-707

one-off, 704-705

order-of-evaluation, 700

pointer, 701-703

stack overrun, 708

syntax, 703-704

See also Debugging

Escape sequences, 39

exit(), 90-91, 161, 449-450

TE
AM
FL
Y

Team-Fly®

_Exit(), 450

EXIT_FAILURE macro, 90, 439, 440

EXIT_SUCCESS macro, 90, 439, 440

exp(), 395

exp2(), 395

expm1(), 395-396

Expression(s), 58-61, 720-722

conditional, 72-76

Page 794

definition of, 18, 58

dissecting, 584-586

evaluation order, 58-59

function calls used in, 70, 160

numeric, definition of, 582

parsing, 582, 586-588

production rules, 586, 721

statements, 93

type conversion in, 59-60

See also Parser, recursive descent

extern storage class specifier, 30-33

External names, 21

F

fabs(), 396

false macro, 284, 493

fclose(), 161, 235, 312

fdim(), 397

FE_DFL_ENV macro, 488

<fenv.h> header, 293, 488

FENV_ACCESS pragma, 488

fenv_t type, 488

feof(), 238-239, 313

ferror(), 235, 236, 241-243, 313-314

fexcept_t type, 488

fflush(), 244, 314-315

fgetc(), 236, 315-316

fgetpos(), 316

fgets(), 210, 239-240, 256-257, 317-318

FIFO (first-in, first-out), 522

File(s)

