
Introduction 

• Concerns with machine-independent code 
optimization 
 90-10 rule: execution spends 90% time in 10% of 

the code. 
 It is moderately easy to achieve 90% optimization. The 

rest 10% is very difficult. 

 Identification of the 10% of the code is not possible for 
a compiler – it is the job of a profiler.  

• In general, loops are the hot-spots 
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Introduction 

• Criterion of code optimization 

– Must preserve the semantic equivalence of the programs 

– The algorithm should not be modified 

– Transformation, on average should speed up the execution 
of the program 

– Worth the effort: Intellectual and compilation effort spend 
on insignificant improvement. 

Transformations are simple enough to have a good effect 
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Introduction 

• Optimization can be done in almost all phases 
of compilation. 
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Introduction 

• Organization of an optimizing compiler 
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Classifications of Optimization techniques 

 Peephole optimization 

 Local optimizations 

 Global Optimizations 

 Inter-procedural 

 Intra-procedural 

 Loop optimization 
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Factors influencing Optimization 

• The target machine: machine dependent factors can 
be parameterized to compiler for fine tuning 

• Architecture of Target CPU: 
– Number of CPU registers 
– RISC vs CISC 
– Pipeline Architecture 
– Number of functional units 

• Machine Architecture 
– Cache Size and type 
– Cache/Memory transfer rate 
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Themes behind Optimization Techniques 

• Avoid redundancy: something already computed need not 
be computed again 

• Smaller code: less work for CPU, cache, and memory! 

• Less jumps: jumps interfere with code pre-fetch 

• Code locality: codes executed close together in time is 
generated close together in memory – increase locality of 
reference 

• Extract more information about code: More info – 
better code generation 
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Redundancy elimination 
• Redundancy elimination = determining that two computations 

are equivalent and eliminating one. 
• There are several types of redundancy elimination: 

– Value numbering  
• Associates symbolic values to computations and identifies expressions that have 

the same value 

– Common subexpression elimination 
• Identifies expressions that have operands with the same name  

– Constant/Copy propagation 
• Identifies variables that have constant/copy values and uses the constants/copies 

in place of the variables. 

– Partial redundancy elimination 
• Inserts computations in paths to convert partial redundancy to full redundancy. 
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Optimizing Transformations 

• Compile time evaluation 

• Common sub-expression elimination 

• Code motion  

• Strength Reduction 

• Dead code elimination 

• Copy propagation 

• Loop optimization 
– Induction variables and strength reduction 
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Compile-Time Evaluation 

• Expressions whose values can be pre-
computed at the compilation time 

• Two ways: 

– Constant folding 

– Constant propagation 
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Compile-Time Evaluation 

• Constant folding: Evaluation of an expression 
with constant operands to replace the 
expression with single value 

• Example: 
 area := (22.0/7.0) * r ** 2 

 

 area := 3.14286 * r ** 2 

11 



Compile-Time Evaluation 

• Constant Propagation: Replace a variable with 
constant which has been assigned to it earlier. 

• Example: 
pi := 3.14286 

area = pi * r ** 2 

      area = 3.14286 * r ** 2 
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Constant Propagation 
• What does it mean? 

– Given an assignment x = c, where c is a constant, replace later 
uses of x with uses of c, provided there are no intervening 
assignments to x. 

• Similar to copy propagation 
• Extra feature: It can analyze constant-value conditionals to 

determine whether a branch should be executed or not. 

• When is it performed? 
– Early in the optimization process.  

• What is the result?  
– Smaller code 
– Fewer registers 
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Common Sub-expression Evaluation 

• Identify common sub-expression present in different 
expression, compute once, and use the result in all the places. 
– The definition of the variables involved should not change 

 

Example: 

 a := b * c  temp := b * c 

 …    a := temp 

 …    … 

 x := b * c + 5 x := temp + 5 
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Common Subexpression Elimination 
• Local common subexpression elimination 

– Performed within basic blocks 

– Algorithm sketch: 
• Traverse BB from top to bottom 

• Maintain table of expressions evaluated so far 

– if any operand of the expression is redefined, remove it from the 
table 

• Modify applicable instructions as you go 

– generate temporary variable, store the expression in it and use the 

variable next time the expression is encountered. 
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x = a + b 
... 
y = a + b 

t = a + b  
x = t 
... 
y = t 



Common Subexpression Elimination 
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c = a + b 
d = m * n 
e = b + d 
f = a + b 
g = - b 
h = b + a 
a = j + a 
k = m * n 
j = b + d 
a = - b 
if m * n go to L  

t1 = a + b 
c = t1 
t2 = m * n 
d = t2 
t3 = b + d 
e = t3 
f = t1 
g = -b 
h = t1 /* commutative */ 
a = j + a 
k = t2 
j = t3 
a = -b 
if t2 go to L  

the table contains quintuples: 
(pos, opd1, opr, opd2, tmp) 



Common Subexpression Elimination 

• Global common subexpression elimination 

– Performed on flow graph 

– Requires available expression information 

• In addition to finding what expressions are available 
at the endpoints of basic blocks, we need to know 
where each of those expressions was most recently 
evaluated (which block and which position within 
that block). 
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Common Sub-expression Evaluation 
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z : = a + b + 10 

a : =  b 

1 

2 3 

4 

 “a + b” is not a 

common sub-

expression in 1 and 4 

None of the variable involved should be modified in any path 

x : = a + b 



Code Motion 

• Moving code from one part of the program to 
other without modifying the algorithm 

– Reduce size of the program 

– Reduce execution frequency of the code subjected 
to movement 
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Code Motion 

1. Code Space reduction: Similar to common sub-
expression elimination but with the objective to 
reduce code size. 

  

 Example: Code hoisting 

      temp : = x ** 2 

 if (a< b) then   if (a< b) then 

  z := x ** 2      z := temp 

 else    else 

  y := x ** 2 + 10     y := temp + 10 

20 

“x ** 2“ is computed once in both cases, but the code size in the 

second case reduces. 



Code Motion 

2 Execution frequency reduction: reduce execution frequency 
of partially available expressions (expressions available 
atleast in one path) 

 
Example: 

if (a<b) then  if (a<b) then 
 z = x * 2     temp = x * 2 
       z = temp 
else    else  
y = 10       y = 10 
       temp = x * 2 
g = x * 2    g = temp; 
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Code Motion 

• Move expression out of a loop if the 
evaluation does not change inside the loop. 

