WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Data Base Management Systems

Chapter 01

Overview of Data Base Management Systems:

Data bases and database systems have become an essential
component of everyday life in modern society.
Examples for database Applications:

e Purchases from the supermarket

e Purchases using your credit card

e Booking a holiday at the travel agents

e Using the local library

e Taking out insurance

e Using the Internet

e Studying at university

Need to store data
Data originates at one time and used later(i.e.) Store
registrations for grading later, Store for future
information needs, Governmental regulations requires access
to past data, Data used 1later for auditing, evaluation
purpose, Used more than once : save for future use

Limitations of manual methods:
Problems of speed, Problems of accuracy, Problems of
consistency and reliability, Problems of poor response
time, Problems of work-load handling capability, Problems
of meeting ad hoc information needs, Problems of cost,

Problems due to human frailties: (misplaced) loyalty,
inconsistency, irregularity, difficulties in handling big
tasks

Why computerized data processing?
Advantage of speed, Advantage of accuracy, Advantage of
reliability and consistency, Advantage of storage and
retrieval efficiency, Advantage of on-line-access to meet
ad-hoc needs, Advantage of cost

Data Base : Collection of related data. By data, we mean known
facts that can be recorded and that have implicit meaning.

!STUDENT Name | StudentNumber | Class | Major

Smith 17 1 cs
Brown 8 2 CcSs
COURSE CourseName CourseNumber | CreditHours | Department
Intro to Computer Science CS1310 4 CcS
Data Structures CS3320 4 Ccs
Discrete Mathematics MATH2410 3 MATH
Database CS3380 3 Ccs

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Definition of DBMS: A data base management system(DBMS) is a
collection of programs that enables wusers to create and
maintain a database. The DBMS 1is hence a general purpose
software system that facilitate the ©process of defining,
constructing , manipulating and sharing databases among the
various users and applications.

Historical development of database Technologies:

e Early Database Applications: The Hierarchical and
Network Models were introduced in mid 1960’s and
dominated during the seventies. A bulk of the worldwide
database processing still occurs using these models.

e Relational Model based Systems: The model that was
originally introduced in 1970 was heavily researched
and experimented with in IBM and the universities.
Relational DBMS Products emerged in the 1980’s.

e Object-oriented applications: OODBMSs were introduced
in late 1980’s and early 1990’s to cater to the need of
complex data processing in CAD and other applications.
Their use has not taken off much.

e Data on the Web and E-commerce Applications: Web
contains data in HTML (Hypertext markup language) with
links among pages. This has given rise to a new set of
applications and E-commerce is using new standards like
XML (eXtended Markup Language) .

Extending Database Capabilities:
New functionality is being added to DBMSs 1in the following
areas:

Scientific Applications, Image Storage and Management,
Audio and Video data management, Data Mining, Spatial data
management, Time Series and Historical Data Management

Transaction Management:

» A transaction is a collection of operations that performs
a single logical function in a database application

» Transaction-management component ensures that the
database remains in a consistent (correct) state despite
system failures (e.g., power failures and operating
system crashes) and transaction failures.

» Concurrency-control manager controls the interaction
among the concurrent transactions, to ensure the
consistency of the database.

A database transaction 1is a wunit of interaction with a
database management system or similar system that is treated
in a coherent and reliable way independent of other
transactions that must be either entirely completed or
aborted.

In some systems, transactions are also called LUW for Logical
Units of Work.

In database products thevahijddworttbcdiandle transactions allows

http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Data_integrity
http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

A single transaction might require several queries, each
reading and/or writing information in the database. When this
happens it is wusually important to be sure that the database
is not left with only some of the queries carried out. For
example, when doing a money transfer, if the money was debited
from one account, it is important that it also be credited to
the depositing account. Also, transactions should not
interfere with each other.

Storage Management:

» Storage management is a program module that provides the
interface Dbetween the low-level data stored in the
database and the application programs and queries
submitted to the system.

» The storage manager 1s responsible to the following
tasks:

% interaction with the file manager

X/

% efficient storing, retrieving and updating of data

Database Administrator:
A database administrator (DBA) 1s a person who 1is responsible
for the environmental aspects of a database. In general, these
include:
» Recoverability - Creating and testing Backups
» Integrity - Verifying or helping to verify data integrity
» Security - Defining and/or implementing access controls
to the data

» Availability - Ensuring maximum uptime

» Performance - Ensuring maximum performance given
budgetary constraints

» Development and testing support - Helping programmers and

engineers to efficiently utilize the database.
The role of a database administrator has changed according to
the technology of database management systems (DBMSs) as well
as the needs of the owners of the databases.

Types of Databases and Database Applications
e Numeric and Textual Databases (Traditional Database)
e Multimedia Databases (Video clips, pictures, sound
message)

e Geographic Information Systems (GIS) (Weather data, map
analysis, satellite images)

e Data Warehouses (Decision making)

e Real-time and Active Databases (Internet based (World
wide web))

A simplified database system environment.

WWW.j ntuworld.com

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Backup
http://en.wikipedia.org/wiki/Data_integrity
http://en.wikipedia.org/wiki/Access_control
http://en.wikipedia.org/wiki/Uptime
http://en.wikipedia.org/wiki/Database_management_system
http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Users/Programmers

DATABASE i
SYSTEM

Application Programs/Queries

DBMS \J
SOFTWARE

Software to Process
Queries/Programs

!

Software to Access
Stored Data

Stored Database
Definition
(Meta-Data)

Stored
Database

Advantages of Using the Database Approach
e Controlling redundancy in data storage and in development
and maintenance efforts.
o Duplication is wasteful. It costs time and money to
enter the data more than once.
o It takes up additional storage space, again with
associated costs.
o Perhaps more importantly, duplication can lead to
loss of data integrity.
e Sharing of data among multiple users.

e Restricting unauthorized access to data.
o0 When multiple users shares a large database, 1t 1is
likely that most wusers will not be authorized to
access all information in the database.

e Providing persistent storage for program Objects
o A complex object in C++ can be stored permanently in
an Object Oriented DBMS. Such an object is said to
be persistence, since it survives the termination of
the program execution and can later be directly
retrieved by another C++ program.
e Providing backup and recovery services.

e Providing multiple interfaces to different «classes of
users.

e Representing complex relationships among data.

Database Users:

o Database administrators: responsible for authorizing
access to the database, for co-ordinating and monitoring
its use, acquiring software, and hardware resources,
controlling its use and monitoring efficiency of
operations.

o Database Designers: Responsible to define the content,

the structure, the _constraints, and functions or
WwWW.jntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

transactions against the database. They must communicate
with the end-users and understand their needs.

o0 End users : End users are the people whose jobs require
access to the database for querying, updating, and
generating reports; the database primarily exists for
their use. There are several categories of end users:

o Casual End User: access database occasionally when
needed. But they may need different information each

time.
o Naive or Parametric End user : they make up a large
section of the end-user population. They use

previously well-defined functions in the form of
“canned transactions” against the database. Examples
are bank-tellers or reservation clerks who do this
activity for an entire shift of operations.

o Sophisticated End User : These 1include Dbusiness
analysts, scientists, engineers, others thoroughly
familiar with the system capabilities. Many use
tools in the form of software packages that work
closely with the stored database.

o Stand-alone End User : Mostly maintain personal
databases using ready-to-use packaged applications.
An example is a tax program user that creates his or
her own internal database.

Describing data : Levels of Abstraction

* Database Schema: The description of a database. Includes
descriptions of the database structure and the
constraints that should hold on the database.

* Schema Diagram: A diagrammatic display of (some aspects
of) a database schema.

The data in a DBMS is described at three 1levels of
abstraction, as illustrated in the figure.
Defines DBMS schemas at three levels:
o Internal schema at the internal 1level to describe
physical storage structures and access paths. Typically
uses a physical data model.(how a record (e.g.,
customer) is stored-Physical level)

o0 Conceptual schema at the conceptual level to describe
the structure and constraints for the whole database
for a community of wusers. Uses a conceptual or an
implementation data model.(describes data stored in
database, and the relationships among the data -
Logical level)

o External schemas at the external level to describe the
TTDV"; FrathEeal 1TI1TCY /N Vv TT'; Q\‘.?WWV"]D‘I'LLWO{l 'QQLTLO "‘1’\& Y TN /'qﬁ"-ﬁ mﬁA51 - Y

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

the conceptual level. (describes data as seen by a
user/application - View Level)

jqi/ END USERS %

EXTERNAL EXTERNAL ceo o EXTERNAL
LEVEL VIEW VIEW

external/conceptual
mapping

CONCEPTUAL
LEVEL ‘ CONCEPTUAL SCHEMA l

A

conceptual/internal mapping

y
INTERNAL SCHEMA ‘

]

STORED DATABASE

INTERNAL
LEVEL

o Schema - describes contents of the database
o e.g., what information about a set of customers and
accounts and the relationship between them)
o Physical schema: how data is stored at physical
level (how)
o Logical schema: data contained at the logical level
(what)
o Database Instance: The actual data stored in a database
at a particular moment 1in time. Also called database
state (or occurrence).

Data Independence

When a schema at a lower level is changed, only the mappings
between this schema and higher-level schemas need to be
changed in a DBMS that fully supports data independence. The
higher-level schemas themselves are unchanged. Hence, the
application programs need not be changed since they refer to
the external schemas

e Physical Data Independence - the ability to modify the
physical schema without changing the logical schema
o Applications depend on the logical schema
o In general, the interfaces between the various
levels and components should be well defined so that
changes 1in some parts do not seriously influence
others.
e Logical Data Independence - +the ability to modify
conceptual schema without changing the external Schema or
application programs.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

History of Data Models

® Relational Model: proposed in 1970 by E.F. Codd (IBM),

first commercial system in 1981-82. ©Now 1in several
commercial products (DB2, ORACLE, SQL Server, SYBASE,
INFORMIX) .

® Network Model: the first one to be implemented by
Honeywell in 1964-65 (IDS System). Adopted heavily due
to the support by CODASYL (CODASYL - DBTG report of
1971). Later implemented in a large variety of systems -
IDMS (Cullinet - now CA), DMS 1100 (Unisys), IMAGE
(H.P.), VAX -DBMS (Digital Equipment Corp.).

® Hierarchical Data Model: implemented in a Jjoint effort by
IBM and North American Rockwell around 1965. Resulted in
the IMS family of systems. The most popular model. Other
system based on this model: System 2k (SAS inc.)

® Object-oriented Data Model(s): several models have Dbeen
proposed for implementing in a database system. One set
comprises models of persistent 0-0 Programming Languages
such as C++ (e.g., in OBJECTSTORE or VERSANT), and
Smalltalk (e.g., in GEMSTONE). Additionally, systems like
02, ORION (at MCC - then ITASCA), IRIS (at H.P.- used in
Open OODB) .

® Object-Relational Models: Most Recent Trend. Started with
Informix Universal Server. Exemplified 1in the latest
versions of Oracle-10i, DB2, and SQL Server etc. systems.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Chapter 02

Entity Relation Model:

The Entity Relationship (ER) data model allows us to
describe the data involved in a real world enterprise in terms
of objects and their relationships and is widely wused to
develop an initial data base design. Within the larger context
of the overall design process, the ER model is used in a phase
called "“Conceptual database design”.

Database design and ER Diagrams:

The database design process can be divided into six steps. The
ER model is most relevant to the first three steps.

1. Requirement Analysis:

The very first step in designing a database application
is to understand what data is to be stored in the database,
what application must be built 1in top of it, and what
operations are most frequent and subject to performance
requirements. In other words, we must find out what the users
want from the database.

2. Conceptual database Design:

The information gathered 1in the requirements analysis
step is used to develop a high-level description of the data
to be stored in the database, along with the constraints known
to hold over this data. The ER model is one of several high-
level or semantic, data models used in database design.

3. Logical Database Design:

We must choose a database to convert the conceptual
database design into a database schema in the data model of
the chosen DBMS. Normally we will consider the Relational DBMS
and therefore, the task in the 1logical design step 1is to
convert an ER schema into a relational database schema.

Beyond ER Design
4. Schema Refinement:

This step 1s to analyze the collection of relations in
our relational database schema to identify potential problems,
and refine it.

5. Physical Database Design:

This step may simply involve building indexes on some
table and clustering some tables or it may involve substantial
redesign of parts of database schema obtained from the earlier
steps.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

6. Application and security Design:

Any software project that involves a DBMS must consider
aspects of the application that go beyond the database itself.
We must describe the role of each entity (users, user group,
departments)in every process that is reflected in some
application task, as part of a complete workflow for the task.
A DBMS Provides several mechanisms to assist in this step.

Entity Types, Attributes and Keys:

Entities are specific objects or things in the mini-world
that are represented in the database.

For example, Employee or staff, Department or Branch , Project

are called Entity.

¥ K

Staff Branch

Attributes are properties used to describe an entity.
For example an EMPLOYEE entity may have a Name, SSN, Address,
Sex, BirthDate and Department may have a Dname, Dno,
DLocation.

A specific entity will have a value for each of its
attributes.
For example a specific employee entity may have Name='John
Smith', SSN='123456789', Address ='731, Fondren, Houston, TX',
Sex='M', BirthDate='09-JAN-55"

FEach attribute has a value set (or data type) associated
with it - e.g. integer, string, subrange, enumerated type,

Name = John Smith Narme = Sunco Oil

Address = 2311 Kirby,
e Houston, Texas 77001 o
! Headquarters = Houston

Age =55

HomePhone = 713-749-2630 President = John Smith

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Types of Attributes:
e Simple (Atomic) Vs. Composite
e Single Valued Vs. Multi Valued
e Stored Vs. Derived
e Null Values

Simple Vs. Composite Attribute:
® Simple
— Attribute that are not divisible are called simple
or atomic attribute.
For example, Street name or Door number. 1i.e. the
division of composite attribute.
® Composite
— The attribute may be composed of several components.
For example, Address (Apt#, House#, Street, City,
State, ZipCode, Country) or Name (FirstName,
MiddleName, LastName). Composition may form a hierarchy
where some components are themselves composite.

Single Valued Vs. Multi Valued:

® Single Valued
— An attribute having only one value.
For example, Age, Date of birth, Sex, SSN

® Multi-valued
— An entity may have multiple wvalues for that

attribute.

For example, Color of a CAR or Previous Degrees of a
STUDENT. Denoted as {Color} or {PreviousDegrees}.Phone
number of an employee.

Stored Vs. Derived

In some cases two are more attributes values are related
— for example the age and date of birth of a person. For a
particular person entity, the value of age can be determined
from the current (today’s) date and the value of that person’s
Birthdate.

The Age attribute is hence called a derived attribute and
is said to be derivable from the Birthdate attribute , which
is called stored attribute.

Null Values

In some cases a particular entity may not have an
applicable wvalue for an attribute. For example, a college
degree attribute applies only to persons with college degrees.
For such situation, a special value called null is created.

Key attributes of an Entity Type:
An important constraint on the entities of an entity type

is the Key or uniqueness constraﬁ t on attributes. An entity
4= o~ A~ 1111 1« T~~~ — "\"‘"‘M\M!HIDLUW\’O.?H’\/\'QQ\mTT’\-l11ﬁﬁ - o~ [S L N = o~

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

each individual entity in the entity set. Such an attribute is
called a Key attribute, and its values can be used to identify
each entity uniquely.

For example name attribute is a key of the company entity
type, because no two companies are allowed to have the same
name. For the person entity type, a typical key attribute is
socialSecurityNumber (SSN). In ER diagrammatic notation, each
key attribute has its name underlined inside the oval.

Relationships and Relationship sets:

A relationship 1is an association among two or more
entities. For example we may have the relationship that Antony
works in the Marketing department. A relationship type R among
the n entity types E1,E2,.. ,En defines a set of associations
or a relationship set- among entities from these entity types.

Informally each relationship instance r; 1in R 1s an
association of entities, where the association includes
exactly one entity from each participating entity type. Each
such relationship instance r; represents the facts that the
entities participating in r; are related in some way in the
corresponding mini world situation. For example consider a
relationship type Works for between the two entity types
Employee and Department, which associates each employee with
the department for which the employee works. Each relationship
instance 1in the relationship set Works for associates one
employee entity and one department entity. Figure illustrates
this example.

EMPLOYEE WORKS_FOR DEPARTMENT

Degree of a Relationship:

The degree of a relationship 1is the number of
participating entity types. Hence the above work for
relationship is of degree two. A relationship type of degree
two 1is called Binary, and one of degree three 1is called
Ternary. An example of Ternary relationship is given below.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

SUPPLIER

SUPPLY

Relationship of degree:

o two is binary

o three is ternary
o four is quaternary

Another Example for Binary Relationship

Relationship
name

Staff

< Has

Data Base Management Systems

PROJECT

‘Branch has staff’

Example for Ternary Relationship.

Staff

Branch

Branch

Client

WWW.j ntuworld.com

‘Staff registers a client at
a branch’

WWW.jWj 0bs.net

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Example for quaternary Relationship

Solicitor ‘A solicitor arranges a bid on behalf
of a buyer supported by a financial
institution’

Financial
Buyer ‘@v Institution

Bid

Constraints on relationship Types:

Relationship types usually have certain constraints
that 1limit the possible combinations of entities that may
participate 1in the corresponding relationship set. These
constraints are determined from the mini world situation that
the relationship represent. For example 1in the works for
relationship, if the company has a rule that each employee
must work for exactly one department, that we would like to
describe this constraint in the schema. There are two type.

1. Cardinality Ratio
Describes maximum number of possible relationship
occurrences for an entity participating in a given
relationship type.

