
Introduction

• Concerns with machine-independent code
optimization
 90-10 rule: execution spends 90% time in 10% of

the code.
 It is moderately easy to achieve 90% optimization. The

rest 10% is very difficult.

 Identification of the 10% of the code is not possible for
a compiler – it is the job of a profiler.

• In general, loops are the hot-spots

1

Introduction

• Criterion of code optimization

– Must preserve the semantic equivalence of the programs

– The algorithm should not be modified

– Transformation, on average should speed up the execution
of the program

– Worth the effort: Intellectual and compilation effort spend
on insignificant improvement.

Transformations are simple enough to have a good effect

2

Introduction

• Optimization can be done in almost all phases
of compilation.

3

Front

end

Code

generator

Source

code

Inter.

code

target

code

Profile and

optimize

(user)

Loop, proc

calls, addr

calculation

improvement

(compiler)

Reg usage,

instruction

choice,

peephole opt

(compiler)

Introduction

• Organization of an optimizing compiler

4

Control

flow

analysis

Data flow

analysis
Transformation

Code optimizer

Classifications of Optimization techniques

 Peephole optimization

 Local optimizations

 Global Optimizations

 Inter-procedural

 Intra-procedural

 Loop optimization

5

Factors influencing Optimization

• The target machine: machine dependent factors can
be parameterized to compiler for fine tuning

• Architecture of Target CPU:
– Number of CPU registers
– RISC vs CISC
– Pipeline Architecture
– Number of functional units

• Machine Architecture
– Cache Size and type
– Cache/Memory transfer rate

6

Themes behind Optimization Techniques

• Avoid redundancy: something already computed need not
be computed again

• Smaller code: less work for CPU, cache, and memory!

• Less jumps: jumps interfere with code pre-fetch

• Code locality: codes executed close together in time is
generated close together in memory – increase locality of
reference

• Extract more information about code: More info –
better code generation

7

Redundancy elimination
• Redundancy elimination = determining that two computations

are equivalent and eliminating one.
• There are several types of redundancy elimination:

– Value numbering
• Associates symbolic values to computations and identifies expressions that have

the same value

– Common subexpression elimination
• Identifies expressions that have operands with the same name

– Constant/Copy propagation
• Identifies variables that have constant/copy values and uses the constants/copies

in place of the variables.

– Partial redundancy elimination
• Inserts computations in paths to convert partial redundancy to full redundancy.

8

Optimizing Transformations

• Compile time evaluation

• Common sub-expression elimination

• Code motion

• Strength Reduction

• Dead code elimination

• Copy propagation

• Loop optimization
– Induction variables and strength reduction

9

Compile-Time Evaluation

• Expressions whose values can be pre-
computed at the compilation time

• Two ways:

– Constant folding

– Constant propagation

10

Compile-Time Evaluation

• Constant folding: Evaluation of an expression
with constant operands to replace the
expression with single value

• Example:
 area := (22.0/7.0) * r ** 2

 area := 3.14286 * r ** 2

11

Compile-Time Evaluation

• Constant Propagation: Replace a variable with
constant which has been assigned to it earlier.

• Example:
pi := 3.14286

area = pi * r ** 2

 area = 3.14286 * r ** 2

12

Constant Propagation
• What does it mean?

– Given an assignment x = c, where c is a constant, replace later
uses of x with uses of c, provided there are no intervening
assignments to x.

• Similar to copy propagation
• Extra feature: It can analyze constant-value conditionals to

determine whether a branch should be executed or not.

• When is it performed?
– Early in the optimization process.

• What is the result?
– Smaller code
– Fewer registers

13

Common Sub-expression Evaluation

• Identify common sub-expression present in different
expression, compute once, and use the result in all the places.
– The definition of the variables involved should not change

Example:

 a := b * c temp := b * c

 … a := temp

 … …

 x := b * c + 5 x := temp + 5

14

Common Subexpression Elimination
• Local common subexpression elimination

– Performed within basic blocks

– Algorithm sketch:
• Traverse BB from top to bottom

• Maintain table of expressions evaluated so far

– if any operand of the expression is redefined, remove it from the
table

• Modify applicable instructions as you go

– generate temporary variable, store the expression in it and use the

variable next time the expression is encountered.

15

x = a + b
...
y = a + b

t = a + b
x = t
...
y = t

Common Subexpression Elimination

16

c = a + b
d = m * n
e = b + d
f = a + b
g = - b
h = b + a
a = j + a
k = m * n
j = b + d
a = - b
if m * n go to L

t1 = a + b
c = t1
t2 = m * n
d = t2
t3 = b + d
e = t3
f = t1
g = -b
h = t1 /* commutative */
a = j + a
k = t2
j = t3
a = -b
if t2 go to L

the table contains quintuples:
(pos, opd1, opr, opd2, tmp)

Common Subexpression Elimination

• Global common subexpression elimination

– Performed on flow graph

– Requires available expression information

• In addition to finding what expressions are available
at the endpoints of basic blocks, we need to know
where each of those expressions was most recently
evaluated (which block and which position within
that block).

17

Common Sub-expression Evaluation

18

z : = a + b + 10

a : = b

1

2 3

4

 “a + b” is not a

common sub-

expression in 1 and 4

None of the variable involved should be modified in any path

x : = a + b

Code Motion

• Moving code from one part of the program to
other without modifying the algorithm

– Reduce size of the program

– Reduce execution frequency of the code subjected
to movement

19

Code Motion

1. Code Space reduction: Similar to common sub-
expression elimination but with the objective to
reduce code size.

 Example: Code hoisting

 temp : = x ** 2

 if (a< b) then if (a< b) then

 z := x ** 2 z := temp

 else else

 y := x ** 2 + 10 y := temp + 10

20

“x ** 2“ is computed once in both cases, but the code size in the

second case reduces.