Example: 

   while ( i < (max-2) ) …  

Equivalent to: 
   t :=  max - 2 

   while ( i < t ) … 
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Code Motion 

• Safety of Code movement 
 Movement of an expression e from a basic block bi to 

another block bj, is safe if it does not introduce any new 
occurrence of e along any path. 

 
Example: Unsafe code movement 

    temp = x * 2 
if (a<b) then  if (a<b) then 
 z = x * 2      z = temp 
else   else  
   y = 10       y = 10 
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Strength Reduction 

• Replacement of an operator with a less costly one. 
 
Example: 

     temp = 5; 
   for i=1 to 10 do  for i=1 to 10 do 
 …      … 
 x = i * 5         x = temp 
 …      … 
        temp = temp + 5 
 end   end 

• Typical cases of strength reduction occurs in address 
calculation of array references. 

• Applies to integer expressions involving induction variables 
(loop optimization) 
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Dead Code Elimination 

• Dead Code are portion of the program which will not 
be executed in any path of the program. 
– Can be removed 

• Examples: 
– No control flows into a basic block 

– A variable is dead at a point -> its value is not used 
anywhere in the program 

– An assignment is dead -> assignment assigns a value to a 
dead variable 
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Dead Code Elimination 
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• Examples: 

 
 DEBUG:=0 

if (DEBUG) print                     Can be 

     eliminated 

 



Copy Propagation 
• What does it mean? 

–  Given an assignment x = y, replace later uses of x with 
uses of y, provided there are no intervening assignments 
to x or y. 

• When is it performed? 

– At any level, but usually early in the optimization 
process.  

• What is the result?  

– Smaller code 
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Copy Propagation 

• f := g are called copy statements or copies 
• Use of g for f, whenever possible after copy 

statement 
 

Example: 
 x[i] = a;   x[i] = a; 
    sum = x[i] + a;  sum = a + a; 

 
• May not appear to be code improvement, but opens 

up scope for other optimizations. 
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Local Copy Propagation 

• Local copy propagation 

– Performed within basic blocks 

– Algorithm sketch: 

• traverse BB from top to bottom 

• maintain table of copies encountered so far 

• modify applicable instructions as you go 

30 



Loop Optimization 

• Decrease the number if instruction in the 
inner loop 

• Even if we increase no of instructions in the 
outer loop 

• Techniques: 
– Code motion 

– Induction variable elimination 

– Strength reduction 
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PEEPHOLE OPTIMIZATION 

•  The Peephole Optimization is a kind of 
optimization technique performed over a very 
small set of instructions in a segment of 
generated assembly code. 

• The set of instructions is called a "peephole" or a 
"window".  

•  It works by recognizing sets of instructions that 
can be replaced by shorter or faster set of 
instructions to achieve speed or performance in 
the execution of the instruction sequences  
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PEEPHOLE OPTIMIZATION 

• It works by recognizing sets of instructions that can be replaced by shorter 
or faster set of instructions to achieve speed or performance in the 
execution of the instruction sequences. 

• Basically Peephole Optimization is a method which consists of a local 
investigation of the generated object code means intermediate assembly 
code to identify and replace inefficient sequence of instructions to achieve 
optimality in targeted machine code in context of execution or response 
time, performance of the algorithm and memory or other resources usage 
by the program. 
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COMMON TECHNIQUES APPLIED IN 
PEEPHOLE OPTIMIZATION 

• Constant folding - Assess constant sub expressions in advance.  

  E.g.  r2 := 3 X 2  becomes  r2 := 6  

• Strength reduction - Faster Operations will be replaced with slower one.  

  E.g.  r1:= r2 X 2   becomes  r1 := r2 + r2 then r1 := r2<<1  

   r1 := r2/2   becomes r1 := r2>>1  

• Null sequences – Operations that are ineffective will be removed.  

  E.g.  r1 := r1 + 0  or  r1 := r1 X 1 has no effect  

• Combine Operations - Replacement of the few operations with similar effective single 
operation.  

  E.g. r2 := r1 X 2  

   r3 := r2 X 1  becomes  r3 := r1 + r1  

• Algebraic Laws - Simplification and reordering of the instructions using algebraic laws.  

  E.g.  r1 := r2  

   r3 := r1   becomes  r3 := r2;  
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MACHINE SPECIFIC PEEPHOLE 
OPTIMIZERS  

• Peephole optimization is simple but effective optimization 
technique. 

• It was noted that when a program gets compiled, the code emitted 
from the code generators contained many redundancies around 
borders of basic blocks like chains of jump instructions. It becomes 
complicated case analysis to reduce these redundancies during the 
code generation phase. So it was appropriate to define a separate 
phase that would deal with them.  

• The concept was described as follow:  

– A peephole, a small window which consisting no more than two assembly 
code instructions, is passed over the code. 

– Whenever redundant instructions are found in the sequence, they are 
replaced by shorter or faster instruction sequences.  
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MACHINE SPECIFIC PEEPHOLE 
OPTIMIZERS  

– For that the peephole optimizer uses the simple hand written pattern 
rules.  

– These are first matched with the assembly instructions for the applicability 
of testing, and if the match found, the instructions are replaced.  

– Therefore, a typical pattern rule consists of two parts a match part and a 
replacement part.  