in C I/O system, 230, 231-232

checking for EOF in binary, 238

closing, 235

control structure, 232

erasing, 243-244

make, 686

opening, 232-235

pointer, 232, 310

scope, 27, 149

sorting random-access disk, 515-518

FILE data type, 232, 305, 310

File position indicator, 231

resetting, 240-241

_ _FILE_ _ predefined macro, 271, 273

float data type, 18, 19

Floating-point environment

functions, table of, 489

library, 488

floor(), 397

fma(), 398

fmax(), 398

fmin(), 398-399

fmod(), 399

fopen(), 232-235, 318-319

FOPEN_MAX macro, 232, 235, 319

for loop, 6, 76-83, 90, 92

declaring variables in, 279

general form of, 76

infinite, 82

variations of, 77-82

with no body, 82-83

FORTRAN, 5, 7

fpclassify(), 384

fpos_t data type, 232, 310

fprintf(), 254-256, 320

fputc(), 235, 321

fputs(), 239-240, 321-322

fread(), 245-248, 322-323

free(), 138, 139, 434, 435-436

freopen(), 258-259, 323-324

frexp(), 399-400

fscanf(), 254-256, 324-325

fseek(), 232, 253-254, 325-326, 515

Page 795

fsetpos(), 326-327

ftell(), 254, 327-328

_ _func_ _ predefined identifier, 293-294

Function(s), 7, 148-172, 719, 720

arguments. See Arguments, function

calling and returning sequences for, 694, 695

declaration, implicit, 281, 296

formal parameters of. See Parameters, formal

general form of, 148

implicit int rule and, 170-171

inline, 172, 282-284

passing entire structures to, 187-188, 189

passing multidimensional arrays to, 103, 107-108

passing pointers to, 150-152

passing single-dimension arrays to, 98-99

passing structure members to, 186

pointers to, 134-138

prototype scope, 28

prototypes, 166-169, 305-306, 706-707

recursive, 164-166, 708

returning from, 158-160

returning pointers from, 162-163

returning values from, 160-162

scope, 28, 148-149

stand-alone, 7, 33, 694

termination, 442

type declaration statement, old-style, 168-169

used in expressions, 70, 160

void, 163-164

fwide(), 475-477

fwrite(), 194, 245-248, 328-329

G

Generic pointer, 123

getc(), 236, 238, 329-330

getch(), 208-209

_getch(), 209, 529

getchar(), 206-208, 223, 330-331

getche(), 208-209

_getche(), 209

getenv(), 450-451

GetMessage() API function, 674-675

gets(), 154, 209-210, 331-332

GetStockObject() API function, 671

gmtime(), 422

goto statement, 7, 28, 88, 148

Graphic Device Interface (GDI), 662

H

Hashing, 575-579

Headers, 169, 266, 305-308

C89, table of, 306

C99, table of, 307

function-like macros in, 307-308

Heap, 13, 138

Hexadecimal constants, 38

Hoare, C.A.R., 456, 508

HUGE_VAL macro, 384, 385

HUGE_VALF macro, 384

HUGE_VALL macro, 384

hypot(), 400

I

I macro, 484

Icons, 660, 670

IDE (integrated development environment), 689-690, 715

Page 796

Identifiers, 20-21

#if directive, 266-269, 270-271

if statement

conditional expression to control, 72

general form of, 64-65

and if-else-if ladder, 67-69

nested, 66-67

? as alternative to, 69-71, 72

#ifdef directive, 269-270

#ifndef directive, 269-270

ilogb(), 400-401

_Imaginary data type, 18, 284, 484

imaginary macro, 484

_Imaginary_I macro, 484

imaxdiv(), 490

imaxdiv_t structure, 490

Implicit int rule, 170-171, 281, 294-296

#include directive, 265-266

Increment operator (++), 44-45, 692-693, 700

Incremental testing, 709

Infinite loop, 82

INFINITY macro, 384

In-line code, 282-284

for efficiency, 694-698

inline keyword, 172, 265, 282-284, 698

int data type, 18, 19, 20

as default function return type, 170-171, 281, 294-295

int16_t type, 297, 488

int_fast32_t type, 297, 488

int_least16_t type, 297, 488

Integer

format conversion functions, table of, 491

types and macros defined by <stdint.h>, 488, 490

Integral promotion, 59

Integrated development environment (IDE), 689-690, 715

Internal names, 21

Interpreter(s)

