
Introduction to C

History of C:

 C is a structured/procedure oriented, high-level and
machine independent programming language.

 The root of all modern languages is ALGOL, introduced in
the early 1960.

 In 1967, Martin Richards developed a language called BCPL.

 In 1970, ken thompson created a language using many
features of BCPL and called it simply B.

 In 1972, Dennis Ritchie developed a language from the best
features of ALGOL,BCPL & B and called it simply C

 It was developed at AT&T bell labs.

PROGRAMMING IN C & DATA STRUCTURES

Introduction to C

Characteristics / Features of C

 C is General purpose, structured programming language.

 C is highly portable i.e., it can be run in different OS.

 C is robust language, whose rich set of built in functions and
operators can be used to any solve complex problems.

 C has ability to extend itself, we can continuously add our
own functions to the existing system.

 C is well suited for writing both System S/W and Application
S/W

 C program can be run on different OS with little or no
modifications.

 C is also a middle level language i.e., it supports low level &
middle level language features

PROGRAMMING IN C & DATA STRUCTURES

Introduction to C

 C language allows reference to a memory location with the
help of pointers, which holds address of memory location.

 C language allows dynamic memory allocation.

 C language allows to manipulate data at bit level.

 C programs are fast & efficient.

 C has rich set of operators.

 C are used to develop System programs like OS, Compiler &
Assembler etc.

 C is a case sensitive programming language

PROGRAMMING IN C & DATA STRUCTURES

Introduction to C

Structure of the C program

PROGRAMMING IN C & DATA STRUCTURES

Documentation Section

Preprocessor Section

Definition Section

Global declaration section
main()
{

declaration part;
execution part;

}

Introduction to C

Documentation Section:

 it consist of set of comment lines used to specify the name of
the program, the author etc.

 Comments are begin with /* and end with */, these are not
executable, the compiler is ignored any thing in between /*
*/

 Ex: /* welcome to C world */

Preprocessor Section:

 One major part of the C program is preprocessor.

 The preprocessor directives are commands that give
instructions to C preprocessor.

 Whose job is modify the text of the C program before it
compiled.

PROGRAMMING IN C & DATA STRUCTURES

Introduction to C

 A preprocessor begin with #.

 Two most common preprocessor directives are #include &
#define.

 Every C compiler contains collection of predefined function
& symbols.

 Pre defined functions & symbols are organized in the form of
header files whose name ends with .h.

 For Ex: stdio.h,conio.h etc.

 The #include directive causes the preprocessor to insert
definitions from a standard header file.

 For Ex: #include<stdio.h>

 Stdio.h having libaray functions like printf(), scanf() etc

PROGRAMMING IN C & DATA STRUCTURES

Introduction to C

Definition Section

 The definition section defines all symbolic constants.

 For Ex: #define PI 3.142.

Global Declaration:

 the variables that are used in more than one function
throughout the program are called global variables and are
declared out side of all the functions.

main() function:

 Every C program must have one main() function, which
specify the starting of C program.

 Every C program execution begin from main() only.

 main() function is entry point of the program.

PROGRAMMING IN C & DATA STRUCTURES

Introduction to C

 C program allows any number other functions, which are
called user defined functions.

 Every C function contains two parts.

1-> declaration part: this part is used to declare all the
variables that are used in the executable part of the program
and called local variables.

2-> executable part: it contains at least one valid C
statement.

 Every function execution begins with opening brace { and
end with closing brace }.

 Note: the closing brace(}) of the main function indicate end
of the program.

Note: C program is a collection of functions.

PROGRAMMING IN C & DATA STRUCTURES

Introduction to C

Sample C program

/* this is a simple C program */ documentation

#include<stdio.h> pre-processor section

void main()

{

printf(“Welcome to C”);

}

 Every C program stored on a disk in the form of file.

 File : file is named collection of data & instructions.

 Every file name contains two parts which are separated by dot(.)

 First part is name of the file and second part is extension.

 For Ex: add.c add is name of the file & .c is extension.

 Extension defines type of the file.

PROGRAMMING IN C & DATA STRUCTURES

Introduction to C

 Name defines purpose of the file.

 Dictionary : it is a collection of files.

 All the statements in the program ends with a semicolon(;)
except conditional & control statements.

Programming Rules

 All the statements in C program should be written in lower
case letters. Upper case letters are only used for symbolic
constants.

 The program statements can be write anywhere between two
braces({, }) .

 The programmer can also write one or more statements in
one line separating them with a semicolon.

 C is a free form language.

 C is a case sensitive language

PROGRAMMING IN C & DATA STRUCTURES

Introduction to C

Executing a „C‟ program

 Execution is the process of running the program,

 To execute a „C‟ program, we need to perform the following
steps.

1)Creating the program: creating the program means
entering or editing the program by using standard „C „
editor and save the program with .c as an extension.

