
BIG O Notation – Time Complexity and Space Complexity 

In computer science, big O notation is used to classify algorithms by how they respond (e.g., in their 

processing time or working space requirements) to changes in input size. 

For a general example that is understandable: 

Pick a number between 1 and 1000. I guess 500. You say "higher". I guess 750. You say "lower." I choose 

625... Clearly my search is not going to take 1000 guesses (order n). I chop my search domain in half 

each time and take 10 guesses or less 

"If I have n items and each time through the loop I can throw out half of them, how many times do I 

have to go through the loop until there's only one remaining?" This is the analysis for binary sort. If I've 

gone through the loop k times, then I have 1/2^k items remaining. So I want to find k such that n/2^k = 

1. This is the same as n=2^k or k = log2n. 

Beginners Guide: 

Big O notation is used in Computer Science to describe the performance or complexity of an algorithm. 

Big O specifically describes the worst-case scenario, and can be used to describe the execution time 

required or the space used (e.g. in memory or on disk) by an algorithm. 

O(1) 

O(1) describes an algorithm that will always execute in the same time (or space) regardless of the size of 

the input data set. 

bool IsFirstElementNull(String[] strings) 

{ 

 if(strings[0] == null) 

 { 

  return true; 

 } 

 return false; 

} 

O(N) 

O(N) describes an algorithm whose performance will grow linearly and in direct proportion to the size of 

the input data set. The example below also demonstrates how Big O favors the worst-case performance 

scenario; a matching string could be found during any iteration of the for loop and the function would 

return early, but Big O notation will always assume the upper limit where the algorithm will perform the 

maximum number of iterations. 

bool ContainsValue(String[] strings, String value) 

{ 

 for(int i = 0; i < strings.Length; i++) 

 { 
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  if(strings[i] == value) 

  { 

   return true; 

  } 

 } 

 return false; 

} 

O(N2) 

O(N2) represents an algorithm whose performance is directly proportional to the square of the size of 

the input data set. This is common with algorithms that involve nested iterations over the data set. 

Deeper nested iterations will result in O(N3), O(N4) etc. 

 

bool ContainsDuplicates(String[] strings) 

{ 

 for(int i = 0; i < strings.Length; i++) 

 { 

  for(int j = 0; j < strings.Length; j++) 

  { 

   if(i == j) // Don't compare with self 

   { 

    continue; 

   } 

 

   if(strings[i] == strings[j]) 

   { 

    return true; 

   } 

  } 

 } 

 return false; 

} 

 

O(2N) 

O(2N) denotes an algorithm whose growth will double with each additional element in the input data 

set. The execution time of an O(2N) function will quickly become very large. 

 

Logarithms 

Logarithms are slightly trickier to explain so I’ll use a common example: 
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Binary search is a technique used to search sorted data sets. It works by selecting the middle element of 

the data set, essentially the median, and compares it against a target value. If the values match it will 

return success. If the target value is higher than the value of the probe element it will take the upper 

half of the data set and perform the same operation against it. Likewise, if the target value is lower than 

the value of the probe element it will perform the operation against the lower half. It will continue to 

halve the data set with each iteration until the value has been found or until it can no longer split the 

data set. 

 

This type of algorithm is described as O(log N). The iterative halving of data sets described in the binary 

search example produces a growth curve that peaks at the beginning and slowly flattens out as the size 

of the data sets increase e.g. an input data set containing 10 items takes one second to complete, a data 

set containing 100 items takes two seconds, and a data set containing 1000 items will take three 

seconds. Doubling the size of the input data set has little effect on its growth as after a single iteration of 

the algorithm the data set will be halved and therefore on a par with an input data set half the size. This 

makes algorithms like binary search extremely efficient when dealing with large data sets. 

Computational Complexity: It is very interesting and useful as it helps a programmer to find out the the 

complexity of a set of possible algorithms for a particular programming task, thus helping him to select 

the algorithm with minimum complexity in terms of number of instructions involved. So here we will 

explain what is Computational Complexity, Big O notation to compare algorithms and analysis of the 

most popular searching and sorting methods.  

What is an algorithm: An algorithm is a sequence of instructions that act on some input data to produce 

some output in a finite number of steps.  

Why analyze algorithm: Determining which algorithm is efficient than the other involves analysis of 

algorithms. 

Factors considered in analysis: Two factors considered while analyzing algorithms are time and space. 

 Time: Actual run time on a particular computer is not a good basis for comparison since it 

depends heavily on the speed of the computer, the total amount of RAM, the Operating System 

running on the system and the quality of the computer used. So the complexity of  an algorithm 

is the number of elementary instructions performed with respect to the size of the input data.  

 Space: This is a less important factor than time because if more space is required, it can always 

be found in the form of auxiliary storage.  