– The pattern set is usually small as this is sufficient for fast and efficient 
optimization.  
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Local Optimization 
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Optimization of Basic Blocks 

• Many structure preserving transformations 
can be implemented by construction of DAGs 
of basic blocks 
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DAG representation 
 of Basic Block (BB) 

• Leaves are labeled with unique identifier (var name 
or const) 

• Interior nodes are labeled by an operator symbol 

• Nodes optionally have a list of labels (identifiers) 

• Edges relates operands to the operator (interior 
nodes are operator) 

• Interior node represents computed value 

– Identifier in the label are deemed to hold the value 
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Example: DAG for BB 
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t1 := 4 * i 

t1 
* 

i 4 

t1 := 4 * i 

t3 := 4 * i 

t2 := t1 + t3 

* 

i 4 

+ 

t1, t3 

t2 

if (i <= 20)goto L1 

<= 

i 
20 

(L1) 



Construction of DAGs for BB 

• I/p: Basic block, B 

• O/p: A DAG for B containing the following 
information: 

1) A label for each node 

2) For leaves the labels are ids or consts 

3) For interior nodes the labels are operators 

4) For each node a list of attached ids (possible 
empty list, no consts) 
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Construction of DAGs for BB 

• Data structure and functions: 
– Node: 

1) Label: label of the node 

2) Left: pointer to the left child node 

3) Right: pointer to the right child node 

4) List: list of additional labels (empty for leaves) 

– Node (id): returns the most recent node created for id. 
Else return undef 

– Create(id,l,r): create a node with label id with l as left 
child and r as right child. l and r are optional params. 
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Construction of DAGs for BB 

• Method: 
For each 3AC, A in B 

A if of the following forms: 
1. x := y op z 

2. x := op y 

3. x := y 

1. if ((ny = node(y)) == undef) 
 ny = Create (y); 

 if (A == type 1)  

   and ((nz = node(z)) == undef) 

    nz = Create(z); 
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Construction of DAGs for BB 

2. If (A == type 1) 
 Find a node labelled ‘op’ with left and right as ny and nz respectively 

[determination of common sub-expression] 
If (not found) n = Create (op, ny, nz); 

If (A == type 2) 
 Find a node labelled ‘op’ with a single child as ny  

 If (not found) n = Create (op, ny); 

If (A == type 3)  n = Node (y); 

3. Remove x from Node(x).list 
  Add x in n.list 

  Node(x) = n; 
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Example: DAG construction 
 from BB 

t1 := 4 * i 
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i 4 

t1 



Example: DAG construction 
 from BB 
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t1 := 4 * i 

t2 := a [ t1 ] 

* 

i 4 

t1 

[] 

a 

t2 



Example: DAG construction 
 from BB 
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t1 := 4 * i 

t2 := a [ t1 ] 

t3 := 4 * i 

* 

i 4 

t1, t3 

[] 

a 

t2 



Example: DAG construction 
 from BB 
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t1 := 4 * i 

t2 := a [ t1 ] 

t3 := 4 * i 

t4 := b [ t3 ] 

* 

i 4 

t1, t3 

[] 

a 

t2 
[] 

b 

t4 



Example: DAG construction 
 from BB 
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t1 := 4 * i 

t2 := a [ t1 ] 

t3 := 4 * i 

t4 := b [ t3 ] 

t5 := t2 + t4 

* 

i 4 

t1, t3 

[] 

a 

t2 
[] 

b 

t4 

t5 + 



Example: DAG construction 
 from BB 
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t1 := 4 * i 

t2 := a [ t1 ] 

t3 := 4 * i 

t4 := b [ t3 ] 

t5 := t2 + t4 

i := t5 

* 

i 4 

t1, t3 

[] 

a 

t2 
[] 

b 

t4 

t5,i + 



DAG of a Basic Block 

• Observations: 

– A leaf node for the initial value of an id 

– A node n for each statement s 

– The children of node n are the last definition 
(prior to s) of the operands of n 
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Optimization of Basic Blocks 

• Common sub-expression elimination: by 
construction of DAG 
– Note: for common sub-expression elimination, we 

are actually targeting for expressions that 
compute the same value. 
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a := b + c 

b := b – d 

c := c + d 

e := b + c 

Common expressions 
But do not generate the 

same result 



Optimization of Basic Blocks 

• DAG representation identifies expressions that 
yield the same result 
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a := b + c 

b := b – d 

c := c + d 

e := b + c 

b0 c0 d0 

+ 

+ + - a b c 

e 



Optimization of Basic Blocks 

• Dead code elimination: Code generation from 
DAG eliminates dead code. 
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a := b + c 

b := a – d 

d := a – d 

c := d + c 

 
b is not live 

c 

a := b + c 

d := a - d 

c := d + c 

b0 c0 

d0 
+ 

- 

+ 

a 

b,d × 



Loop Optimization 
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Loop Optimizations 

• Most important set of optimizations 
– Programs are likely to spend more time in loops 

• Presumption: Loop has been identified 

• Optimizations: 
– Loop invariant code removal 

– Induction variable strength reduction 

– Induction variable reduction 
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Loops in Flow Graph 

• Dominators: 
   A node d of a flow graph G dominates a node n, if every 

path in G from the initial node to n goes through d. 
 
 Represented as: d dom n 
 
Corollaries: 
 Every node dominates itself. 
 The initial node dominates all nodes in G. 
 The entry node of a loop dominates all nodes in the loop. 
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Loops in Flow Graph 

• Each node n has a unique immediate dominator m, 
which is the last dominator of n on any path in G 
from the initial node to n. 

(d ≠ n) && (d dom n) → d dom m 

• Dominator tree (T): 
 A representation of dominator information of flow 

graph G. 
• The root node of T is the initial node of G 

• A node d in T dominates all node in its sub-tree 
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Example: Loops in Flow Graph 
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Loops in Flow Graph 

• Natural loops: 

1. A loop has a single entry point, called the “header”. 
Header dominates all node in the loop 

2. There is at least one path back to the header from the 
loop nodes (i.e. there is at least one way to iterate the 
loop) 

  

• Natural loops can be detected by back edges. 
• Back edges: edges where the sink node (head) dominates the 

source node (tail) in G 
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Loop Optimization 

• Loop interchange: exchange inner loops with outer 
loops 

• Loop splitting: attempts to simplify a loop or 
eliminate dependencies by breaking it into multiple 
loops which have the same bodies but iterate over 
different contiguous portions of the index range.  
– A useful special case is loop peeling - simplify a loop with a 

problematic first iteration by performing that iteration 
separately before entering the loop.  
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Loop Optimization 

• Loop fusion: two adjacent loops would iterate the 
same number of times, their bodies can be combined 
as long as they make no reference to each other's 
data 

• Loop fission: break a loop into multiple loops over 
the same index range but each taking only a part of 
the loop's body. 

• Loop unrolling: duplicates the body of the loop 
multiple times 
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Loop Optimization 

• Pre-Header: 

– Targeted to hold statements that 
are moved out of the loop 

– A basic block which has only the 
header as successor 

– Control flow that used to enter 
the loop from outside the loop, 
through the header, enters the 
loop from the pre-header 
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loop L 

Header 

loop L 
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Loop Invariant Code Removal 

• Move out to pre-header the statements 
whose source operands do not change within 
the loop. 