practical importance of, 714-715

prescan, 745

and structured languages, 718-719

versus compilers, 9-10, 714, 715

Interpreter, Little C, 715-787

compiling and linking, 780

expanding, 786-787

expression parser for, 722-744

improving, 785-786

library functions, 776-780

main() function, 748-749

prescan, 745-748, 785

production rules, 721

specifications, 715-718

intmax_t type, 297, 490

intptr_t type, 490

<inttypes.h> header, 293, 490

I/O, console, 206-227

basic functions for, table of, 210

and characters, 206-209

connection with file I/O, 257-258

formatted, 212-227

and strings, 209-212

I/O, file, 230-259

ANSI C versus UNIX, 230

C versus C++, 230

and characters, 235-236

connection with console I/O, 257-258

files in, 230, 231-232

formatted with fprintf() and fscanf(), 254-

functions, table of common, 233

TE
AM
FL
Y

Team-Fly®

Page 797

random-access, 253-254

reading and writing blocks of data in, 245-248

standard streams, 256-258

streams in, 230, 231

I/O functions, Standard C, 310-352

wide-character, 474-477

I/O, redirectable, 256, 257

isalnum(), 354-355

isalpha(), 355-356

isblank(), 356-357

iscntrl(), 357

isdigit(), 358

isfinite(), 384

isgraph(), 358-359

isgreater(), 384

isgreaterequal(), 384

isinf(), 384

isless(), 384

islessequal(), 385

islessgreater(), 385

islower(), 359-360

isnan(), 384

isnormal(), 384

<iso646.h> header, 293

isprint(), 360-361

ispunct(), 361

isspace(), 362

isupper(), 362-363

iswctype(), 473-474

isxdigit(), 363-364

Iteration statements, 76-87

J

Java, 715

jmp_buf data type, 453

Jump statements, 87-93

K

kbhit(), 89

_kbhit(), 529

Kernighan, Brian, 4

Keywords

added by C99, table of, 11

C89, table of, 10

extended, common, 10

L

Label, 28, 88

labs(), 451

Languages, characteristics of computer, 5-9

LC_ALL macro, 427, 428

LC_COLLATE macro, 427, 428

LC_CTYPE macro, 428

LC_MONETARY macro, 428

LC_NUMERIC macro, 428

LC_TIME macro, 428

lconv structure, 418, 423-424

ldexp(), 401

ldiv(), 440, 452

ldiv_t type, 440, 452

lgamma(), 402

Library

definition of, 15

dynamic link (DLL), 304

files versus object files, 305

functions, redefining, 308

standard, 11-12, 302, 304, 305

LIFO (last-in, first -out), 531

#line directive, 271-272

_ _LINE_ _ predefined macro, 271-272, 273

Line-buffered input, 207

Linked lists

doubly, 541-553

Page 798

singly, 536-541

for sparse arrays, 565-569

Linker

definition of, 15

and library files, 305

operation of, 302-304, 308

overlay, 281-282

Linking, 11, 302-304

dynamic, 304

and global variables, 32-33

library and, 13, 308

Lists, linked. See Linked lists

Literals, 37

compound, 290-291

llabs(), 451-452

lldiv(), 453

lldiv_t structure, 453

llrint(), 402

llround(), 402-403

LoadCursor() API function, 670-671

LoadIcon() API function, 670

LoadImage() API function, 670

localeconv(), 418. 423-425

<locale.h> header, 418

localtime(), 425-426

log(), 403

log1p(), 404

log2(), 405

log10(), 404-405

logb(), 405

Logical operators, 46-48

truth table for, 46

long long modifier, 18, 285

long modifier, 18, 19

longjmp(), 453-454, 604

Loops, 7, 64

do-while, 86-87

for. See for loop

infinite, 82

message (Windows), 665, 674-675

while, 83-86

with no bodies, 82-83

LRESULT data type, 664

lrint(), 406

lround(), 406

lvalue, 40

M

Machine code, 9

Macro

function-like, 264-265, 287, 307-308

name, 262

predefined, 273-274

replacement, 262

type-generic math, 490, 492-493

main(), 11, 720

argc and argv as arguments to, 155-158

return value from, 164

using void in parameter list of, 158

and Windows programs, 664

MAKE, 685-689

Make file, general form of, 686

malloc(), 138-139, 140, 141, 434, 436-437, 701-702

<math.h> header, 384

math_errhandling macro, 384, 385

MATH_ERRNO macro, 384, 385

MATH_ERREXCEPT macro, 384, 385

MB_CUR_MAX macro, 440

mblen(), 454-455

mbstate_t type, 472, 480

mbstowcs(), 455-456

mbtowc(), 456

memchr(), 364-365

Page 799

memcmp(), 365-366

memcpy(), 282, 366-367

memmove(), 367