2. Participation:
Determines whether all or only some entity occurrences
participate in a relationship.

® Cardinality ratio (of a binary relationship): 1:1, 1:N,
N:1, or M:N
SHOWN BY PLACING APPROPRIATE NUMBER ON THE LINK.
® Participation constraint (on each participating entity

type) : total (called existence dependency) or partial.
SHOWN BY DOUBLE LINING THE LINK

NOTE: These are easy to specify for Binary Relationship Types.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Example for 1:1 relationship

EMPLOYEE

MANAGES DEPARTMENT

Example for M:N relationships
WORKS_ON

EMPLOYEE

Alternative (min, max) notation for relationship structural
constraints:
® Specified on each participation of an entity type E in a
relationship type R
® Specifies that each entity e in E participates in at
least min and at most max relationship instances in R
® Default(no constraint): min=0, max=n

® Must have min<max, min>0, max 21
® Derived from the knowledge of mini-world constraints
Examples:
® A department has exactly one manager and an employee can
manage at most one department.
— Specify (0,1) for participation of EMPLOYEE in
MANAGES

— Specify (1,1) Wﬁﬁ&hﬂﬁ&ﬁﬁi&ﬁﬁatlon of DEPARTMENT in

NANNT 7NT

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

® An employee can work for exactly one department but a
department can have any number of employees.
— Specify (1,1) for participation of EMPLOYEE 1in
WORKS_FOR
— Specify (0,n) for participation of DEPARTMENT in
WORKS_FOR

Types of Entity:
1. Strong Entity
a. Entity which has a key attribute in its attribute
list.
2. Weak Entity
a. Entity which doesn’t have the Key attribute.

Weak Entity Sets:
An entity set that does not possess sufficient attributes to
form a primary key is called a weak entity set. One that does
have a primary key is called a strong entity set.
For example,
» The entity set transaction has attributes transaction-
number, date and amount.
» Different transactions on different accounts could share
the same number.
» These are not sufficient to form a primary key (uniquely
identify a transaction).
» Thus transaction is a weak entity set.

For a weak entity set to be meaningful, it must be part of a
one-to-many relationship set. This relationship set should
have no descriptive attributes.
» Member of a strong entity set is a dominant entity.
» Member of a weak entity set is a subordinate entity.
A weak entity set does not have a primary key, but we need a
means of distinguishing among the entities.
The discriminator of a weak entity set is a set of attributes
that allows this distinction to be made.
The primary key of a weak entity set is formed by taking the
primary key of the strong entity set on which its existence
depends (see Mapping Constraints) plus its discriminator.
To illustrate:
» Transaction is a weak entity. It 1is existence-dependent
on account.
» The primary key of account is account-number.
» Transaction-number distinguishes transaction entities
within the same account (and is thus the discriminator).
» So the primary key for transaction would be (account-
number, transaction-number).

Note: The primary key of a weak entity is found by taking the
primary key of the strong entity on which it 1is existence-
dependent, plus the discramimaitoerldfomhe weak entity set.

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

ER Diagram
Notations for ER Diagram

Symbol Meaning

ENTITY

WEAK ENTITY

Q RELATIONSHIP

IDENTIFYING RELATIONSHIP

_____4<::::::) ATTRIBUTE
——@ KEY ATTRIBUTE

© MULTIVALUED ATTRIBUTE

COMPOSITE ATTRIBUTE

— 5 DERIVED ATTRIBUTE

TOTAL PARTICIPATIONOF E; IN R

STRUCTURAL CONSTRAINT (mln max)
ON PARTICIPATION OF EIN R

1 N . .
o CARDINALITY RATIO 1: NFOR E{:E; IN R

Sample ER diagram for a Company Schema with structural
Constraints is shown below.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

WORKS_FOR

depariment

COICIICED Cume
Garey ’
<«

EMPLOYEE [T gy~ -LOSTHAETIPOYEES . DEPARTMENT

department-

manager
managed

N

controlling-

department
(1) .

(ON) ©1) worker

supervisor supervisee @
CONTROLS
(ON)
employee
project project

(1N) controlled-
(1.0

PROJECT

:

DEPENDENTS_OF

dependent

(1)

DEPENDENT

N

Relationship

Identifying Relationship:
It is a relationship Dbetween Strong entity and weak
entity.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

An ER Diagram for a Bank database Schema

BANK-BRANCH

Enhanced-ER (EER) Model Concepts

® Tt Includes all modeling concepts of basic ER

® Additional concepts: subclasses/super classes,
specialization/generalization,

® The resulting model is called the enhanced-ER or Extended
ER (E2R or EER) model

® Tt is used to model applications more completely and
accurately 1f needed

® Tt includes some object-oriented concepts, such as
inheritance

Subclasses and Super classes:

e An entity type may have additional meaningful sub
groupings of its entities

e FExample: EMPLOYEE may be further grouped into SECRETARY,
ENGINEER, MANAGER, TECHNICIAN, SALARIED EMPLOYEE,
HOURLY EMPLOYEE, ..

o Each of these groupings 1s a subset of EMPLOYEE
entities

o Each is called a subclass of EMPLOYEE

o EMPLOYEE 1is the super <class for each of these
subclasses

e These are called super class/subclass relationships

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Specialization:

Is the process of defining a set of subclasses of a super
class. The set of subclasses is based upon some distinguishing
characteristics of the entities in the super class

For Example,
{SECRETARY, ENGINEER, TECHNICIAN}
is a specialization of EMPLOYEE based upon job type.

Another specialization of EMPLOYEE based on the method of pay
is,

{SALARIED EMPLOYEE, HOURLY EMPLOYEE}.

Super class/subclass relationships and specialization can be
diagrammatically represented in EER diagrams. Attributes of a
subclass are called specific attributes.

For example, Typing Speed of SECRETARY

The subclass can participate in specific relationship types.
For example, BELONGS TO of HOURLY EMPLOYEE

Figure shows the Specialization of an Employee based on Job
Type.

Coname > it CLame)

(%

EMPLOYEE

Y
/

SECRETARY TECHNICIAN ENGINEER

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

We may have several specializations of the same super class

a3 s> s>

| sEcReTARY | [TECHNICIAN | [ENGINEER]

MANAGER

| SALARIED_EMPLOYEE |

BELONGS_TO

Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}
{MANAGER}

{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}

TRADE_UNION

Generalization:

e The reverse of the specialization process
e Several classes with common features are generalized into
a super class; original classes become its subclasses
e Example: CAR, TRUCK generalized into VEHICLE; both CAR,
TRUCK become subclasses of the super class VEHICLE.
o We can view {CAR, TRUCK} as a specialization of
VEHICLE
o0 Alternatively, we can view VEHICLE as a
generalization of CAR and TRUCK

FIGURE Generalization.
(a) Two entity types, CAR and TRUCK.
(b) Generalizing CAR and TRUCK into the superclass VEHICLE.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

NoOfPassengers
MaxSpeed

@)

NoOfAxles

(b)

NoOfPassengers
MaxSpeed

NoOfAxles

Constraints on Specialization and generalization

1. Predicate Defined

e TIf we can determine exactly those entities that will
become members of each subclass by a condition, the
subclasses are called predicate-defined (or condition-
defined) subclasses

o Condition 1s a constraint that determines subclass
members

o Display a predicate-defined subclass by writing the
predicate condition next to the line attaching the
subclass to its super class

N

.Attribute Defined:

e TIf all subclasses 1in a specialization have membership
condition on same attribute of the super class,
specialization is called an attribute defined-
specialization

e Attribute is called the defining attribute of the
specialization

e Example: Job Type 1is the defining attribute of the
specialization { SECRETARY, TECHNICIAN, ENGINEER} of
EMPLOYEE

3. User Defined

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net
Data Base Management Systems

e subclass i1s called user-defined

0 Membership 1in a subclass 1s determined by the
database users by applying an operation to add an
entity to the subclass

0 Membership in the subclass is specified individually

for each entity in the superclass by the user

The figure shows the constraints on Specialization &
Generalization

CFrame > Minit >CCName>

| EMPLOYEE

Job Type

“Engineer”

“Secretary”
TypingSpeed “Technician” @ EngType

| secretary | | TEcHNICIAN | | ENGINEER |

4. Disjointness Constraint:

e Specifies that the subclasses of the specialization must
be disjointed (an entity can be a member of at most one
of the subclasses of the specialization)

e Specified by '‘d’ in EER diagram

e TIf not disjointed, overlap; that is the same entity may
be a member of more than one subclass of the
specialization

e Specified by ‘o’ in EER diagram

5. Completeness Constraint:

e Total specifies that every entity in the superclass must
be a member of some subclass 1in the specialization/
generalization

e Shown in EER diagrams by a double line

e Partial allows an entity not to belong to any of the
subclasses

e Shown in EER diagrams by a single line
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

Example of disjoint partial Specialization

BirthDate

EMPLOYEE

\ @
| secreTary | | TECHNICIAN | | ENGINEER

e Hence, we have four types of specialization
generalization:

o Disjoint, total

o Disjoint, partial

o Overlapping, total

o Overlapping, partial

WWW.jWj 0bs.net

/

e Note: Generalization usually is total because the super

class is derived from the subclasses.

GFNamed (iName

EMPLOYEE

TypingSpeed

[sECRETARY | [TECHNICIAN | [ENGINEER | MANAGER |

HOURLY_EMPLOYEE

| SALARIED_EMPLOYEE |

BELONGS_TO

Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}

(MANAGER} PROJECT
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}

TRADE_UNION

Specialization / Generalization Hierarchies, Lattices
Shared Subclasses:

and

e A subclass may itself have further subclasses specified

on it
e Forms a hierarchy or a lattice
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

e Hierarchy has a constraint that every subclass has only
one superclass (called single inheritance)

e Tn a lattice, a subclass can be subclass of more than
one superclass (called multiple inheritance)

e In a lattice or hierarchy, a subclass inherits
attributes not only of its direct superclass, but also
of all its predecessor superclasses

A specialization lattice with shared subclass
ENGINEERING MANAGER

EMPLOYEE

SECRETARY | [TECHNICIAN | | ENGINEER | | MANAGER |

| HOURLY_EMPLOYEE

U | SALARIED_EMPLOYEE |

A

ENGINEERING_MANAGER |

An EER Diagram Example

Specialization / Generalization Lattice Example (UNIVERSITY)

T U il <>

@@

EMPLOYEE ALUMNUS STUDENT

(o)

Cear 3 Cajor
GRADUATE__ UNDERGRADUATE _
STUDENT STUDENT
[starr] [Facuity] STUDENT_
ASSISTANT (ClassD)

= O =

[REsearcH assisTanT] | TEWﬁWﬂﬂ%m

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

WWW.jWj 0bs.net

Data Base Management Systems

Chapter 03

Relational Model

Relational Model Terminology
® A relation is a table with columns and rows.

— Only applies to logical structure of the database,
not the physical structure.

€ Attribute is a named column of a relation.

*

* & o o

Domain 1s the set of allowable values for one or more
attributes.

Tuple is a row of a relation.
Degree is the number of attributes in a relation.
Cardinality is the number of tuples in a relation.

Relational Database is a collection of normalized
relations with distinct relation names.

Attributes
Branch
>
branchNo | street city postcode
S B005 22 Deer Rd London SW1 4EH =
T< | BOO7 16 Argyll St | Aberdeen | AB2 3SU (_gs
£ B0O03 163 Main St | Glasgow | G11 9QX S
B004 32 Manse Rd | Bristol BS99 INZ 8
B00O2 56 Clover Dr | London NW10 6EU
Y |
- _ Degree o _
Primary key Foreign key
Staff
-
staffNo | fName | IName | position |sex | DOB salary | branchNo
- SL21 John White | Manager M 1-Oct-45 30000 | BOO5
= < SG37 Ann Beech | Assistant F 10-Nov-60 | 12000 | B003
% SG14 David | Ford Supervisor | M 24-Mar-58 | 18000 | B0OO3
o SA9 Mary Howe Assistant F 19-Feb-70 2000 B0OO7
SG5 Susan | Brand | Manager F 3-Jun-40 24000 | BOO3
S1L41 Julie Lee Assistant F 13-Jun-65 9000 B0OO05
\

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

WWW.jWj 0bs.net

Data Base Management Systems

Examples of Attribute Domains

Attribute | Domain Name | Meaning Domain Definition

branchNo | BranchNumbers | The set of all possible branch numbers | character: size 4, range BO01-B999

street StreetNames The set of all street names in Britain | character: size 25

city CityNames The set of all city names in Britain character: size 15

postcode | Postcodes The set of all postcodes in Britain character: size 8

sex Sex The sex of a person character: size 1, value M or F

DOB DatesOfBirth Possible values of staff birth dates date, range from 1-Jan-20,
format dd-mmm-yy

salary Salaries Possible values of staff salaries monetary: 7 digits, range

6000.00—-40000.00

Alternative Terminology for Relational Model

Table 3.1 Alternative terminology for relational model terms.

Formal terms Alternative 1 Alternative 2
Relation Table File

Tuple Row Record
Attribute Column Field

Mathematical Definition of Relation

D1

*
*

* o o

Consider two sets, D1 & D2, where D1 = {2, 4} and D2 =
{1, 3, 5}.
Cartesian product, D1 °~ D2, is set of all ordered pairs,

where first element is member of D1 and second element is
member of D2.
p2 = {(2, 1), (2, 3), (2, 5, (4, 1), (4, 3), (4, 5)}

Alternative way 1is to find all combinations of elements
with first from D1 and second from D2.
Any subset of Cartesian product is a relation; e.g.
R= {2, 1), (4, 1)}
May specify which pairs are 1in relation using some
condition for selection; e.g.
second element is 1:
R={(x, y) | x IpDl, y ID2, and y = 1}
first element is always twice the second:
= [(x) | = Fp1 WWNVFESwWoHd g o — o

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

€ Consider three sets D1, D2, D3 with Cartesian Product D1
X D2 X D3; e.g.

D1 = {1, 3} D2 = {2, 4} D3 = {5, 6}
pt X D2 X D3 = {(1,2,5), (1,2,6), (1,4,5), (1,4,6),
(3,2,5), (3,2,6), (3,4,5), (3,4,0)}

€ Any subset of these ordered triples is a relation.

€ The Cartesian product of n sets (D1, D2, . . ., Dn) is:
Dl X D2 X . . . X Dn = {(dl, d2, . . . , dn) | dl IDl, d2 ID2,
, dnIDn}
usually written as:
n
XDi
i=1

€ Any set of n-tuples from this Cartesian product is a
relation on the n sets.

Database Relations

@ Relation schema
— Named relation defined by a set of attribute and
domain name pairs.

€ Relational database schema
— Set of relation schemas, each with a distinct name.

Properties of Relations

€ Relation name is distinct from all other relation names
in relational schema.
Fach cell of relation contains exactly one atomic
(single) value.
Each attribute has a distinct name.
Values of an attribute are all from the same domain.
Each tuple is distinct; there are no duplicate tuples.
Order of attributes has no significance.
@ Order of tuples has no significance, theoretically.

*o000 o

Relational Keys
€ Superkey
— An attribute, or a set of attributes, that uniquely
identifies a tuple within a relation.

€ Candidate Key
— Superkey (K) such that no proper subset 1is a

superkey within the relation.
b Y WVWW.| ntUwort B.c:om

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

— In each tuple of R, wvalues of K uniquely identify
that tuple (unigueness).

— No proper subset of K has the uniqueness property
(irreducibility).

€ Primary Key
— Candidate key selected to identify tuples uniquely
within relation.
€ Alternate Keys
— Candidate keys that are not selected to be primary
key.
€ Foreign Key
— Attribute, or set of attributes, within one relation
that matches candidate key of some (possibly same)
relation.

Relational Integrity
¢ Null
— Represents value for an attribute that is currently
unknown or not applicable for tuple.
— Deals with incomplete or exceptional data.
— Represents the absence of a wvalue and 1is not the
same as zero or spaces, which are values.
€ Entity Integrity
— In a base relation, no attribute of a primary key
can be null.
€ Referential Integrity
— If foreign key exists in a relation, either foreign
key value must match a candidate key value of some
tuple in its home relation or foreign key value must
be wholly null.

€ Enterprise Constraints

— Additional rules specified by users or database
administrators.

Views
€@ Base Relation
— Named relation corresponding to an entity in
conceptual schema, whose tuples are ©physically
stored in database.
® View
— Dynamic result of one or more relational operations
operating on base relations to produce another
relation.
€ A virtual relation that does not necessarily actually
exist in the database but is produced upon request, at
time of request.
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

€ Contents of a view are defined as a query on one or more
base relations.

® Views are dynamic, meaning that changes made to base
relations that affect view attributes are immediately
reflected in the view.

Purpose of Views

® Provides powerful and flexible security mechanism by
hiding parts of database from certain users.

@ Permits users to access data in a customized way, so that
same data can be seen by different users in different
ways, at same time.

@ Can simplify complex operations on base relations.

Updating Views
€ 2Al1l updates to a base relation should be immediately
reflected in all views that reference that base relation.
€ If view is wupdated, underlying base relation should
reflect change.
@ There are restrictions on types of modifications that can
be made through views:
€ Updates are allowed if query involves a single base
relation and contains a candidate key of ©base
relation.
€ Updates are not allowed involving multiple base
relations.
€ Updates are not allowed involving aggregation or
grouping operations.

@ Classes of views are defined as:
— theoretically not updateable;
— theoretically updateable;
— partially updateable.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Chapter 05

Query Languages: Relational Algebra

Introduction

€ Relational algebra and relational calculus are formal
languages associated with the relational model.

€ Informally, relational algebra is a (high-level)
procedural language and relational calculus a non-
procedural language.

€ However, formally both are equivalent to one another.

€ A language that produces a relation that can be derived
using relational calculus is relationally complete.

Relational Algebra

€ Relational algebra operations work on one or more
relations to define another relation without changing the
original relations.

@ Both operands and results are relations, so output from
one operation can become input to another operation.

€ Allows expressions to be nested, just as in arithmetic.
This property is called closure.

@ Five basic operations in relational algebra: Selection,

Projection, Cartesian product, Union, and Set
Difference.

€ These perform most of the data retrieval operations
needed.

€ Also have Join, Intersection, and Division operations,
which can be expressed in terms of 5 basic operations.

Relational Algebra Operations

R S RxS

a 1 a 1

b 2 = a 2

3 a €}

b 1

b 2

b 3

(a) Selection (b) Projection (c) Cartesian product
RUS RNS R—-S
R ‘
R R

(d) Union VW\/\APPMEW\W@'COI’T] (f) Set difference

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

T U Ty T U T>= U
A B B C A B C A B A B C
a 1 1 X a 1 X a 1 a 1 X
b 2 1 v a 1 3% a 1 ¥
) z b 2
(9) Natural join (h) Semijoin (i) Left Outer join
R S R+S 14 w V+wWw
A B B A
a 1 1 a
a 2 2 b
b 1
b 2
Remainder c 1

(j) Division (shaded area) Example of division

Selection (or Restriction)

‘ 9 predicate (R)
— Works on a single relation R and defines a relation
that contains only those tuples (rows) of R that
satisfy the specified condition (predicate).