Code Motion

2 Execution frequency reduction: reduce execution frequency
of partially available expressions (expressions available
atleast in one path)

Example:

if (a<b) then if (a<b) then
 z = x * 2 temp = x * 2
 z = temp
else else
y = 10 y = 10
 temp = x * 2
g = x * 2 g = temp;

21

Code Motion

• Move expression out of a loop if the
evaluation does not change inside the loop.

Example:

 while (i < (max-2)) …

Equivalent to:
 t := max - 2

 while (i < t) …

22

Code Motion

• Safety of Code movement
 Movement of an expression e from a basic block bi to

another block bj, is safe if it does not introduce any new
occurrence of e along any path.

Example: Unsafe code movement

 temp = x * 2
if (a<b) then if (a<b) then
 z = x * 2 z = temp
else else
 y = 10 y = 10

23

Strength Reduction

• Replacement of an operator with a less costly one.

Example:

 temp = 5;
 for i=1 to 10 do for i=1 to 10 do
 … …
 x = i * 5 x = temp
 … …
 temp = temp + 5
 end end

• Typical cases of strength reduction occurs in address
calculation of array references.

• Applies to integer expressions involving induction variables
(loop optimization)

24

Dead Code Elimination

• Dead Code are portion of the program which will not
be executed in any path of the program.
– Can be removed

• Examples:
– No control flows into a basic block

– A variable is dead at a point -> its value is not used
anywhere in the program

– An assignment is dead -> assignment assigns a value to a
dead variable

25

Dead Code Elimination

27

• Examples:

 DEBUG:=0

if (DEBUG) print Can be

 eliminated

Copy Propagation
• What does it mean?

– Given an assignment x = y, replace later uses of x with
uses of y, provided there are no intervening assignments
to x or y.

• When is it performed?

– At any level, but usually early in the optimization
process.

• What is the result?

– Smaller code

28

Copy Propagation

• f := g are called copy statements or copies
• Use of g for f, whenever possible after copy

statement

Example:
 x[i] = a; x[i] = a;
 sum = x[i] + a; sum = a + a;

• May not appear to be code improvement, but opens

up scope for other optimizations.

29

Local Copy Propagation

• Local copy propagation

– Performed within basic blocks

– Algorithm sketch:

• traverse BB from top to bottom

• maintain table of copies encountered so far

• modify applicable instructions as you go

30

Loop Optimization

• Decrease the number if instruction in the
inner loop

• Even if we increase no of instructions in the
outer loop

• Techniques:
– Code motion

– Induction variable elimination

– Strength reduction

31

PEEPHOLE OPTIMIZATION

• The Peephole Optimization is a kind of
optimization technique performed over a very
small set of instructions in a segment of
generated assembly code.

• The set of instructions is called a "peephole" or a
"window".

• It works by recognizing sets of instructions that
can be replaced by shorter or faster set of
instructions to achieve speed or performance in
the execution of the instruction sequences

32

PEEPHOLE OPTIMIZATION

• It works by recognizing sets of instructions that can be replaced by shorter
or faster set of instructions to achieve speed or performance in the
execution of the instruction sequences.

• Basically Peephole Optimization is a method which consists of a local
investigation of the generated object code means intermediate assembly
code to identify and replace inefficient sequence of instructions to achieve
optimality in targeted machine code in context of execution or response
time, performance of the algorithm and memory or other resources usage
by the program.

33

COMMON TECHNIQUES APPLIED IN
PEEPHOLE OPTIMIZATION

• Constant folding - Assess constant sub expressions in advance.

 E.g. r2 := 3 X 2 becomes r2 := 6

• Strength reduction - Faster Operations will be replaced with slower one.

 E.g. r1:= r2 X 2 becomes r1 := r2 + r2 then r1 := r2<<1

 r1 := r2/2 becomes r1 := r2>>1

• Null sequences – Operations that are ineffective will be removed.

 E.g. r1 := r1 + 0 or r1 := r1 X 1 has no effect

• Combine Operations - Replacement of the few operations with similar effective single
operation.

 E.g. r2 := r1 X 2

 r3 := r2 X 1 becomes r3 := r1 + r1

• Algebraic Laws - Simplification and reordering of the instructions using algebraic laws.

 E.g. r1 := r2

 r3 := r1 becomes r3 := r2;

34

MACHINE SPECIFIC PEEPHOLE
OPTIMIZERS

• Peephole optimization is simple but effective optimization
technique.

• It was noted that when a program gets compiled, the code emitted
from the code generators contained many redundancies around
borders of basic blocks like chains of jump instructions. It becomes
complicated case analysis to reduce these redundancies during the
code generation phase. So it was appropriate to define a separate
phase that would deal with them.

• The concept was described as follow:

– A peephole, a small window which consisting no more than two assembly
code instructions, is passed over the code.

– Whenever redundant instructions are found in the sequence, they are
replaced by shorter or faster instruction sequences.

35

MACHINE SPECIFIC PEEPHOLE
OPTIMIZERS

– For that the peephole optimizer uses the simple hand written pattern
rules.

– These are first matched with the assembly instructions for the applicability
of testing, and if the match found, the instructions are replaced.

– Therefore, a typical pattern rule consists of two parts a match part and a
replacement part.

– The pattern set is usually small as this is sufficient for fast and efficient
optimization.

