
Software Development
Lifecycle

Steve Macbeth
Group Program Manager

Search Technology Center
Microsoft Research Asia

About Me

• Currently manage a team of 10 Program
Managers at Microsoft Research Asia

• Over 20 years experience in all aspects
and stages of software development and
the software business

• Worked at Microsoft for 5 years
• Started two software/technology

companies before joining Microsoft

Agenda

• Overview of Software Development
Lifecycle

• Organization and Roles
• Break (10 minutes)
• Tools of the Trade
• Best Practices
• Break (15 minutes)
• Q&A

Definition

A software development lifecycle is a
structure imposed on the development of

a software product. Synonyms include
development lifecycle and software
process. There are several models for

such processes, each describing
approaches to a variety of tasks or
activities that take place during the

process.

vinayaka
Typewritten Text

vinayaka
Typewritten Text

vinayaka
Typewritten Text
 www.jkdirectory.yolasite.com

vinayaka
Typewritten Text

vinayaka
Sticky Note
Accepted set by vinayaka

Various Methodologies
• Waterfall

– Traditional sequential development requirements, design, code, test, release,
often used for large-scale mission critical applications

• Iterative Development
– Small design, code, test cycles to uncover problems early, often used for

commercial development contracts

• Agile Software Development
– Built on iterative model, more people centric, relies on feedback for control,

difficult to do long-term planning

• Extreme Programming
– Built on iterative model, coding is done in pairs, design and coding are merged,

• Test Driven Development
– Write unit test automation first, then write production code until unit test passes

• Formal Methods
– Mathematically based, designed to ensure quality in mission critical systems

Product Development

• Identify a Problem that needs to be solved
• Create a plan for your Solution to the

Problem
• Design the software necessary for the

Solution
• Implement the software that supports the

Design
• Release/Deploy the software
• Support the software

Process at Microsoft

• High-level guidelines, interpreted and
implemented differently across teams and
projects

• Phases can overlap and can have smaller
cycles nested

• Most projects use a hybrid model that is
waterfall for high-level planning and
release, but iterative for
design/development

Engineering Disciplines

• Program Management (PM)
• Development (Dev)
• Testing (Test)

PUM Organizational Model

PUM Organizational Model

• Single point of ownership across
disciplines

• Doesn’t scale as well to large complex
systems

• Smaller teams create less career
development opportunities

• Most often found in smaller teams

Functional Organizational Model

Functional Organizational Model

• Dev/Test/PM work together as a triad to make
product decisions, escalation to VP for issues

• No single point of ownership on a specific
feature

• Scales better to large organizations
• Creates significant critical mass within a

discipline

• Most often used in large complex projects
(Office, Windows, Live Services)

PM Responsibility
• Defining the Problem Space

– Understanding customer requirements, industry direction,
competitors

• Create Solution Framework together with
engineering team
– UI guidelines, system architecture, design constraints,

domain modeling
• Create Solution Specification

– Document high priority/impact design decisions, document
exit criteria

• Project Management
– Project tracking, status reporting, communication, risk

assessment/mitigation

What makes a great PM?

• Someone who loves technology and is
passionate about how it can be used to
have a real impact on customers lives

• Must always be thinking about how to
optimize

• Must be a great diplomat
• Must be always finding ways to simplify

Developer Responsibility

• Develop Solution
Framework/Specification together with
PM

• Document technical Design/Architecture
• Delivering quality Code that matches both

Solution Framework and Specification
and has been adequately Tested

• Support code/service after release

What makes a great Developer?

• Strong background in algorithms,
mathematics, computer science

• Can design the simplest solution that
meets the current requirements, but can
be easily extended to meet unexpected
requirements

• Can write quality code that is easy to
maintain, debug and extend

• Can stay focused for long periods of time
and deal with all of the details

Test Responsibilities
• Develop Solution Framework/Specification

together with PM, focused on exit/release
criteria

• Document test cases and tool design
• Develop code that will automate assuring the

code ships at the right quality level
• Develop code that will automate assuring the

system continues to operate in production
• Determine when the “product” is ready to

ship

What makes a great Tester?

• Passionate about making sure our
systems improve the lives of our
customers

• Excellent problem
solving/troubleshooting skills

• Can stay very focused on the smallest
details and ensure nothing is left to
chance

• Good at approaching a problem from
multiple perspectives

Break

10 minutes

Review

• Product Development Methodologies
• Development Team Roles & Organization

• Next?
– Roles during each phase
– Tools of the trade
– Best Practices

Early Phase

• Know the product vision/problem space
• Fully understand and document the key

user scenarios
• Learn about your customers
• Establish good relationships between

disciplines and partner teams
• Design before you code
• Research technologies and educate

yourself

PM during early phase
• This part of the project is driven by PM’s
• Should start before the last phase in the

previous cycle ends
• PM’s should be gathering user data,

requirements, feedback, etc in order to plan
next set of features

• Deliverables: vision document, problem
definition, high level feature list, user
scenarios

Scenarios

• Scenarios are end to end from the users
perspective

• Important to really understand how users
will interact with the system and to
understand end to end
requirements/dependencies