Example - Selection (or Restriction)

€ List all staff with a salary greater than £10,000.

O salary > 10000 (Staff)

staffNo [fName [IName | position | sex | DOB salary | branchNo

1-Oct-45 [30000 | BOO5
10-Nov-60 [12000 [BOO3
24- Mar-58 | 18000 | BO03
3-Jun-40 24000 | B003

SL21 John [White | Manager
SG37 Ann Beech | Assistant
SG14 David |[Ford | Supervisor
5G5 Susan | Brand | Manager

Projection

‘ H coll, . . ., coln(R)
— Works on a single relation R and defines a relation
that contains a vertical subset of R, extracting the
values of specified attributes and eliminating

duplicates.)
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Example - Projection

€ Produce a list of salaries for all staff, showing only
staffNo, fName, 1Name, and salary details.

HstaffNo, fName, 1Name, salary(Staff)

staffNo | fName | IName | salary
SL21 John White 30000
SG37 Ann Beech 12000
SG14 David Ford 18000
SA9 Mary Howe 9000
SG5 Susan Brand 24000
SL41 Julie Lee 9000
Union
® R U S

— Union of two relations R and S defines a relation
that contains all the tuples of R, or S, or both R
and S, duplicate tuples being eliminated.

— R and S must be union-compatible.
€ If R and S have I and J tuples, respectively, union is
obtained by concatenating them into one relation with a

maximum of (I + J) tuples.

Example - Union

® List all cities where there is either a branch office or a
property for rent.

IT .ity(Branch) U II ity (PropertyForRent)

city

London
Aberdeen
Glasgow
Bristol

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Set Difference

® R -S
— Defines a relation consisting of the tuples that are
in relation R, but not in S.
— R and S must be union-compatible.

Example - Set Difference

® List all cities where there is a branch office but no
properties for rent.

IT .ity(Branch) — II ity (PropertyForRent)

city

Bristol

Intersection
® R NS
— Defines a relation consisting of the set of all
tuples that are in both R and S.
— R and S must be union-compatible.
€ Expressed using basic operations:
RnNnS=R- (R-09)

Example - Intersection

® List all cities where there is both a branch office and
at least one property for rent.

IT .ity(Branch) N II iy (PropertyForRent)

city

Aberdeen
London
Glasgow

Cartesian product

® R XS
— Defines a relation that i1is the concatenation of
every tuple of relation R with every tuple of
relation S.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

Example - Cartesian product

WWW.jWj 0bs.net

® List the names and comments of all clients who have

viewed a property for rent.

(HclientNo, fName, lName(Client)) X (H clientNo, propertyNo, comment (Vlerng))

client.clientNo | fName | IName | Viewing.clientNo | propertyNo | comment
CR76 John Kay CR56 PA 14 too small

CR76 John Kay CR76 PG4 too remote
CR76 John Kay CR56 PG4

CR76 John Kay CR62 PA14 no dining room
CR76 John Kay CR56 PG36

CR56 Aline Stewart | CR56 PA141 too small

CR56 Aline Stewart | CR76 PG4 too remote
CR56 Aline Stewart | CR56 PG4

CR56 Aline Stewart | CR62 PA14 no dining room
CR56 Aline Stewart | CR56 PG36

CR74 Mike Ritchie | CR56 PA 14 too small

CR74 Mike Ritchie | CR76 PG4 too remote
CR74 Mike Ritchie | CR56 PG4

CR74 Mike Ritchie | CR62 PA14 no dining room
CR74 Mike Ritchie | CR56 PG3e

CR62 Mary Tregear | CR56 PA14 too small

CR62 Mary Tregear | CR76 PG4 too remote
CR62 Mary Tregear | CR56 PG4

CR62 Mary Tregear | CR62 PAl14 no dining room
CR62 Mary Tregear | CR56 PG36

Example - Cartesian product and Selection

@ Use selection operation to extract those tuples where

Client.clientNo = Viewing.clientNo.

O cClient.clientNo = Viewing.clientNo((H clientNo, fName, lName(Cllent)) X
clientNo, propertyNo, comment (Vlerng)))

@ Cartesian product and Selection can be reduced to
single operation called a Join.

client.clientNo | fName [IName | Viewing.clientNo | propertyNo | comment
CR76 John Kay CR76 PG4 too remote
CR56 Aline | Stewart | CR56 PA14 too small

CR56 Aline | Stewart | CR56 PG4

CR56 Aline | Stewart [CR56 PG36

CR62 Mary | Tregear | CR62 PA14 no dining room

Join Operations

® Join is a derivative of Cartesian product.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

€ Equivalent to performing a Selection, using join
predicate as selection formula, over Cartesian product of
the two operand relations.

® One of the most difficult operations to implement
efficiently in an RDBMS and one reason why RDBMSs have
intrinsic performance problems.

€@ Various forms of join operation

Theta join

Equijoin (a particular type of Theta join)
Natural join

Outer join

Semijoin

LA X X X 4

Theta join (0-join)

¢ R FS
— Defines a relation that contains tuples satisfying
the predicate F from the Cartesian product of R and
S.
— The predicate F is of the form R.ai 06 S.bi where 0
may be one of the comparison operators (£, £, >, 2,
=, #).
€ Can rewrite Theta Jjoin using basic Selection and
Cartesian product operations.
R FS = oF(R X 9)

@ Degree of a Theta join is sum of degrees of the operand
relations R and S. If predicate F contains only equality

(=), the term Equijoin is used.

Example - Equijoin

® List the names and comments of all clients who have
viewed a property for rent.

(HclientNo, fName, lName(Cllent)) Client.clientNo = Viewing.clientNo

(IT clientNo, propertyNo, comment (Vlerng))

client.clientNo | fName | IName | Viewing.clientNo | propertyNo | comment
CR76 John Kay CR76 PG4 too remote
CR56 Aline Stewart | CR56 PA14 too small

CR56 Aline Stewart | CR56 PG4

CR56 Aline Stewart | CR56 PG36

CR62 Mary Tregear | CR62 PA14 no dining room

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Natural join

® R S

— An Equijoin of the two relations R and S over all
common attributes x. One occurrence of each common
attribute is eliminated from the result.

Example - Natural join

® List the names and comments of all clients who have
viewed a property for rent.

(H clientNo, fName, 1lName (Cllent))

(H clientNo, propertyNo, comment (VieWil’lg))

clientNo | fName | IName | propertyNo | comment

CR76 John Kay PG4 too remote

CR56 Aline Stewart | PA14 too small

CR56 Aline Stewart | PG4

CR56 Aline Stewart | PG36

CR62 Mary Tregear | PA14 no dining room
Outer join

€ To display rows in the result that do not have matching
values in the join column, use Outer join.

¢ R S
— (Left) outer join is Jjoin in which tuples from R
that do not have matching wvalues in common columns

of S are also included in result relation.
Example - Left Outer join

@ Produce a status report on property viewings.

I1 propertyNo, street, city(PropertyForRent)

Viewing
propertyNo | street city clientNo | viewDate | comment
PA14 16 Holhead Aberdeen | CR56 24-May-01 | too small
PA14 16 Holhead Aberdeen | CR62 14-May-01 | no dining room
PL94 6 Argyll St London null null null
PG4 6 Lawrence St | Glasgow | CR76 20-Apr-01 | too remote
PG4 6 Lawrence St | Glasgow | CR56 26-May-01
PG36 2 Manor Rd Glasgow | CR56 28-Apr-01
PG21 18 Dale Rd Glasgow | null null null
rPGle 5 Novar Dr Glasgow | null null null

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

VVVWVJ ntuworl d.Com 1_IclientNo,propertyNo(\/ieWing) HpropertyNo(Groomszj(Pr°pertyForRent)) RESULT VWWVJ WJ Obs' net

clientNo | propertyNo propertyNo clientNo
CR56 PA14 PG4 CR56
CR76 PG4 PG36
CR56 PG4
CR62 PA14
CR56 PG36

¢ R F S

— Defines a relation that contains the tuples of R
that participate in the join of R with S.
— Can rewrite Semijoin using Projection and Join:

- R F S = HA(R F S)
Example - Semijoin
€ List complete details of all staff who work at the branch

in Glasgow.

Staff Staff.branchNo = Branch.branchNo and Branch.city = ‘Glasgow’ Branch

staffNo | fName | IName | position | sex | DOB salary | branchNo

SG37 Ann Beech | Assistant | F 10-Nov-60 | 12000 | B0O3
SG14 David | Ford Supervisor [M | 24- Mar-58 | 18000 | BO0O3
SG5 Susan | Brand | Manager F 3-Jun-40 24000 | B0OO3

Division

® R S
— Defines a relation over the attributes C that consists
of set of tuples from R that match combination of every
tuple in S.

€@ Expressed using basic operations:
T1 « TIC(R)
T2 « TIC((S X T1) — R)
T < Tl - T2

Example - Division

@ Identify all clients who have viewed all properties with
three rooms.

(IT clientNo, propertyNo (Vlerng)) - (I propertyNo (o rooms = 3
(PropertyForRent)))

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Relational Calculus

@ Relational calculus query specifies what 1is to be

retrieved rather than how to retrieve it.
— No description of how to evaluate a query.

€ In first-order logic (or predicate calculus), predicate
is a truth-valued function with arguments.

€ When we substitute values for the arguments, function
yields an expression, called a proposition, which can be
either true or false.

@ If predicate contains a variable (e.g. ‘x is a member of
staff’), there must be a range for x.

€ Wlhen we substitute some values of this range for x,
proposition may be true; for other wvalues, it may be
false.

€ lihen applied to databases, relational calculus has forms:
tuple and domain.

Tuple Relational Calculus

€ Interested in finding tuples for which a predicate is
true. Based on use of tuple variables.

€ Tuple variable is a variable that ‘ranges over’ a named
relation: i.e., variable whose only permitted values are
tuples of the relation.

@ Specify range of a tuple variable S as the Staff relation

as:
Staff (S)

® To find set of all tuples S such that P(S) is true:
{S | P(S)}

Tuple Relational Calculus - Example
® To find details of all staff earning more than £10,000:
{S | Staff(S) A S.salary > 10000}
® To find a particular attribute, such as salary, write:
{S.salary | Staff(S) A S.salary > 10000}

Query-by-Example (QBE)

€ Visual approach for accessing information in a database
through use of query templates.

€ Example values are entered into template to represent
what access to database is to achieve, such as the answer
to a query.

@ Originally developed by IBM in 1970s and has proved so
popular that QBE (or similar) 1is now provided by most
DBMSs.

€ When user constructs a QBE - in background, DBMS creates
an equivalent SQL statement.

P _ WWW.j ntuworld.com

http://www.pdfmachine.com?cl

Database
objects

WWW.j ntuwor ld.com

Data Base Management Systems

- Ask questions about data in one or more tables.
- Specify the fields we want in the answer.

- Select records according to some criteria.

- Perform calculations on the data in tables.

- Insert and delete records.

- Modify wvalues of

fields.

- Create new fields and tables

Introduction to Microsoft Access

Database window

g DreamHome : Databaze

= Open W Desian i) Mew | b4

o, e

=1 k3

Objects

Branch

Client
PrivateCwner
PropertyForRent
Reqiskration
Staff

Wiewing

i o s s s s s R TSN)

Groups

éCreate table in Design viewé

Create table by using wizard

Create table by entering data

Summary of Microsoft Access Query Types

Table 7.1 Summary of Microsoft Access 2000 query types.

Query type
Select query

Totals (Aggregate) query
Parameter query

Find Matched query
Find Unmatched query
Crosstab query

Autolookup query

Action query (including delete,
append, update, and make-table
queries)

SQL query (including union,
pass-through, data definition,
and subqueries)

Description

Asks a question or defines a set of criteria about the
data in one or more tables.

Performs calculations on groups of records.

Displays one or more predefined dialog boxes that prompts
the user for the parameter value(s).

Finds duplicate records in a single table.
Finds distinct records in related tables.

Allows large amounts of data to be summarized and
presented in a compact spreadsheet.

Automatically fills in certain field values for a new record.
Makes changes to many records in just one operation. Such
changes include the ability to delete, append, or make
changes to records in a table and also to create a new table.
Used to modify the queries described above and to set the

properties of forms and reports. Must be used to create
SQL.-specific queries such as union, data definition,

subqueries (see Chapters 5 and 6), and pass-through queries.

Pass-through queries send commands to a SQL database
such as Microsoft or Sybase SQL Server.

WWW.j ntuworld.com

WWW.jWj 0bs.net

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

Introduction to Microsoft Access Queries

Hew Query

Create a new guery without
using a wizard,

Design view

Simple Query Wizard
Crosstab Query Wizard Query wizards
Find Duplicates Query \Wizard

Find Unmatched Query Wizard

Building Select Queries using QBE - Specifying Criteria

(a) PropertyForRent
field list

g=! Queryl : Select Query

* -~
propertyNio
street

city

postcode LI

Field: |propertyMo cit: type rent =
Table: |PropertyForRent PropertyForRent PropertyForRent PropertyForRent
OBF R Sork:
grid Show:
Criteria;
or; i
4 »

Selected propertyNo, city, type, and rent fields displayed as columns

(b)
1= Queryl : Select Query [_[Ofx]
propertyNo city type rent
PA14 Aberdeen House B50
PG16 Glasgow Flat 450
Datasheat P21 Glasgow House 600
PG36 Glasgow Flat 375
PG4 Glasgow Flat 350
PL94 Londan Flat 4001,
»
Record: 14 4 || 7 Dll of 7
(c)

SELECT PropertyForRent.propertyNo, PropertyForRent.city, PropertyForRent.type, PropertyForRent.rent
FROM PropertyForRent;

WWW.j ntuworld.com

WWW.jWj 0bs.net

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

(a)
Field: [propertylo city type rent =
Table: |PropertyForRent PropertyForRent PropertyForRent PropettyForRent
QBE Sort!
grid Show: —
Criteria: "Glasgow" Between 350 And 450
or: -
4 »
Criteria on same row so Criteria using
combined using And operator And operator
(b)
=8 Queryl : Select Query |_ O] %]
propertyNo city type rent
PG4 Glasgow Flat 350
Datasheet PG36 Glasgow Flat 375
PG16 Glasgow Flat 450 Records that
3 satisfy criteria
Record: 14 4|| 4k |n r+|nf4
()
SELECT PropertyForRent.propertyNo, PropertyForRent.city, PropertyForRent.type, PropertyForRent.rent
FROM PropertyForRent
WHERE (((PropertyForRent.city)="Glasgow”) AND ((PropertyForRent.rent) Between 350 And 450));
(@)
Field: |propertyNo ity bvpe rent =
Table: |PropertyForRent PropertyForRent PropertyForRent PropertyFarRent ||
) Sort!
QBE grid —— Show: |
Criteria: "Glasgow” Between 350 And 450
or: "Aberdeen’ l hd
| | »
Criteria on different Criteria on same row so
rows so combined using combined using And
Or operator operator
(b)
= Queryl : Select Query H=] E3
propertyNo city type rent
PA14 Aberdeen House 650
Datasheet PG4 Glasgow Flat 350
PG36 Glasgow Flat 375
PG16 Glasgow Flat 450 Records that
Y I satisfy criteria
Record: I4|1|| 5 ’|H|H|of5
(©)

SELECT PropertyForRent.propertyNo, PropertyForRent.city, PropertyForRent.type, PropertyForRent.rent

FROM PropertyForRent

WHERE (((PropertyForRent.city)="Glasgow”) AND ((PropertyForRent.rent) Between 350 And 450)) OR

(((PropertyForRent.city)="Aberdeen”));

WWW.j ntuworld.com

WWW.jWj 0bs.net

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Objectives of SQL

® Ideally, database language should allow user to:
— create the database and relation structures;
— perform insertion, modification, deletion of data
from relations;
— perform simple and complex queries.
€ Must perform these tasks with minimal user effort and
command structure/syntax must be easy to learn.
€ It must be portable.

€ SQL is a transform-oriented language with 2 major
components:

— A DDL for defining database structure.
— A DML for retrieving and updating data.

€ Until SQL3, SQL did not contain flow of control commands.
These had to be implemented using a programming or Jjob-
control language, or interactively by the decisions of
user.

€ SQOL is relatively easy to learn:

— 1t is non-procedural - you specify what information
you require, rather than how to get it;
— 1t is essentially free-format.

€@ Consists of standard English words:

1) CREATE TABLE Staff(staffNo VARCHAR(5),
1Name VARCHAR(15),
salary DECIMAL(7,2));
2) INSERT INTO Staff VALUES (‘SG1l6’, ‘Brown’, 8300);
3) SELECT staffNo, 1lName, salary
FROM Staff
WHERE salary > 10000;

€ Can be used by range of users including DBAs, management,
application developers, and other types of end users.

€ An ISO standard now exists for SQL, making it both the

formal and de facto standard language for relational
databases.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

History of SQL

€ In 1974, D. Chamberlin (IBM San Jose Laboratory) defined
language called ‘Structured English Query Language’
(SEQUEL) .

® A revised version, SEQUEL/2, was defined in 1976 but name
was subsequently changed to SQL for legal reasons.

¢ still pronounced ‘see-quel’, though official
pronunciation is ‘S-Q-L'.

€ IBM subsequently produced a prototype DBMS called System
R, based on SEQUEL/2.

€ Roots of SQL, however, are in SQUARE (Specifying Queries
as Relational Expressions), which predates System R
project.

€ In late 70s, ORACLE appeared and was probably first
commercial RDBMS based on SQL.

€ In 1987, ANSI and ISO published an initial standard for
SQL.

€ In 1989, 1ISO published an addendum that defined an
‘Integrity Enhancement Feature’.

€ In 1992, first major revision to ISO standard occurred,
referred to as SQL2 or SQL/92.

€ In 1999, SQL3 was released with support for object-

oriented data management.

Importance of SQL

€ SQL has become part of application architectures such as
IBM’s Systems Application Architecture.