– Be careful with the memory operations 

– Be careful with statements which are executed in 
some of the iterations 
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Loop Invariant Code Removal 

• Rules: A statement S: x:=y op z is loop invariant: 

– y and z not modified in loop body 

– S is the only statement to modify x 

– For all uses of x, x is in the available def set. 

– For all exit edge from the loop, S is in the available def set 
of the edges. 

– If S is a load or store (mem ops), then there is no writes to 
address(x) in the loop. 
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Loop Invariant Code Removal 

Rules that need change: 
• For all use of x is in the 

available definition set 
• For all exit edges, if x is live 

on the exit edges,  is in the 
available definition set on 
the exit edges 

• Approx of First rule: 
– d dominates all uses of x 

• Approx of Second rule 
– d dominates all exit basic 

blocks where x is live 
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  Loop invariant code removal can be done without 

    available definition information. 

 



Loop Induction Variable 

• Induction variables are variables such that every time 
they change value, they are incremented or 
decremented. 
– Basic induction variable: induction variable whose only 

assignments within a loop are of the form: 
  i = i +/- C, where C is a constant. 
– Primary induction variable: basic induction variable that 

controls the loop execution 
    (for i=0; i<100; i++) 
  i (register holding i) is the primary induction variable. 
– Derived induction variable: variable that is a linear 

function of a basic induction variable. 

74 



Loop Induction Variable 

• Basic: r4, r7, r1 

• Primary: r1 

• Derived: r2 
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r2 = r1 * 4 

r4 = r7 + 3 

r7 = r7 + 1 

r10 = *r2 

r3 = *r4 

r9 = r1 * r3 

r10 = r9 >> 4 

*r2 = r10 

r1 = r1 + 4 

If(r1 < 100) goto Loop 

Loop: 

r1 = 0 

r7 = &A 



Induction Variable Strength Reduction 

• Create basic induction variables from derived 
induction variables. 

• Rules:    (S: x := y op z) 
– op is *, <<, +, or – 

– y is a induction variable 

– z is invariant 

– No other statement modifies x 

– x is not y or z 

– x is a register 
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Induction Variable Strength Reduction 

• Transformation: 

 Insert the following into the bottom of pre-header: 
 new_reg = expression of target statement S 

 if (opcode(S)) is not add/sub, insert to the bottom of the preheader 

   new_inc = inc(y,op,z) 

 else 

   new_inc = inc(x) 

 Insert the following at each update of y 

   new_reg = new_reg + new_inc 

 Change S: x = new_reg 
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Function: inc() 

 

Calculate the amount of inc 

for 1st param. 



Example: Induction Variable Strength 
Reduction  
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 r5 = r4 - 3   

 r4 = r4 + 1 

                    r7 = r4 *r9  

 r6  = r4 << 2  

                   

new_reg = r4 * r9 

new_inc = r9 

 r5 = r4 - 3   

 r4 = r4 + 1 

                   
new_reg += new_inc  

r7 = new_reg 

 r6  = r4 << 2  

                   



Induction Variable Elimination 

• Remove unnecessary basic induction variables from the loop 
by substituting uses with another basic induction variable. 

• Rules: 
– Find two basic induction variables, x and y 

– x and y in the same family 
• Incremented at the same place 

– Increments are equal 

– Initial values are equal 

– x is not live at exit of loop 

– For each BB where x is defined, there is no use of x between the first 
and the last definition of y 
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Example: Induction Variable Elimination 
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r1 = 0 

r2 = 0 

r1 = r1 - 1 

r2 = r2 -1 

r9 = r2 + r4 r7 = r1 * r9 

r4 = *(r1) 

*r2 = r7 

r2 = 0 

r2 = r2 - 1 

r9 = r2 + r4 r7 = r2 * r9 

r4 = *(r2) 

*r7 = r2 



Induction Variable Elimination 

• Variants: 
1. Trivial: induction variable that are never used except to increment 

themselves and not live at the exit of loop 

2. Same increment, same initial value (discussed) 

3. Same increment, initial values are a known constant offset from one 
another 

4. Same increment, nothing known about the relation of initial value 

5. Different increments, nothing known about the relation of initial 
value 

 

– 1,2 are basically free 

– 3-5 require complex pre-header operations 
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Example: Induction Variable Elimination 

• Case 4: Same increment, unknown initial value 

 For the induction variable that we are eliminating, look at each non-
incremental use, generate the same sequence of values as before. If that 
can be done without adding any extra statements in the loop body, then 
the transformation can be done. 
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r4 := r2 + 8 

r3 := r1 + 4 

. 

. 

r1 := r1 + 4 

r2 := r2 + 4 

   rx := r2 –r1 + 8 

r4 := r1 + rx 

r3 := r1 = 4 

. 

. 

r1 := r1 + 4 



Loop Unrolling 

• Replicate the body of a loop (N-1) times, resulting in 
total N copies. 

– Enable overlap of operations from different iterations 

– Increase potential of instruction level parallelism (ILP) 

• Variants: 

– Unroll multiple of known trip counts 

– Unroll with remainder loop 

– While loop unroll 
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Global Data Flow Analysis 

84 



Global Data Flow Analysis 

• Collect information about the whole program. 

• Distribute the information to each block in the flow 
graph. 

 

• Data flow information: Information collected by data 
flow analysis. 

• Data flow equations: A set of equations solved by 
data flow analysis to gather data flow information. 
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Data flow analysis 
• IMPORTANT! 

– Data flow analysis should never tell us that a 
transformation is safe when in fact it is not. 

– When doing data flow analysis we must be   

• Conservative  
– Do not consider information that may not preserve the 

behavior of the program 

• Aggressive 
– Try to collect information that is as exact as possible, so we 

can get the greatest benefit from our optimizations. 
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Global Iterative Data Flow Analysis 

• Global:  

– Performed on the flow graph 

– Goal = to collect information at the beginning 
and end of each basic block 

• Iterative: 

– Construct data flow equations that describe how 
information flows through each basic block and 
solve them by iteratively converging on a solution. 

