
UNIT-II CONTEXT FREE GRAMMAR III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 1 -

CONTEXT FREE GRAMMAR:

Context free grammar Is a specification for the syntax of a programming language.

Informally a Context Free Grammar (CFG) is defined as a finite set of rules used for deriving or

generating strings or sentences in a language, which consists of:

 A set of replacement rules, each having a Left-Hand Side (LHS) and a Right-Hand Side

(RHS).

 Two types of symbols called as variables and terminals.

 LHS of each rule is a single variable (non-terminal).

 RHS of each rule is a string of zero or more variables and/or terminals.

CFG is also defined as a set of variables (non-terminals) each of which represents a

language. The languages represented by the variables are described recursively in terms of each

other. The primitive symbols are called as terminals and the rules relating the variables are

called as productions.

Context Free Grammar is formally defined as a 4 tuple (V, T, P, S) where:

 V and T are finite sets of variables and terminals respectively.

 P is the finite set of productions. Each production is of the form Aα where A is a

variable and α is a string of symbols from (V U T)*

 S is a special variable called as start symbol.

Sentential form: A sentence that contains variables & terminals is called as a sentential form.

For example, If (α, β) ϵ P, then we write the production as α β where β is the sentential form.

Context‐free grammars are useful for describing arithmetic expressions and block

structure. Example for context free grammar is given below:

Given a set of productions:

 <exp> <exp> + <exp>

<exp> <exp> * <exp>

<exp> (<exp>)

<exp> id

Example E E + E, E E * E, E (E), E x, E y

UNIT-II CONTEXT FREE GRAMMAR III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 2 -

LANGUAGE OF CONTEXT FREE GRAMMAR:

A sequence of tokens is syntactically legal if it can be derived by applying the

productions of the CFG. A context-free grammar defines a language which is a set of strings

(sequences) of tokens (terminals), each string of tokens is derivable from the production rules

of the CFG.

Consider the following simplified grammar for expressions

expr expr op expr | (expr) | id | num

op + | – | * | /

 The string:(id+num)*id is syntactically legal and part of the language

 Similarly: id*(num-id) is also part of the language

 However: (id+num is NOT part of the language

 Similarly: id*-num+ is NOT part of the language

DERIVATIONS:

Derivation is an ordered tree which is defined as sequence of replacements of a

substring in a sentential form. To check whether a sequence of tokens is legal or not:

 We start with a nonterminal called the start symbol

 We apply productions, rewriting nonterminals, until only terminals remain

 derivation replaces a nonterminal on LHS of a production with RHS

 The symbol denotes a derivation step

For example, a derivation for (id + num)*id is given below:

expr expr op expr

 (expr) op expr

 (expr op expr) op expr

 (expr + expr) op expr

 (expr + expr) * expr

 (id + expr) * expr

 (id + num) * expr

 (id + num) * id

UNIT-II CONTEXT FREE GRAMMAR III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 3 -

When deriving a sequence of tokens more than one nonterminal may be present and

can be expanded. There are two types of derivations 1) left most derivation and 2) right most

derivation.

A left most derivation chooses the leftmost nonterminal to expand and a right most

derivation chooses the rightmost nonterminal to expand.

The graphical representation of a derivation is called parse tree, which filters out choice

regarding replacement order and it is rooted by the start symbol S. Interior nodes represent

nonterminals, Leaf nodes are terminals. The following is a parse tree for (id + num) * id

AMBIGUITY:

A Context Free Grammar is ambiguous if some string w є L(G) has two or more leftmost

or rightmost derivations. Sometimes the language generated by an ambiguous grammar has an

equivalent unambiguous grammar. Languages that can only be generated by ambiguous

grammars are called inherently ambiguous. It can be solved in two ways 1) solved by

precedence 2) solved by associativity

PARSING:

The term parsing is the process of analyzing a string of symbols, either in natural

language or in computer languages, according to the rules of a formal grammar.

Programming language that follows some syntax to develop the code has to check for

any syntax errors in the code, this will be done in parsing.

UNIT-II CONTEXT FREE GRAMMAR III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 4 -

Parsing is the process of the generation of a parse tree (or its equivalents) which is a

graphical representation of derivation that filters out the choice regarding replacement order;

parse tree is the internal structure of compiler or interpreter; corresponding to a given input

string w and grammar G. There are two types of parsing techniques. 1) Top Down Parsing and

2) Bottom Up parsing

TOP DOWN PARSING:

Top down Parsing begin with start symbol of grammar as root of tree and grow it

towards leaves. Construction of parse tree in top down parsing is constructed from the top and

from left to right. It is classified in to two types based on two forms (i.e. prediction and

backtracking)

1) Recursive descent parsing

2) Predictive parsing without backtracking.

RECURSIVE DESCENT PARSING:

A recursive descent parser is a kind of top-down parser built from a set of mutually

recursive procedures (or a non-recursive equivalent) where each such procedure usually

implements one of the production rules of the grammar. Thus the structure of the resulting

program closely mirrors that of the grammar it recognizes.

Recursive descent with backtracking is a technique that determines which production to

use by trying each production in turn. Recursive descent with backtracking is not limited to LL(k)

grammars, but is not guaranteed to terminate unless the grammar is LL(k). Even when they

terminate, parsers that use recursive descent with backtracking may require exponential time.

It consists of set of procedures one for each non terminal, which uses backtracking.

Now let us consider a grammar:

 SaBc

 Bbc/b

Let the input string be abc then constructing a parse tree

UNIT-II CONTEXT FREE GRAMMAR III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 5 -

Here it fails so it backtracks

It makes repeated scans of the input. A left recursive grammar can cause a recursive

decent parser, even one with backtracking, to go into an infinity loop. A grammar is said to be

left recursive if it has a non terminal A such that there is a derivation AAα for some string α.