€ It is strategic choice of many large and influential
organizations (e.g. X/OPEN).

@ SQL is Federal Information Processing Standard (FIPS) to
which conformance is required for all sales of databases
to American Government.

€ SQL is used in other standards and even influences
development of other standards as a definitional tool.
Examples include:

— ISO’s Information Resource Directory System (IRDS)

Standard
— Remote Data Access (RDA) Standard.

Writing SQL Commands

€ SQOL statement consists of reserved words and user-defined
words.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Reserved words are a fixed part of SQL and must be spelt
exactly as required and cannot be split across lines.

— User-defined words are made up by user and represent
names of wvarious database objects such as relations,
columns, views.

@ Most components of an SQL statement are case insensitive,
except for literal character data.
@ More readable with indentation and lineation:
— Each clause should begin on a new line.
— Start of a clause should line up with start of other
clauses.
— If clause has several parts, should each appear on a
separate line and be indented under start of clause.

® Use extended form of BNF notation:

- Upper-case letters represent reserved words.

- Lower-case letters represent user-defined words.

- | indicates a choice among alternatives.

- Curly braces indicate a required element.

- Square brackets indicate an optional element.

- .. indicates optional repetition (0 or more).
Literals

@ lLiterals are constants used in SQL statements.
€ 211 non-numeric literals must be enclosed in single
quotes (e.g. ‘London’).

€ 211 numeric literals must not be enclosed in quotes (e.g.
650.00) .

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

SQL Statements

SELECT Data retrieval

INSERT

UPDATE Data manipulation language (DML)
DELETE

MERGE

CREATE

ALTER
DROP Data definition language (DDL)

RENAME
TRUNCATE
COMMIT

ROLLBACK Transaction control
SAVEPOINT

GRANT
REVOKE Data control language (DCL)

SELECT Statement

SELECT [DISTINCT | ALL]

{* | [columnExpression [AS newName]] [,...] }
FROM TableName [alias] [, ...]
[WHERE condition]
[GROUP BY columnList] [HAVING condition]

[ORDER BY columnList]

FROM Specifies table(s) to be used.

WHERE Filters rows.

GROUP BY Forms groups of rows with same column value.
HAVING Filters groups subject to some condition.

SELECT Specifies which columns are to appear in output.

ORDER BY Specifies the order of the output.
@ Order of the clauses cannot be changed.

€ Only SELECT and FROM are mandatory.

Example 5.1 All Columns, All Rows

List full details of all staff.

SELECT staffNo, fNaﬁ Qﬁg % ?édress,

o . b P P Y S

—— o e g 0

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

FROM Staff;

WWW.jWj 0bs.net

€ Can use * as an abbreviation for ‘all columns’:

SELECT *
FROM Staff;

Table 5.1 Result table for Example 5.1.

staffNo | fName IName position sex DOB salary branchNo
SL21 John White Manager M 1-Oct-45 30000.00 BO0O0O5
SG37 Ann Beech Assistant F 10-Nov-60 12000.00 BO003
SG14 David Ford Supervisor M 24-Mar-58 18000.00 B003
SA9 Mary Howe Assistant F 19-Feb-70 9000.00 B0O0O7
SGS5 Susan Brand Manager F 3-Jun-40 24000.00 B003
SL41 Julie Lee Assistant F 13-Jun-65 9000.00 BO005

Specific Columns, All Rows

Produce a list of salaries for all staff, showing only staff

number, first and last names, and salary.

SELECT staffNo, fName, 1lName, salary
FROM Staff;

Table 5.2 Rcsult tablce for Examplc 5.2,

staffNo fName IName salary

SL21 John White 30000.00
SG37 Ann Beech 12000.00
SG14 David Ford 1 8000.00
S A9 Mary Howe 9000.00
SGS5S Susan Brand 24000.00
S1.41 Julie ILec 9000.00

Use of DISTINCT

List the property numbers of all properties
viewed.

SELECT propertyNo
FROM Viewing;

WWW.j ntuworld.com

that have been

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

propertyNo

PA14
PG4
PG4
PA14
PG36

€ Use DISTINCT to eliminate duplicates:
SELECT DISTINCT propertyNo
FROM Viewing;

propertyNo

PA14
PG4
PG36

Calculated Fields

Produce a 1list of monthly salaries for all staff, showing
staff number, first and last names, and salary details.

SELECT staffNo, fName, 1Name, salary/12
FROM Staff;

Table S.4 Result table for Example S.4.
staffNo fName IName colsa
S1.21 John White 2500.00
SG37 AN Beech 1 000.00
SG 14 IDavid Ford 1 500.00
S A9 Mary Howe T750.00
SGS Susan Brand 2000.00
SIL.41 Julie I_ece 750.00

€ To name column, use AS clause:
SELECT staffNo, fName, 1lName, salary/12
AS monthlySalary
FROM Staff;
Comparison Search Condition
List all staff with a salary greater than 10,000.
SELECT staffNo, fName, 1Name, position, salary

FROM Staff
WHERE salary > 10000;

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Table 5.5 Result table for Example 5.5.

staffNo fName IName position salary

SL.21 John White Manager 30000.00
SG37 Ann Beech Assistant 12000.00
SG14 David Ford Supervisor 18000.00
SG5 Susan Brand Manager 24000.00

Compound Comparison Search Condition

List addresses of all branch offices in London or Glasgow.
SELECT *
FROM Branch
WHERE city = ‘London’ OR city = ‘Glasgow’;

Table 5.6 Result table for Example 5.6.

branchNo street city postcode
BOOS 22 Deer Rd London SWI1 4EH
BOO3 163 Main St Glasgow G111 90X
B0O0O2 56 Clover Dr London NWI10 6EU

Range Search Condition

List all staff with a salary between 20,000 and 30,000.
SELECT staffNo, fName, 1Name, position, salary

FROM Staff

WHERE salary BETWEEN 20000 AND 30000;

@ BETWEEN test includes the endpoints of range.

Table 5.7 Result table for Example 5.7.

staffNo | fName | IName | position | salary

SL21 John White Manager | 30000.00
SGS5 Susan Brand Manager | 24000.00

€ Also a negated version NOT BETWEEN.
€ BETWEEN does not add much to SQL’s expressive power.
Could also write:

SELECT staffNo, fName, . 1Name, position, salary
TDAM Ot o £F WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

WHERE salary>=20000 AND salary <= 30000;

® Useful, though, for a range of wvalues.

Set Membership

List all managers and supervisors.

SELECT staffNo, fName, 1Name, position

FROM Staff

WHERE position IN (‘Manager’, ‘Supervisor’);
@ There is a negated version (NOT IN).
€ 1IN does not add much to SQL’s expressive power.
€ Could have expressed this as:

SELECT staffNo, fName, 1Name, position
FROM Staff

WHERE position=‘Manager’ OR
position=‘Supervisor’;

€ 1IN is more efficient when set contains many values

Pattern Matching

Find all owners with the string ‘Glasgow’ in their address.
SELECT clientNo, fName, 1lName, address, telNo

FROM PrivateOwner

WHERE address LIKE ‘%Glasgow$’;

Table 5.9 Result table for Example 5.9.

ownerNo | fName | IName | address telNo

CO87 Carol Farrel 6 Achray St, Glasgow G329DX | 0141-357-7419
CO40 Tina Murphy | 63 Well St, Glasgow G42 0141-943-1728
C093 Tony Shaw 12 Park P, Glasgow G4 OQR 0141-225-7025

€ SQOL has two special pattern matching symbols:
— %: sequence of zero or more characters;
— _ (underscore): any single character.
€ LIKE ‘%Glasgow%’ means a sequence of characters of any
length containing ‘Glasgow’.

NULL Search Condition

List details of all viewings on property PG4 where a comment
has not been supplied.

€ There are 2 viewings for property PG4, one with and one

without a comment. .
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net
Data Base Management Systems

€ Have to test for null explicitly using special keyword IS
NULL:
SELECT clientNo, viewDate
FROM Viewing
WHERE propertyNo = ‘PG4’ AND
comment IS NULL;

€ Negated version (IS NOT NULL) can test for non-null
values.

Single Column Ordering

List salaries for all staff, arranged in descending order of
salary.

SELECT staffNo, fName, 1lName, salary

FROM Staff
ORDER BY salary DESC;

Table 5.11 Result table for Example 5.11.

staffNo fName IName salary

SL.21 John White 30000.00
SG5 Susan Brand 24000.00
SG14 David Ford 18000.00
SG37 Ann Beech 12000.00
SA9 Mary Howe 9000.00
SL41 Julie Lee 9000.00

Multiple Column Ordering

Produce abbreviated 1list of properties in order of property
type.

SELECT propertyNo, type, rooms, rent
FROM PropertyForRent
ORDER BY type;

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Table 5.12(a) Result table for Example 5.12
with one sort key.

propertyNo type rooms rent
PLO4 Flat 4 400
PG4 Flat 3 350
PG36 Flat 3 375
PG16 Flat a 450
PA 14 House (&3 650
PrPG21 Housc s 600
® fFour flats in this list - as no minor sort key specified,

system arranges these rows in any order it chooses.
€ To arrange in order of rent, specify minor order:

SELECT propertyNo, type, rooms, rent

FROM PropertyForRent
ORDER BY type, rent DESC;

SELECT Statement - Aggregates

@ 150 standard defines five aggregate functions:

COUNT returns number of values in specified column.
SUM returns sum of values in specified column.
AVG returns average of values in specified column.
MIN returns smallest value in specified column.
MAX returns largest value in specified column.

€@ Each operates on a single column of a table and returns a
single value.

COUNT, MIN, and MAX apply to numeric and non-numeric
fields, but SUM and AVG may be used on numeric fields
only.

*

Aggregate functions can be used only in SELECT list and
in HAVING clause.

If SELECT 1list includes an aggregate function and there
is no GROUP BY clause, SELECT 1list cannot reference a
column out with an aggregate function. For example, the
following is illegal:

€ Apart from COUNT (*), each function eliminates nulls first
and operates only on remaining non-null values.

€ COUNT (*) counts all rows of a table, regardless of
whether nulls or duplicate values occur.

€ Can use DISTINCT before column name to eliminate
duplicates.

€ DISTINCT has no effect with MIN/MAX, but may have with
SUM/AVG.

L 4

L 4

SELECT staffNo, COUNT (salary)
FROM Staff; WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

Use of COUNT (DISTINCT)
How many different properties viewed in May ‘017
SELECT COUNT (DISTINCT propertyNo) AS count
FROM Viewing

WHERE viewDate BETWEEN ‘1-May-01’
AND ‘31-May-017;

Use of COUNT and SUM

Find number of Managers and sum of their salaries.

SELECT COUNT (staffNo) AS count,
SUM (salary) AS sum
FROM Staff
WHERE position = ‘Manager’;

Table 5.15 Result table for Example 5.15.

count | sum

2 54000.00

Use of MIN, MAX, AVG

Find minimum, maximum, and average staff salary.

SELECT MIN(salary) AS min,
MAX (salary) AS max,
AVG (salary) AS avg
FROM Staff;

Table 5.16 Result table for Example 5.16.

min max avg

9000.00 | 30000.00 | 17000.00

SELECT Statement - Grouping

€ Use GROUP BY clause to get sub-totals.

€ SELECT and GROUP BY closely integrated: each
SELECT list must bewsyirdhecrithdaed per group,

WWW.jWj 0bs.net

in
and SELECT

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

— column names

— aggregate functions

— constants

— expression involving combinations of the above.

€ 211 column names in SELECT list must appear in GROUP BY
clause unless name is used only in an aggregate function.

€ If WHERE is used with GROUP BY, WHERE is applied first,
then groups are formed from remaining rows satisfying
predicate.

@ 150 considers two nulls to be equal for purposes of GROUP
BY.

Find number of staff in each branch and their total salaries.

SELECT branchNo,
COUNT (staffNo) AS count,
SUM (salary) AS sum

FROM Staff

GROUP BY branchNo

ORDER BY branchNo;

Restricted Groupings — HAVING clause

€ HAVING clause is designed for use with GROUP BY to
restrict groups that appear in final result table.

9 Similar to WHERE, but WHERE filters individual rows
whereas HAVING filters groups.

€ Column names in HAVING clause must also appear in the
GROUP BY 1list or Dbe contained within an aggregate
function.

For each branch with more than 1 member of staff, find number
of staff in each branch and sum of their salaries.

SELECT branchNo,
COUNT (staffNo) AS count,
SUM (salary) AS sum
FROM Staff
GROUP BY branchNo
HAVING COUNT (staffNo) > 1
ORDER BY branchNo;

Subqueries

€ Some SQL statements can have a SELECT embedded within
them.

® A subselect can be used in WHERE and HAVING clauses of an
outer SELECT, where it 1is called a subquery or nested
query.

€ Subselects may also appear in INSERT, UPDATE, and DELETE

statements.
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

SELECT staffNo, fName, 1Name, position
FROM Staff
WHERE branchNo =

(SELECT branchNo

FROM Branch

WHERE street = ‘163 Main St’);

Subquery with Equality

€ Inner SELECT finds branch number for branch at ‘163 Main
St’ (‘B0037).

€ Outer SELECT then retrieves details of all staff who work
at this branch.

€ Outer SELECT then becomes:

SELECT staffNo, fName, 1Name, position

FROM Staff
WHERE branchNo = ‘B003';

Table 5.19 Result table for Example 5.19.

staffNo fName IName position
SG37 Ann Beech Assistant
SG14 David Ford Supervisor
SG5 Susan Brand Manager

Subquery with Aggregate

List all staff whose salary 1is greater than the average
salary, and show by how much.

SELECT staffNo, fName, 1Name, position,
salary - (SELECT AVG(salary) FROM Staff) As SalDiff
FROM Staff
WHERE salary >
(SELECT AVG (salary)
FROM Staff);

€ Cannot write ‘WHERE salary > AVG(salary)’

® Instead, use subquery to find average salary (17000), and
then use outer SELECT to find those staff with salary
greater than this:

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

salary — 17000 As salDiff
FROM Staff
WHERE salary > 17000;

Subgquery Rules

€ ORDER BY clause may not be used in a subquery (although
it may be used in outermost SELECT).

€ Subguery SELECT list must consist of a single column name
or expression, except for subqueries that use EXISTS.

€ By default, column names refer to table name in FROM
clause of subquery. Can refer to a table in FROM using an
alias.

€ When subquery is an operand in a comparison, subquery
must appear on right-hand side.

€ A subquery may not be wused as an operand in an
expression.

Nested subquery: use of IN

List properties handled by staff at ‘163 Main St’.

SELECT propertyNo, street, city, postcode, type, rooms, rent
FROM PropertyForRent
WHERE staffNo IN
(SELECT staffNo
FROM Staff
WHERE branchNo =
(SELECT branchNo
FROM Branch
WHERE street = ‘163 Main St’));

Multi-Table Queries

@ Can use subqueries provided result columns come from same
table.

® If result columns come from more than one table must use
a join.

® To perform Jjoin, include more than one table in FROM
clause.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

WWW.jWj 0bs.net

€ Use comma as separator and typically include WHERE clause
to specify join column(s).

€ Also possible to use an alias for a table named in FROM
clause.

@ Alias is separated from table name with a space.

@ Alias can be used to qualify column names when there is
ambiguity.

Simple Join
List names of all clients who have viewed a property along
with any comment supplied.

FROM Client c,
WHERE c.clientNo

€ Only those
values in the clientNo columns

SELECT c.clientNo,
propertyNo,
Viewing v

v.clientNo;

rows

from both tables
(c.clientNo

are included in result.

€ Equivalent to equi-join in relational algebra.

Table 5.24 Result table for Example 5.24.

fName,

1Name,
comment

that have

clientNo | fName | IName propertyNo | comment
CR56 Aline Stewart | PG36

CR56 Aline Stewart | PA14 too small
CR56 Aline Stewart | PG4

CR62 Mary Tregear | PA14 no dining room
CR76 John Kay PG4 too remote

Alternative JOIN Constructs

€ SQOL provides alternative ways to specify joins:

FROM Client ¢ JOIN Viewing v ON c.clientNo

FROM Client JOIN Viewing USING clientNo
FROM Client NATURAL JOIN Viewing

WWW.j ntuworld.com

v.clientNo

identical
v.clientNo)

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

€ In ecach case, FROM replaces original FROM and WHERE.
However, first produces table with two identical clientNo
columns.

Sorting a join

For each branch, 1list numbers and names of staff who manage
properties, and properties they manage.

SELECT s.branchNo, s.staffNo, fName, lName,
propertyNo
FROM Staff s, PropertyForRent p
WHERE s.staffNo = p.staffNo
ORDER BY s.branchNo, s.staffNo, propertyNo;

Table 5.25 Rcsult table for Example 5.25.

branchNo | staffNo | fName | IName | propertyNo

B003 SG14 David Ford PG16
B003 SG37 Ann Beech PG21
B003 SG37 Ann Beech PG36
B005 SL41 Julie Lee PL94
B007 SA9 Mary Howe PA14

Three Table Join

For each branch, 1list staff who manage properties, including
city in which branch is located and properties they manage.

SELECT b.branchNo, b.city, s.staffNo, fName, l1lName,
propertyNo

FROM Branch b, Staff s, PropertyForRent p

WHERE b.branchNo = s.branchNo AND
s.staffNo = p.staffNo

ORDER BY b.branchNo, s.staffNo, propertyNo

Table 5.26 Rcsult table for Example 5.26.

branchNo city staffNo fName IName propertyNo
B0OO3 Glasgow SG14 David Ford PG16
B003 Glasgow SG37 Ann Beech PG21
B0O03 Glasgow SG37 Ann Beech PG36
B0OO0O5 London SL41 Julie Lee PLY4
B00O7 Aberdeen SA9 Mary Howe PA14

€ Alternative formulation for FROM and WHERE:

FROM (Branch b JOIN Staff s USING branchNo) AS
e TATM D MMWIEWOHA.COM. tra v atr = €N~

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Computing a Join

Procedure for generating results of a join are:
1. Form Cartesian product of the tables named in FROM clause.

2. If there is a WHERE clause, apply the search condition to
each row of the product table, retaining those rows that
satisfy the condition.

