
 

 

Optimization of Basic Blocks 

The DAG Representation of Basic Blocks 

The goal is to obtain a visual picture of how information flows through the 

block. The leaves will show the values entering the block and as we proceed up 

the DAG we encounter uses of these values defs (and redefs) of values and uses 

of the new values.  

Formally, this is defined as follows. 

1. Create a leaf for the initial value of each variable appearing in the block. 

(We do not know what that the value is, not even if the variable has ever 

been given a value).  

2. Create a node N for each statement s in the block.  

i. Label N with the operator of s. This label is drawn inside the 

node.  

ii. Attach to N those variables for which N is the last def in the 

block. These additional labels are drawn along side of N.  

iii. Draw edges from N to each statement that is the last def of an 

operand used by N.  

3. Designate as output nodes those N whose values are live on exit, an 

officially-mysterious term meaning values possibly used in another 

block. (Determining the live on exit values requires global, i.e., inter-

block, flow analysis.)  

As we shall see in the next few sections various basic-block optimizations are 

facilitated by using the DAG.  

Finding Local Common Sub expressions 

As we create nodes for each statement, proceeding in the static order of the 

statements, we might notice that a new node is just like one already in the DAG 

in which case we don't need a new node and can use the old node to compute the 

new value in addition to the one it already was computing.  

Specifically, we do not construct a new node if an existing node has the same 

children in the same order and is labeled with the same operation.  

Consider computing the DAG for the following block of code.  

    a = b + c 

    c = a + x 

    d = b + c 

    b = a + x 

   



 

 

The DAG construction is explain as follows (the movie on the right accompanies the 

explanation). 

1. First we construct leaves with the initial values.  

2. Next we process a = b + c. This produces a node labeled + with a attached and having b0 

and c0 as children.  

3. Next we process c = a + x.  

4. Next we process d = b + c. Although we have already computed b + c in the first 

statement, the c's are not the same, so we produce a new node.  

5. Then we process b = a + x. Since we have already computed a + x in statement 2, we do 

not produce a new node, but instead attach b to the old node.  

6. Finally, we tidy up and erase the unused initial values.  

You might think that with only three computation nodes in the DAG, the block could be reduced 

to three statements (dropping the computation of b). However, this is wrong. Only if b is dead on 

exit can we omit the computation of b. We can, however, replace the last statement with the 

simpler 

b = c.  

Sometimes a combination of techniques finds improvements that no single technique would find. 

For example if a-b is computed, then both a and b are incremented by one, and then a-b is 

computed again, it will not be recognized as a common sub expression even though the value has 

not changed. However, when combined with various algebraic transformations, the common 

value can be recognized.  

Dead Code Elimination 

Assume we are told (by global flow analysis) that certain values 

are dead on exit. We examine each root (node with no ancestor) 

and delete any that have no live variables attached. This process 

is repeated since new roots may have appeared.  

For example, if we are told, for the picture on the right, that only 

a and b are live, then the root d can be removed since d is dead. 

Then the rightmost node becomes a root, which also can be 

removed (since c is dead).  

 