• Scenarios should be developed with and
reviewed by real users

• Scenarios should drive feature list

Automated User Feedback

• PM team should work with engineering
team to build in mechanisms to provide
automated user feedback

• Query Logs/Click Through Data
• SQM/Watson
• Verbose User Feedback

Feature List

• An ordered list of features that may be
built during this development cycle

• Engineering team (dev/test) provide
bottom up estimates for all features (week
or month resolution)

• Feature list should include impact
• Primary planning document for

scoping/resource allocation

Dev during early phase

• Supporting bug fixes for previous cycle
• Training and skill development for next

cycle
• Research new technologies, prototyping

around core technology problems for next
cycle

• Stay connected to PM team during
planning

• Post-mortem from last cycle

Test during early phase

• Completing last phase of previous cycle
• Training and skill development for next

cycle
• Research new technologies, prototyping

around core technology problems for next
cycle

• Stay connected to PM team during
planning

• Post-mortem from last cycle

Middle Phase

• Divided into major milestones (M1, M2,
etc.)

• Each milestone is a mini-release
– A set of features delivered on a certain date
– Phases

• Planning and design
• Implementation
• Stabilization and Integration
• Post-Mortem

PM during middle phase

• Completing Solution Framework/Solution
Specification

• Finalizing feature list
• Managing project details (status, risk, etc.)

Solution Specification

• Well articulated Problem Definition
• Document Solution Framework so

everyone on the project team is making
decisions in the same way

• One line description of all features
• One page spec for all features likely to be

built
• Full specs for all features planned for the

first milestone

Dev during middle phase

• This part of the project is driven by Dev
• Developing design documents
• Writing code, unit testing, debugging

• Deliverables:
– Quality code!

Unit Testing

• Developers are responsible for testing
their own code, to ensure that it works
within local constrains and can be checked
in without breaking other code

• Unit testing can and should be automated
to provide regression testing for old
features during changes

Code Complete

• Target date for completing all features for
this milestone

• Feature should be unit tested, checked in,
integrated with other code, BVT’s pass

• Shift focus from quality at a local level to
quality at a global level

• Focus on stabilizing, not adding new
features

Source Code Control

• Used to manage all source code
necessary to build the system

• Enables version control, roll-back, merging,
branching

• Automated system to build the software
from source code

• Automated system to verify new code
didn’t break existing functionality,
regression testing

Code Reviews

• Every line of code should be reviewed by
peers before declaring code complete

• Great coaching/mentoring opportunity for
junior engineering staff

• Good mechanism to ensure architectural
continuity

• Ensure quality at an early stage in project

Test during middle phase

• Developing automated test frameworks to
ensure quality end to end functionality,
system performance, scalability

• Tracking defect rates to alert team to
quality problems

• Deliverables:
– Test automation

Defect Tracking

• Necessary to track every defect that is
detected after a piece of code is declared
code complete

• Triage used to determine which defects to
fix, which to punt, how to resolve

• Bug Jail – used to prevent quality from
getting out of control

Three Disciplines, Three Tools

• Program Manager
– Feature List, Automated User Feedback

• Developer
– Source Code Control System, BVT

• Tester
– Defect Tracking System

Late Phase

• End game!
• Stabilize, tightly manage any changes
• All changes are linked to defects or design

change requests
• Everyone should be focused on shipping

PM during late phase

• Working with test on driving triage
• Writing specs for design change requests
• Making sure no details are overlooked
• Starting to think about next cycle

Triage

• Triage is usually driven by either senior
tester or senior PM

• During the end phase of a project all
defects should be reviewed by triage team

• Determine which defects should be fixed
• Determine how defects will be resolved

Not all bugs are worth fixing!
1. When this bug happens, how bad is the impact?

(Severity)
2. How often does this bug happen? (Frequency)
3. How much effort would be required to fix this bug?

(Effort)
4. What is the risk of fixing this bug? (Risk)

Fixing bugs is only important when the value of
having the bug fixed exceeds the cost of the
fixing it.
(severity + frequency) > (effort + risk)

Dev during late phase

• Fixing high priority defects
• Participating in triage
• Helping test with integration, performance,

scalability testing

Test during late phase
• The part of the project is driven by Test
• Focused on measuring/tracking quality by

looking at defect rates/severity
• Manage alpha, beta and dogfood releases
• Use triage to manage all changes after code

complete

• Deliverables:
– Decision to ship!

Three disciplines, Three
deliverables

• Program Management
– Problem definition, feature list, solution

specification
• Development

– Quality code that meets solution specification
• Testing

– Deciding when to ship

Break

15 minutes

Review

• Software Development Lifecycle
• Team structure and roles
• Tools of the trade
• Best Practices

Things to insist on!
• Vision document with executive support
• End to end user scenarios for all high priority features
• Feature list with engineering estimates
• Solution specification for all high priority features
• Code complete should only be declared when unit testing and code

review is complete
• All code managed by a version control system
• All defects managed by a defect management system
• Defects come before new features
• Daily build, build breaks come before everything
• Triage all changes after code complete
• Well defined release criteria
• Test automation coverage of all high priority user scenarios
• Test decides when system is ready to ship

Open Discussion