3. For each remaining row, determine value of each item in
SELECT list to produce a single row in result table.

4, TIf DISTINCT has been specified, eliminate any duplicate
rows from the result table.

5. If there 1is an ORDER BY clause, sort result table as
required.

® SQL provides special format of SELECT for Cartesian
product:

SELECT [DISTINCT | ALL] {* | columnList}
FROM Tablel CROSS JOIN Table?2

Outer Joins

® If one row of a joined table is unmatched, row is omitted
from result table.

€ Outer join operations retain rows that do not satisfy the
join condition.

€ Consider following tables:

Branch PropertyForRent1
branchNo | bCity propertyNo | pCity
B003 Glasgow PA14 Aberdeen
B004 Bristol PL94 London
B002 London PG4 Glasgow

€ Result table has two rows where cities are same.

€ There are no rows corresponding to branches in Bristol
and Aberdeen.

0’?ollnclude unmatche%wﬁﬁwﬁw&%i&ﬁﬁult table, use an Outer

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Left Outer Join
List branches and properties that are in same city along with

any unmatched branches.

SELECT b.*, p.*
FROM Branchl b LEFT JOIN
PropertyForRentl p ON b.bCity = p.pCity;

® Includes those rows of first (left) table unmatched with

rows from second (right) table.
€ Columns from second table are filled with NULLs.

Table 5.28 Result table for Example 5.28.

branchNo | bCity propertyNo | pCity

B0O03 Glasgow | PG4 Glasgow
B004 Bristol NULL NULL
B002 London PL94 London

Right Outer Join

List branches and properties in same city and any unmatched
properties.

SELECT b.*, p.*
FROM Branchl b RIGHT JOIN
PropertyForRentl p ON b.bCity = p.pCity;

€ Right Outer join includes those rows of second (right)
table that are unmatched with rows from first (left)

table.
® Columns from first table are filled with NULLs.

Table 5.29 Result table for Example 5.29.

branchNo | bCity propertyNo | pCity

NULL NULL PA14 Aberdeen
B003 Glasgow | PG4 Glasgow
B002 London PLY94 London

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Full Outer Join

List branches and properties in same city and any unmatched
branches or properties.

SELECT b.*, p.*
FROM Branchl b FULL JOIN
PropertyForRentl p ON b.bCity = p.pCity;

® Includes rows that are unmatched in both tables.

€ Unmatched columns are filled with NULLs.
Integrity Enhancement Feature

@ Consider five types of integrity constraints:

— Required data.

— Domain constraints.

— Entity integrity.

— Referential integrity.
— Enterprise constraints.

Integrity Enhancement Feature

Required Data
position VARCHAR(10) NOT NULL

Domain Constraints
(a) CHECK
sex CHAR NOT NULL
CHECK (sex IN (YM’', ‘F'))

CREATE DOMAIN

CREATE DOMAIN DomainName [AS] dataType
[DEFAULT defaultOption]

[CHECK (searchCondition)]

For example:

CREATE DOMAIN SexType AS CHAR
CHECK (VALUE IN ('M’, ‘E'));
sex SexType NOT NULL

@ searchCondition can involve a table lookup:

CREATE DOMAIN BranchNo AS CHAR (4)
CHECK (VALUE IN (SELECT branchNo
FROM Branch));

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

DROP DOMAIN DomainName
[RESTRICT | CASCADE]

IEF - Entity Integrity
€ Primary key of a table must contain a unique, non-null
value for each row.
€ 150 standard supports FOREIGN KEY clause in CREATE and
ALTER TABLE statements:

PRIMARY KEY (staffNo)
PRIMARY KEY (clientNo, propertyNo)

€ Can only have one PRIMARY KEY clause per table. Can still
ensure uniqueness for alternate keys using UNIQUE:

UNIQUE (telNo)

IEF - Referential Integrity

€ FK is column or set of columns that links each row in
child table containing foreign FK to row of parent table
containing matching PK.

@ Referential integrity means that, if FK contains a value,
that value must refer to existing row in parent table.

€ IS0 standard supports definition of FKs with FOREIGN KEY
clause in CREATE and ALTER TABLE:

FOREIGN KEY (branchNo) REFERENCES Branch

€ Any INSERT/UPDATE that attempts to create FK value in
child table without matching candidate key wvalue 1in
parent 1s rejected.

€ Action taken that attempts to update/delete a candidate
key value in parent table with matching rows in child is
dependent on referential action specified using ON UPDATE
and ON DELETE subclauses:

— CASCADE - SET NULL

— SET DEFAULT - NO ACTION
CASCADE: Delete row from parent and delete matching rows in
child, and so on in cascading manner.
SET NULL: Delete row from parent and set FK column(s) in child
to NULL. Only valid if FK columns are NOT NULL.
SET DEFAULT: Delete row from parent and set each component of
FK in child to specified default. Only wvalid 1if DEFAULT
specified for FK columns
NO ACTION: Reject delete from parent. Default.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

FOREIGN KEY (ownerNo) REFERENCES Owner ON UPDATE CASCADE

IEF - Enterprise Constraints

€ Could use CHECK/UNIQUE in CREATE and ALTER TABLE.
€ Also have:

CREATE ASSERTION AssertionName
CHECK (searchCondition)

€ vwhich is very similar to the CHECK clause.

CREATE ASSERTION StaffNotHandlingTooMuch

CHECK (NOT EXISTS (SELECT staffNo
FROM PropertyForRent
GROUP BY staffNo
HAVING COUNT (*) > 100))

Data Definition

€ SQOL DDL allows database objects such as schemas, domains,
tables, views, and indexes to be created and destroyed.
€ Main SQL DDL statements are:

CREATE SCHEMA DROP SCHEMA
CREATE/ALTER DOMAIN DROP DOMAIN
CREATE/ALTER TABLE DROP TABLE
CREATE VIEW DROP VIEW

€ Many DBMSs also provide:
CREATE INDEX DROP INDEX

@ Relations and other database objects exist in an
environment.

Each environment contains one or more catalogs, and each
catalog consists of set of schemas.

Schema is named collection of related database objects.
Objects in a schema can be tables, views, domains,
assertions, collations, translations, and character sets.
All have same ownher.

*e o

CREATE TABLE

CREATE TABLE TableName
{ (colName dataType [NOT NYLL].:[WNIQUEL

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

[CHECK searchCondition] [,...]}

[PRIMARY KEY (listOfColumns),]

{[UNIQUE (listOfColumns),] [..,]1}

{[FOREIGN KEY (listOfFKColumns)
REFERENCES ParentTableName [(1listOfCKColumns)],
[ON UPDATE referentialAction]
[ON DELETE referentialAction]] [,..1}

{[CHECK (searchCondition)] [,..]1 })

@ Creates a table with one or more columns of the specified
dataType.

With NOT NULL, system rejects any attempt to insert a
null in the column.

Can specify a DEFAULT value for the column.

Primary keys should always be specified as NOT NULL.
FOREIGN KEY clause specifies FK along with the
referential action

L R X R 4

ALTER TABLE

Add a new column to a table.
Drop a column from a table.
Add a new table constraint.
Drop a table constraint.

Set a default for a column.
Drop a default for a column.

LA X X X X 2

Change Staff table by removing default of ‘Assistant’ for
position column and setting default for sex column to female
(\FI).

ALTER TABLE Staff

ALTER position DROP DEFAULT;
ALTER TABLE Staff

ALTER sex SET DEFAULT ‘F';

Remove constraint from PropertyForRent that staff not allowed
to handle more than 100 properties at time. Add new column to
Client table.

ALTER TABLE PropertyForRent

DROP CONSTRAINT StaffNotHandlingTooMuch;
ALTER TABLE Client

ADD prefNoRooms PRooms;

DROP TABLE

DROP TABLE TableName [RESTRICT | CASCADE]
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Removes named table and all rows within it.

With RESTRICT, 1if any other objects depend for their
existence on continued existence of this table, SQL does
not allow request.

€ With CASCADE, SQL drops all dependent objects (and
objects dependent on these objects).

L R 4

View
Dynamic result of one or more relational operations
operating on base relations to produce another relation.

@ Virtual relation that does not necessarily actually exist
in the database but is produced upon request, at time of
request.

€ Contents of a view are defined as a query on one or more
base relations.

® With view resolution, any operations on view are
automatically translated into operations on relations
from which it is derived.

® With view materialization, the view is stored as a
temporary table, which is maintained as the underlying
base tables are updated.

SQL - CREATE VIEW

CREATE VIEW ViewName [(newColumnName [,...]) 1]
AS subselect
[WITH [CASCADED | LOCAL] CHECK OPTION]

@ Can assign a name to each column in view.

® If list of column names is specified, it must have same
number of items as number of columns produced Dby
subselect.

If omitted, each column takes name of corresponding
column in subselect.

List must be specified if there is any ambiguity in a
column name.

The subselect is known as the defining query.

WITH CHECK OPTION ensures that if a row fails to satisfy
WHERE clause of defining query, 1t is not added to
underlying base table.

Need SELECT ©privilege on all tables referenced in
subselect and USAGE privilege on any domains used 1in
referenced columns.

*e O o

*

SQL - DROP VIEW

DROP VIEW ViewName [RESTRICT | CASCADE]

@ Causes definition ofiWwwépiuwerlgdsomeleted from database.

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

® For example:
DROP VIEW Manager3Staff;

€ With CASCADE, all related dependent objects are deleted;
i.e. any views defined on view being dropped.

€ With RESTRICT (default), if any other objects depend for
their existence on continued existence of view being
dropped, command is rejected

Restrictions on Views

SQL imposes several restrictions on creation and use of views.

(a) If column in view is based on an aggregate function:
— Column may appear only in SELECT and ORDER BY
clauses of queries that access view.
— Column may not be used in WHERE nor be an argument
to an aggregate function in any query based on view.
€ for example, following query would fail:

SELECT COUNT (cnt)
FROM StaffPropCnt;

€ Similarly, following query would also fail:

SELECT *

FROM StaffPropCnt

WHERE cnt > 2;
(b) Grouped view may never be joined with a base table or a
view.

® ror example, StaffPropCnt view is a grouped view, so any
attempt to Jjoin this view with another table or view

fails.

Advantages of Views

Data independence
Currency

Improved security
Reduced complexity
Convenience
Customization

Data integrity

000000

Disadvantages of Views

€ Update restriction _
® C++ii~+11rea rogfrihfiAMNWJmUWOHdﬁom

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

@ Performance

Transactions

€ SQL defines transaction model based on COMMIT and
ROLLBACK.

@ Transaction is logical unit of work with one or more SQL
statements guaranteed to be atomic with respect to

recovery.

¢ An SQL transaction automatically begins with a
transaction-initiating SQL statement (e.qg., SELECT,
INSERT) .

€ Changes made by transaction are not visible to other
concurrently executing transactions wuntil transaction
completes.

@ Transaction can complete in one of four ways:

- COMMIT ends transaction successfully, making changes
permanent.

- ROLLBACK aborts transaction, Dbacking out any changes
made by transaction.

- For programmatic SQL, successful program termination
ends final transaction successfully, even 1if COMMIT has not
been executed.

- For programmatic SQL, abnormal program end aborts
transaction.

Access Control - Authorization Identifiers and Ownership

€ Authorization identifier is normal SQL identifier used to
establish identity of a user. Usually has an associated
password.

® Used to determine which objects user may reference and
what operations may be performed on those objects.

€ Each object created in SQL has an owner, as defined in
AUTHORIZATION clause of schema to which object belongs.

€@ Owner is only person who may know about it.

Privileges

@ Actions user permitted to carry out on given base table

or view:
SELECT Retrieve data from a table.
INSERT Insert new rows into a table.
UPDATE Modify rows of data in a table.
DELETE Delete rows of data from a table.
REFERENCES Reference columns of named table in integrity
constraints.
USAGE Use domains, collations, character sets, and

translations. wWww..j ntuwor ld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Can restrict INSERT/UPDATE/REFERENCES to named columns.
Owner of table must grant other wusers the necessary
privileges using GRANT statement.

€ To create view, user must have SELECT privilege on all
tables that make up view and REFERENCES privilege on the
named columns

L R 4

GRANT

GRANT {PrivilegelList | ALL PRIVILEGES}
ON ObjectName

TO {AuthorizationIdList | PUBLIC}

[WITH GRANT OPTION]

® PrivilegeList consists of one or more of above privileges
separated by commas.
€ ALL PRIVILEGES grants all privileges to a user.

€ PUBLIC allows access to be granted to all present and
future authorized users.

® ObjectName can be a base table, view, domain, character
set, collation or translation.

€ WITH GRANT OPTION allows privileges to be passed on.

Example

Give Manager full privileges to Staff table.

GRANT ALL PRIVILEGES
ON Staff
TO Manager WITH GRANT OPTION;

Give wusers Personnel and Director SELECT and UPDATE on
column salary of Staff.

GRANT SELECT, UPDATE (salary)
ON Staff
TO Personnel, Director;

GRANT Specific Privileges to PUBLIC

Give all users SELECT on Branch table.

GRANT SELECT
ON Branch
TO PUBLIC;

REVOKE
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

REVOKE [GRANT OPTION FOR]
{PrivilegelList | ALL PRIVILEGES}
ON ObjectName
FROM {AuthorizationIdList | PUBLIC}
[RESTRICT | CASCADE]

€ ALL PRIVILEGES refers to all privileges granted to a user
by user revoking privileges.

€ GRANT OPTION FOR allows privileges passed on via WITH
GRANT OPTION of GRANT to be revoked separately from the
privileges themselves.

€ REVOKE fails if it results in an abandoned object, such
as a view, unless the CASCADE keyword has been specified.

@ Privileges granted to this user by other users are not
affected.

User
A

(5) REVOKE INSERT | (1) GRANT INSERT

ON Staff ON Staff
CASCADE WITH GRANT OPTION
User
B
(2) GRANT INSERT
ON Staff
WITH GRANT OPTION
tel) User
C < E
(4) GRANT INSERT (3) GRANT INSERT
ON Staff ON Staff

WITH GRANT OPTION

User

REVOKE Specific Privileges

Revoke privilege SELECT on Branch table from all users.

REVOKE SELECT
ON Branch
FROM PUBLIC;
Revoke all privileges given to Director on Staff table.

REVOKE ALL PRIVILEGES
ON Staff

FROM Director; \\intuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Chapter 07

Overview of Storage and Indexing:

Databases are stored physically as files of records, which are
typically stored on magnetic disks.

Introduction:

The collection of data that makes up a computerized
database must be stored physically on some computer storage
medium. The DBMS software that can then retrieve, update, and
process this data as needed. Computer storage media from a
storage hierarchy that includes two main categories,

e Primary Storage
o The category includes storage media that can be
operated on directly Dby the computer Central
Processing Unit(CPU), such as the computer main
memory and smaller Dbut faster cache memories.
Primary storage usually provides fast access to data
but is of limited storage capacity.
e Secondary Storage
o This category includes magnetic disks, optical
disks, and tapes. These devices usually have a
larger capacity, cost less, and provide slower
access to data than do primary storage devices. Data
in secondary storage can not be processed directly
by the CPU: it must first be copied into primary
storage.

The storage media are classified by the speed with which
data can be accessed, by the cost per unit of data to buy the
medium, and by the medium’s reliability. Let’s look into the
media that are typically available.

= Cache: The cache is the fastest and most costly form of
storage. Cache memory 1s small. The computer hardware
manages its use.

®= Main Memory: The general purpose machine instructions
operate on main memory. If a power failure or system
crash occurs, the contents of main memory are usually

lost. (i.e.) volatile memory type.

= Flash Memory: Also known as Electrically Erasable
programmable read only memory (EEPROM). Data Survive
power failure in flash memory (Non-volatile Type). Reading

data from flash memory takes less than 100 nanoseconds,
which 1s as fast as reading data from main memory.
However writing data to flash memory is more complicated.
Data can be written once, but can not be overwritten
directly. To overwrite memory that has been written
already, we have tomﬁﬁﬁﬁﬁM%ﬂd%Bﬁire bank of memory once.

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

It is used for storing small volumes of data (5-10 MB) in
hand-held computers, digital cameras.

= Magnetic Disk Storage: The primary medium for the long-
term on-line storage of data is the magnetic disk. The
system must move the data from disk to main memory so
that they can be accessed. Disk storage survives power
failures and system crashes. Disk-storage devices
themselves may sometimes fail and thus destroy data, but
such failures do not happen frequently.

= Optical Storage: The popular form of optical storage are
the compact disk(CD) which can hold 640MB of data, and
the digital video disk(DVD), which can hold 4.7 or 8.5 GB
of data per side of the disk. Data are stored optically
on the disk, and are read by the laser. The optical disks
used 1n read-only compact disks(CD-ROM) or read only
digital wvideo disk(DVD-ROM) can not be written, but are
supplied with the prerecorded data. There are record one
versions of compact disk called (CD-R) and digital
video (DVD-R),which can be written once; such records are
called write once read many (WORM) .There are also multiple
write versions of compact disk (CD-RW) and digital wvideo
disk (DVD-RW and DVD-RAM), which can be written multiple
times.

= Tape Storage: It is mainly for back up and archival
data. Although magnetic tape is much cheaper than disks,
access to data is much slower. Because the tape must be
accessed sequentially from the beginning. That’s why the
tape storage is referred to as sequential-access storage.

Storage device Hierarchy

\ Cache |

\ Main Memory |

\ Flash memory |
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

\ Magnetic Disk |

| Optical Disk |

\ Magnetic Tapes |

Magnetic Disks

(@

spindle disk rotation

(b)

cylinder
of tracks

y j (imaginary)

actuator
movement

The read write head is positioned very close to the platter
surface. We can say almost touching it. It reads or writes
magnetically encoded information. The surface of platter is
divided into circular tracks. There are over 16000 tracks
per platter on typical hard disks. Each track is further
divided into sectors. A sector 1s defined as the smallest
unit of data that can be read or written. The size of a
sector 1is typically 512 bytes. There are 200 (on inner
disks) to 400 (on outer disks) typical sectors per track. To
read or write a sector, the disk arm swings to position head
on right track. As the platter spins continually, the data
is read or written as sector passes under head. Let us
understand the head-disk assemblies as follows: Multiple
disk platters are found (typically 2 to 4) on single
spindle. There is one head per platter, which is mounted on
a common arm. Earlier generation disks were vulnerable to
head crashes. Their surface had metal-oxide coatings, which
would disintegrate on head crash and damage all data on
disk. The current generation disks are less susceptible to
such disastrous failures, although individual sectors may
get corrupted.