Memory

dynamic allocation of, 138-142, 434-438

regions of, 13-14

memset(), 368

Message(s), 664-665

loop, 665, 674-675

mktime(), 426-427

modf(), 406-407

Modula-2, 5, 6, 8

Mouse, 661

cursor, loading, 670-671

MSG structure, 666, 674, 675

Multitasking, preemptive, 662

N

NAN macro, 384

nan(), 407

NDEBUG macro, 442

nearbyint(), 407-408

nextafter(), 408

nexttoward(), 408

NOT logical operator (!), 47

NULL macro, 132, 232, 440

Numeric constants, 37-38

O

Object code, 9, 15, 302

synchronizing, with source code, 685-

Octal constants, 38

Offset, 303

One's complement operator, 49, 52-53

Operator(s), 40-58

arithmetic, 43-46

assignment, 40

bitwise, 48-53

comma, 56

compile-time, 55-56, 270-271

dot and arrow, 56-57

pointer, 53-55, 121

precedence summary table, 58

preprocessor, 272-273

relational and logical, 46-48

ternary, 53, 69-71

OR

bitwise operator (|), 49, 50

logical operator (| |), 47

Overlays, 303-304

P

Parameters, formal, 25-26, 148, 149

declarations, classic versus modem, 171-172

variable number of, 169-170

Parameters, reference, 152

Parity bit, 50

Parser, recursive descent, 582, 586-604

definition of, 587, 723

Little C, 722-744

syntax checking in, 604

Parser, table-driven, 584, 722-723

Pascal, 5, 6, 8

perror(), 332

POINT structure, 674

Pointer(s), 120-146

accessing arrays with, 128-129

arithmetic, 109, 124-125, 694

arrays of, 129-130, 572-575

assignments, 122-123

base type of, 54, 121, 124, 125

comparisons, 126-127, 144-145

Page 800

conversions, 123-124

definition of, 53, 120

file, 232, 310

generic, 123

indexing, 108-110

initializing, 131-134, 143-144, 145-146, 702

multiple indirection with, 130-131

operators, 53-55, 121

passed to functions, 150-152

problems with, 143-146

restrict-qualified, 142-143, 282

returned from functions, 162-163

structure, 188-192

to arrays, generating, 97-98

to functions, 134-138

void*, 123, 124, 138, 139, 162

Portability, 5

and operating system dependencies, 699

using #define for, 698-699

using sizeof to ensure, 201-203, 699

PostQuitMessage() API function, 675

pow(), 409

#pragma directive, 272

_Pragma operator, 272, 288

Pragmas, built-in, 288

Preprocessor directives, 262-272

Preprocessor operators, 272-273

printf(), 212-221, 292-293, 332-336

and disk file I/O, 257

TE
AM
FL
Y

Team-Fly®

format specifiers, table of, 213, 334

return value of, 161, 212, 333

Problem solving, AI-based, 606-656

backtracking and, 617

and combinatoric explosions, 608-610

and finding multiple solutions, 637-645

and finding optimal solution, 645-652

terminology, 606-608

See also Search (AI)

Program(s), 719-720

creating executable form of, 13

general form of, 10-11, 12

systems, 9

See also Software engineering

Programming for efficiency, 692-698

Prototypes, function, 166-169, 305-306, 706-707

Pseudocode, 681

Push and pop operations, 531, 694

putc(), 235, 336-337

putchar(), 206-207, 256, 337

puts(), 209, 210, 337-338

Q

qsort(), 456-458, 498

Queues, 522-530

Quicksort, 456, 508-511

R

raise(), 458

rand(), 459

RAND_MAX macro, 440, 459

Random-access disk files, sorting, 515-518

Random numbers, generating, 459, 460-461

realloc(), 434, 437-438

Recursion, 164-166, 708

Page 801

register storage class specifier, 35-36

for efficiency, using, 693-694

RegisterClassEx() API function, 671

Relational operator(s), 46-48

Relocatable format, 11-12

remainder(), 409-410

remove(), 243-244, 338-339

remquo(), 410

rename(), 339

restrict type qualifier, 28, 142-143, 282, 286, 310, 354

return statement, 87, 296

using to return from a function, 158-160

using to return a value, 160-162

Returning sequence, 694, 695

rewind(), 240-241, 340

Richards, Martin, 4

rint(), 410-411

Ritchie, Dennis, 4

round(), 411

Run time, 15

allocating memory at, 138-142

rvalue, 40

S

Scalar, 65

scalbln(), 411

scalbn(), 412

scanf(), 221-227, 292-293, 340-345

format specifiers, table of, 222, 341

Scanset, 224-225, 343

Scopes, C, 27-28

Search (AI)