87 



Global Iterative Data Flow Analysis 
• Components of data flow equations 

– Sets containing collected information 
• in set: information coming into the BB from outside (following 

flow of data) 

• gen set: information generated/collected within the BB 

• kill set: information that, due to action within the BB, will affect 
what has been collected outside the BB 

• out set: information leaving the BB 

– Functions (operations on these sets) 
• Transfer functions describe how information changes as it flows 

through a basic block 

• Meet functions describe how information from multiple paths is 
combined. 
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Global Iterative Data Flow Analysis 

• Algorithm sketch 
– Typically, a bit vector is used to store the information. 

• For example, in reaching definitions, each bit position corresponds to one 
definition.  

– We use an iterative fixed-point algorithm. 
– Depending on the nature of the problem we are solving, we may need to 

traverse each basic block in a forward (top-down) or backward direction. 
• The order in which we "visit" each BB is not important in terms of algorithm 

correctness, but is important in terms of efficiency. 

– In & Out sets should be initialized in a conservative and aggressive way. 
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Global Iterative Data Flow Analysis 

90 

Initialize gen and kill sets 
Initialize in or out sets (depending on "direction")  
while there are no changes in in and out sets { 
    for each BB { 
        apply meet function 
        apply transfer function 
    } 
} 



Typical problems 
• Reaching definitions 

– For each use of a variable, find all definitions that reach it. 

• Upward exposed uses 

– For each definition of a variable, find all uses that it 

reaches. 

• Live variables 

– For a point p and a variable v, determine whether v is live 
at p. 

• Available expressions 

– Find all expressions whose value is available at some point 
p. 
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Global Data Flow Analysis 

• A typical data flow equation: 

  

        S: statement 

   in[S]: Information goes into S 

   kill[S]: Information get killed by S 

   gen[S]: New information generated by S 

   out[S]: Information goes out from S 
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[ ] [ ] ( [ ] [ ])out S gen S in S kill S 



Global Data Flow Analysis 

• The notion of gen and kill depends on the desired 
information. 

• In some cases, in may be defined in terms of out - 
equation is solved as analysis traverses in the 
backward direction.  

• Data flow analysis follows control flow graph. 

– Equations are set at the level of basic blocks, or even for a 
statement 
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Points and Paths 

• Point within a basic block: 
–  A location between two consecutive statements. 
– A location before the first statement of the basic block. 
– A location after the last statement of the basic block. 

• Path: A path from a point p1 to pn is a sequence of 
points  p1, p2, … pn such that for each i : 1 ≤ i ≤ n, 
– pi is a point immediately preceding a statement and pi+1 is 

the point immediately following that statement in the 
same block,   or 

– pi is the last point of some block and pi+1 is first point in the 
successor block. 
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Example: Paths and Points 
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d1: i := m – 1 

d2: j := n 

d3: a := u1 

d4: i := i + 1 

d5: j := j - 1 

               

B1 

B2 

B3 

B4 

           d6: a := u2 B5 
B6 

pn 

p3 

p1 

p2 

p4 

p5 

p6 

Path: 

  p1, p2, p3, p4, 

  p5, p6 … pn 



Reaching Definition 

• Definition of a variable x is a statement that assigns or may 
assign a value to x. 
– Unambiguous Definition: The statements that certainly assigns a value 

to x 
• Assignments to x 

• Read a value from I/O device to x 

– Ambiguous Definition: Statements that may assign a value to x 
• Call to a procedure with x as parameter (call by ref) 

• Call to a procedure which can access x (x being in the scope of the 
procedure) 

• x is an alias for some other variable (aliasing) 

• Assignment through a pointer that could refer x 
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Reaching Definition 

• A definition d reaches a point p 
–  if there is a path from the point immediately 

following d to p   and 

–  d is not killed along the path (i.e. there is not 
redefinition of the same variable in the path) 

• A definition of a variable is killed between two 
points when there is another definition of that 
variable along the path. 
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Example: Reaching Definition 
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d1: i := m – 1 

d2: j := n 

d3: a := u1 

d4: i := i + 1 

d5: j := j - 1 

               

B1 

B2 

B3 

B4 

           d6: a := u2 B5 
B6 

p1 

p2 

Definition of i (d1) 

reaches p1 

 

Killed as d4, does 

not reach p2. 
 

Definition of i (d1) 

does not reach B3, 

B4, B5 and B6. 



Reaching Definition 

• Non-Conservative view: A definition might reach a 
point even if it might not. 
– Only unambiguous definition kills a earlier definition 

– All edges of flow graph are assumed to be traversed. 

 
 if (a == b) then a = 2 

  else if (a == b) then a = 4 

The definition “a=4” is not reachable. 

 

  Whether each path in a flow graph is taken is an undecidable 
problem 
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Data Flow analysis of a 
 Structured Program 

• Structured programs have well defined loop 
constructs – the resultant flow graph is always 
reducible. 

– Without loss of generality we only consider while-
do and if-then-else control constructs 

S → id := E│S ; S 

   │ if E then S else S │ do S while E 

E → id + id  │ id 

The non-terminals represent regions. 
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Data Flow analysis of a 
 Structured Program 

• Region: A graph G’= (N’,E’) which is portion of 
the control flow graph G.  

– The set of nodes N’ is in G’ such that 

•  N’ includes a header h 

• h dominates all node in N’ 

– The set of edges E’ is in G’ such that 

• All edges a → b such that a,b are in N’ 
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Data Flow analysis of a 
 Structured Program 

• Region consisting of a statement S: 

– Control can flow to only one block outside the region 

• Loop is a special case of a region that is strongly 
connected and includes all its back edges. 

• Dummy blocks with no statements are used as 
technical convenience (indicated as open circles) 
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Data Flow analysis of a Structured Program: 
Composition of Regions 

S → S1 ; S2 
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S1 

S2 



Data Flow analysis of a Structured Program: 
Composition of Regions 

S → if E then S1 else S2  
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S1 S2 

if E goto S1 



Data Flow analysis of a Structured Program: 
Composition of Regions 

S → do S1 while E 
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S1 

if E goto S1 



Data Flow Equations 

• Each region (or NT) has four attributes: 

– gen[S]: Set of definitions generated by the block S. 

  If a definition d is in gen[S], then d reaches the end of 
block S. 