36

Local Optimization

37

Optimization of Basic Blocks

• Many structure preserving transformations
can be implemented by construction of DAGs
of basic blocks

38

DAG representation
 of Basic Block (BB)

• Leaves are labeled with unique identifier (var name
or const)

• Interior nodes are labeled by an operator symbol

• Nodes optionally have a list of labels (identifiers)

• Edges relates operands to the operator (interior
nodes are operator)

• Interior node represents computed value

– Identifier in the label are deemed to hold the value

39

Example: DAG for BB

40

t1 := 4 * i

t1
*

i 4

t1 := 4 * i

t3 := 4 * i

t2 := t1 + t3

*

i 4

+

t1, t3

t2

if (i <= 20)goto L1

<=

i
20

(L1)

Construction of DAGs for BB

• I/p: Basic block, B

• O/p: A DAG for B containing the following
information:

1) A label for each node

2) For leaves the labels are ids or consts

3) For interior nodes the labels are operators

4) For each node a list of attached ids (possible
empty list, no consts)

41

Construction of DAGs for BB

• Data structure and functions:
– Node:

1) Label: label of the node

2) Left: pointer to the left child node

3) Right: pointer to the right child node

4) List: list of additional labels (empty for leaves)

– Node (id): returns the most recent node created for id.
Else return undef

– Create(id,l,r): create a node with label id with l as left
child and r as right child. l and r are optional params.

42

Construction of DAGs for BB

• Method:
For each 3AC, A in B

A if of the following forms:
1. x := y op z

2. x := op y

3. x := y

1. if ((ny = node(y)) == undef)
 ny = Create (y);

 if (A == type 1)

 and ((nz = node(z)) == undef)

 nz = Create(z);

 43

Construction of DAGs for BB

2. If (A == type 1)
 Find a node labelled ‘op’ with left and right as ny and nz respectively

[determination of common sub-expression]
If (not found) n = Create (op, ny, nz);

If (A == type 2)
 Find a node labelled ‘op’ with a single child as ny

 If (not found) n = Create (op, ny);

If (A == type 3) n = Node (y);

3. Remove x from Node(x).list
 Add x in n.list

 Node(x) = n;

44

Example: DAG construction
 from BB

t1 := 4 * i

45

*

i 4

t1

Example: DAG construction
 from BB

46

t1 := 4 * i

t2 := a [t1]

*

i 4

t1

[]

a

t2

Example: DAG construction
 from BB

47

t1 := 4 * i

t2 := a [t1]

t3 := 4 * i

*

i 4

t1, t3

[]

a

t2

Example: DAG construction
 from BB

48

t1 := 4 * i

t2 := a [t1]

t3 := 4 * i

t4 := b [t3]

*

i 4

t1, t3

[]

a

t2
[]

b

t4

Example: DAG construction
 from BB

49

t1 := 4 * i

t2 := a [t1]

t3 := 4 * i

t4 := b [t3]

t5 := t2 + t4

*

i 4

t1, t3

[]

a

t2
[]

b

t4

t5 +

Example: DAG construction
 from BB

50

t1 := 4 * i

t2 := a [t1]

t3 := 4 * i

t4 := b [t3]

t5 := t2 + t4

i := t5

*

i 4

t1, t3

[]

a

t2
[]

b

t4

t5,i +

DAG of a Basic Block

• Observations:

– A leaf node for the initial value of an id

– A node n for each statement s

– The children of node n are the last definition
(prior to s) of the operands of n

51

Optimization of Basic Blocks

• Common sub-expression elimination: by
construction of DAG
– Note: for common sub-expression elimination, we

are actually targeting for expressions that
compute the same value.

52

a := b + c

b := b – d

c := c + d

e := b + c

Common expressions
But do not generate the

same result

Optimization of Basic Blocks

• DAG representation identifies expressions that
yield the same result

53

a := b + c

b := b – d

c := c + d

e := b + c

b0 c0 d0

+

+ + - a b c

e

Optimization of Basic Blocks

• Dead code elimination: Code generation from
DAG eliminates dead code.

54

a := b + c

b := a – d

d := a – d

c := d + c

b is not live

c

a := b + c

d := a - d

c := d + c

b0 c0

d0
+

-

+

a

b,d ×

Loop Optimization

55

Loop Optimizations

• Most important set of optimizations
– Programs are likely to spend more time in loops

• Presumption: Loop has been identified

• Optimizations:
– Loop invariant code removal

– Induction variable strength reduction

– Induction variable reduction

56

Loops in Flow Graph

• Dominators:
 A node d of a flow graph G dominates a node n, if every

path in G from the initial node to n goes through d.

 Represented as: d dom n

Corollaries:
 Every node dominates itself.
 The initial node dominates all nodes in G.
 The entry node of a loop dominates all nodes in the loop.

57

Loops in Flow Graph

• Each node n has a unique immediate dominator m,
which is the last dominator of n on any path in G
from the initial node to n.

(d ≠ n) && (d dom n) → d dom m

• Dominator tree (T):
 A representation of dominator information of flow

graph G.
• The root node of T is the initial node of G

• A node d in T dominates all node in its sub-tree

58

Example: Loops in Flow Graph

59

1

2 3

4

5 6 7

8 9

Flow Graph Dominator Tree

1

2 3

4

5 6

7

8 9

Loops in Flow Graph

• Natural loops:

1. A loop has a single entry point, called the “header”.
Header dominates all node in the loop

2. There is at least one path back to the header from the
loop nodes (i.e. there is at least one way to iterate the
loop)

• Natural loops can be detected by back edges.
• Back edges: edges where the sink node (head) dominates the

source node (tail) in G

60

Loop Optimization

• Loop interchange: exchange inner loops with outer
loops

• Loop splitting: attempts to simplify a loop or
eliminate dependencies by breaking it into multiple
loops which have the same bodies but iterate over
different contiguous portions of the index range.
– A useful special case is loop peeling - simplify a loop with a

problematic first iteration by performing that iteration
separately before entering the loop.

67

Loop Optimization

• Loop fusion: two adjacent loops would iterate the
same number of times, their bodies can be combined
as long as they make no reference to each other's
data

• Loop fission: break a loop into multiple loops over
the same index range but each taking only a part of
the loop's body.