A disk controller 1nter§ace &)tween the computer system
P | T PR N L N L UV\[,OI" —\CAA,\V\J—A T~ L 1 b P [] o~

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

to read or write sector, and initiates actions, such as
moving the disk arm to the right track and actually reading
or writing the data. If the data is corrupted, with very
high probability stored checksum won’t match recomputed
checksum. It -ensures successful writing by reading back
sector after writing it. It performs remapping of bad
sectors.

Placing File Records on Disk:

Records:

Data 1s wusually stored in the form of records. Each
record consists of a collection of related data wvalues or
items, where each value is formed of one or more bytes and
corresponds to a particular field of the record.

Files, Fixed- Length records and variable length records:

A file 1is a sequence of records. In many cases all
records in a file are of the same record type. If every
record in the file has exactly the same size(in bytes), the
file 1is said to be made up of Fixed file records. 1If
different records in the file have different sizes, the file
is said to be made up of Variable length records.

JOBCODE
(8 NAME SSN SALARY /DEPARTMENT HIRE-DATE
] | AN
i
1 31 40 44 48 68
JOBCODE
®) SALARY
NAME SSN DEPARTMENT l
|Smi1h,John l123456789 |x>0(x l)ooot LCompu(er I characttg::s
1 12 21 25 2
Separator Characters
- field
© - mvaluename
[NAME=Smith, John || ssN=123456789 || DEPARTMENT=Computer || | soparatesteics
N terminates record

Fig. Three record storage formats.

(a) A fixed-length record with six fields and size of 71
bytes.

(b) A record with two wvariable-length fields and three
fixed-length fields.

c) A variable-field re@wiiuwdkhcohree types of separator

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Spanned Vs. Unspanned records:

A pointer at the end of the first block points to the
block containing the remainder of the record in case it is
not the next consecutive block on disk. This organization is
called Spanned, because the record can span more than one
block

If records are not allowed to cross block boundaries, the
organization is called unspanned.

(@)

blocki | record 1] record 2 |fe°°fd3 W
blocki+1 | record 4 | records | record 6 NN

(b)
block i record 1 record 2 record 3 record 4 P _1
]
block i + 1 record 4 (rest) record 5 record 6 record 7 P
FIGURE

Types of record organization. (a) Unspanned. (b) Spanned.
Files of Unordered Records (Heap Files):

In the simplest and most basic type of organization,
records are placed in the file in the order in which they
are inserted, so new records are inserted at the end of the
file. Such an organization is called a heap or pile
file. Inserting a new record is very efficient: the last
disk block of the file is copied into a buffer, the new
record is added; and the block is then rewritten back to the
disk. The address of last file block is kept in the file
header.

Files or Ordered Records (Sorted Files)

We can physically order the records of a file on disk
based on the wvalue of one of their fields- called the
ordering field. This leads to an ordered or sequential file.
If the ordering field 1is also a key field of the file - a
field guaranteed to have a unique value in each record- then
the field is called the ordering key for the file. Figure
shows an ordered file with name as the ordering key field
assuming that employees having distinct names.)

Figure - WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Some blocks of an ordered (sequential) file of EMPLOYEE
records with NAME as the ordering key field

NAME SSN BIRTHDATE JOB SALARY SEX
block 1 Aaron, Ed
Abbott, Diane

Acosta, Marc | 1 | I

block 2 Adams, John
Adams, Robin

Akers, Jan [| . I I

block 3 Alexander, Ed
Alfred, Bob

Alen,Sam | [[I

block 4 Allen, Troy
Anders, Keith

Anderson, Rob | | | |

block 5 Anderson, Zach
Angeli, Joe

Archer, Sue [’ ’ l

block 6 Amold, Mack
Amold, Steven

Atkins, Timothy | l I |

block n -1 Wong, James
Wood, Donald

Woods, Manny | I [[

block n Wright, Pam
Wyatt, Charles

Zimmer, Byron | | l }

Hashing Technique:

A type of primary file organization is based on hashing,
which provides very fast access to records on certain search
conditions. This organization is usually called hash file.
The search condition is must be an equality condition on a
single field, called the hash field of the file. In most
cases, the hash field is also a key field of the file, in
which case it is called hash Key. The idea behind hashing is
to provide a function h, called a hash function or
randomizing function that is applied to the hash field wvalue
of a record and yields the address of the disk block in
which the record is stored. A search for the record within
the block can be carried out in a main memory buffer.

Internal Hashing:)
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

For internal files, hashing is typically implemented as a
hash table through the use of an array of records. Suppose
that the array index range is from 0 to M-1 then we have M
slots whose address corresponds to the array indexes. We
choose a hash function that transforms the hash field wvalue
into an integer between 0 and M-1. One common hash function
is the h(K)=K mod M function, which returns the remainder of
an integer hash field wvalue K after division by M; this
value is then used for the record address.

Non integer hash field wvalues can be transformed into
integers before the mod function applied. For characters
string, the numeric (ASCII) codes associated with characters
can be used in the transformation.

A collision occurs when the hash field value of a record
that is being inserted hashes to an address that already
contains a different record. In this situation, we must
insert the new record in some other position, since its hash
address is occupied. The process of finding another position
is called Collision resolution.

There are numerous methods for collision resolution,
including the following,

1. Open addressing

2. Chaining

3. Multiple hashing

@ NAME ~ SSN JOB SALARY
0
1
2
3
M-2 [T]
M-t []
) data fields overflow pointer
0 -1 | A
1 M
2 -1
3 E]
4 M+2_| address
space
M-2 M1
M-1 -1
M M+5 | A
M+1 -1
M+2 M4
N overflow
: space
M+0-2 | {
M+0-1 [[|
* null pointer =—1.
* overflow pointer refers to position of next record in linked list.
FIGURE: Internal hashing data structures.

(a) Array of M positions for use in internal hashing.
(b) Collision resolution by chaining records.

- 2 0 - re 9 0= g=m ﬂy\,\.,WVJDIulWO.rldcom

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Hashing for disk files 1is called External hashing. To
suit the characteristics of disk storage the target address
space 1is made of Dbuckets, each of which hold multiple
records. The hashing function maps a key into a relative
bucket number, rather than assign an absolute block address
to the bucket. A table maintained in the file header
converts the bucket number into the corresponding disk block
address, as illustrated in figure.

block
bucket address
number on disk
0 —

||
~— T — =

L]
RN

\Y4il

l

The collision problem is less severe with buckets, because
as many records as will fit in bucket can hash to the same
bucket without causing problems. However, we must make
provisions for the case where a bucket is filled to capacity
and a new record being inserted hashes to that bucket. We
can use a variation of chaining in which a pointer 1is
maintained 1in each bucket to a linked 1list of overflow
records for the bucket, as shown in the figure.

main
buckets

bucket 0 340
460
" overflow
| record pointer ey
= null
ookt 1 981 record pointer N
ot 321 record pointer = nul
761
- 182 record pointer
| record pointer .)
bucket 2 22 C 652 record pointer 1
72 record pointer = il
522 record pointer
[record pointer
(pointers are to records
within the overflow blocks)
bucket 9 399
89
[record pointer o

= null

The pointers in the linked list should be record pointers,
which include both a block address and a relative record
position within the blewkw|ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Indexing structures for files

Primary Indexes (Ordered Indexes)

A primary index is an ordered file whose records are of
fixed length with two fields. The first field is of the same
data type as the ordering key field- called the primary key-
of the data file, and the second field is a pointer to a disk
block(a block address). There 1is one index entry (or index
record) 1in the index file for each block in the data file.
Each index entry has the value of the primary key field for
the first record in a block and a pointer to that block as its
two field wvalues. We will refer to the two field wvalues of
index entry i as <K(I,P(i)>

DATAFILE

(PRIMARY
KEY FIELD)

NAME SSN BIRTHDATE JOB SALARY SEX
Aaron, Ed
Abbott, Diane
Acosta, Marc [[[[
Adams, John
Adams, Robin
INDEX FILE
(<K(i), P(i)> entries) .
Akers, Jan I I I I
BLOCK
ANCHOR Alexander, Ed
PRIMARY Alfred, Bob
KEY BLOCK
VALUE POINTER H
Allen, Sam | | | |
Aaron, Ed 7
Adams, Joh 'd
ams, Jonn p Allen, Troy
Alexander, Ed / Anders, Keith
Allen, Troy |
Anderson, Zach - Anderson, Rob | | |
Amold, Mack \\
Anderson, Zach
Angeli, Joe
Archer, Sue | [[[
Amold, Mack
Amold, Steven
Wong, James [N
Wright, Pam \ Atkins, Tmothy | [[|
Wong, James
‘Wood, Donald
Woods, Manny | [[[

Wright, Pam
Wyatt, Charles

Zimmer, Byron | | | | ‘

Indexes can also be characterized as dense or sparse. A dense
index has an index entry for the every search key wvalue(and
hence every record) in the data file. A sparse (or non dense)
index on the other hand, has index entries only for some of
the search values. AMNmﬁﬁ%ﬂﬁéﬁdcoﬁ?dex is hence a non

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

block of the data file and the keys of its anchor record
rather than for every search values(or every record).

Clustering Indexes:

If records of a file are physically ordered on a non key
field- which does not have a distinct wvalue for each record-
that field is called the clustering field. We can create a
different type of index, called clustering index, to speed up
the retrieval of records that have the same wvalue for the
clustering field. This differs from a primary index, which
requires that the ordering field of the data file have a
distinct value for each record. A clustering index is also an
ordered file with two fields.

DATAFILE

(CLUSTERING
FIELD)

DEPTNUMBER NAME SSN JOB BIRTHDATE SALARY

1

1

1

2

2

INDEX FILE 3

(<K, P(i)> entries) s

CLUSTERING BLOCK E
FIELDVALUE POINTER

1 4 8

2 J S

3 o h

4 -« i

5 . » 5

6 ~. 5

8 N 5

5

6

6

6

6

6

8

8

8

Figure: A clustering index on the DEPTNUMBER ordering non key
field of an EMPLOYEE file.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

(CLUSTERING DATA FILE
FIELD)

DEPTNUMBER NAME SSN JOB BIRTHDATE SALARY

1] [] [[
3
i —— |
Biock pointer e——1—") null pointer
2| [] | |
2] [[[[
Block pointer +———")\ null pointer
3
3
3
3
INDEX FILE Biook pointer e
(<K@, P()>entries) —
s ——
CLUSTERING BLOCK
FIELD VALUE POINTER
4
; Pe block pointer =——") nullpointer
: Co S e I I —
5 - [[| | [
6 - ~——
s 2 \\ EIGOK POIFtEr =——" "\ nullpointer
~a 5
5
5
5
Biock pointer e———")\ null pointer
6
6
6
6
Blook poiner &
e —— |
Block pointer e——) nullpointer
s | | I [
| | [|
8 | I I I [
block pointer .7/1 null pointer
Figure : Clustering 1index with a separate block cluster for

each group of records that share the same value for the
clustering field

Secondary Indexes (Unordered or dense Index)

A secondary index provides a secondary means of accessing
a file for which some primary access already exists. The index
is an ordered file with two fields. The first field is of the
same data type as some non ordering field of the data file
that 1is an indexing field. The second field is either the
block pointer or a record pointer. There can be many secondary
indexes (and hence indexing field) for the same file.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

DATA FILE

INDEXING
FIELD
(SECONDARY

KEY FIELD)

9
INDEX FILE 5
(<K(i), P(i)> entries) p 13
INDEX 8
FIELD BLOCK
VALUE POINTER 6
1 o] 15
2 - 3
3 pe 17
4 o Ny
5 1 21
6 - 11
7 16
8 % 2
) < 24
10 - 10
11 L4 20
12 - 1
13 o
14 4
15 o] 23
16 o’ 18
14
17
18 bl 12
19 Em— 7
20 L 4 ')
21 o 22
22 o
23 o
24 o’

Figure: A dense secondary index (with block pointers) on a
nonordering key field of a file.

Multilevel Indexes:

The idea behind the multilevel 1index 1is to reduce the
part of the index that we continue to search the blocking
factor is larger than two. Hence the search space is reduced
mush faster.

The following figure explains this concept

A secondary index (with recorded pointers) on a non key field

implemented using one level of indirection so that index
entries are of fixed length and have unique field wvalues.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

DATA FILE

(INDEXING
FIELD)
DEPTNUMBER NAME SSN JOB BIRTHDATE SALARY

3
BLOCKS OF 5
RECORD 1
POINTERS 5
[o= o\
2
3
INDEX FILE >
(<K(i), P(i)> entries)
8
FIELD BLOCK
VALUE POINTER 3
1 < =
2 -« 8
g — 1
4 -—
5 S -
5
8 - 5
5
5
1
[S]
3
[<]
3
8
A 3
Chapter 08

Query Evaluation overview

Introduction

® In network and hierarchical DBMSs, low-level procedural
query language is generally embedded in high-level
programming language.

Programmer’s responsibility to select most appropriate
execution strategy.

With declarative languages such as SQL, user specifies what
data is required rather than how it is to be retrieved.
Relieves user of knowing what constitutes good execution
strategy.

Also gives DBMS more control over system performance.

Two main techniques for query optimization:

heuristic rules that order operations in a query;

comparing different strategies based on relative costs, and
selecting one that minimizes resource usage.

Disk access tends to be dominant cost in query processing
for centralized DBMS.

® 4060606 O o o

Query Processing

Activities involved in retrieving data from the database.

¢ Aims of QP: wWwWw.jntuwor ld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

— Transform query written in high-level language (e.g.
SQL), 1into correct and efficient execution strategy
expressed in low-level language (implementing RA);

— execute strategy to retrieve required data.

Query Optimization

Activity of choosing an efficient execution strategy for
processing query.

€ As there are many equivalent transformations of same
high-level query, aim of QO 1is to choose one that
minimizes resource usage.

Generally, reduce total execution time of query.

May also reduce response time of query.

Problem computationally intractable with large number of
relations, so strategy adopted is reduced to finding near
optimum solution.

L X X 4

Example - Different Strategies

Find all Managers who work at a London branch.

SELECT *

FROM Staff s, Branch b

WHERE s.branchNo = b.branchNo AND

(s.position = ‘Manager’ AND b.city = ‘London’);

€ Three equivalent RA queries are:

(1) 9 (position="'Manager') A (city='London') A
(Staff.branchNo=Branch.branchNo) (Staff X BranCh)

(2) &) (position="'Manager') A (city='London') (Staff
Staff.branchNo=Branch.branchNo Branch)

(3) (o position='Manager' (Staff) Staff.branchNo=Branch.branchNo
(o city="'London' (Branch))

¢ Assume:
— 1000 tuples in Staff; 50 tuples in Branch;
— 50 Managers; 5 London branches;
— no indexes or sort keys;
— results of any intermediate operations stored on
disk;
— cost of the fingdwwmiker|dsosgnored;

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Cost Comparison

€ Cost (in disk accesses) are:

(1) (1000 + 50) + 2*(1000 * 50) = 101 050
(2) 2*1000 + (1000 + 50) = 3 050
(3) 1000 + 2*50 + 5 + (50 + 5) =1 160

@ Cartesian product and join operations much more expensive
than selection, and third option significantly reduces
size of relations being joined together.

Phases of Query Processing

€ 0P has four main phases:

— decomposition (consisting of parsing and
validation) ;

— optimization;

— code generation;

— execution.

Query in high-level
language (typically SQL)

S—
Query . . o
decomposition System catalog
- 7
Relational algebra expression
y ——
ST I
Compile time 1 opt%ia{ion -t I Database statistics

Execution plan

Code
generation

Generated code

. Runtime query | . .
Runtime { e > Main database
l Query output

A

Dynamic versus Static Optimization

€ Two times when first three phases of QP can be carried
out: WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

— dynamically every time query is run;
— statically when query is first submitted.
€ Advantages of dynamic QO arise from fact that information
is up to date.
@ Disadvantages are that performance of query is affected,
time may limit finding optimum strategy.
€ Advantages of static QO are removal of runtime overhead,
and more time to find optimum strategy.
€ Disadvantages arise from fact that chosen execution
strategy may no longer be optimal when query is run.
€ Could use a hybrid approach to overcome this.

Cost Estimation for RA Operations

€ Many different ways of implementing RA operations.

® Aim of QO is to choose most efficient one.

€ Use formulae that estimate costs for a number of options,
and select one with lowest cost.

® Consider only cost of disk access, which is wusually
dominant cost in QP.

€ Many estimates are based on cardinality of the relation,
so need to be able to estimate this.

Database Statistics

€@ Success of estimation depends on amount and currency of
statistical information DBMS holds.

Keeping statistics current can be problematic.

If statistics updated every time tuple is changed, this
would impact performance.

DBMS could update statistics on a periodic basis, for
example nightly, or whenever the system is idle.

* oo

Typical Statistics for Relation R

nTuples (R) - number of tuples in R.

bFactor (R) - blocking factor of R.

nBlocks (R) - number of blocks required to store R:
nBlocks (R) = [nTuples (R)/bFactor (R)]

Query Optimization in Oracle

@ Oracle supports two approaches to query optimization:

rule-based and cost-based.
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Rule-based
® 15 rules, ranked in order of efficiency. Particular
access path for a table only chosen if statement contains
a predicate or other construct that makes that access
path available.
@ Score assigned to each execution strategy using these
rankings and strategy with best (lowest) score selected.

€ When 2 strategies produce same score, tie-break resolved
by making decision based on order in which tables occur
in the SQL statement.

Table 20.4 Rulc-basced optimization rankings.