Top down parsing methods cannot handle left recursive grammars, so a transformation

that eliminates left recursion is needed. To get non-left recursive productions we rewrite the

productions A Aα | β as

 AβA’

 A’αA’|ԑ

i.e. if AAα1|Aα2|….|Aαn | β1|β2….|βm then it can be written as follows:

 Aβ1A’ | β2A’….βmA’

 A’α1A’| α2A’ | α3A’ | αnA’ | ԑ

Let us consider an example:

 EE+T/T

 TT*F/F

 F(E)/id

The grammar can be written as

 EE+T

 ET

 TT*F

 TF

 F(E)

 Fid

UNIT-II CONTEXT FREE GRAMMAR III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 6 -

Now consider EE+T | T this is in the form of AAα, so we can rewrite the grammar as

ETE’

E’+TE’/E

Similarly this can be TFT’

T’*FT’/E

F(E)/id

PREDICTIVE PARSING:

A predictive parser is a recursive descent parser that does not require backtracking.

Predictive parsing is possible only for the class of LL(k) grammars, which are the context-free

grammars for which there exists some positive integer k that allows a recursive descent parser

to decide which production to use by examining only the next k tokens of input.

The LL(k) grammars therefore exclude all ambiguous grammars, as well as all grammars

that contain left recursion. Any context-free grammar can be transformed into an equivalent

grammar that has no left recursion, but removal of left recursion does not always yield an LL(k)

grammar. A predictive parser runs in linear time.

Predictive parsers can be depicted using transition diagrams for each non-terminal

symbol where the edges between the initial and the final states are labeled by the symbols

(terminals and non-terminals) of the right side of the production rule.

Left Factoring:

Left factoring is a grammar transformation that is useful for producing a grammar

suitable for predictive parsing. Now we have few steps to follow:

1) Collect all the productions with the same left side and begin with same symbols on right

hand side.

Example: ET+E/T

Tint/int*T/(E)

Tint

Tint*T

2) Combine the common strings into a single production and then append a new terminal

symbol to the end of this new production.

Example: Tint y

UNIT-II CONTEXT FREE GRAMMAR III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 7 -

3) Create new production using this new non-terminal for each of the suffixes to the

common production.

METHODS IN LL:

 FIRST(α)

 FOLLOW(A)

FIRST (α):

It is defined as the set of terminals that begin strings derived from α where α is any

grammar symbol.

FOLLOW (A):

It is defined as the set of terminals that can appear immediately after A in some

sentential form. We have some rules for both FIRST (α) and FOLLOW (A). They are:

FIRST (α):

o If α is a terminal then FIRST (α) is {α}.

o If αԑ is a production then add ԑ to FIRST (α).

o If α is a non-terminal and αY1,Y2,Y3,….Yk is a production then place a in First(α) if for

some I, a is in FIRST(Yi) and ԑ is in all of FIRST(Y1)….FIRST(Yi-1) and if ԑ is in FIRST(Yj) for all

j=1,2,….k then add ԑ to FIRST(α).

FOLLOW (A):

o Place $ in FOLLOW (A) where A is a start symbol and $ is input right end marker.

o If there is a production AαBβ then everything in FIRST(β) is in FOLLOW(β) except ‘ԑ’,

irrespective of whether β may or may not contains ԑ.

o If there is a production AαBβ (or) AαB where FIRST(β) contains ԑ then everything in

FOLLOW (A) is in FOLLOW (B).

Now let us consider an example grammar.

 EE+T/T

 TT*F/F

 FId/(E)

UNIT-II CONTEXT FREE GRAMMAR III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 8 -

The above example has lest recursion so we have determinate it.

First consider,

 EE+T

 ET

 Here α=T, β1=+E β=E

So this can be written as

 ETE’

 E’+E/E

Now consider

 TT*F (or) TF*T

 TF TF

Here α=F, β1= *T, β2=E

 TFT’

 T’*T/E

So now after removing left recursion the productions are:

 ETE’

 E’+E/E

 TFT’

 T’*T/E

 Fid/(E)

 Now let us calculate FIRST (α).

FIRST (E) = FIRST (T) = FIRST (F)

Here FIRST (F) = {id,c} so from rule (3)

 FIRST (T) = {id,c}

 FIRST (E’) = {E, +} from rules (2&3)

UNIT-II CONTEXT FREE GRAMMAR III-I R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. COMPILER DESIGN - 9 -

 FIRST (T’) = {E, *}

 FIRST (+) = {+}

 FIRST (*) = {*}

 FIRST (id) = {id)

 FIRST (() = {(}

 FIRST ()) = {)}

 Now let us calculate the FOLLOW (A) for the given grammar:

 FOLLOW (E) = {$,)}

 FOLLOW (E’) = FOLLOW (E)

 FOLLOW (T) = {+, $,)}

 FOLLOW (T’) = FOLLOW (T)

 FOLLOW (F) = FOLLOW {*, $, +,)}

 Now let us construct a predictive parse table. It has some rules:

 For each production Aα of the grammar do the step 2 & 3

 For each terminal ‘a’ in FIRST (α) add Aα to M[A, a]

 If E is in FIRST (α) add A to M [A, b] for each terminal b in FOLLOW (A). If E is in FIRST

(α) and $ is in FOLLOW (A) then add A to M [A, $].

 Make each undefined entry as an error, in the table M.

 + * id () $

 E ETE’ ETE’

 E’ E’+E E’E E’E

 T TFT’ TFT’

 T’ T’E T’*T T’E T’E

 F Fid F(E)

