
UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 1 -

OVERVIEW OF COMPILATION:

Compilation is a process that translates a program in one language (the source

language) into an equivalent program in another language (the object or target language).

A compiler is a computer program (or set of programs) that transforms source code

written in a programming language (the source language) into another computer language (the

target language, often having a binary form known as object code).

The most common reason for wanting to transform source code is to create an

executable program.

The name "compiler" is primarily used for programs that translate source code from a

high-level programming language to a lower level language (e.g., assembly language or

machine code).

If the compiled program can run on a computer whose CPU or operating system is

different from the one on which the compiler runs; the compiler is known as a cross-compiler.

A program that translates from a low level language to a higher level one is a

decompiler.

A program that translates between high-level languages is usually called a source-to-

source compiler or transpiler.

A language rewriter is usually a program that translates the form of expressions without

change of language. More generally, compilers are sometimes called translators.

Compilers enabled the development of programs that are machine-independent. Before

the development of FORTRAN, the first higher-level language, in the 1950s, machine-dependent

assembly language was widely used.

While assembly language produces more abstraction than machine code on the same

architecture, just as with machine code, it has to be modified or rewritten if the program is to

be executed on different computer hardware architecture.

With the advent of high-level programming languages that followed FORTRAN, such as

COBOL, C, and BASIC, programmers could write machine-independent source programs. A

compiler translates the high-level source programs into target programs in machine languages

for the specific hardware. Once the target program is generated, the user can execute the

program.

UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 2 -

A compiler is likely to perform many or all of the following operations: lexical analysis,

preprocessing, parsing, semantic analysis (Syntax-directed translation), code generation, and

code optimization.

STRUCTURE OF A COMPILER:

Compilers bridge source programs in high-level languages with the underlying hardware.

A compiler verifies code syntax, generates efficient object code, performs run-time

organization, and formats the output according to assembler and linker conventions. A

compiler consists of:

1) The Front End:

a. Verifies syntax and semantics, and generates an intermediate representation

or IR of the source code for processing by the middle-end.

b. Performs type checking by collecting type information.

c. Generates errors and warning, if any, in a useful way.

d. Aspects of the front end include lexical analysis, syntax analysis, and

semantic analysis.

2) The Middle End:

Performs optimizations, including removal of useless or unreachable code, discovery

and propagation of constant values, relocation of computation to a less frequently

executed place (e.g., out of a loop), or specialization of computation based on the

context; Generates another IR for the backend.

3) The Back End:

a) Generates the assembly code, performing register allocation in process.

b) Optimizes target code utilization of the hardware by figuring out how to keep

parallel execution units busy, filling delay slots.

PHASES OF COMPILER:

The process of compilation is split up into six phases, each of which interacts with a

symbol table manager and an error handler. This is called the analysis/synthesis model of

compilation. There are many variants on this model, but the essential elements are the same.

1) Lexical Analyzer

2) Syntax Analyzer

UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 3 -

3) Semantic Analyzer

4) Intermediate Code Generation

5) Code Optimization

6) Code Generation

LEXICAL ANALYSIS:

A lexical analyzer or scanner is a program that groups sequences of characters into

lexemes, and outputs (to the syntax analyzer) a sequence of tokens. Here:

a) Tokens are symbolic names for the entities that make up the text of the program e.g. if

for the keyword if, and id for any identifier. These make up the output of the lexical

analyzer.

b) A pattern is a rule that specifies when a sequence of characters from the input
constitutes a token; e.g. the sequence i, f for the token if, and any sequence of
alphanumeric starting with a letter for the token id.

UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 4 -

c) A lexeme is a sequence of characters from the input that match a pattern (and hence
constitute an instance of a token); for example if matches the pattern for if, and
foo123bar matches the pattern for id.

For example, the following code might result in the table given below:

program foo(input,output);var x:integer;begin

readln(x);writeln(’value read =’,x) end.

It is the sequence of tokens in the middle column that are passed as output to the

syntax analyzer.

This token sequence represents almost all the important information from the input

program required by the syntax analyzer.

Whitespace (newlines, spaces and tabs), although often important in separating

lexemes, is usually not returned as a token.

UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 5 -

Also, when outputting an id or literal token, the lexical analyzer must also return the

value of the matched lexeme (shown in parentheses) or else this information would be lost.

For the lexical analysis, specifications are traditionally written using regular expressions

which is an algebraic notation for describing sets of strings. The generated lexical analyzers or

lexers are in a class of extremely simple programs called finite automata.

Lexical analyzer also called as Lexer is a state machine which does lexing. Like an iterator

Lexer typically has one more method next() that returns next token in sequence.

Inside the Lexer there is a state machine that processes the characters of input stream

in order to generate the token sequence. Lexer uses another method called hasNext() to take

decision about whether the end of the token sequence is reached or not.