– kill[S]: Set of definitions killed by block S. 
If d is in kill[S], d never reaches the end of block S. Every path 

from the beginning of S to the end S must have a definition for 
a (where a is defined by d). 
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Data Flow Equations 

– in[S]: The set of definition those are live at the 
entry point of block S. 

– out[S]: The set of definition those are live at 
the exit point of block S. 

• The data flow equations are inductive or 
syntax directed. 
– gen and kill are synthesized attributes. 

– in is an inherited attribute. 
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Data Flow Equations 

• gen[S] concerns with a single basic block. It is 
the set of definitions in S that reaches the end 
of S. 

• In contrast out[S] is the set of definitions 
(possibly defined in some other block) live at 
the end of S considering all paths through S. 
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Data Flow Equations 
Single statement 
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d:     a := b + c 

[ ] [ ] ( [ ] [ ])out S gen S in S kill S 

Da: The set of definitions in the program for variable a 

S 

[ ] { }

[ ] { }a

gen S d

kill S D d



 



Data Flow Equations 
Composition 
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S 

S1 

S2 

2 1 2

2 1 2

[ ] [ ] ( [ ] [ ])

[ ] [ ] ( [ ] [ ])

gen S gen S gen S kill S

kill S kill S kill S gen S

 

 

1

2 1

2

[ ] [ ]

[ ] [ ]

[ ] [ ]

in S in S

in S out S

out S out S









Data Flow Equations 
if-then-else 
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S1 S2 
S 

1 2

1 2

[ ] [ ] [ ]

[ ] [ ] [ ]

gen S gen S gen S

kill S kill S kill S





1

2

1 2

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

in S in S

in S in S

out S out S out S









Data Flow Equations 
Loop 
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S S1 

1

1

[ ] [ ]

[ ] [ ]

gen S gen S

kill S kill S





1 1

1

[ ] [ ] [ ]

[ ] [ ]

in S in S gen S

out S out S







Data Flow Analysis 

• The attributes are computed for each region. The 
equations can be solved in two phases: 

– gen and kill can be computed in a single pass of a basic 
block. 

– in and out are computed iteratively. 
• Initial condition for in for the whole program is  

• In can be computed top- down 

• Finally out is computed 
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



Dealing with loop 

• Due to back edge, in[S] cannot be used as 

   in [S1] 

• in[S1] and out[S1] are interdependent. 

• The equation is solved iteratively. 

• The general equations for in and out: 
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[ ] ( [ ] : Y is a predecessor of  S)

[ ] [ ] ( [ ] [ ])

in S out Y

out S gen S in S kill S



 



Reaching definitions 

• What is safe? 
– To assume that a definition reaches a point 

even if it turns out not to. 

– The computed set of definitions reaching a 
point p will be a superset of the actual set of 
definitions reaching p 

– Goal : make the set of reaching definitions as 
small as possible (i.e. as close to the actual set 
as possible) 
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Reaching definitions 

• How are the gen and kill sets defined? 
– gen[B] = {definitions that appear in B and 

reach the end of B} 

– kill[B] = {all definitions that never reach the 
end of B} 

• What is the direction of the analysis? 
– forward 

– out[B] = gen[B]  (in[B] - kill[B]) 
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Reaching definitions 
• What is the confluence operator? 

– union 

– in[B] =  out[P], over the predecessors P of B 

• How do we initialize? 
– start small 

• Why? Because we want the resulting set to be as 
small as possible 

– for each block B initialize out[B] = gen[B] 
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Computation of gen and kill sets 
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for each basic block BB do 

    gen(BB) =      ;    kill(BB) =      ; 

    for each statement (d: x := y op z) in sequential order in BB, do 

        kill(BB) = kill(BB) U G[x]; 

        G[x] = d; 

   endfor 

   gen(BB) = U G[x]: for all id x 

endfor 

 



Computation of in and out sets 


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for all basic blocks BB      in(BB) =   

for all basic blocks BB    out(BB) = gen(BB)  

change = true 

while (change) do 

    change = false 

    for each basic block BB, do 

        old_out = out(BB) 

        in(BB) = U(out(Y)) for all predecessors Y of BB 

        out(BB) = gen(BB) + (in(BB) – kill(BB)) 

        if (old_out != out(BB)) then change = true 

    endfor 

endfor 



Live Variable (Liveness) Analysis 

• Liveness: For each point p in a program and each variable y, 
determine whether y can be used before being redefined, 
starting at p. 

 

• Attributes 
– use = set of variable used in the BB prior to its definition 

– def = set of variables defined in BB prior to any use of the variable 

– in = set of variables that are live at the entry point of a BB 

– out = set of variables that are live at the exit point of a BB 
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Live Variable (Liveness) Analysis 

• Data flow equations: 
 
 
 

 
– 1st Equation: a var is live, coming in the block, if either 

• it is used before redefinition in B 
or 
• it is live coming out of B and is not redefined in B  

– 2nd Equation: a var is live coming out of B, iff it is live 
coming in to one of its successors. 
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( )

[ ] [ ] ( [ ] [ ])

[ ] [ ]
S succ B

in B use B out B def B

out B in S


 





Example: Liveness 
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r1 = r2 + r3 

r6 = r4 – r5 

r4 = 4 

r6 = 8 

r6 = r2 + r3 

r7 = r4 – r5 

r2, r3, r4, r5 are all live as they 

are consumed later, r6 is dead 

as it is redefined later 

r4 is dead, as it is redefined. 

So is r6.  r2, r3, r5 are live 

What does this mean? 

 r6 = r4 – r5 is useless, 

 it produces a dead value !! 

Get rid of it! 



Computation of use and def sets 

 
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for each basic block BB do 

    def(BB) =     ;    use(BB) =     ; 

    for each statement (x := y op z) in sequential order, do 

        for each operand y, do 

             if (y not in def(BB)) 

                 use(BB) = use(BB) U {y}; 

        endfor 

       def(BB) = def(BB) U {x}; 

endfor 

def is the union of all the LHS’s 

use is all the ids used before defined 



Computation of in and out sets 


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for all basic blocks BB 

     in(BB) =     ; 

 

change = true; 

while (change) do 

    change = false 

    for each basic block BB do 

        old_in = in(BB); 

        out(BB) = U{in(Y): for all successors Y of BB} 

        in(X) = use(X) U (out(X) – def(X)) 

        if (old_in != in(X)) then change = true 

    endfor 

endfor 



DU/UD Chains 

• Convenient way to access/use reaching 
definition information. 