• Loop unrolling: duplicates the body of the loop
multiple times

68

Loop Optimization

• Pre-Header:

– Targeted to hold statements that
are moved out of the loop

– A basic block which has only the
header as successor

– Control flow that used to enter
the loop from outside the loop,
through the header, enters the
loop from the pre-header

69

Header

loop L

Header

loop L

Pre-header

Loop Invariant Code Removal

• Move out to pre-header the statements
whose source operands do not change within
the loop.

– Be careful with the memory operations

– Be careful with statements which are executed in
some of the iterations

71

Loop Invariant Code Removal

• Rules: A statement S: x:=y op z is loop invariant:

– y and z not modified in loop body

– S is the only statement to modify x

– For all uses of x, x is in the available def set.

– For all exit edge from the loop, S is in the available def set
of the edges.

– If S is a load or store (mem ops), then there is no writes to
address(x) in the loop.

72

Loop Invariant Code Removal

Rules that need change:
• For all use of x is in the

available definition set
• For all exit edges, if x is live

on the exit edges, is in the
available definition set on
the exit edges

• Approx of First rule:
– d dominates all uses of x

• Approx of Second rule
– d dominates all exit basic

blocks where x is live

73

 Loop invariant code removal can be done without

 available definition information.

Loop Induction Variable

• Induction variables are variables such that every time
they change value, they are incremented or
decremented.
– Basic induction variable: induction variable whose only

assignments within a loop are of the form:
 i = i +/- C, where C is a constant.
– Primary induction variable: basic induction variable that

controls the loop execution
 (for i=0; i<100; i++)
 i (register holding i) is the primary induction variable.
– Derived induction variable: variable that is a linear

function of a basic induction variable.

74

Loop Induction Variable

• Basic: r4, r7, r1

• Primary: r1

• Derived: r2

75

r2 = r1 * 4

r4 = r7 + 3

r7 = r7 + 1

r10 = *r2

r3 = *r4

r9 = r1 * r3

r10 = r9 >> 4

*r2 = r10

r1 = r1 + 4

If(r1 < 100) goto Loop

Loop:

r1 = 0

r7 = &A

Induction Variable Strength Reduction

• Create basic induction variables from derived
induction variables.

• Rules: (S: x := y op z)
– op is *, <<, +, or –

– y is a induction variable

– z is invariant

– No other statement modifies x

– x is not y or z

– x is a register

76

Induction Variable Strength Reduction

• Transformation:

 Insert the following into the bottom of pre-header:
 new_reg = expression of target statement S

 if (opcode(S)) is not add/sub, insert to the bottom of the preheader

 new_inc = inc(y,op,z)

 else

 new_inc = inc(x)

 Insert the following at each update of y

 new_reg = new_reg + new_inc

 Change S: x = new_reg

77

Function: inc()

Calculate the amount of inc

for 1st param.

Example: Induction Variable Strength
Reduction

78

 r5 = r4 - 3

 r4 = r4 + 1

 r7 = r4 *r9

 r6 = r4 << 2

new_reg = r4 * r9

new_inc = r9

 r5 = r4 - 3

 r4 = r4 + 1

new_reg += new_inc

r7 = new_reg

 r6 = r4 << 2

Induction Variable Elimination

• Remove unnecessary basic induction variables from the loop
by substituting uses with another basic induction variable.

• Rules:
– Find two basic induction variables, x and y

– x and y in the same family
• Incremented at the same place

– Increments are equal

– Initial values are equal

– x is not live at exit of loop

– For each BB where x is defined, there is no use of x between the first
and the last definition of y

79

Example: Induction Variable Elimination

80

r1 = 0

r2 = 0

r1 = r1 - 1

r2 = r2 -1

r9 = r2 + r4 r7 = r1 * r9

r4 = *(r1)

*r2 = r7

r2 = 0

r2 = r2 - 1

r9 = r2 + r4 r7 = r2 * r9

r4 = *(r2)

*r7 = r2

Induction Variable Elimination

• Variants:
1. Trivial: induction variable that are never used except to increment

themselves and not live at the exit of loop

2. Same increment, same initial value (discussed)

3. Same increment, initial values are a known constant offset from one
another

4. Same increment, nothing known about the relation of initial value

5. Different increments, nothing known about the relation of initial
value

– 1,2 are basically free

– 3-5 require complex pre-header operations

81

C
o
m

p
le

x
ity

 o
f e

lim
in

a
tio

n

Example: Induction Variable Elimination

• Case 4: Same increment, unknown initial value

 For the induction variable that we are eliminating, look at each non-
incremental use, generate the same sequence of values as before. If that
can be done without adding any extra statements in the loop body, then
the transformation can be done.

82

r4 := r2 + 8

r3 := r1 + 4

.

.

r1 := r1 + 4

r2 := r2 + 4

 rx := r2 –r1 + 8

r4 := r1 + rx

r3 := r1 = 4

.

.

r1 := r1 + 4

Loop Unrolling

• Replicate the body of a loop (N-1) times, resulting in
total N copies.

– Enable overlap of operations from different iterations

– Increase potential of instruction level parallelism (ILP)

• Variants:

– Unroll multiple of known trip counts

– Unroll with remainder loop

– While loop unroll

83

Global Data Flow Analysis

84

Global Data Flow Analysis

• Collect information about the whole program.

• Distribute the information to each block in the flow
graph.

• Data flow information: Information collected by data
flow analysis.

• Data flow equations: A set of equations solved by
data flow analysis to gather data flow information.

85

Data flow analysis
• IMPORTANT!

– Data flow analysis should never tell us that a
transformation is safe when in fact it is not.

– When doing data flow analysis we must be

• Conservative
– Do not consider information that may not preserve the

behavior of the program

• Aggressive
– Try to collect information that is as exact as possible, so we

can get the greatest benefit from our optimizations.