What is Computational Complexity: It refers to the measure of the performance of an algorithm. It 

allows the comparison of algorithm for efficiency and predicts their behavior as data size increases. 

Dominant Term: While describing the growth rate of an algorithm, we simply consider the term which 

affects the most on the algorithm’s performance. This term is known as the dominant term. 
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Example: 

//to count no. of characters in a file 

count=0 

While(there are more characters in a file) do 

increment count by 1 

get the next character 

End While 

Print count 

In the above example, no of various instructions for a file size of 500 characters, 

Initialization: 1 instruction 

Increments: 500 

Conditional checks: 500 + 1 (for eof) 

Printing: 1 

Initialization and Printing is same for any size of file so they are insignificant compared to increments 

and checks. So increments and checks are the dominant terms in the above example. 

Best, Average and Worst Case Complexity: In most algorithms, the actual complexity for a particular 

input can vary. E.g. If input list is sorted, linear search may perform poorly while binary search will 

perform very well. Hence, multiple input sets must be considered while analyzing an algorithm. These 

include the following 

1. Best Case Input: This represents the input set that allows an algorithm to perform most quickly. 

With this input, the algorithm takes the shortest time to execute, as it causes the algorithms to 

do the least amount of work. It provides the way an algorithm behaves under optimal 

conditions.  E.g. In a searching algorithm, if match is found at the first location, it is the best case 

input as the no. comparisons is just one. 

2. Worst Case Input: This represents the input set that allows an algorithm to perform most 

slowly. It is an important analysis because it gives us an idea of the maximum time an algorithm 

will ever take. It is important because it provides an upper bound on running time of an 

algorithm. And it is also a promise that the algorithm will not take more than the calculated 

time. Eg. In a searching algorithm, if value to be searched is at the last location or it is not in the 

list, is the worst case input because it tells the maximum number of comparisons that have to be 

made. 
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3. Average Case Input: This represents the input set that allows an algorithm to deliver an average 

performance. It provides the expected running time. It needs assumption of statistical 

distribution of inputs. 

Rate of growth: The growth rate determines the algorithm’s performance when the input size grows. 

Big O Notation: The Big O Notation is a class of mathematical formula that best describes an algorithm’s 

growth rate. It is very useful: 

1. For comparing the performance of two or more algorithms. 

2. It frees us from bothering about constants. 

Let f(n) , g(n) be two functions. Then, f(n) is O(g(n)) if there exists constants a, b such that : 

F(n) <= a * g(n) whenever n>=b 

E.g.   If,             f(n) = n2 + 100n 

and,        g(n) = n2 , and      a=2           ,       and         b=100 

then,        f(n) is   O(g(n)) 

Because (n2 + 100n) is less than or equal to (2n2) for all n greater than or equal to 100. 

It means that eventually  for  n>=b,  f(n) becomes permanently smaller or equal to some multiple of g(n). 

In other words, f(n) is a smaller function than g(n) or f(n) is asymptotically bounded by g(n) or f(n) grows 

slower than g(n) or g(n) does not better than f(n) in solving the problem. 

Common Growth Rates 

Algorithm Time Complexity 

Linear Search O(n) – Worst & Average Case  

O(1) –  Best case 

Binary Search O(log2n)-Worst &Average Case  

O(1) -  Best Case 

Bubble Sort O(n2)- All cases 

Selection Sort O(n2) – All cases 

Quick Sort  

(fastest because of its low overhead and average O(n log n) 

behavior) 

O(n2) – Worst case  

O(n log n) -  Average and best Case 
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Analysis Of Various Sorting and Searching Algorithms 

1. Linear Search: 

//Size of array arr[] is n 

//value to be searched is item 

Begin 

FOR I = 0 TO (n-1) BY 1 DO 

IF ( a[i] = item) THEN 

SET loc = i 

ENDIF 

ENDFOR 

SET loc = -1 

END  

Worst Case: Worst case is achieved with an unsuccessful search which takes n comparisons. So worst 

case running time complexity is O(N). 

Average case: Assuming the element would be found in the middle of the list or N/2, Average case 

complexity is also O(N) since it is divided by constant factor 2. 

Best Case: Element is found at first index. Since only one comparison is made, it gives a constant time 

complexity of O(1). 

Merge Sort  

(needs additional space for auxiliary array and twice as many 

assignments as Quick Sort on the average) 

O(n log n) – in all cases 

Insertion Sort O(n2) – Worst & Average Case  

O(n) – Best Case 

Binary Tree Sort ( i.e. Creation of Binary search tree) O(n2) – Worst case  

O(n log n) – Average & Best Case 

Simultaneous Linear Equations O(n3) 

Adding a node  to the front of a linked list O(1) 

Towers of Hanoi O(2n) 
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2. Binary Search: 

//Array size is arr[n] 

BEGIN 

SET Low=0 

SET  high= n-1 

WHILE (low<=high) DO 

SET Mid = (low+high)/2 

IF(key = arr[md]) THEN 

SET Pos=mid 

ELSE IF (key < arr[mid]) THEN 

SET High = mid -1 

ELSE 

SET Low = mid+1 

ENDIF 

ENDIF 

ENDWHILE 

END 

Worst Case and Average Case Complexity. 