Rank Access path

Single row by ROWID (row identifier)

Single row by cluster join

Single row by hash cluster key with unique or primary key
Single row by unique or primary key

Cluster join

Hash cluster key

Indexed cluster key

Composile key

O 0 kW=

Single-column indexes

—_
(=}

Bounded range search on indexed columns

—
—

Unbounded range search on indexed columns

(i8]

Sort—-merge join

MAX or MIN of indexed column
ORDER BY on indexed columns
Full table scan

TR

Q0 in Oracle - Rule-based: Example

SELECT propertyNo
FROM PropertyForRent
WHERE rooms > 7 AND city = ‘London’
€ Single-column access path using index on city from WHERE
condition (city = ‘London’). Rank 9.
€ Unbounded range scan using index on rooms from WHERE
condition (rooms > 7). Rank 11.
€ rull table scan - rank 15.
€ Although there is index on propertyNo, column does not
appear 1in WHERE clause and so 1is not considered by
optimizer.
@ Based on these paths, rule-based optimizer will choose to
use index based on city column.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Q0 in Oracle - Cost-Based

€ To improve QO, Oracle introduced cost-based optimizer in
Oracle 7, which selects strategy that requires minimal
resource use necessary to process all rows accessed by
query (avoiding above tie-break anomaly) .

® User can select whether minimal resource usage is based
on throughput or based on response time, by setting the
OPTIMIZER MODE initialization parameter.

@ Cost-based optimizer also takes into consideration hints
that the user may provide.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Chapter 9

Transaction Processing:

Transaction:

Action, or series of actions, carried out Dby user or
application, which accesses or changes contents of database.
It Transforms database from one consistent state to another,
although consistency may be violated during transaction.

Single User Vs. Multi User Systems:

A DBMS is a single user if at most one user at a time can
use the system, and it is multi user if many users can use the
system and hence access the database concurrently. Multiple
users can access databases and wuse the computer systems
Simultaneously Dbecause of the concept of Multiprogramming,
which allows the computer to execute multiple programs or
processes at the same time. If only a single central
processing unit (CPU) exists, it can actually executes at most
one process at a time. However multiprogramming operating
systems executes some commands from one process then suspend
that process and execute some commands from the next process,
and so on. A process 1is resumed at the point where it was
suspended whenever it gets its turn to use the CPU again.
Hence concurrent execution of process is actually interleaved
as 1llustrated in the following figure, which shows two
processes A and B executing concurrently in an interleaved

fashion.

o | o i E

| I I I ' : :

DA I A I i i E

1 I I ! :

] I I 1] :

' I I I ‘ | !

i I I I ' ' '

! . B | B ! 5 E

! I r1 ! c !

o ; o | O

l [| | : ! D |

| | | | | [1 CPU;

, 1 L 1 ; ! !

! } bo—

Fig. Interleaved ©processing Vs. Parallel Processing of

concurrent transactions.

Interleaving also prevents the long process from delaying
other processes. If the computer system has multiple hardware
processors (CPUs), parallel processing of multiple processing
is possible as illustrated the process C and D in the figure.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

€ Can have one of two outcomes:

— Success - transaction commits and database reaches a
new consistent state.
— Failure - transaction aborts, and database must Dbe

restored to consistent state before it started.
— Such a transaction is rolled back or undone.
€ Committed transaction cannot be aborted.

€ Aborted transaction that is rolled back can be restarted
later.

State Transition Diagram for Transaction

COMMIT
END_TRANSACTION PARTIALLY
B COMMITTED r—]-| COMMITTED
BEGIN_TRANSACTION
ABORT FAILED] ABORTED

Properties of Transactions

Four basic (ACID) properties of a transaction are:

Atomicity :A transaction is an atomic unit of processing;
it is either performed in its entirely or not
performed at all.

Consistency :Must transform database from one consistent
state to another.

Isolation :Partial effects of incomplete transactions
should not be visible to other transactions.

Durability :Effects of a committed transaction are
permanent and must not be lost because of later
failure.

DBMS Transaction Subsystem

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

TranSaCion | el scheduler

manager

Buller - > Recovery

manager manager

4
v

Access - ~ File
manager manager
Systems
managcr
Databasc
and

system catalog

Concurrency control:
Processes of managing simultaneous operations on the
database without having them interfere with one another.

€ Prevents interference when two Oor more users are
accessing database simultaneously and at least one 1is
updating data.

€ Although two transactions may be correct in themselves,
interleaving of operations may produce an incorrect

result.

Need for Concurrency Control

Three examples of potential problems caused by concurrency:
e TLost update problem.
e The temporary update or Dirty Read Problem.
e Tncorrect summary problem.

@) Ty (b) T
read_item (X); read_item (X);
X=X-N, X=X+M,
write_item (X); write_item (X);
read_item (Y);

Yi=Y+N;

write_item (Y);

Fig. 1 : Two sample transaction Transaction 1 and Transaction

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

The problem occurs when two transactions that access the
same database items have their operations interleaved in a way
that makes the wvalue of the some database items incorrect.
Suppose that transactions T1 and T2 are submitted at
approximately the same time, and suppose that their operations
are interleaved as shown in the figure a, then the final value
of X 1is incorrect. Because T2 reads the value of X before T1
changes it 1n the database and hence the wupdated value
resulting from Tl is lost. For example if X=80 at the start
(originally there were 80 reservation on the flight) N=5 (T1
transfers 5 seats reservations from the flight corresponding
to X to the flight corresponding to Y) and M=4 (T2 reserves 4
seats on X), the final result should be X=79, Dbut the
interleaving of operation shown in the figure a it 1is X=84
because the update in T1 that removed the 5 seats from X was

lost.
@ 7 T
read_item(X);
X:=X-N;
read_item(X);
X=X+M,;
Time write_item(X);
read_item(Y);
o o . Iltem X has an incorrect value because
 J write_ftem(X); its update by T is "lost" (overwritten)
Y =Y+N,
write_item(Y);

Fig.a. The lost update problem.

The temporary update or Dirty Read Problem.

This problems occurs when one transaction updates a
database item and then the transaction fails for some reason.
The updated item is accessed by another transaction before it
is changed back to its original wvalue.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuworld.com WWW.jWj 0bs.net

Data Base Management Systems

(b) T T
read_item(X);
X:=X-N;
write_item(X);
Time
read_item(X);
X=X+M,
write_item(.X);
read_item(Y');
Transaction T, fails and must change the value -

of X' back to its old value; meanwhile 7,
has read the "temporary" incorrect value of X.

Figure shows an example where T1 updates items X then fails
before completion, so the system must change X back to its
original. Before it can do so , however transaction T2 reads
the temporary value of X., which will not be recorded
permanently in the database because of the failure of T1. The
value of item X that is read by T2 is called the dirty data.

Incorrect summary problem

If one transaction 1is calculating an aggregate summary
function on a number of records while other transactions are
updating some of these records, the aggregate function may
calculate some values before they are updated and others after
they are updated. (refer the Elmasri Navathe’s Fundamentals of
Database Systems for more input)

© T T3

sum:=0;
read_item(A);
SUM:=SUMAA;

read_item(X);

X:=X-N;

write_item(X);
read._item (X 1(T sreads Xafter Nis subtracted and reads
surz.isum+ >V Y before Nis added; a wrong summary
read_item(¥); is the result (off by N).
sum:=sum+Y;

read_item(Y);

Y:=Y4N; .
write e VA- WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

FIGURE
Some problems that occur when concurrent execution 1is
uncontrolled. (c) The incorrect summary problem.

Serializability

® Objective of a concurrency control protocol is to
schedule transactions in such a way as to avoid any
interference.

€ Could run transactions serially, but this limits degree
of concurrency or parallelism in system.

€@ Serializability identifies those executions of
transactions guaranteed to ensure consistency

Schedule
Sequence of reads/writes by set of concurrent
transactions.

Serial Schedule

Schedule where operations of each transaction are
executed consecutively without any interleaved operations from
other transactions.

€ No guarantee that results of all serial executions of a
given set of transactions will be identical.

Nonserial Schedule

€ Schedule where operations from set of concurrent
transactions are interleaved.

€ Objective of serializability is to find nonserial
schedules that allow transactions to execute concurrently
without interfering with one another.

® In other words, want to find nonserial schedules that are
equivalent to some serial schedule. Such a schedule 1is
called serializable.

Serializability

€ In serializability, ordering of read/writes is important:
(a) If two transactions only read a data item, they do not
conflict and order is not important.
(b) If two transactions either read or write completely
separate data items, th@MMNﬁﬁuMk%FidBﬁPfliCt- and order 1is not

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

WWW.jWj 0bs.net

(c) If one transaction writes a data item and another reads or
writes same data item, order of execution is important.
Example of Conflict Serializability
Time T; Ty T Ty T Ty
t begin_transaction begin_transaction begin_transaction
by read(baly) read(bal,) read(bal,y)
t3 write(baly) write(baly) write(baly)
Ly begin_transaction begin_transaction read(baly)
t5 read(baly) read(baly) write(baly)
tg write(baly) read(baly) commit
t; read(baly) write(baly) begin_transaction
tg write(baly) write(baly) read(baly)
tg commit commit write(baly)
o read(baly) read(baly) read(baly)
Ly wrile(baly) wrile(baly) wrile(baly)
5 comumit comumit commit
@ (b) ©
Serializability
@ Conflict serializable schedule orders any conflicting
operations in same way as some serial execution.
€ Under constrained write rule (transaction updates data
item based on its old wvalue, which is first read), use

precedence graph to test for serializability.

Precedence Graph
® Create:
— node for each transaction;
— a directed edge Ti — Tj,
item written by TI;
— a directed edge Ti — T3,
an item after it has been read by Ti.
€ If precedence graph contains cycle schedule
conflict serializable.

is

Example - Non-conflict serializable schedule

® 79 is
balx to another account with balance baly.

@ T10 is increasing balance of these two accounts by 10%.
€@ Precedence graph has a cycle and so is not serializable.

Example - Non-conflict serializable schedule

WWW.j ntuworld.com

if Tj reads the value of an
if TJ writes a wvalue into

not

transferring £100 from one account with balance

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Time Ty Tio

L begin_transaction

ty read(bal,)

ty bal, =bal, + 100 X
ty write(baly) begin_transaction

ts read(bal,)

I baly = baly *1.1
Iy write(bal,)

tg read(baly)

ty bal, = bal, *1.1
tig write(baly)

th read(baly) commit

Ly baly, = bal, — 100

write(baly)

t14 commit

View Serializability

@ Offers less stringent definition of schedule equivalence
than conflict serializability.
€ Two schedules S1 and S2 are view equivalent if:
— For each data item x, if Ti reads initial wvalue of x
in S1, Ti must also read initial wvalue of x in S2.
— For each read on x by Ti in S1, if value read by x
is written by Tj, Ti must also read value of x
produced by Tj in S2.
— For each data item x, 1if last write on x performed
by Ti in S1, same transaction must perform final
write on x in S2.

@ Schedule is view serializable if it is view equivalent to
a serial schedule.

€ Every conflict serializable schedule is view
serializable, although converse is not true.

€ It can be shown that any view serializable schedule that
is not conflict serializable contains one or more blind
writes.

€ In general, testing whether schedule is serializable is
NP-complete.

Example - View Serializable schedule

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Time Ty T, T3

4 begin_transaction

ty read(bal,)

t3 begin_transaction

ty write(baly)

ls commil

tg write(baly)

ty commit

tg begin_transaction

ty write(bal,)

tip commit
Recoverability

@® Serializability identifies schedules that maintain

database consistency, assuming no transaction fails.

® Could also examine recoverability of transactions within
schedule.

® If transaction fails, atomicity requires effects of
transaction to be undone.

€ Durability states that once transaction commits, its
changes cannot be undone (without running another,
compensating, transaction).

Concurrency Control Techniques
€ Two basic concurrency control techniques:
— Locking,
— Timestamping.
@ Both are conservative approaches: delay transactions in
case they conflict with other transactions.
€ Optimistic methods assume conflict is rare and only check
for conflicts at commit.

Locking

Transaction uses locks to deny access to other transactions
and so prevent incorrect updates.

@ Most widely used approach to ensure serializability.

@ Generally, a transaction must claim a shared (read) or
exclusive (write) lock on a data item before read or
write.

€@ lLock prevents another transaction from modifying item or
even reading it, in the case of a write lock.

Locking - Basic Rules

€® If transaction has sharkdoslekosn item, can read but not

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

® If transaction has exclusive lock on item, can both read
and update item.

€ Reads cannot conflict, so more than one transaction can
hold shared locks simultaneously on same item.

€ Exclusive lock gives transaction exclusive access to that
item.

@ Some systems allow transaction to upgrade read lock to an
exclusive lock, or downgrade exclusive lock to a shared
lock.

Example - Incorrect Locking Schedule

€ For two transactions above, a valid schedule using these
rules is:

S = {write lock(T9, balx), read(T9, balx), write(T9, balx)
unlock (T9, Dbalx), write lock(T10, balx), read (T10, Dbalx),
write(T10, balx), wunlock(T1l0, balx), write lock(T10, baly),
read (T10, baly), write (T10, baly), unlock (T10, baly),
commit (T10), write lock(T9, baly), read(T9, baly), write(T9,
baly), unlock(T9, baly), commit (T9) 1}

Example - Incorrect Locking Schedule
® If at start, balx = 100, baly = 400, result should be:

— balx = 220, baly = 330, if T9 executes before T10,
or
— balx = 210, baly = 340, if T10 executes before T9.

€ However, result gives balx = 220 and baly = 340.

® S is not a serializable schedule.

€ Problem is that transactions release locks too soon,
resulting in loss of total isolation and atomicity.

€ To guarantee serializability, need an additional protocol
concerning the positioning of lock and unlock operations
in every transaction.

Two-Phase Locking (2PL)

Transaction follows 2PL protocol 1if all locking operations
precede first unlock operation in the transaction.

€ Two phases for transaction:

— Growing phase - acquires all locks but cannot
release any locks.
— Shrinking phase - releases locks but cannot acquire

any new locks _
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

Preventing Lost Update Problem using 2PL

Time T, T, bal,
t] begin_transaction 100
ty begin_transaction write_lock(baly) 100
t3 write_lock(baly) read(baly) 100
t, WAIT bal, = bal, + 100 100
ts WAIT write(baly) 200
tg WAIT commit/unlock(baly) 200
ty read(baly) 200
tg baly = bal, — 10 200
ty write(baly) 190
t1o commit/unlock(baly) 190

Deadlock

An impasse that may result when two (or more) transactions

each waiting for locks held by the other to be released.

Time

4
t
3
Uy
5
3
t7
ts
)
tio
by

T17

begin_transaction

write_lock(baly)
read(baly)

bal, =baly, — 10
write(baly)
write_lock(bal
WAIT

WAIT

WAIT

y)

T18

begin_transaction
write_lock(baly)
read(baly)
bal, = baly + 100
write(baly)
write_lock(baly)
WAIT
WAIT
WAIT

*
L 4

Only one way to break deadlock:
transactions.
Deadlock

should be
restart transaction(s).

transparent to

user, so

€ Three general techniques for handling deadlock:

Timeouts

€ Transaction

*
*

Timeouts.
Deadlock prevention.
Deadlock detection and recovery.

that

requests

lock will only

system-defined period of time.

If lock has not been granted within this period,

request times out.

In this case,
though it
automatically restarts

even

DBMS

wait for

aborts

WWW.jWj 0bs.net

are

abort one or more of the

should

a

lock

DBMS assumes transaction may be deadlocked,
not be, and it

R EwEAaRERHCELon -

and

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Deadlock Prevention

€ DBMS looks ahead to see if transaction would cause
deadlock and never allows deadlock to occur.
€@ Could order transactions using transaction timestamps:

— Wait-Die - only an older transaction can wait for
younger one, otherwise transaction is aborted (dies)
and restarted with same timestamp.

— Wound-Wait - only a younger transaction can wait for
an older one. If older transaction requests lock
held by younger one, younger one is aborted
(wounded) .

Recovery from Deadlock Detection

& Several issues:
— choice of deadlock victim;
— how far to roll a transaction back;
— avoiding starvation.

Timestamping

€ Transactions ordered globally so that older transactions,
transactions with smaller timestamps, get priority in the
event of conflict.

€ Conflict is resolved by rolling back and restarting
transaction.

€ No locks so no deadlock.

Timestamp
A unique identifier created by DBMS that indicates
relative starting time of a transaction.

€ Can be generated by using system clock at time
transaction started, or by incrementing a logical counter
every time a new transaction starts.

@ Read/write proceeds only if last update on that data item
was carried out by an older transaction.

€ Otherwise, transaction requesting read/write is restarted
and given a new timestamp.

® Also timestamps for data items:

— read-timestamp - timestamp of last transaction to
read item;
— write-timestamp - timestamp of last transaction to

write item.

timistic Techniques .
°p kb WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

€ Based on assumption that conflict is rare and more
efficient to let transactions proceed without delays to
ensure serializability.

® At commit, check is made to determine whether conflict
has occurred.

® If there is a conflict, transaction must be rolled back
and restarted.

€ Potentially allows greater concurrency than traditional
protocols.

€ Three phases:

— Read
— Validation
— Write

Optimistic Techniques - Read Phase
@ Extends from start until immediately before commit.
€ Transaction reads values from database and stores them in
local wvariables. Updates are applied to a local copy of

the data.

Optimistic Techniques - Validation Phase

@ rollows the read phase.

& ror read-only transaction, checks that data read are
still current values. If no interference, transaction is
committed, else aborted and restarted.

€ for update transaction, checks transaction leaves
database 1in a consistent state, with serializability
maintained.

Optimistic Techniques - Write Phase

® rollows successful validation phase for update
transactions.

€ Updates made to local copy are applied to the database.

Granularity of Data Items

@ Size of data items chosen as wunit of protection by
concurrency control protocol.
€ Ranging from coarse to fine:

— The entire databaTg.
N e VWWW. | ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

— A page (or area or database spaced).
- A record.
- A field value of a record.

Granularity of Data Items

€ Tradeoff:
— coarser, the lower the degree of concurrency;
— finer, more locking information that is needed to be
stored.
® Best item size depends on the types of transactions

Hierarchy of Granularity

€ Could represent granularity of locks in a hierarchical
structure.

Root node represents entire database, level 1s represent
files, etc.

When node is locked, all its descendants are also locked.
DBMS should check hierarchical path before granting lock.
Intention lock could be used to lock all ancestors of a
locked node.

Intention locks can be read or write. Applied top-down,
released bottom-up.

* G060 o

Database Recovery

Process of restoring database to a correct state in the event
of a failure.