86

Global Iterative Data Flow Analysis

• Global:

– Performed on the flow graph

– Goal = to collect information at the beginning
and end of each basic block

• Iterative:

– Construct data flow equations that describe how
information flows through each basic block and
solve them by iteratively converging on a solution.

87

Global Iterative Data Flow Analysis
• Components of data flow equations

– Sets containing collected information
• in set: information coming into the BB from outside (following

flow of data)

• gen set: information generated/collected within the BB

• kill set: information that, due to action within the BB, will affect
what has been collected outside the BB

• out set: information leaving the BB

– Functions (operations on these sets)
• Transfer functions describe how information changes as it flows

through a basic block

• Meet functions describe how information from multiple paths is
combined.

88

Global Iterative Data Flow Analysis

• Algorithm sketch
– Typically, a bit vector is used to store the information.

• For example, in reaching definitions, each bit position corresponds to one
definition.

– We use an iterative fixed-point algorithm.
– Depending on the nature of the problem we are solving, we may need to

traverse each basic block in a forward (top-down) or backward direction.
• The order in which we "visit" each BB is not important in terms of algorithm

correctness, but is important in terms of efficiency.

– In & Out sets should be initialized in a conservative and aggressive way.

89

Global Iterative Data Flow Analysis

90

Initialize gen and kill sets
Initialize in or out sets (depending on "direction")
while there are no changes in in and out sets {
 for each BB {
 apply meet function
 apply transfer function
 }
}

Typical problems
• Reaching definitions

– For each use of a variable, find all definitions that reach it.

• Upward exposed uses

– For each definition of a variable, find all uses that it

reaches.

• Live variables

– For a point p and a variable v, determine whether v is live
at p.

• Available expressions

– Find all expressions whose value is available at some point
p.

91

Global Data Flow Analysis

• A typical data flow equation:

 S: statement

 in[S]: Information goes into S

 kill[S]: Information get killed by S

 gen[S]: New information generated by S

 out[S]: Information goes out from S

92

[] [] ([] [])out S gen S in S kill S 

Global Data Flow Analysis

• The notion of gen and kill depends on the desired
information.

• In some cases, in may be defined in terms of out -
equation is solved as analysis traverses in the
backward direction.

• Data flow analysis follows control flow graph.

– Equations are set at the level of basic blocks, or even for a
statement

93

Points and Paths

• Point within a basic block:
– A location between two consecutive statements.
– A location before the first statement of the basic block.
– A location after the last statement of the basic block.

• Path: A path from a point p1 to pn is a sequence of
points p1, p2, … pn such that for each i : 1 ≤ i ≤ n,
– pi is a point immediately preceding a statement and pi+1 is

the point immediately following that statement in the
same block, or

– pi is the last point of some block and pi+1 is first point in the
successor block.

94

Example: Paths and Points

95

d1: i := m – 1

d2: j := n

d3: a := u1

d4: i := i + 1

d5: j := j - 1

B1

B2

B3

B4

 d6: a := u2 B5
B6

pn

p3

p1

p2

p4

p5

p6

Path:

 p1, p2, p3, p4,

 p5, p6 … pn

Reaching Definition

• Definition of a variable x is a statement that assigns or may
assign a value to x.
– Unambiguous Definition: The statements that certainly assigns a value

to x
• Assignments to x

• Read a value from I/O device to x

– Ambiguous Definition: Statements that may assign a value to x
• Call to a procedure with x as parameter (call by ref)

• Call to a procedure which can access x (x being in the scope of the
procedure)

• x is an alias for some other variable (aliasing)

• Assignment through a pointer that could refer x

96

Reaching Definition

• A definition d reaches a point p
– if there is a path from the point immediately

following d to p and

– d is not killed along the path (i.e. there is not
redefinition of the same variable in the path)

• A definition of a variable is killed between two
points when there is another definition of that
variable along the path.

97

Example: Reaching Definition

98

d1: i := m – 1

d2: j := n

d3: a := u1

d4: i := i + 1

d5: j := j - 1

B1

B2

B3

B4

 d6: a := u2 B5
B6

p1

p2

Definition of i (d1)

reaches p1

Killed as d4, does

not reach p2.

Definition of i (d1)

does not reach B3,

B4, B5 and B6.

Reaching Definition

• Non-Conservative view: A definition might reach a
point even if it might not.
– Only unambiguous definition kills a earlier definition

– All edges of flow graph are assumed to be traversed.

 if (a == b) then a = 2

 else if (a == b) then a = 4

The definition “a=4” is not reachable.

 Whether each path in a flow graph is taken is an undecidable
problem

99

Data Flow analysis of a
 Structured Program

• Structured programs have well defined loop
constructs – the resultant flow graph is always
reducible.

– Without loss of generality we only consider while-
do and if-then-else control constructs

S → id := E│S ; S

 │ if E then S else S │ do S while E

E → id + id │ id

The non-terminals represent regions.

100

Data Flow analysis of a
 Structured Program

• Region: A graph G’= (N’,E’) which is portion of
the control flow graph G.

– The set of nodes N’ is in G’ such that

• N’ includes a header h

• h dominates all node in N’

– The set of edges E’ is in G’ such that

• All edges a → b such that a,b are in N’

101

Data Flow analysis of a
 Structured Program

• Region consisting of a statement S:

– Control can flow to only one block outside the region

• Loop is a special case of a region that is strongly
connected and includes all its back edges.

• Dummy blocks with no statements are used as
technical convenience (indicated as open circles)

102

Data Flow analysis of a Structured Program:
Composition of Regions

S → S1 ; S2

103

S1

S2

Data Flow analysis of a Structured Program:
Composition of Regions

S → if E then S1 else S2

104

S1 S2

if E goto S1

Data Flow analysis of a Structured Program:
Composition of Regions

S → do S1 while E

105

S1

if E goto S1

Data Flow Equations

• Each region (or NT) has four attributes:

– gen[S]: Set of definitions generated by the block S.