 For Ex: sample.c.

 The popular C editors are turbo c, borland c, ANSI C etc.

2)Compiling the program: this is the process of converting
the high level language to machine level language.

 The above process is performed ,only when the program is
syntactically & semantically correct .

PROGRAMMING IN C & DATA STRUCTURES

Introduction to C

 The mistakes in a program are called errors.

 In C program errors are broadly divide into two types

 1)syntax errors 2)logical errors

 Syntax: it is a set of rules & regulations of programming language.
(Or) grammar of the programming language

Syntax Error:

 the grammatical errors in the program are called syntax errors.

 Syntax errors are easy to correct, because of C editor provide brief
description about the error along with line number.

 During the compilation, C compiler scan the entire program to
detect syntax errors.

 Error free programs only compiled.

 Once the program is successfully compiled, it will generate three
different files.

PROGRAMMING IN C & DATA STRUCTURES

Introduction to C

 These are .bak, .obj, .exe.

 .bak are backup file, which are used for recover the source
code.

 .obj are object file, it is collection of machine instructions
that is output of compiler.

 .exe are the executable files, which are used for executing the
program.

Note: C programs are compiled by using functional
key F9.

Linking the program with system library.

 The linker is a systems program ,it combines user object file
and library object files and also perform cross references.

 The linker output is .exe file and store on the disk.

PROGRAMMING IN C & DATA STRUCTURES

Introduction to C

 .exe is executable file: it is collection of machine
instructions and are ready to execute under CPU.

Executing the program

 Loader is a systems program, it loads .exe file from disk to
RAM and informs to the CPU beginning of the execution.

 Semantics: semantics are nothing but meaning of the
identifier.

 C program execution always begin from main() function

 Note: C programs are executed by using CTRL +
F9.

PROGRAMMING IN C & DATA STRUCTURES

Introduction to C

Diagrammatic Representation C Program Execution

PROGRAMMING IN C & DATA STRUCTURES

Linker
Link to

other obj
files

Source File
Format:text

Compiler
Translate high

level to
machine level

Word
processor (or)

editor

Loader
To load

.exe from
disk to
RAM

Error
Message

Other object files
Format:binary

Object File
Format:binary

Executable
File

Format:binary

output Computer input

Basics of C

Learning Stages of C Language:

C character Set:

Alphabet : A – Z, a – z

digits : 0 – 9

special Characters: + = _ -) (* & ^ % $ # @ ! ~ ` “ „ ; , . / ?

white spaces/escape sequence : blank space, tab, new line
etc

 C uses ASCII character Set.

 There are 128 ASCII symbols

 Each character represents by one byte.

PROGRAMMING IN C & DATA STRUCTURES

characters tokens statements functions

Basics of C

 Each ASCII symbol having unique ASCII value.

For Ex: 0 49 * 43

1 50) 42

enter 13

A 66

a 98

Tokens:

 Smallest individual units in C program are known as „C‟
Tokens.

PROGRAMMING IN C & DATA STRUCTURES

Basics of C

 C has 5 types of tokens

Key words

 There are certain reserved words called token, that have
standard & predefined meaning in C language.

 Whose meaning can‟t be changed.

 These are building blocks for C program statements.

 C having 32 keywords.

 For ex: int, for, while,if,else,struct,union,return etc.

 All keywords must written in lower case.
PROGRAMMING IN C & DATA STRUCTURES

Token

keywords Identifiers constants operators Special symbols

Basics of C

Identifiers:

 Identifiers are names given to various program elements,
such as variables, functions and arrays etc.

Rules for naming an identifier

1.Identifier consists of letters, digits & special symbol.

2.It allows one and only special character i.e under score(_).

3.The first character can‟t be digit.

4.Upper case are differ to lower case.

5.An identifier can be any length, preferred size is 31 characters

6.The identifier cannot be a keyword.

7. Does not allow space between the words in an identifier.

PROGRAMMING IN C & DATA STRUCTURES

Basics of C

Constants:

 Constants refer to fixed values that do not change during
execution of program

 Constants are broadly divided into following sub types

PROGRAMMING IN C & DATA STRUCTURES

constants

characternumeric

decimal octal
Hexa

decimal

integer Real/float Single
char

constants

String
constant

Basics of C

Integer Constants:

 These refers to integers/whole numbers consisting of
sequence of digits.

 There are three types of integer constants

 1. decimal 2.octal 3.hexa decimal

Rules for defining integer constants.

1.An integer constant must have at least one digit.

2.It should not contain any special symbols & white spaces.

3.It should not contain any decimal point or exponent.

4.The integer value can‟t exceed the range allowed the
particular machine.

PROGRAMMING IN C & DATA STRUCTURES

Basics of C

Decimal Constant

 Decimal integer constant range from 0 to 9 & preceded by
optional sign.