• Def-Use chains (DU chains) 

– Given a def, what are all the possible consumers 
of the definition produced 

• Use-Def chains (UD chains) 

– Given a use, what are all the possible producers of 
the definition consumed 
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Example: DU/UD Chains 
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1: r1 = MEM[r2+0] 

2: r2 = r2 + 1 

3: r3 = r1 * r4 

4: r1 = r1 + 5 

5: r3 = r5 – r1 

6: r7 = r3 * 2 

7: r7 = r6 

8: r2 = 0 

9: r7 = r7 + 1 

10: r8 = r7 + 5 

11: r1 = r3 – r8 

12: r3 = r1 * 2 

DU Chain of r1: 

   (1) -> 3,4 

   (4) ->5 

    

DU Chain of r3: 

   (3) -> 11 

   (5) -> 11 

   (12) -> UD Chain of r1: 

   (12) -> 11 

    

UD Chain of r7: 

   (10) -> 6,9 



Some-things to Think About 

• Liveness and Reaching definitions are basically the same 
thing! 
– All dataflow is basically the same with a few parameters 

• Meaning of gen/kill (use/def) 

• Backward / Forward 

• All paths / some paths (must/may) 
– So far, we have looked at may analysis algorithms 

– How do you adjust to do must algorithms? 

• Dataflow can be slow 
– How to implement it efficiently? 

– How to represent the info? 
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Generalizing Dataflow Analysis 

• Transfer function 

– How information is changed by BB 
out[BB] = gen[BB] + (in[BB] – kill[BB])   forward analysis 

in[BB] = gen[BB] + (out[BB] – kill[BB])   backward analysis 

• Meet/Confluence function 

– How information from multiple paths is combined 

in[BB] = U out[P] : P is pred of BB    forward analysis  

out[BB] = U in[P] : P is succ of BB     backward analysis 
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Generalized Dataflow Algorithm 

change = true; 

while (change) 

change = false; 

for each BB 

apply meet function 

apply transfer function 

if any changes  change = true; 
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Example: Liveness by upward exposed uses 
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for each basic block BB, do 

     

     

    for each operation (x := y op z) in reverse order in BB, do 

              

              

             

        for each source operand of op, y, do 

                   

                  

 

        endfor 

    endfor 

endfor 

[ ]

[ ]

gen BB

kill BB





[ ] [ ] { }

[ ] [ ] { }

gen BB gen BB x

kill BB kill BB x

 



[ ] [ ] { }

[ ] [ ] { }

gen BB gen BB y

kill BB kill BB y



 



Beyond Upward Exposed Uses 

• Upward exposed defs 
– in = gen + (out – kill) 

– out = U(in(succ)) 

– Walk ops reverse order 
• gen += {dest}   kill += {dest} 

 

• Downward exposed uses 

– in = U(out(pred)) 

– out = gen + (in - kill) 
– Walk in forward order 

• gen += {src}; kill -= {src}; 
• gen -= {dest};  kill += {dest}; 

 

 

• Downward exposed defs 

– in = U(out(pred)) 

– out = gen + (in - kill) 
– Walk in forward order 

• gen += {dest}; kill += {dest}; 
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All Path Problem 

• Up to this point 
– Any path problems (maybe relations) 

• Definition reaches along some path 
• Some sequence of branches in which def reaches 
• Lots of defs of the same variable may reach a point 

– Use of Union operator in meet function 

• All-path: Definition guaranteed to reach 
– Regardless of sequence of branches taken, def reaches 
– Can always count on this 
– Only 1 def can be guaranteed to reach 
– Availability (as opposed to reaching) 

• Available definitions 
• Available expressions (could also have reaching expressions, but not 

that useful) 
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Reaching vs Available Definitions 
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1:  r1 = r2 + r3 

2:  r6 = r4 – r5 

3:  r4 = 4 

4:  r6 = 8 

 

5:  r6 = r2 + r3 

6:  r7 = r4 – r5 1,2,3,4 reach 

1 available 

1,2 reach 

1,2 available 

1,3,4 reach 

1,3,4 available 

1,2 reach 

1,2 available 



Available Definition Analysis (Adefs) 

• A definition d is available at a point p if along all paths from d 
to p, d is not killed 

• Remember, a definition of a variable is killed between 2 points when there 
is another definition of that variable along the path 
– r1 = r2 + r3 kills previous definitions of r1 

• Algorithm: 
– Forward dataflow analysis as propagation occurs from defs downwards 

– Use the Intersect function as the meet operator to guarantee the all-
path requirement 

– gen/kill/in/out similar to reaching defs 
• Initialization of in/out is the tricky part 
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Compute Adef gen/kill Sets 

135 

Exactly the same as Reaching defs !! 

for each basic block BB do 

    gen(BB) =      ;    kill(BB) =      ; 

    for each statement (d: x := y op z) in sequential order in BB, do 

        kill(BB) = kill(BB) U G[x]; 

        G[x] = d; 

   endfor 

   gen(BB) = U G[x]: for all id x 

endfor 

 



Compute Adef in/out Sets 
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U = universal set of all definitions in the prog 

in(0) = 0;   out(0) = gen(0) 

for each basic block BB, (BB != 0), do 

    in(BB) = 0;     out(BB) = U – kill(BB) 

 

change = true 

while (change) do 

    change = false 

    for each basic block BB, do 

        old_out = out(BB) 

        in(BB) =       out(Y) : for all predecessors Y of BB 

        out(BB) = GEN(X) + (IN(X) – KILL(X)) 

        if (old_out != out(X))  then   change = true 

    endfor 

endfor 



Available Expression Analysis (Aexprs) 

• An expression is a RHS of an operation 
– Ex: in “r2 = r3 + r4”  “r3 + r4” is an expression 

• An expression e is available at a point p if along all paths from 
e to p, e is not killed. 