 If a definition d is in gen[S], then d reaches the end of
block S.

– kill[S]: Set of definitions killed by block S.
If d is in kill[S], d never reaches the end of block S. Every path

from the beginning of S to the end S must have a definition for
a (where a is defined by d).

106

Data Flow Equations

– in[S]: The set of definition those are live at the
entry point of block S.

– out[S]: The set of definition those are live at
the exit point of block S.

• The data flow equations are inductive or
syntax directed.
– gen and kill are synthesized attributes.

– in is an inherited attribute.

107

Data Flow Equations

• gen[S] concerns with a single basic block. It is
the set of definitions in S that reaches the end
of S.

• In contrast out[S] is the set of definitions
(possibly defined in some other block) live at
the end of S considering all paths through S.

108

Data Flow Equations
Single statement

109

d: a := b + c

[] [] ([] [])out S gen S in S kill S 

Da: The set of definitions in the program for variable a

S

[] { }

[] { }a

gen S d

kill S D d



 

Data Flow Equations
Composition

110

S

S1

S2

2 1 2

2 1 2

[] [] ([] [])

[] [] ([] [])

gen S gen S gen S kill S

kill S kill S kill S gen S

 

 

1

2 1

2

[] []

[] []

[] []

in S in S

in S out S

out S out S







Data Flow Equations
if-then-else

111

S1 S2
S

1 2

1 2

[] [] []

[] [] []

gen S gen S gen S

kill S kill S kill S





1

2

1 2

[] []

[] []

[] [] []

in S in S

in S in S

out S out S out S







Data Flow Equations
Loop

112

S S1

1

1

[] []

[] []

gen S gen S

kill S kill S





1 1

1

[] [] []

[] []

in S in S gen S

out S out S





Data Flow Analysis

• The attributes are computed for each region. The
equations can be solved in two phases:

– gen and kill can be computed in a single pass of a basic
block.

– in and out are computed iteratively.
• Initial condition for in for the whole program is

• In can be computed top- down

• Finally out is computed

113



Dealing with loop

• Due to back edge, in[S] cannot be used as

 in [S1]

• in[S1] and out[S1] are interdependent.

• The equation is solved iteratively.

• The general equations for in and out:

114

[] ([] : Y is a predecessor of S)

[] [] ([] [])

in S out Y

out S gen S in S kill S



 

Reaching definitions

• What is safe?
– To assume that a definition reaches a point

even if it turns out not to.

– The computed set of definitions reaching a
point p will be a superset of the actual set of
definitions reaching p

– Goal : make the set of reaching definitions as
small as possible (i.e. as close to the actual set
as possible)

115

Reaching definitions

• How are the gen and kill sets defined?
– gen[B] = {definitions that appear in B and

reach the end of B}

– kill[B] = {all definitions that never reach the
end of B}

• What is the direction of the analysis?
– forward

– out[B] = gen[B]  (in[B] - kill[B])

116

Reaching definitions
• What is the confluence operator?

– union

– in[B] =  out[P], over the predecessors P of B

• How do we initialize?
– start small

• Why? Because we want the resulting set to be as
small as possible

– for each block B initialize out[B] = gen[B]

117

Computation of gen and kill sets

118

for each basic block BB do

 gen(BB) = ; kill(BB) = ;

 for each statement (d: x := y op z) in sequential order in BB, do

 kill(BB) = kill(BB) U G[x];

 G[x] = d;

 endfor

 gen(BB) = U G[x]: for all id x

endfor

 

Computation of in and out sets



119

for all basic blocks BB in(BB) =

for all basic blocks BB out(BB) = gen(BB)

change = true

while (change) do

 change = false

 for each basic block BB, do

 old_out = out(BB)

 in(BB) = U(out(Y)) for all predecessors Y of BB

 out(BB) = gen(BB) + (in(BB) – kill(BB))

 if (old_out != out(BB)) then change = true

 endfor

endfor

Live Variable (Liveness) Analysis

• Liveness: For each point p in a program and each variable y,
determine whether y can be used before being redefined,
starting at p.

• Attributes
– use = set of variable used in the BB prior to its definition

– def = set of variables defined in BB prior to any use of the variable

– in = set of variables that are live at the entry point of a BB

– out = set of variables that are live at the exit point of a BB

120

Live Variable (Liveness) Analysis

• Data flow equations:

– 1st Equation: a var is live, coming in the block, if either

• it is used before redefinition in B
or
• it is live coming out of B and is not redefined in B

– 2nd Equation: a var is live coming out of B, iff it is live
coming in to one of its successors.

121

()

[] [] ([] [])

[] []
S succ B

in B use B out B def B

out B in S


 



Example: Liveness

122

r1 = r2 + r3

r6 = r4 – r5

r4 = 4

r6 = 8

r6 = r2 + r3

r7 = r4 – r5

r2, r3, r4, r5 are all live as they

are consumed later, r6 is dead

as it is redefined later

r4 is dead, as it is redefined.

So is r6. r2, r3, r5 are live

What does this mean?

 r6 = r4 – r5 is useless,

 it produces a dead value !!

Get rid of it!

Computation of use and def sets

 

123

for each basic block BB do

 def(BB) = ; use(BB) = ;

 for each statement (x := y op z) in sequential order, do

 for each operand y, do

 if (y not in def(BB))

 use(BB) = use(BB) U {y};

 endfor

 def(BB) = def(BB) U {x};

endfor

def is the union of all the LHS’s

use is all the ids used before defined

Computation of in and out sets



124

for all basic blocks BB

 in(BB) = ;

change = true;

while (change) do

 change = false

 for each basic block BB do

 old_in = in(BB);

 out(BB) = U{in(Y): for all successors Y of BB}

 in(X) = use(X) U (out(X) – def(X))

 if (old_in != in(X)) then change = true

 endfor

endfor

DU/UD Chains

• Convenient way to access/use reaching
definition information.