 In the token sequence, the possible tokens are reserved words (keywords), identifiers,

literals, comments, operators, separators and white spaces.

Construction of scanner or lexical analyzer:

1) Define all tokens as regular expressions

2) Construct a finite automata for each token

3) Combine all these automata to a new automaton (in general NFA).

4) Translate it to a corresponding DFA.

5) Minimize the DFA.

6) Implement the DFA.

SYMBOL TABLE MANAGEMENT:

A symbol table is a data structure containing all the identifiers (i.e. names of variables,

procedures etc.) of a source program together with all the attributes of each identifier.

For variables, typical attributes include:

 Its type,

Scanner or

Lexical Analyzer
Source Code Regular Expression

Token

UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 6 -

 How much memory it occupies,

 Its scope.

For procedures and functions, typical attributes include:

 The number and type of each argument (if any),

 The method of passing each argument, and

 The type of value returned (if any).

The purpose of the symbol table is to provide quick and uniform access to identifier

attributes throughout the compilation process. Information is usually put into the symbol table

during the lexical analysis and/or syntax analysis phases.

Typically the tokens are:

1) Reserved words (keywords) –example lexemes are if then else begin

2) Identifiers –example lexemes are i alpha k10

3) Literals –example lexemes are 123 3.1416 ‘A’ “text”

4) Operators –example lexemes are + ++ !=

5) Separators –example lexemes are ; , (

Non tokens are:

1) Whitespace –example lexemes are ‘ ‘ tab newline formfeed

2) Comments –example lexemes are /* comment */ //eol comment

REGULAR GRAMMAR AND REGULAR EXPRESSION FOR COMMON

PROGRAMMING LANGUAGE FEATURES

REGULAR GRAMMAR:

The syntactic structure of a language is defined using grammars. Grammars specify a set

of strings over an alphabet. A grammar defines a set of sentences which is a sequence of

symbols likes tokens (also called as terminals). A grammar is a set of productions where each

production defines a non-terminal which is a variable that stands for a set of sentences.

UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 7 -

Efficient recognizers (automata) can be constructed to determine whether a string is in

the language. By convention, non-terminals are capitalized, and terminals are lowercase.

Production has form:

non-terminal ::= expression of terminals and non-terminals and operators

Regular grammar has a special property: by substituting every non terminal except the

root one with its right hand side you can reduce it down to a single production for the root with

only terminals and operators on right hand side. This compiled form of regular grammar is

called a regular expression.

REGULAR EXPRESSION:

The notation of regular expression is a mathematical formalism ideal for expressing

“patterns” and thus ideal for expressing the “lexical structure of programming languages”.

Regular expression represents the patterns of strings of symbols. A regular expression r

matches a set of strings over an alphabet (∑). This set is denoted as L(r) and is called the

language determined or generated by r.

Suppose we have the alphabet ∑ = {0,1} then the example language is:

Set of possible combinations of zeros and ones i.e. L0 = {0, 1, 00, 01, 10, 11, . . .}

Suppose we have the alphabet ∑ as the set of UNICODE characters then the example languages

are:

1) All possible java keywords i.e. {“class”, “import”, “public”}

2) All possible lexemes corresponding to java tokens.

3) All possible lexemes corresponding to java white spaces.

4) All binary numbers etc…

 With respect to class of regular languages and apply these concepts to practical problem

of lexical analysis we define the notion of regular expression and show how regular expressions

determine regular languages.

 DFA is the class of algorithms that solve decision problems for regular languages. With

regular expressions and DFA we can specify and implement lexical analyzer.

REGULAR EXPRESSION Read Is called
a a Symbol

M|N M or N Alternative
MN M followed by N Concatenation

Ԑ The empty string Epsilon

UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 8 -

M* Zero or more M Repetition
REGULAR EXPRESSION Read Means

M+ At least one. . . MM*
M? Optional Ԑ/M

[a-zA-Z] One of . . . a|b| . . . |z|A|B| . . . |Z
~[0-9] Not . . . One character but not anyone of those listed
“a+b” The string a \+ b

IMPLEMENTATION OF SCANNERS:

Let us construct the automata for IF and ID as:

Automata for the whole language:

Combine the automata for individual tokens:

1) Merge the start states

2) Re-enumerate the states so they can get unique numbers

3) Mark each final state with the token i.e. matched.

After combining the automata’s for IF and ID we get the automata as:

PASS AND PHASES OF TRANSLATION:

A pass is the group of several phases of compiler to perform analysis or synthesis of

source program. Passes refer to the number of times the compiler has to traverse through the

entire program. There are several types of passes as given below:

1) Single pass: it is also called as one-pass compiler, which is a compiler that passes

through the parts of each compilation unit only once, immediately translating each

part into its final machine code.

2) Multi-pass: It converts the program into one or more intermediate representations

steps in between source code and machine code, and which reprocesses the entire

compilation unit in each sequential pass.