 Decimal integer constant first digit must not be zero.

valid invalid

+129 1,29

-95 1 54

Octal Constants:

 Octal integer constants are in the range from 0 to 7.

 Sign is optional.

PROGRAMMING IN C & DATA STRUCTURES

Basics of C

 Every octal integer constant preceded with 0(zero).

valid invalid

037 081

0 541

036 01,35

Hexadecimal constants

 Hexadecimal integer constants is a combination of digits
from 0 to 9 & alphabets A to F represents from 10 to 15.

 Every hexadecimal number precede with 0X.

valid invalid

0XA5 075

0XABC 0XAGE

0X9FA 0X7,AF
PROGRAMMING IN C & DATA STRUCTURES

Basics of C

Real/Float Constants

 These constants refer to the numbers containing fractional
parts.

 These are also known as floating-point constants.

 Two ways of representing real constants

 1. decimal form 2.exeponential form/scientific form.

 In decimal form, decimal & fractional part are separated by
.(dot)

Valid invalid

0.056 0.78.78

-6.453 -89.34 90

PROGRAMMING IN C & DATA STRUCTURES

Basics of C

 Exponential form consists of two parts mantissa & exponent.

 Exponent & mantissa are separated by e or E.

 Exponent define to shift decimal point to the right if
exponent is positive or to the left if exponent is negative.

 If decimal point is not included with in the number assumed
to be positioned to the right of last digit.

Rules for constructing real/float constants

1.Mantissa & Exponent can be either positive or negative.

2.Special symbols are not allowed except .(dot)

3.Exponent must be an integer.

4.Exponent & Mantissa must have at least one digit each.

PROGRAMMING IN C & DATA STRUCTURES

Basics of C

For Ex: 4 X 104 can be represented as floating point constant
as

40000. 4E4/4E+4 400E2

For Ex: 3.04 X 10-5 can be represented as floating point
constant as

3.04E-5 30.4 E -6

0.00304E-2

Invalid numbers

E+10 3.45e8.9

PROGRAMMING IN C & DATA STRUCTURES

Basics of C

Character Constants

 These refers to single character enclosed with in single quote
marks.

 For Ex: valid invalid

 „A‟ “A”

 „2‟ „abc‟

 „$‟ “$”

String Constants

 These refers to group of characters enclosed with in double
quote.

 For EX: valid  “Hello” , “A”, “2”, “+”
invalid  „hello‟, „A‟ , „2‟ , „+‟

PROGRAMMING IN C & DATA STRUCTURES

Basics of C

Variables:

 Def: the variable is an identifier, which holds data during
program execution.

 Variables are hold different values during execution of the
program.

 The rules to define a variable are similar to an identifier.

 The syntax of declaring a variable are

 data type name of the variable;

 Data type: the term data type refers kind of data or type of
data involved during execution of program.

 Name of the variable is a group of characters.

 Variable are broadly divided in to two categories

 1.local variables 2.global variables

PROGRAMMING IN C & DATA STRUCTURES

Basics of C

 Local variables are variables which are declared inside
functions.

 Global variables are variables which are declared outside of
all the functions.

Valid Invalid

account_no account no

sum sum&

_a -a

list_of_words a123 sum

a78count a+78_count

a67 67a

PROGRAMMING IN C & DATA STRUCTURES

Data Types in C

Def: the term data type refers kind of data or type of
data involved during computation.

 Each variable or data item in C program associates with one
of the data type.

 C data types are broadly divided in to 4 types.

PROGRAMMING IN C & DATA STRUCTURES

Data Type

Built in data
type

Derived data
type

User defined
data type

Empty Data
type

Data Types in C

Built-In data type/primary data type/primitive data types.

 Built-in data types are further divided in to following categories.

 The division is performed based on the type of data and amount of memory
required for specific data.

PROGRAMMING IN C & DATA STRUCTURES

Primitive Data Type

Integer Floating point
Character

signed unsigned float double
long

double
Signed

char
unsigned

char

int long intshort int int short int long int

Data Types in C
The Size and Range of primitive data types

PROGRAMMING IN C & DATA STRUCTURES

Data Type Byte Range Format Specifier

char or signed char 1 -128 to 127 %c

unsigned char 1 0 to 255 %c

int or signed int 2 -32768 to 32767 %d

unsigned int 2 0 to 65535 %d or %u

short int or signed short int 1 -128 to 127 %d

unsigned short int 1 0 to 255 %d or %u

long int or signed long int 4 -2,147,483,648 to
2,147,483,648

%ld

unsigned long int 4 0 to 4,294,967,295 %lu

float 4 -3.4E-38 to 3.4E38 %f or %g or %e

Double 8 -1.7E-308 to 1.7E308 %lf

long double 10 -1.7E-4932 to 1.7E4932 %lf

Octal Decimal number %o

Hex Decimal number %x

Data Types in C

Examples for variable declaration

 int sum; or signed int sum;

 int a,b,c; 0r signed int a,b,c;

 unsigned int regno;

 float interest;

 double amount;

 long int basic;

 char grade;

PROGRAMMING IN C & DATA STRUCTURES

Operators in C

Expression

 Def: An expression is a collection of operands and operators.