• Def-Use chains (DU chains)

– Given a def, what are all the possible consumers
of the definition produced

• Use-Def chains (UD chains)

– Given a use, what are all the possible producers of
the definition consumed

125

Example: DU/UD Chains

126

1: r1 = MEM[r2+0]

2: r2 = r2 + 1

3: r3 = r1 * r4

4: r1 = r1 + 5

5: r3 = r5 – r1

6: r7 = r3 * 2

7: r7 = r6

8: r2 = 0

9: r7 = r7 + 1

10: r8 = r7 + 5

11: r1 = r3 – r8

12: r3 = r1 * 2

DU Chain of r1:

 (1) -> 3,4

 (4) ->5

DU Chain of r3:

 (3) -> 11

 (5) -> 11

 (12) -> UD Chain of r1:

 (12) -> 11

UD Chain of r7:

 (10) -> 6,9

Some-things to Think About

• Liveness and Reaching definitions are basically the same
thing!
– All dataflow is basically the same with a few parameters

• Meaning of gen/kill (use/def)

• Backward / Forward

• All paths / some paths (must/may)
– So far, we have looked at may analysis algorithms

– How do you adjust to do must algorithms?

• Dataflow can be slow
– How to implement it efficiently?

– How to represent the info?

127

Generalizing Dataflow Analysis

• Transfer function

– How information is changed by BB
out[BB] = gen[BB] + (in[BB] – kill[BB]) forward analysis

in[BB] = gen[BB] + (out[BB] – kill[BB]) backward analysis

• Meet/Confluence function

– How information from multiple paths is combined

in[BB] = U out[P] : P is pred of BB forward analysis

out[BB] = U in[P] : P is succ of BB backward analysis

128

Generalized Dataflow Algorithm

change = true;

while (change)

change = false;

for each BB

apply meet function

apply transfer function

if any changes  change = true;

129

Example: Liveness by upward exposed uses

130

for each basic block BB, do

 for each operation (x := y op z) in reverse order in BB, do

 for each source operand of op, y, do

 endfor

 endfor

endfor

[]

[]

gen BB

kill BB





[] [] { }

[] [] { }

gen BB gen BB x

kill BB kill BB x

 



[] [] { }

[] [] { }

gen BB gen BB y

kill BB kill BB y



 

Beyond Upward Exposed Uses

• Upward exposed defs
– in = gen + (out – kill)

– out = U(in(succ))

– Walk ops reverse order
• gen += {dest} kill += {dest}

• Downward exposed uses

– in = U(out(pred))

– out = gen + (in - kill)
– Walk in forward order

• gen += {src}; kill -= {src};
• gen -= {dest}; kill += {dest};

• Downward exposed defs

– in = U(out(pred))

– out = gen + (in - kill)
– Walk in forward order

• gen += {dest}; kill += {dest};

131

All Path Problem

• Up to this point
– Any path problems (maybe relations)

• Definition reaches along some path
• Some sequence of branches in which def reaches
• Lots of defs of the same variable may reach a point

– Use of Union operator in meet function

• All-path: Definition guaranteed to reach
– Regardless of sequence of branches taken, def reaches
– Can always count on this
– Only 1 def can be guaranteed to reach
– Availability (as opposed to reaching)

• Available definitions
• Available expressions (could also have reaching expressions, but not

that useful)

132

Reaching vs Available Definitions

133

1: r1 = r2 + r3

2: r6 = r4 – r5

3: r4 = 4

4: r6 = 8

5: r6 = r2 + r3

6: r7 = r4 – r5 1,2,3,4 reach

1 available

1,2 reach

1,2 available

1,3,4 reach

1,3,4 available

1,2 reach

1,2 available

Available Definition Analysis (Adefs)

• A definition d is available at a point p if along all paths from d
to p, d is not killed

• Remember, a definition of a variable is killed between 2 points when there
is another definition of that variable along the path
– r1 = r2 + r3 kills previous definitions of r1

• Algorithm:
– Forward dataflow analysis as propagation occurs from defs downwards

– Use the Intersect function as the meet operator to guarantee the all-
path requirement

– gen/kill/in/out similar to reaching defs
• Initialization of in/out is the tricky part

134

Compute Adef gen/kill Sets

135

Exactly the same as Reaching defs !!

for each basic block BB do

 gen(BB) = ; kill(BB) = ;

 for each statement (d: x := y op z) in sequential order in BB, do

 kill(BB) = kill(BB) U G[x];

 G[x] = d;

 endfor

 gen(BB) = U G[x]: for all id x

endfor

 

Compute Adef in/out Sets

136

U = universal set of all definitions in the prog

in(0) = 0; out(0) = gen(0)

for each basic block BB, (BB != 0), do

 in(BB) = 0; out(BB) = U – kill(BB)

change = true

while (change) do

 change = false

 for each basic block BB, do

 old_out = out(BB)

 in(BB) = out(Y) : for all predecessors Y of BB

 out(BB) = GEN(X) + (IN(X) – KILL(X))

 if (old_out != out(X)) then change = true

 endfor

endfor

Available Expression Analysis (Aexprs)

• An expression is a RHS of an operation
– Ex: in “r2 = r3 + r4” “r3 + r4” is an expression

• An expression e is available at a point p if along all paths from
e to p, e is not killed.