• An expression is killed between two points when one of its 
source operands are redefined 
– Ex: “r1 = r2 + r3” kills all expressions involving r1 

• Algorithm: 
– Forward dataflow analysis 

– Use the Intersect function as the meet operator to guarantee the all-
path requirement 

– Looks exactly like adefs, except gen/kill/in/out are the RHS’s of 
operations rather than the LHS’s 
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Available Expression 

• Input: A flow graph with e_kill[B] and e_gen[B] 
• Output: in[B] and out[B] 
• Method: 
  foreach basic block B 
   in[B1] :=    ;     out[B1] := e_gen[B1]; 
   out[B] = U - e_kill[B]; 
  change=true 
  while(change) 
   change=false; 
   for each basic block B, 
    in[B] :=      out[P]: P is pred of B 
    old_out := out[B]; 
    out[B] := e_gen[B]   (in[B] – e_kill[B]) 
    if (out[B]  ≠ old_out[B])   change := true; 


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Efficient Calculation of Dataflow 

• Order in which the basic blocks are visited is 
important (faster convergence) 

• Forward analysis – DFS order 
– Visit a node only when all its predecessors have 

been visited 

• Backward analysis – PostDFS order 
– Visit a node only when all of its successors have 

been visited 

139 



Representing Dataflow Information 

• Requirements – Efficiency! 
– Large amount of information to store 

– Fast access/manipulation 

• Bitvectors 
– General strategy used by most compilers 

– Bit positions represent defs (rdefs) 

– Efficient set operations: union/intersect/isone 

– Used for gen, kill, in, out for each BB 
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Optimization using Dataflow 

• Classes of optimization 
1. Classical (machine independent) 

• Reducing operation count (redundancy elimination) 

• Simplifying operations 

2. Machine specific 
• Peephole optimizations 

• Take advantage of specialized hardware features 

3. Instruction Level Parallelism (ILP) enhancing 
• Increasing parallelism 

• Possibly increase instructions 
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Types of Classical Optimizations 

• Operation-level – One operation in isolation 

– Constant folding, strength reduction 

– Dead code elimination (global, but 1 op at a time) 

• Local – Pairs of operations in same BB 

– May or may not use dataflow analysis 

• Global – Again pairs of operations 

– Pairs of operations in different BBs 

• Loop – Body of a loop 
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Constant Folding 

• Simplify operation based on values of target operand 
– Constant propagation creates opportunities for this 

• All constant operands 
– Evaluate the op, replace with a move 

• r1 = 3 * 4  r1 = 12 
• r1 = 3 / 0  ???  Don’t evaluate excepting ops !, what about FP? 

– Evaluate conditional branch, replace with BRU or noop 
• if (1 < 2) goto BB2  goto BB2 
• if (1 > 2) goto BB2  convert to a noop       Dead code 

• Algebraic identities 
– r1 = r2 + 0, r2 – 0, r2 | 0, r2 ^ 0, r2 << 0, r2 >> 0  r1 = r2 
– r1 = 0 * r2, 0 / r2, 0 & r2  r1 = 0 
– r1 = r2 * 1, r2 / 1  r1 = r2 
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Strength Reduction 

• Replace expensive ops with cheaper ones 
– Constant propagation creates opportunities for this 

• Power of 2 constants 
– Mult by power of 2:  r1 = r2 * 8             r1 = r2 << 3 

– Div by power of 2:    r1 = r2 / 4             r1 = r2 >> 2 

– Rem by power of 2:  r1 = r2 % 16        r1 = r2 & 15 

• More exotic 
– Replace multiply by constant by sequence of shift and adds/subs 

• r1 = r2 * 6 
– r100 = r2 << 2; r101 = r2 << 1; r1 = r100 + r101 

• r1 = r2 * 7 
– r100 = r2 << 3; r1 = r100 – r2 
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Dead Code Elimination 

• Remove statement d: x := y op z whose result 
is never consumed. 

• Rules: 

– DU chain for d is empty 

– y and z are not live at d 
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Constant Propagation 

• Forward propagation of moves/assignment of 
the form 

  d: rx := L  where L is literal 

 

– Replacement of “rx” with “L” wherever possible. 

– d must be available at point of replacement.  
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Forward Copy Propagation 

• Forward propagation of RHS of assignment or 
mov’s. 

 

 

 

 
– Reduce chain of dependency 

– Possibly create dead code 
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r1 := r2 

   . 

   . 

   . 

r4 := r1 + 1 

r1 := r2 

   . 

   . 

   . 

r4 := r2 + 1 



Forward Copy Propagation 

• Rules: 
  Statement dS is source of copy propagation 

  Statement dT is target of copy propagation 

– dS is a mov statement 

– src(dS) is a register 

– dT uses dest(dS) 

– dS is available definition at dT 

– src(dS) is a available expression at dT 
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Backward Copy Propagation 

• Backward propagation of LHS of an assignment. 
 dT: r1 := r2 + r3      r4 := r2 + r3 
         r5 := r1 + r6      r5 := r4 + r6 
 dS: r4 := r1             Dead Code 

• Rules: 
– dT and dS are in the same basic block 
– dest(dT) is register 
– dest(dT) is not live in out[B] 
– dest(dS) is a register 
– dS uses dest(dT) 
– dest(dS) not used between dT and dS 
– dest(dS) not defined between d1 and dS 
– There is no use of dest(dT) after the first definition of dest(dS) 
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Local Common Sub-Expression Elimination 

• Benefits: 
– Reduced computation 
– Generates mov statements, which 

can get copy propagated 

• Rules: 
– dS and dT has the same expression 
– src(dS) == src(dT) for all sources 
– For all sources x, x is not redefined 

between dS and dT 

dS:  r1 := r2 + r3 
 
dT:  r4 := r2 + r3 
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dS:  r1 := r2 + r3 

       r100 := r1 

 

dT:  r4 := r100 



Global Common Sub-Expression 
Elimination 

• Rules: 

– dS and dT has the same expression 

– src(dS) == src(dT) for all sources of dS and dT 

– Expression of dS is available at dT 
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Unreachable Code Elimination 
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Mark initial BB visited 

to_visit = initial BB 

while (to_visit not empty) 

     current = to_visit.pop() 

     for each successor block of current 

 Mark successor as visited; 

 to_visit += successor 

     endfor 

endwhile 

Eliminate all unvisited blocks 

entry 

bb1 bb2 

bb3 bb4 

bb5 

Which BB(s) can be deleted? 