 The operand is either a variable or literal.

 The operators are broadly divided in to following categories

PROGRAMMING IN C & DATA STRUCTURES

Name operator precedence associativity

Unary - 1 R-> L

increment &
decrement

++,-- 2 R-> L

Arithmetic *, /, %
+, -

3
4

L -> R

Relational <, >, <=,>=, ==,!= 5 L -> R

Bitwise & (AND), |(OR)
^(XOR), <<(shift left), >>(shift
right),~(ones complement)

6 L -> R

Bit Wise Operators
• Bitwise operator works on bits and perform bit by bit operation.

• Assume if A = 60; and B = 13; Now in binary format they will be as follows:

• A = 0011 1100

• B = 0000 1101

• --------------------

• A&B = 0000 1100

• A|B = 0011 1101

• A^B = 0011 0001

• ~A = 1100 0011

PROGRAMMING IN C & DATA STRUCTURES

Operator Description Example

&
Binary AND Operator copies a bit to the
result if it exists in both operands.

(A & B) will give 12 which is 0000 1100

|
Binary OR Operator copies a bit if it exists
in either operand.

(A | B) will give 61 which is 0011 1101

^
Binary XOR Operator copies the bit if it is
set in one operand but not both.

(A ^ B) will give 49 which is 0011 0001

~
Binary Ones Complement Operator is
unary and has the efect of 'flipping' bits.

(~A) will give -60 which is 1100 0011

<<

Binary Left Shift Operator. The left
operands value is moved left by the
number of bits specified by the right
operand.

A << 2 will give 240 which is 1111 0000

>>

Binary Right Shift Operator. The left
operands value is moved right by the
number of bits specified by the right
operand.

A >> 2 will give 15 which is 0000 1111

PROGRAMMING IN C & DATA STRUCTURES

Operators in C

Continued…

Special Operators

PROGRAMMING IN C & DATA STRUCTURES

Logical &&(AND)
||(OR), !(NOT)

7
8

L -> R

Conditional ? : 9 R -> L

Assignment = 10 R -> L

comma , L -> R

Function call () L -> R

Structure
operator

-> L -> R

Size of sizeof L -> R

Address of
operator

& R -> L

Value at address
operator

* R –> L

Operators in C

Continued …

Arithmetic Operators

 For arithmetic operations, operands either numeric or
character.

 Modulo (%) division operator applied only for integers.

 An expression with arithmetic operators are called
arithmetic expression.

 Arithmetic Expressions are of three types

1.Integer Arithmetic 2.floating arithmetic 3.mixed arithmetic

PROGRAMMING IN C & DATA STRUCTURES

Compound Assignment +=,/=, -=, %= R -> L

Array Exp [] L -> R

Operators in C

 Integer arithmetic always yields integer value

 In modulo division the sign of the result will be same as the
first operand.

Relational Operators

 They are used to compare two expressions/values.

 Its syntax are exp1 relaop exp2

 Result of the relational expression is either 0 or 1.

 Relational Expressions are used in decision statements.

 Relational operators are >, <, >=, <=, ==, !=.

 An Expression with relational operators are called Relational

Expression.

PROGRAMMING IN C & DATA STRUCTURES

Operators in C

Logical Operators:

 These are used to combine two or more expressions.

 There are 3 logical operators.

AND(&&)

 the result of the logical AND expression will be true only
when both the expressions are true.

 The result of the expression will be either 0 or 1.

 It syntax are exp1 && exp2

OR(||)

 The result of the OR expression are false only when both the
expressions are false.

 Its syntax are exp1 || exp2

PROGRAMMING IN C & DATA STRUCTURES

Operators in C

Not(!)
 The result of the expression will be true if the expression is false and vice versa.

Increment and Decrement

 These operators are represented by ++, --.

 ++ increment by 1.

 -- decrement by 1.

 These are unary operators.

 These are take the following form.

operator meaning

a++ post increment

++a pre increment

a-- post decrement

--a pre decrement.
PROGRAMMING IN C & DATA STRUCTURES

Operators in C

Conditional Operator(? :)

 It is also called ternary operator.

 Its syntax are variable-name = exp1 ? exp2 : exp 3;

 The value of the exp1 evaluated first, if it is true, exp2
evaluated otherwise exp3 evaluated.

 It is an alternative of if-else statement.

Evaluation of Expression.

 An Expression evaluation depends on associativity and
precedence of operators.