1 2 3
I F a – z

1 2

a – z0 – 9

1 2 3
I F

a – z

4
a – z0 – 9

UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 9 -

One-pass compilers are smaller and faster than multi-pass compilers. One-pass

compilers are unable to generate as efficient programs, due to the limited scope of available

information. Many effective compiler optimizations require multiple passes over a basic block,

loop, subroutine, or entire module. Some require passes over an entire program. Some

programming languages simply cannot be compiled in a single pass, as a result of their design.

Phases of a compiler are the sub-tasks that must be performed to complete the

compilation process. The discussion of phases deals with the logical organization of the

compiler.

In an implementation, activities from several phases may be grouped together in to a

pass that reads an input file, and writes the output file.

For example the front-end phases of lexical analysis, syntax analysis, semantic analysis

and intermediate code generation might be grouped together in to one pass.

Code optimization might be an optional pass. Then there could be a back-end pass

consisting of code generation for a particular target machine.

Since writing a compiler is a non-trivial task, it is good idea to structure the work. A

typical way of doing this is to split the compilation in to several phases with well-defined

interfaces.

Conceptually these phases operate in sequence, each phase taking the output from the

previous phase as its input.

A phase is a logically interrelated operation that takes source program in one

representation and produces output in another representation. There are two phases of

compilation.

a) Analysis (Machine Independent/Language Dependent)

b) Synthesis(Machine Dependent/Language independent)

Compilation process is partitioned into no-of-sub processes called ‘phases’.

INTERPRETATION:

An interpreter is another way of implementing a programming language. Interpretation

shares many aspects with compiling. Lexing, parsing and type-checking are in an interpreter

done just as in a compiler.

But instead of generating code from the syntax tree, the syntax tree is processed

directly to evaluate expressions and execute statements and so on.

UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 10 -

An interpreter may need to process the same piece of syntax tree (e.g. body of the loop)

many times and hence interpretation is typically slower than executing a compiled program.

But writing an interpreter is often simpler than writing a compiler and the interpreter is easier

to move to a different machine.

Compilation and interpretation may be combined to implement a programming

language. The compiler may produce intermediate-level code which is interpreted than

compiled to machine code.

An interpreter generally uses one of the following strategies for program execution:

1) Parse the source code and perform its behavior directly

2) Translate source code into some efficient intermediate representation and

immediately execute this

3) Explicitly execute stored precompiled code made by a compiler which is part of the

interpreter system

The process of interpretation can be carried out in Lexical analysis, Syntax analysis,

Semantic analysis, and Direct Execution.

BOOTSTRAPPING:

Bootstrapping is the process of writing a compiler (or assembler) in the target

programming language which it is intended to compile. Applying this technique leads to a self-

hosting compiler.

Bootstrapping a compiler has the following advantages:

1. Compiler developers only need to know the language being compiled.

2. Compiler development can be done in the higher level language being compiled.

3. Improvements to the compiler's back-end improve not only general purpose

programs but also the compiler itself.

4. It is a comprehensive consistency check as it should be able to reproduce its own

object code.

DATA STRUCTURES IN COMPILATION:

The compilation process can be thought of as taking some input data structure and

transforming it to produce an output data structure which in some sense is equivalent to but

UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 11 -

more desirable than the input form. The input data is often called the source program and the

output the object code.

One of the simplest forms the compilation process can take is to have the input data

structure coming from a peripheral device (such as a card reader), and the compiler producing

as output a machine code program in the store of the computer ready for execution. In most

compilers, before the output form is arrived at, the input data structure may well be

transformed into several internal data structures.

The compiler itself may require storing additional information or alternatively be driven

by information stored internally. Finally, the data structures defined in the source program in

the specific programming language must be mapped into some storage structure on the

background computer that is to execute the program. The problems which need to be resolved

when designing a compiler are ones such as finding the most transparent abstract data

structure to use at each stage and also the most efficient internal storage structure into which

to map the abstract data structure.

ABSTRACT DATA STRUCTURES:

A data structure is defined as a set of rules and constraints which show the relationships

that exist between individual pieces of data. The structure says nothing about the individual

pieces of data which may occur. It may require them to hold the structure in some sense, but

any information contained in the data items is independent of the structure.

The term item used here will denote a piece of an abstract data structure. The item

itself may be another data structure so that a hierarchical set of data structures is built up.

String: A string is an ordered set of items. The string may either be of variable length or fixed.

Array: An array A is a set of items which are so arranged that an ordered set of integers

uniquely defines the position of each item of the array and provides a method of accessing each

item directly.

Queues and Stack: Queues and stacks are dynamically changing data structures. At any time,

the queue or stack contains an ordered set of items. In the case of a queue, if an item is added,

it is placed at the end of the ordered set. Items can only be accessed or removed from the front

of the ordered set defining the queue.