adding heuristics to, 626-628

breadth-first, 625-626

depth-first, 613-625

evaluating a, 610-611

exhaustive, 610, 637, 646

hill-climbing, 628-635

least-cost, 635-636

and node removal, 639-645

and path removal, 638-639

technique, choosing, 636-637

Searching, 518-520

as AI problem-solving technique, 606

SEEK_CUR macro, 232, 253, 325

SEEK_END macro, 232, 253, 325

SEEK_SET macro, 232, 253, 254, 325

Selection statements, 64-76

setjmp(), 459-460, 604

<setjmp.h> header, 453, 459

setlocale(), 427-428

setvbuf(), 345-346

Shaker sort, 503

Shell sort, 506-508

short modifier, 18, 19

ShowWindow() API function, 673-674

SIG_DFL macro, 460

SIG_ERR macro, 460

SIG_IGN macro, 460

SIGABRT macro, 458

SIGFPE macro, 458

SIGILL macro, 458

SIGINT macro, 458

Sign flag, 20

signal(), 460

<signal.h> header, 458

signbit(), 384

signed modifier, 18, 19

SIGSEGV macro, 458

SIGTERM macro, 458

sin(), 161, 412-413

sinh(), 413-414

sizeof operator, 55-56, 201-203, 285, 699

Page 802

size_t data type, 55-56, 232, 310, 354, 440, 472

snprintf(), 346

Software engineering

and creating bulletproof functions, 682-685

and top-down design method, 680-682

using an IDE for, 689-690

using MAKE in, 685-689

Sorting, 497-518

algorithms, judging, 499-500

arrays, 498-511

with bubble sort, 500-503

by exchange, 499, 500, 508

by insertion, 499, 505-506

key, 498

with quicksort, 508-511

random-access disk files, 515-518

by selection, 499, 504-505

with shaker sort, 503

with Shell sort, 506-508

strings, 512-513

structures, 513-515

Source code, 302

definition of, 15

synchronizing, with object code, 685-689

Sparse arrays, 564-580

binary tree, 569-571

choosing an approach for, 580

hashing and, 575-579

linked-list, 565-569

pointer array, 572-575

sprintf(), 347

sqrt(), 161, 414

srand(), 460-461

sscanf(), 347-348

Stack

as a data engine, 531-535

and local variables, 24

as memory region, 13

overruns, 708

Statements, 719, 720

block, 93-94

expression, 93

iteration, 76-87

jump, 87-93

label, 64, 73

null, 93

selection, 64-76

static storage class specifier, 24, 33-35, 149, 286

<stdarg.h> header, 468

<stdbool.h> header, 284, 293, 493

_ _STDC_ _ predefined macro, 273, 274

_ _STDC_HOSTED_ _ predefined macro, 274, 289

_ _STDC_IEC_559_ _ predefined macro,
289

_ _STDC_IEC_559_COMPLEX_ _ predefined macro, 279

_ _STDC_ISO_10646_ _ predefined macro, 289

_ _STDC_VERSION_ _ predefined macro, 289

<stddef.h> header, 37

stderr standard stream, 256, 257, 442

stdin standard stream, 256-259

<stdint.h> header, 293, 297, 488, 490

<stdio.h> header, 206, 232, 305, 310

<stdlib.h> header, 90, 138, 434, 472

stdout standard stream, 256-259

Storage class specifiers, 30-36

strcat(), 100, 368-369

strchr(), 100, 369-370

Page 803

strcmp(), 80, 100, 101, 135-136, 370-371, 512, 513

strcoll(), 371

strcpy(), 100, 372, 513

strcspn(), 372-373

Streams, 230-231

flushing, 231, 244

Streams, standard, 256-259

strerror(), 373

strftime(), 428-431

format commands, table of, 429-430

String(s)

as array, 96, 99-101

arrays of, 106-107

in console I/O, 209-212, 223-224

constants, 38, 100

in file I/O, 239-240

sorting, 512-513

table, 134, 512

string class (C++), 100

String handling functions, 100-101, 365-381

wide-character, 477-478

<string.h> header, 100, 354

strlen(), 29-30, 85, 100, 373-374

strncat(), 374-375

strncmp(), 375-376

strncpy(), 376-377

strpbrk(), 377

strrchr(), 377-378

strspn(), 378-379

strstr(), 100, 379-380

strtod(), 461-463

strof(), 463

strtok(), 380-381

strtol(), 463-464

strold(), 464

stroll(), 465

strtoul(), 465-466

stroull(), 466

strxfrm(), 381

struct keyword, 174, 201

Structure(s)