 An expression is evaluated when it is terminated by
semicolon(;).

 For Ex: y = 2 + 5 * 3 – 6 / 3;

PROGRAMMING IN C & DATA STRUCTURES

Expressions in C

 2 + 15 – 6/3

 2 + 15 – 2

 17 – 2

 15.

Note: to change the order of evaluation by inserting
parenthesis's in to the expression.

 The number of left & right parenthesis‟s must be the same,
otherwise expression is invalid.

 If more than one level of parenthesis‟s exits, innermost
evaluate first and so on.

For Ex: y = (2 + 5) * (13 – 6) / 3;

1) 7 * (13 – 6) / 3 2) 7 * 7 / 3

3) 49 / 3 4) 16

PROGRAMMING IN C & DATA STRUCTURES

Expressions in C

Evaluation of Expression in Mixed Mode Arithmetic:

 When an expression consists of different types of variables,
C compiler follows rules of type conversion.

 There are two type of conversion

 1. implicit conversion/automatic conversion/integral
promotion/implicit casting.

 2.explicit conversion / type conversion/type casting.

 Implicit Conversion: when the data type of smaller size
is converted into higher size.

 It will be done by compiler itself.

 Implicit conversion is also called widening, because of
smaller values are promoted to higher data types.

PROGRAMMING IN C & DATA STRUCTURES

Expressions in C
For Ex: int i, double d,e and float f

e = i * d + f / i;

PROGRAMMING IN C & DATA STRUCTURES

int double float int

double float

double

Note: Result of the Expression in double Data-Type.

Expressions in C

Explicit Conversion

 When higher type of data is converted into lower type data.

 During this process some data loss is occurred, because of
this reason conversion performed explicitly.

 this process is also called narrowing.

 the general syntax are

 variable name = (target data type) value;

(or)

 variable name = value;

Assignment Operators

 Assignment Operators are used to assign a value or
expression or a value of variable to another variable.

 The assignment operators are =, +=, -=, *=, /=, %=.

PROGRAMMING IN C & DATA STRUCTURES

Expressions in C

 Apart from simple assignment operator, C provides
compound assignment operators to assign a value to a
variable after performing a specific operation.

 Some of the compound assignment operators and their
meanings are given below

PROGRAMMING IN C & DATA STRUCTURES

Operator Example Meaning

+= X +=Y X = X + Y

-= X -=Y X = X – Y

*= X *=Y X = X * Y

/= X /=Y X = X / Y

%= X %=Y X = X % Y

Expressions in C

Nested (OR) Multiple assignments.

 Using this feature we can assign a single value or expression
to multiple variables.

For Ex:

int a,b,c,x,y,z;

a = b = c = 20;

x = y = z = (a+b+c);

Variable Declaration;

 Variable Declaration tells the compiler what the variable
name and type of data that variable is going to hold.

 Default value hold the variable after declaration is called
garbage value/unknown value.

For Ex: int a;

PROGRAMMING IN C & DATA STRUCTURES

Variables in C

Variable definition/ Initialization.

 To assign some value to the variable at the time declaration
is called variable definition.

 For Ex: int i = 0;

Note: In C programming all the variables are declared/ defined
before the first executable statement.

Empty Data Type

 It is also known as void data type.

 It indicates no other data type has been used with the given
identifier.

 It is used for function return type, which are not interested
to return any value.

 It is also used for creating generic pointers.

PROGRAMMING IN C & DATA STRUCTURES

Escape Sequence in C

Escape Sequence (or) Backslash Characters.

 each character having its own meaning and they contain two
characters and first character must be \(slash).

 These set of characters are also called as non-graphic
characters.

 These characters are invisible and cannot be displayed
directly.

PROGRAMMING IN C & DATA STRUCTURES

Escape Sequence in C

 The following table shows list of escape sequence

PROGRAMMING IN C & DATA STRUCTURES

Character Escape
sequence

ASCII value Meaning

Bell \a 007 Beep Sound

Backspace \b 008 Moves previous position

New Line \n 010 Moves next line

Form feed \f 012 Moves initial position of
next page

Carriage
Return

\r 013 Moves beginning of the
line

Quotation mark \” 034 Present double quote

Back slash \\ 092 Present back slack

Null \0 000 It indicate end of string.

Input / Output in C

 We know that input, process and output are the essential
features of computer program.

 Input: input is the process of accept data from standard
input device(keyboard etc).

 Output: output is the process of display information on the
standard output device(VDU/monitor etc).

 There are two methods for providing data to the program.

1. Assigning the data to the variables in a program.

2. By using the I/O functions.

 I/O operations performed using predefined library
functions.