The first item added to the queue is the only one accessible and must be the first removed. For

a stack, items are similarly added to the end of the ordered set. The difference is that the

accessing or removal of items from the ordered set is from the end of the set. The last item

UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 12 -

added is the only one accessible and is the first to be removed. The items may well be of

variable length and contain the length defined within the item.

Table: A table consists of a set of items, and associated with each item is a unique name, or key.

In general, each item will consist of its key, together with some information associated with the

key. An item can be added to the table by presenting its key together with the associated

information. Items are accessed by presenting the key to the table.

Tree: A tree is a structure consisting of a set of nodes. Each node (or item) has the property

that, apart from information that it may carry, it also contains pointers to lower-level nodes. At

the lowest level of the tree, the nodes point to leaves which consist of data structures external

to the tree. The idea of level comes from the fact that each tree must have one top-most node

which has no pointers to it from other nodes (this is often called the root of the tree) and also

no node can point to a node previously defined. This latter condition ensures that each node

has a unique path to it from the root.

LEX LEXICAL ANALYZER GENERATOR:

The UNIX utility lex parses a file of characters. It uses regular expression matching;

typically it is used to ‘tokenize’ the contents of the file. Lex uses patterns that match strings in

the input and converts the strings to tokens. Lex generates C code for a lexical analyzer, or

scanner.

An overview of Lex:

Initially to the lex utility a lex source program with extension .l is given as input, which

will generates the C file (lex.yy.c) as output. Later this C file is compiled with the C compiler that

produces the output “a.out”. To this output if we give the input as the stream of characters

(lexemes) then it will produce the output as tokens.

UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 13 -

STRUCTURE OF A LEX FILE:

A lex file is divided in to three sections by %% delimiters. The general format of lex

source is given as below:

{Definitions}

%%

{Transition rules}

%%

{User subroutines}

DEFINITION SECTION:

There are three things that can go in the definitions section:

C code Any indented code between %{ and %} is copied to the C file. This is typically

used for defining file variables, and for prototypes of routines that are defined in the code

segment.

Definitions A definition is very much like #define cpp directive. For example

letter [a-zA-Z]

digit [0-9]

punct [,.:;!?]

nonblank [ˆ \t]

These definitions can be used in the rules section: one could start a rule as below:

{letter}+ {...

RULE SECTION:

The rules section has a number of pattern-action pairs. The patterns are regular

expressions and the actions are either a single C command, or a sequence enclosed in braces.

If more than one rule matches the input, the longer match is taken. If two matches are

the same length, the earlier one in the list is taken.

If the application of a rule depends on context, there are a couple of ways of dealing

with this.

We distinguish between ‘left state’ and ‘right state’, basically letting a rule depend on

what comes before or after the matched token.

UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 14 -

Left state

A rule can be prefixed as <STATE>(some pattern) {... meaning that the rule will only be

evaluated if the specified state holds; Switching between states is done in the action part of the

rule: <STATE>(some pattern) {some action; BEGIN OTHERSTATE;} The initial state of lex is

INITIAL.

Right state

It is also possible to let a rule depend on what follows the matched text. For instance

abc/de {some action} means ‘match abc but only when followed by de. This is different from

matching on abcde because the de tokens are still in the input stream, and they will be

submitted to matching next.

USER CODE:

If the lex program is to be used on its own, this section will contain a main program. If

you leave this section empty you will get the default main:

int main()

{

yylex();

return 0;

}

Where yylex is the parser that is built from the rules

BUILDING AN APPLICATION WITH LEX

General commands to create an application using lex.

lex lexFile.l

Generates (outputs) a C file lex.yy.c and constructs a C function yylex().

Compile and link with lex library.

cc -o scanner lex.yy.c –ll

SPECIAL LEX VARIABLES

yytext is an external variable that contains the matched string.

UNIT-I OVERVIEW OF COMPILATION III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 15 -

yyleng is an external variable that contains the length (the number of characters) of the

matched string.

yylineno is an external variable that contains the number of the current input line

(version dependent).

Example:

Find a name and bracket it with < and > if it is encountered.

nameMatch.l

%{

#include <stdio.h>

%}

%%

Dexter|DeeDee printf("<%s>", yytext);

%%

Input: cartoon.dat

Animaniacs: Yakko, Wakko, Dot

Bugs Bunny: Bugs Bunny

Dexter’s Laboratory: Dexter, DeeDee

Speed Racer: Speed, ChimChim

Spongebob Squarepants: Spongebob

Output

% ./example2 < cartoon.dat

Animaniacs: Yakko, Wakko, Dot

Bugs Bunny: Bugs Bunny

<Dexter>’s Laboratory: <Dexter>, <DeeDee>

Speed Racer: Speed, ChimChim

Spongebob Squarepants: Spongebob