Each comparison in the binary search reduces the number of possible candidates by a factor of 2. Thus 

the maximum no. of key comparisons is 2 * log2n (as two comparisons are made each time ie. K = 

arr[mid] and key<arr[mid]) 

= O(log2n) = O(log n)  

Best Case Complexity. 

=   O(1) 
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Linear Search Vs Binary Search: 

1. Linear Search compares the value with each data item in the list sequentially whereas Binary 

search repeatedly divides the array in two halves and compares the value with the data item at 

mid value. 

2. Average case complexity of Linear search is O(n) whereas of binary search is O(log2n).  

3. The benefit of Binary search over Linear search becomes significant for lists over about 100 

elements.  

4. For similar lists Linear search may be faster because of the speed of the simple increment 

compared with the divisions needed in Binary search.  

5. For large lists, Binary search is very much faster than Linear search but is not  good for small 

lists.  

6. Binary search is not good for linked lists structure as there is no random access for the middle 

term.  

3. Bubble Sort:  

BEGIN 

//Array arr[] of size n 

FOR   i=0 TO n-1 BY 1 DO 

FOR j=0 TO n-1 BY 1 DO 

IF ( arr[j] > arr[j+1]) THEN 

SET temp=arr[j] 

SET arr[j]=arr[j+1] 

SET arr[j+1]=temp 

ENDIF 

ENDFOR 

ENDFOR 

END 

Best, Worst and Average Case Complexity: 

No. of key comparisons: 
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= (n-1) * (n-1) 

= n2 – 2n +1 

= O(n2) 

Bubble Sort is simple and requires little additional space for interchanging i.e. one record to hold 

temporary value. 

4. Insertion Sort:  

BEGIN 

//Array arr[] of size n 

FOR j = 2 TO n BY 1 DO 

SET key = arr[j] 

SET i= j-1 

WHILE i>0 AND arr[i]>key DO 

SET arr[i+1]=arr[i] 

SET i=i-1 

ENDWHILE 

SET arr[i+1]=key 

ENDFOR 

END 

Best case Complexity: If list is sorted then only one comparison is made on each pass so, complexity is 

O(n) 

Worst and Average Case Complexity: For unsorted list, no. of comparisons required are: 

= (n-1) + (n-2) + (n-3)+…………+3 + 2 + 1 

=( n*(n-1))/2 

= (n2 –n)/2 

= O(n2) 

5. Selection Sort:  
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//array arr[] of size n 

BEGIN 

FOR i=0 TO n-1 DO 

SET low = i 

FOR j= i+1 TO n DO 

IF ( a[j] < a[low] THEN 

SET low=j 

ENDIF 

ENDFOR 

INTERCHANGE (a[j], a[low]) 

ENDFOR 

END 

Best, Average and Worst case complexity: 

= (n-1) + (n-2) + …………3 + 2 + 1 

= ( n(n-1))/2 

= (n2 – n)/2 

= O(n2) 

6. Quick Sort:  

BEGIN 

FUNCTION Quick(x, lb,ub) // x – array, lb-lower bound, ub – upper bound 

IF (lb>=ub) 

RETURN//array is sorted 

CALL  FUNCTION Partition(x, lb, ub, j) 

Quick (x, lb¸j-1)// recursively sort subarray between positions lb and j-1 

Quick(x, j+1, ub)// recursively sort subarray between positions j+1 and ub 
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END 

Best and Average Case Complexity: 

Assuming file size n is a power of 2, 

1. Divide and conquer technique divides each file in a subfile of size n/2; so total of l;og n times file 

is split. 

2. Bringing pivot to its final position requires n comparisons. 

So, Quick Sort is O(n log n). 

Worst Case Complexity: 

Assuming file is sorted or nearly sorted, then taking the highest or the lowest element to the other side, 

splits file in a size of 0 and n-1. If the process repeats, a total of n-1 subfiles are sorted – the first of size 

n, the second of size n-1, third of size n-1 and so on. 

Assuming K comparisons to rearrange a file, total comparisons required are 

=        N + (n-1) + (n-2) + ………… + 2 (because n-1 levels will be there) 

=         O(n2)  

7. Merge Sort: Maximum passes in the merge sort method are log2 n; each pass involving n or fewer 

comparisons so merge sort is O(n log n). 

 