 These are classified into two types

PROGRAMMING IN C & DATA STRUCTURES

Input / Output in C

 Formatted I/O and unformatted I/O

 Broad classification of I/O functions are

PROGRAMMING IN C & DATA STRUCTURES

Input and output

Input output

formatted unformatted formatted unformatted

scanf();
fscanf();

getch(),
getchar();
getche(), gets();

printf()
fprintf()

putc();
putchar()

puts();

Input / Output in C

Formatted Output

 Formatted output refers to display information in a
particular format.

 printf() is used to display information on standard output
device.

 This function display any combination of data.

 Its general syntax are

 Control String:

 It enclosed with in double quota.

 It specify type of data to be displayed on the output device.

 Control string consists of format specifier, it precedes with
%.

PROGRAMMING IN C & DATA STRUCTURES

printf(“control string”,list of variables);

Input / Output in C

 It also consists of escape sequence and string that to be
displayed on the output device.

 By default output of the printf() function is left justified.

 Filed with in format specifier makes out is right justified.

For Ex: int a = 450,b = 3478,c = 12;

printf(“\n %d \n %d \n %d”,a,b,c);

Out Put is

450

3478

12

 printf(“\n %4d \n %4d \n %4d”,a,b,c);

PROGRAMMING IN C & DATA STRUCTURES

Input / Output in C

450

3489

12

float g = 3456.8935;

printf(“%4.2f”,g);

Out put is 3456.89

 - Indicates the output is left justified.

 + indicates the output is displayed with sign.

For Ex: printf(“%-10d”,k);

printf(“%+d”,k);

PROGRAMMING IN C & DATA STRUCTURES

Input / Output in C

Rules for writing printf() function

1.Place the appropriate headings in the output.

2.The variable must be separated by comma and need not be
preceded with ampersand (&).

3.The control string and variables must mach their order.

4.Provide the blank space between the numbers for better
clarity.

5.Print special messages wherever required in output.

PROGRAMMING IN C & DATA STRUCTURES

Input / Output in C

Formatted Input

 Formatted input refers to read data in a particular format.

 scanf() is used to read data from the standard input device.

 This function read any combination of data.

 The syntax of scanf() function are

Control string

1. It enclosed with in double quote.

2. It specifies type of data that have to be read from input device.

3. Control string consists of format Specifier, it preceded with a %
sign.

4. The control string and variables must mach their order.

PROGRAMMING IN C & DATA STRUCTURES

Input / Output in C

List of variables

 List of variables separated by ,(comma).

 Each variable preceded by an ampersand(&).

 It specifies the address of variable.

 Ampersand(&) is also called address of operator.

For Ex: scanf(“ %d %f %c”,&a,&b,&c);

Suppose we enter 10 5.5 g

10 is assigned to a

5.5 is assigned to b

g is assigned to c.

PROGRAMMING IN C & DATA STRUCTURES

Input / Output in C

 We can also specify field width in the format specifier.

For Ex: scanf(“%3d %2d”,&a,&b);

Suppose we enter 500 20

500 is assigned to a.

20 is assigned to b.

Note :it is not always advisable to use field width in
formatter specifier, it may assign wrong values to
variables.

For Ex: scanf(“%2d %3d”,&a,&b);

Suppose we enter 5004 10

50 is assigned to a

04 is assigned to b

10 is ignored.

PROGRAMMING IN C & DATA STRUCTURES

Input / Output in C

 * Is used to suppress the in put.

 For Ex: scanf(“%d %d %*d %*d %d”,&a,&b,&c);

 Our input is 10 20 30 40 50.

 10 is assigned to a

 20 is assigned to b

 30 is suppressed

 40 is suppressed

 50 is assigned to c.

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

 Control statements are building blocks of C programming.

 Control statements determine the flow of execution.

 There are three types of control statements

1) Sequential Statements.

2) Conditional Control Statements.

3) Loop Control Statements.

Sequential Statements

 The sequential statements are executed one after another
from top to bottom.

 In this section every statement is executed exactly once.

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

Conditional Control /Selection/Decision Statements.

 The execution of a statement(s) is depends on result of the
condition/expression.

 The selection statements create multiple paths in program.

 There are five different selection statements.

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

1) Simple if

2) if – else

3) Nested if

4) if – else – if ladder

5) switch - case

Simple if

 The if statement is a decision making statement.

 if is a keyword.

 It is used to control the flow of execution (or) it is used
select set of statement(s) to be executed.

 It is always used in conjunction with expression.

 The general syntax of simple if are

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

if (expression) if (exprssion)

st; {

if block st1;

st2;

next-statement; ---- if block

stn;

}

next-statement;

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

Properties of if Statement

 First evaluate the expression.

 If expression is true(1) , if block is executed and followed by
next- statement.

 if expression is false(0), if block is by-passed and execute
next- statement.

 if block with single statement the opening brace({) and
closing brace(}) are optional.

 if block with compound statement(more than one
statement), these set of statements must be enclosed in
braces.