accessing member of, 176-177

arrays and structures within, 192

arrays of, 178-185

assignments, 177

declaration, 174, 176

designated initializers and, 291-292

and flexible array members, 291

to functions, passing entire, 187-188, 189

members to functions, passing, 186

pointers, 188-192

and sizeof, 201-202

sorting, 513-515

variable, declaring, 174-176

switch statement, 72-76, 89, 90

system(), 467

Systems program, 9

T

TE
AM
FL
Y

Team-Fly®

tan(), 414-415

tanh(), 415-416

Ternary operator (?), 53, 69-71, 72

tgamma(), 416

<tgmath.h> header, 293, 492

Thompson, Ken, 4

Time

broken-down, 418

calendar, 418

time(), 431-432

_ _TIME_ _ predefined macro, 273, 274

Page 804

<time.h> header, 418

time_t type, 418

tm structure, 418

tmpfile(), 348-349

tmpnam(), 349-350

Token, 584, 723

tolower(), 381-382

toupper(), 382

towctrans(), 474

TranslateMessage() API function, 675

Translation unit, 27

True and false in C, 46, 64

true macro, 284, 493

trunc(), 416

Two's complement, 20

Type conversions in assignments, 40-42

Type promotion, 59-60, 297

Type qualifiers, 28-30

typedef statement, 30, 203

U

uintmax_t type, 297, 490

uintptr_t type, 490

#undef directive, 270

ungetc(), 350

union keyword, 193, 201

Unions, 174, 193-195

and sizeof, 201-203

UNIX, 4

unsigned modifier, 18, 19

UpdateWindow() API function, 674

V

va_arg(), 467-469

_ _VA_ARGS_ _, 287-288

va_copy(), 467-469

va_end(), 467-469

va_list data type, 468

Variable, 21-27

automatic, 22

declaration versus definition of, 31, 32

declaration within for loop, 83

initializing, 36-37

pointer, 53, 54-55, 121

storage class specifiers for, 30-36

type qualifiers, 28-30

Variables, global, 26-27, 148

extern used with, 32-33

static, 34-35

Variables, local, 21-26

static used with, 24, 33-34, 35, 149

va_start(), 467-469

vfprintf(), 351-352

vfscanf(), 352

void data type, 18, 19

volatile type qualifier, 30, 286

vprintf(), 351-352

vscanf(), 352

vsnprintf(), 351-352

vsprintf(), 351-352

vsscanf(), 352

W

<wchar.h> header, 293

wchar_t type, 37, 310, 354, 440, 472

WCHAR_MAX, 472

WCHAR_MIN, 472

wcstombs(), 469-470

wctomb(), 470

wctrans(), 474

wctrans_t type, 472

wctype(), 473-474

Page 805

<wctype.h> header, 293, 472

wctype_t type, 472

WEOF, 472

while loop, 83-86, 92

Wide-character functions, 472-482

Win32 API, 662

WINAPI calling convention, 664

Window

class, 665, 666

components of, 662-663

creating, 672-673

displaying, 673-674

function, 664-665, 666, 675

Windows

application basics, 664-666

and C, 660

data types, 665-666

desktop model, 661

and DLLs, 304

interaction with programs, 662, 663-664

and the mouse, 661

and multitasking, 662, 669

naming conventions, 676-677

programming overview, 660-662

skeleton, 666-675

Windows 2000 Programming from the Ground Up (Schildt), 660

WINDOWS.H header file, 665, 668

WinMain(), 664, 665, 666, 669, 674, 675

wint_t type, 472

WM_DESTROY message, 675

WM_QUIT message, 675

WNDCLASSEX structure, 666, 668, 669-670

X

XOR

bitwise operator (^), 49, 50

logical operation, 46-48

	sample.pdf
	sterling.com
	Welcome to Sterling Software