• An expression is killed between two points when one of its
source operands are redefined
– Ex: “r1 = r2 + r3” kills all expressions involving r1

• Algorithm:
– Forward dataflow analysis

– Use the Intersect function as the meet operator to guarantee the all-
path requirement

– Looks exactly like adefs, except gen/kill/in/out are the RHS’s of
operations rather than the LHS’s

137

Available Expression

• Input: A flow graph with e_kill[B] and e_gen[B]
• Output: in[B] and out[B]
• Method:
 foreach basic block B
 in[B1] := ; out[B1] := e_gen[B1];
 out[B] = U - e_kill[B];
 change=true
 while(change)
 change=false;
 for each basic block B,
 in[B] := out[P]: P is pred of B
 old_out := out[B];
 out[B] := e_gen[B] (in[B] – e_kill[B])
 if (out[B] ≠ old_out[B]) change := true;



138

Efficient Calculation of Dataflow

• Order in which the basic blocks are visited is
important (faster convergence)

• Forward analysis – DFS order
– Visit a node only when all its predecessors have

been visited

• Backward analysis – PostDFS order
– Visit a node only when all of its successors have

been visited

139

Representing Dataflow Information

• Requirements – Efficiency!
– Large amount of information to store

– Fast access/manipulation

• Bitvectors
– General strategy used by most compilers

– Bit positions represent defs (rdefs)

– Efficient set operations: union/intersect/isone

– Used for gen, kill, in, out for each BB

140

Optimization using Dataflow

• Classes of optimization
1. Classical (machine independent)

• Reducing operation count (redundancy elimination)

• Simplifying operations

2. Machine specific
• Peephole optimizations

• Take advantage of specialized hardware features

3. Instruction Level Parallelism (ILP) enhancing
• Increasing parallelism

• Possibly increase instructions

141

Types of Classical Optimizations

• Operation-level – One operation in isolation

– Constant folding, strength reduction

– Dead code elimination (global, but 1 op at a time)

• Local – Pairs of operations in same BB

– May or may not use dataflow analysis

• Global – Again pairs of operations

– Pairs of operations in different BBs

• Loop – Body of a loop

142

Constant Folding

• Simplify operation based on values of target operand
– Constant propagation creates opportunities for this

• All constant operands
– Evaluate the op, replace with a move

• r1 = 3 * 4  r1 = 12
• r1 = 3 / 0  ??? Don’t evaluate excepting ops !, what about FP?

– Evaluate conditional branch, replace with BRU or noop
• if (1 < 2) goto BB2  goto BB2
• if (1 > 2) goto BB2  convert to a noop Dead code

• Algebraic identities
– r1 = r2 + 0, r2 – 0, r2 | 0, r2 ^ 0, r2 << 0, r2 >> 0  r1 = r2
– r1 = 0 * r2, 0 / r2, 0 & r2  r1 = 0
– r1 = r2 * 1, r2 / 1  r1 = r2

143

Strength Reduction

• Replace expensive ops with cheaper ones
– Constant propagation creates opportunities for this

• Power of 2 constants
– Mult by power of 2: r1 = r2 * 8  r1 = r2 << 3

– Div by power of 2: r1 = r2 / 4  r1 = r2 >> 2

– Rem by power of 2: r1 = r2 % 16  r1 = r2 & 15

• More exotic
– Replace multiply by constant by sequence of shift and adds/subs

• r1 = r2 * 6
– r100 = r2 << 2; r101 = r2 << 1; r1 = r100 + r101

• r1 = r2 * 7
– r100 = r2 << 3; r1 = r100 – r2

144

Dead Code Elimination

• Remove statement d: x := y op z whose result
is never consumed.

• Rules:

– DU chain for d is empty

– y and z are not live at d

145

Constant Propagation

• Forward propagation of moves/assignment of
the form

 d: rx := L where L is literal

– Replacement of “rx” with “L” wherever possible.

– d must be available at point of replacement.

146

Forward Copy Propagation

• Forward propagation of RHS of assignment or
mov’s.

– Reduce chain of dependency

– Possibly create dead code

147

r1 := r2

 .

 .

 .

r4 := r1 + 1

r1 := r2

 .

 .

 .

r4 := r2 + 1

Forward Copy Propagation

• Rules:
 Statement dS is source of copy propagation

 Statement dT is target of copy propagation

– dS is a mov statement

– src(dS) is a register

– dT uses dest(dS)

– dS is available definition at dT

– src(dS) is a available expression at dT

148

Backward Copy Propagation

• Backward propagation of LHS of an assignment.
 dT: r1 := r2 + r3  r4 := r2 + r3
 r5 := r1 + r6  r5 := r4 + r6
 dS: r4 := r1  Dead Code

• Rules:
– dT and dS are in the same basic block
– dest(dT) is register
– dest(dT) is not live in out[B]
– dest(dS) is a register
– dS uses dest(dT)
– dest(dS) not used between dT and dS
– dest(dS) not defined between d1 and dS
– There is no use of dest(dT) after the first definition of dest(dS)

149

Local Common Sub-Expression Elimination

• Benefits:
– Reduced computation
– Generates mov statements, which

can get copy propagated

• Rules:
– dS and dT has the same expression
– src(dS) == src(dT) for all sources
– For all sources x, x is not redefined

between dS and dT

dS: r1 := r2 + r3

dT: r4 := r2 + r3

150

dS: r1 := r2 + r3

 r100 := r1

dT: r4 := r100

Global Common Sub-Expression
Elimination

• Rules:

– dS and dT has the same expression

– src(dS) == src(dT) for all sources of dS and dT

– Expression of dS is available at dT

151

Unreachable Code Elimination

152

Mark initial BB visited

to_visit = initial BB

while (to_visit not empty)

 current = to_visit.pop()

 for each successor block of current

 Mark successor as visited;

 to_visit += successor

 endfor

endwhile

Eliminate all unvisited blocks

entry

bb1 bb2

bb3 bb4

bb5

Which BB(s) can be deleted?