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

Flowchart for simple if

PROGRAMMING IN C & DATA STRUCTURES

If(expression)

if block

Next- Statement

false

true

Control Statements

if - else statement

 This is used for two way decision making statement.

 It executes if block, when the conditions is true.

 It executes else block, when the condition is false.

 This statement mainly used to test the condition and pick
one of the block.

 the if block and else block are mutually exclusive.

 if and else block with compound statement(more than one
statement), these set of statements must be enclosed within
the braces.

 The general syntax of if else block are

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

if(expression) if(expression)

{ st1;

st1; if block --- if block

else stn;

}

else

st2; { st1;

else block --- else block

stn;

next-statement; }

next-statement;

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

The Flowchart for if-else are

PROGRAMMING IN C & DATA STRUCTURES

If(expression)

if block

Next-
Statement

false

else block

true

Control Statements

Nested if

 To define if – else or if in another if-else statement is called
nested if or nesting.

 Nesting is performed in either if block or else block or both.

 Nesting can be performed up to any level.

 The general syntax of nested if are

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

if(condition 1) if(condition 1)
{ {

if(condition 2) st1;
{ }

st1; else
} {
else if(condition 2)
{ {

st2; st2;
} }

} else
else {
{ st3;

st3; }
} }

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

Flowchart for nested if

PROGRAMMING IN C & DATA STRUCTURES

Condition-1

Condition-
2

Statement -1
Statement -2 Statement -3

Next-Statement

false

false

true

true

Control Statements

if – else – if ladder or else – if ladder

 The nested if can become quite complex, if there are more
number of alternatives.

 The simplified form of nested if is else-if ladder.

 This statement performs an action if condition is true,
otherwise check for another condition and on which
condition is true corresponding statement is executed.

 The general syntax is

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

if(condition -1)

st1;

else if(cond – 2)

st2;

else if(cond – 3)

st3;

else

default statement;

next statement;

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

Flow chart for else-if ladder

PROGRAMMING IN C & DATA STRUCTURES

Default st;

Cond-1

Cond-2

Statement -3

Statement -2

Next-Statement

Cond-3

true

false true

false

false

Statement -1

Control Statements

Switch Case Statement

 The switch statement is used to execute a particular group of
statements.

 It is alternative to else if ladder.

 It allows us to make a decision from the number of choices.

 It is a multi way decision statement/multi conditional
statement.

 It test the expression against a list of case values and when
a match is found, a block of statements associated with that
case is executed.

 The general syntax of switch-case are

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

switch(expression)
{

case int const1/char const:
block1;
break;

case int const2/char const:
block2;
break;

case int constN/char const:

block N;
break;

default:
default block;

}

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

Rules for writing switch-case statement are

1. The result of the expression following the keyword switch
must be an integer or a character.

2. No float numbers are used in expression.

3. The keyword case is followed by an integer or a character
constant and operator colon(:).

4. Each case blocks are terminated with keyword break and
is optional.

5. In the absence of keyword break, all the cases that are
followed by matched case are executed.

6. The break statement takes the control outside of the
switch block.

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

7. The switch can be nested.

8. The default is optional and can be placed any where, but
usually placed at end .

9. If no match is found with any of the case statements, only
the default block is executed.

10. No two case constants are identical.

11. The switch statement is very useful while writing menu
driven programming.

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

Flow chart for switch-case

PROGRAMMING IN C & DATA STRUCTURES

Case 1

Case 2

Case N

Statement Break

Statement Break

Statement Break

switch(expression)

Default Statement

Next Statement

Y

Y

Y

N

N

N

Control Statements

Loop Control Statements / Iteration Statements

 Loop : loop is a process of executing a set statements one or
more times.

 The following are the loop statements available in „C‟

1) while loop 2) do-while loop 3) for loop

 The loop in a program consists of two parts 1. body of the
loop 2.Header of the loop.

Looping process include the following steps

 Initialization of condition variable.

 Test the condition

 Execute the body of the loop depending on the condition

 Updating the condition variable.

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

While loop

 The while loop is an entry controlled loop statement.

 It means the condition is evaluated first and it is true, then
the body of the loop is executed.

 After executing the body of the loop, the condition is once
again evaluated and if it is true, the body is executed until
the condition becomes false.

 If the condition false initially , the while loop executes zero
times.

The general syntax of while loop are

while (condition/expression) while(expression)

{

body body

}
PROGRAMMING IN C & DATA STRUCTURES

Control Statements

Flow Chart for while-loop

PROGRAMMING IN C & DATA STRUCTURES

While(condition)

Body of the loop

true

false

Control Statements

do-while loop

 do-while loop is exit controlled loop.

 do-while loop execute body of the loop and test the
condition.

 The condition is true execute body of the loop once again,
otherwise exit from the loop.

 If the condition false initially, do-while loop execute one
time.

 The general syntax of do-while loop are

do do

body {

while(expression); body

}while(expression);

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

Flow Chart for do-while loop

PROGRAMMING IN C & DATA STRUCTURES

Body of the loop

While(condition)

Next-Statement

false

true

Control Statements

Comparison between while and do-while loop statements

PROGRAMMING IN C & DATA STRUCTURES

S.NO While Do-while

1 This is the top tested
loop

This is bottom tested loop

2 The condition is first
tested, if the condition is
true then the block is
executed until the
condition becomes false.

It executes the body once,
after it check the condition,
if it is true the body is
executed until the
condition becomes false

3. Loop will not be
executed if the condition
is false.

Loop is executed at least
once even though the
condition is false.

Control Statements

for loop statement

 the for is simple & most popularly used loop statement.

 The for loop allows to specify three things about a loop in a
single line.

 the three things are

1) initialize loop counter: to initialize loop counter
variable.

2)Testing the condition: for executing the body.

3)increment/decrement counter: is used to inc/dec loop
counter.

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

General syntax of for loop statement are

for(initialize counter; test condition; inc/dec)

{

body of the loop

}

 Initialize counter execute exactly once at the beginning of
the loop.

 After initialization, condition check is performed, if it is true
body of the loop is executed.

 After executing the body of the loop, to perform inc/dec of
the loop counter variable.

 Condition check, body of the loop and inc/dec are
performed repeatedly until the condition becomes false.

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

Flow chart of the for loop are

PROGRAMMING IN C & DATA STRUCTURES

initialization

condition

Body of the loop

Inc/dec

true

false

Next-Statement

Control Statements

Additional Features of for loop

 we can initialize more than one variable at a time.

 For Ex: for(i = 1,j = 1; i <= 10; i++)

 We can inc/dec more than one variable in the inc/dec section

 For Ex: for(i = 1,j = 1; i <= 10; i++,j++)

 Test the condition may be any compound relation

 For Ex: for(i = 1,j = 1; i <= 10&& j <=10; i++)

 It may be expression in the initialization section and inc/dec
section.

 For Ex: for(a = i+j; a <= 10; a=a/2)

 One or more sections of the for loop are omitted, if necessary.

 For Ex: for(; i <= 10;)

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

for loop symbol used in flowchart are

PROGRAMMING IN C & DATA STRUCTURES

Loop initialization

Inc/dec

Condition

check

Body of the loop

Next-Statement

True

False

Control Statements

Jump Statements/unconditional statements

 The jump statements are used to transfer control from one
place to another place randomly.

 There are four different jump statements

 break statement.

 continue statement.

 goto statement.

 return statement

 First two are legal jump statements and third are illegal
jump statement.

 Legal means jumping performed logically.

 Illegal means jumping performed illogically

Note: To develop program using goto is poor programming.
PROGRAMMING IN C & DATA STRUCTURES

Control Statements

break statement

 The break statement is used to terminate the loop during
the execution.

 The break is a keyword.

 When the keyword break is used inside any loop/switch,
control automatically transferred to the first statement after
the loop.

 A break is usually associated with an if statement.

 General syntax is

break;

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

 For Ex:

while(condition)

{

if(condition)

break;

}

next-St;

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

continue Statement

 The continue statement are used to by-pass set of
statements during the execution based on the condition.

 The continue is a keyword.

 A continue is usually associated with an if statement.

 When the continue is encountered inside any loop, control
automatically passes to the beginning of the loop and
perform next iteration.

 The general syntax is

continue;

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

 For Ex: while(condition)

{

if(condition)

continue;

}

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

Difference between break & continue

PROGRAMMING IN C & DATA STRUCTURES

S.N break continue
1 break statement takes the

control to the out side of
the loop

continue statement takes
control to the beginning of
loop

2 It can also be used in
switch statement

This can be used only in
loop statements

3 It associated with if and
switch-case statements

It associated with if
statement only.

Control Statements

The goto statement

 goto statement transfer control unconditionally anywhere
in the program.

 The goto is a keyword.

 The goto statement require a label to identify the place to
move the control.

 A label is a valid identifier end with colon(:).

 The general syntax are

label :

goto label;

PROGRAMMING IN C & DATA STRUCTURES

Control Statements

Pascal Triangle

Algorithm for Pascal Triangle

1. Start

2. Read rows(n0. of rows)

3. n-> 0

4. While(n< rows)

4.1: r <- 0

4.2:while(r<=n)

if(r=0) or r== n)

result <- 1

PROGRAMMING IN C & DATA STRUCTURES

rrnncnc rr /)1(1  

Control Statements

else

result <- resultX(n-r+1)/r

4.3: print result

5. stop.

PROGRAMMING IN C & DATA STRUCTURES