€@ Need for Recovery Control
— Two types of storage: volatile (main memory) and
nonvolatile.
— Volatile storage does not survive system crashes.

— Stable storage represents information that has been
replicated in several nonvolatile storage media with
independent failure modes.

Types of Failures

€ System crashes, resulting in loss of main memory.

@ Media failures, resulting in loss of parts of secondary
storage.

Application software errors.

Natural physical disasters.

Carelessness or unintentional destruction of data or

facilities. WwWw.j ntuwor | d.com

L A X 4

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

Transactions and Recovery

@ Transactions represent basic unit of recovery.
€ Recovery manager responsible for atomicity
durability.

WWW.jWj 0bs.net

and

€ If failure occurs between commit and database buffers
being flushed to secondary storage then, to ensure
durability, recovery manager has to redo (rollforward)

transaction’s updates.

€ If transaction had not committed at failure time,
recovery manhager has to undo (rollback) any effects of

that transaction for atomicity.

€ Partial undo - only one transaction has to be undone.
@ Global undo - all transactions have to be undone.
Example
Ts |—|
T, l—-—l

€ DBMS starts at time t0, but fails at time tf. Assume data
for transactions T2 and T3 have been written to secondary

storage.

€ T1 and T6 have to be undone. In absence of any other

information, recovery manager has to redo T2, T3, T4,
T5.

Recovery Facilities

and

€ DBMS should provide following facilities to assist with

recovery:

— Backup mechanism, which makes periodic backup copies

of database.

— Logging facilities, which keep track of current

state of transactions and database changes.
— Checkpoint facility, which enables updates
database in progress to be made permanent.

to

— Recovery manager, which allows DBMS to restore

database to consistent state following a failure.

Log File

€ Contains information about all updates to database:
— Transaction records.

— Checkpoint records.
S N o i T A+L\AVVV\M1/\1/HLDIL<IWQI;|d'¢QmV PR PR, [LR §

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

€ Transaction records contain:

— Transaction identifier.

— Type of log record, (transaction start, insert,
update, delete, abort, commit).

— Identifier of data item affected by database action
(insert, delete, and update operations).

— Before-image of data item.

— After-image of data item.

— Log management information.

Sample Log File

Tid | Time | Operation Object Before image | After image | pPtr | nPtr
T1 10:12 | START 0 2
T1 |10:13 | UPDATE STAFF SL21 (old value) (new value) 1 8
T2 | 10:14 | START 0 4
T2 | 10:16 | INSERT STAFF SG37 (new value) 3 5
T2 |10:17 | DELETE STAFF SA9 (old value) 4 6
T2 |[10:17 | UPDATE PROPERTY PG16 | (old value) (new value) 5 9
T3]10:18 | START 0 11
T1 |10:18 | COMMIT 2 0
10:19 | CHECKPOINT | T2, T3
T2 |[10:19 | COMMIT 6 0
T3 | 10:20 | INSERT PROPERTY PG4 (new value) 7 12
T3 |10:21 | COMMIT 11 0

® Log file may be duplexed or triplexed.

® Log file sometimes split into two separate random-access
files.

€ Potential bottleneck; critical in determining overall
performance.

L 4

Checkpoint

Point of synchronization between database and log file.
All buffers are force-written to secondary storage.

€ Checkpoint record is created containing identifiers of
all active transactions.

€ When failure occurs, redo all transactions that committed
since the checkpoint and undo all transactions active at
time of crash.

€ In previous example, with checkpoint at time tc, changes
made by T2 and T3 have been written to secondary storage.

€ Thus:

® only redo T4 angwh%mtuworld.com

WWW.jWj 0bs.net

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Recovery Techniques

€ If database has been damaged:

— Need to restore 1last backup copy of database and
reapply updates of committed transactions wusing log
file.

@ If database is only inconsistent:

— Need to undo changes that caused inconsistency. May
also need to redo some transactions to ensure updates
reach secondary storage.

— Do not need Dbackup, but can restore database using
before- and after-images in the log file.

Main Recovery Techniques
€ Three main recovery techniques:

— Deferred Update
— Immediate Update
— Shadow Paging

Deferred Update

€ Updates are not written to the database until after a
transaction has reached its commit point.

® If transaction fails before commit, it will not have
modified database and so no undoing of changes required.

¢ May be necessary to redo updates of committed
transactions as their effect may not have reached
database.

Immediate Update

Updates are applied to database as they occur.

Need to redo updates of committed transactions following
a failure.

May need to undo effects of transactions that had not
committed at time of failure.

Essential that log records are written before write to
database. Write-ahead log protocol.

If no “transaction commit” record in log, then that
transaction was active at failure and must be undone.

Undo operations are performed in reverse order in which
they were written to log.

® & & O o

Shadow Paging

L 2 l\fcji_lAnAti?ithAon A}?ige J%v?/%jn%uw% alCB%] life of a transaction:

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

When transaction starts, two pages are the same.

Shadow page table is never changed thereafter and is used
to restore database in event of failure.

During transaction, current page table records all
updates to database.

When transaction completes, current page table becomes
shadow page table.

* & o

Advanced Transaction Models

@ Protocols considered so far are suitable for types of
transactions that arise in traditional business
applications, characterized by:

— Data has many types, each with small number of
instances.

— Designs may be very large.

— Design is not static but evolves through time.

— Updates are far-reaching.

— Cooperative engineering.

€ May result in transactions of long duration, giving rise
to following problems:

— More susceptible to failure - need to minimize
amount of work lost.

— May access large number of data items - concurrency
limited if data inaccessible for long periods.
— Deadlock more likely.

— Cooperation through use of shared data items
restricted by traditional concurrency protocols.

Chapter 10

Normalization

€ Main objective in developing a logical data model for
relational database systems 1s to <create an accurate
representation of the data, its relationships, and
constraints.

€ To achieve this objective, must identify a suitable set
of relations.

€ four most commonly used normal forms are first (1INF),
second (2NF) and third (3NF) normal forms, and Boyce—Codd
normal form (BCNF) .

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

® Based on functional dependencies among the attributes of
a relation.

€ A relation can be normalized to a specific form to
prevent possible occurrence of update anomalies.

Data Redundancy

€ Major aim of relational database design is to group
attributes into relations to minimize data redundancy and
reduce file storage space required by base relations.

@ Problems associated with data redundancy are illustrated
by comparing the following Staff and Branch relations

with the StaffBranch relation.

Data Redundancy

Staff
staffNo | sName position |salary [branchNo | Branch
SL21 John White | Manager 30000 | BOO5 branchNo | bAddress
SG37 Ann Beech | Assistant 12000 | BO0O3
SG14 David Ford Sup{ervisor 18000 | BOO3 BOO5 22 Deer Rd, London
SA9 Mary Howe | Assistant 9000 | B00O7 BOO 16 Arevll St. Aberd
SG5 Susan Brand | Manager 24000 | B003 4 e rgy‘ olsliadedol
SL41 Julie Lee Assistant 9000 | BOO5 B003 163 Main St, Glasgow
Staff Branch
staffNo sName position | salary | branchNo | bAddress
SL21 John White | Manager | 30000 | BOO5 22 Deer Rd, London
SG37 Ann Beech | Assistant 12000 | B0O3 163 Main St, Glasgow
SG14 David Ford | Supervisor | 18000 | B0OO3 163 Main St, Glasgow
SA9 Mary Howe | Assistant 9000 | B0O7 16 Argyll St, Aberdeen
SG5 Susan Brand | Manager | 24000 | B0O03 163 Main St, Glasgow
SL41 Julie Lee Assistant 9000 | B0O5 22 Deer Rd, London

€ StaffBranch relation has redundant data: details of a
branch are repeated for every member of staff.

€ In contrast, branch information appears only once for
each Dbranch in Branch relation and only branchNo is
repeated in Staff relation, to represent where each
member of staff works.

Update Anomalies
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

€ Relations that contain redundant information may
potentially suffer from update anomalies.

€ Types of update anomalies include:
— Insertion,
— Deletion,
— Modification.

Lossless-join and Dependency Preservation Properties

€ Two important properties of decomposition:

- Lossless-join property enables us to find any instance
of original relation from corresponding instances in the
smaller relations.

- Dependency preservation property enables us to enforce
a constraint on original relation by enforcing some constraint
on each of the smaller relations.

Functional Dependency
€ Main concept associated with normalization.

€ Functional Dependency

— Describes relationship Dbetween attributes in a
relation.

— If A and B are attributes of relation R, B 1is
functionally dependent on A (denoted A A B), if each
value of A in R 1is associated with exactly one wvalue
of B in R.

® Property of the meaning (or semantics) of the attributes
in a relation.

€ Diagrammatic representation:
A B is functionally
dependent on A

® Determinant of a functional dependency refers to
attribute or group of attributes on left-hand side of the
arrow.

Example - Functional Dependency

WWW.j ntuworld.com

WWW.jWj 0bs.net

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net
Data Base Management Systems
@ position is functionally
dependent on staffNo

Staff number SL21 P> Manager
(a)

staffNo is not functionally
position > <<
dependent on position

Staff number SL21

Manager

Staff number SG5

—
O
=

@ Main characteristics of functional dependencies used in
normalization:

— have a 1:1 relationship between attribute(s) on left
and right-hand side of a dependency;

— hold for all time;

— are nontrivial.

€ Complete set of functional dependencies for a given
relation can be very large.

€ Important to find an approach that can reduce set to a
manageable size.

® Need to identify set of functional dependencies (X) for a
relation that is smaller than complete set of functional
dependencies (Y) for that relation and has property that
every functional dependency in Y is implied by functional
dependencies in X.

@ Set of all functional dependencies implied by a given set
of functional dependencies X called closure of X (written
X+) .

® Set of inference rules, called Armstrong’s axioms,
specifies how new functional dependencies can be inferred
from given ones.

® let A, B, and C be subsets of the attributes of relation
R. Armstrong’s axioms are as follows:
1. Reflexivity If B is a subset of A, then A 2> B
2. Augmentation If A - B, then A,C - B,C
3. Transitivity If A > B and B > C, then A > C

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

The Process of Normalization

® rormal technique for analyzing a relation based on its
primary key and functional dependencies between 1its

attributes.

® Often executed as a series of steps. Each step
corresponds to a specific normal form, which has known
properties.

€ As normalization proceeds, relations become progressively
more restricted (stronger) in format and also 1less
vulnerable to update anomalies.

Relationship Between Normal Forms

Higher normal
forms

Unnormalized Form (UNF)
€ A table that contains one or more repeating groups.

€ To create an unnormalized table:
— transform data from information source (e.g. form)
into table format with columns and rows.

First Normal Form (1NF)

® A relation in which intersection of each row and column
contains one and only one value.

UNF to 1NF

€ Nominate an attribute or group of attributes to act as
the key for the unnormalized table.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

® Identify repeating group(s) in unnormalized table which
repeats for the key attribute(s).

€ Remove repeating group by:

— entering appropriate data into the empty columns of
rows containing repeating data (‘flattening’ the
table) .

Or by

— placing repeating data along with copy of the

original key attribute(s) into a separate relation.

Second Normal Form (2NF)

€@ Based on concept of full functional dependency:

— A and B are attributes of a relation,
B is fully dependent on A 1if B 1is functionally
dependent on A but not on any proper subset of A.

€ ONF - A relation that is in INF and every non-primary-key
attribute is fully functionally dependent on the primary
key.

INF to 2NF
€@ Identify primary key for the 1INF relation.
€@ Identify functional dependencies in the relation.

® If partial dependencies exist on the primary key remove
them by placing them in a new relation along with copy of
their determinant

Third Normal Form (3NF)

@ Based on concept of transitive dependency:
— A, B and C are attributes of a relation such that if
A A B and B A C,
— then C 1s transitively dependent on A through B.
(Provided that A is not functionally dependent on B
or C).

€ 3NF - A relation that is in 1INF and 2NF and in which no
non-primary-key attribute 1s transitively dependent on
the primary key.

2NF to 3NF
€ Identify the primary key in the 2NF relation.

€@ Identify functional dependencies in the relation.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

€ If transitive dependencies exist on the primary key
remove them by placing them in a new relation along with
copy of their determinant.

General Definitions of 2NF and 3NF

€ Second normal form (2NF)
— A relation that is in 1INF and every non-primary-key
attribute 1is fully functionally dependent on any
candidate key.

€ Third normal form (3NF)
— A relation that is in 1INF and 2NF and in which no
non-primary-key attribute is transitively dependent
on any candidate key.

Boyce—-Codd Normal Form (BCNF)

@ Based on functional dependencies that take into account
all candidate keys in a relation, however BCNF also has
additional constraints compared with general definition
of 3NF.

€ BCNF - A relation is in BCNF if and only if every
determinant is a candidate key.

@ Difference between 3NF and BCNF is that for a functional

dependency A — B, 3NF allows this dependency in a
relation if B 1s a primary-key attribute and A is not a
candidate key.

@ Whereas, BCNF insists that for this dependency to remain
in a relation, A must be a candidate key.

@ Every relation in BCNF is also in 3NF. However, relation
in 3NF may not be in BCNF.

@ Violation of BCNF is quite rare.

€ Potential to violate BCNF may occur in a relation that:
— contains two (or more) composite candidate keys;

— the candidate keys overlap (i.e. have at least one
attribute in common) .

Review of Normalization (UNF to BCNF)

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

DreamHome
Property Inspection Report

DreamHome
Property Inspection Report

Property Number FG4

Property Address & Lawrence St, Glasgow

Inspection | Inspection Comments Staff no | Staff Name Car
Date Time Registration
18-0ct-00 10.00 Need to replace 5G37 | AnnBeech | M231JGR
crockery
22-Apr-O1 09.00 In good order SG14 David Ford | M523 HDR
1-Oct-01 1200 |Damp rot in bathroom [SG14 | David Ford | N721HFR
Page 1
StaffPropertylnspection
propertyNo | pAddress iDate iTime | comments staffNo | sName carReg
PG4 6 Lawrence St, [18-Oct-00 | 10.00 [Need to replace crockery | SG37 Ann Beech | M231 JGR
Glasgow 22-Apr-01 | 09.00 [In good order SG14 David Ford | M533 HDR
1-Oct-01 | 12.00 | Damp rot in bathroom SG14 David Ford [N721 HFR
PGl6 5 Novar Dr, 22-Apr-01 [13.00 | Replace living room carpet | SG14 David Ford | M533 HDR
Glasgow 24-Oct-01 | 14.00 | Good condition SG37 Ann Beech | N721 HFR
StaffPropertylnspection
propertyNo | iDate iTime | pAddress comments staffNo | sName carReg
PG4 18-Oct-00 | 10.00 | 6 Lawrence St, | Need to replace crockery | SG37 Ann Beech | M231 JGR
Glasgow
PG4 22-Apr-01 | 09.00 | 6 Lawrence St, | In good order SG14 David Ford | M533 HDR
Glasgow
PG4 1-Oct-01 | 12.00 | 6 Lawrence St, | Damp rot in bathroom SG14 David Ford | N721 HFR
Glasgow
PG16 22-Apr-01 | 13.00 | 5 Novar Dr, Replace living room SG14 David Ford | M533 HDR
Glasgow carpet
PG16 24-Oct-01 | 14.00 | 5 Novar Dr, Good condition SG37 Ann Beech | N721 HFR
Glasgow

Review of Normalization (UNF

to BCNF)

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

StaffPropertylnspection

propertyNo | iDate | iTime | pAddress | comments | staffNo [sName | carReg

fa1 | | ¢ 4 t ot Y rimaykey

id2 | 4 (Partial dependency)
sl e mendency)
fd4 | |)
a5 4 | | 4 4 4 4 | (candidate key)
fae | | 4 4 | (candidate key)

Review of Normalization (UNF to BCNF)

StaffPropertylnspection TNF
Propertylnspection 2NF
Propertylnspect 3NF
\ \ 4
Staff StaffCar Inspection Property BCNF

Fourth Normal Form (4NF)

€ Although BCNF removes anomalies due to functional
dependencies, another type of dependency called a multi-
valued dependency (MVD) can also cause data redundancy.

® Possible existence of MVDs in a relation is due to 1INF

and can result in data redundancy.

€ Dependency between attributes (for example, A, B,

in a relation, such that for each wvalue of A there is a
set of wvalues for B and a set of wvalues for C. However,
set of values for B and C are independent of each other.

WWW.j ntuworld.com

WWW.jWj 0bs.net

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

€ MVD between attributes A, B, and C in a relation using

the following notation:
A 2> B
A 2> C

MVD can be further defined as being trivial or
nontrivial.

MVD A 33240 B 1in relation R is defined as being
trivial 1if (a) B is a subset of A or (b) A U B = R.
MVD is defined as being nontrivial if neither (a)
are satisfied.

Trivial MVD does not specify a constraint on a relation,
while a nontrivial MVD does specify a constraint.

nor (b)

@ Defined as a relation that is in BCNF and contains no

nontrivial MVDs.

ANF - Example

BranchStaffOwner
branchNo | sName oName
B003 Ann Beech | Carol Farrel
B003 David Ford | Carol Farrel
B003 Ann Beech | Tina Murphy
B003 David Ford | Tina Murphy
BranchStaff BranchOwner
branchNo | sName branchNo | oName
B003 Ann Beech B003 Carol Farrel
B003 David Ford B003 Tina Murphy

Fifth Normal Form (5NF)

® A relation decomposed into two relations must
lossless—-join property,

have
which ensures that no spurious

tuples are generated when relations are reunited through
a natural join.

€ However, there are requirements to decompose a relation
into more than two relations.

€ Although rare, these cases are managed by join dependency

and fifth normal form

(5NF) .

€ A relation that has wnowjainodepefidency.

WWW.jWj 0bs.net

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

Data Base Management Systems

(a) PropertyltemSupplier (lllegal state)

propertyNo | itemDescription | supplierNo
PG4 Bed S1
PG4 Chair S2
PGl6 Bed S2

(b) PropertyltemSupplier (Legal state)

When this tuple is
added to relation.

propertyNo | itemDescription | supplierNo
PG4 Bed S1
PG4 Chair S2 i] ol
) is new tuple must also
R — . be added to exist in any
PG4 Bed 2 legal state of the relation.,
S5NF - Example
Propertyltem ItemSupplier PropertySupplier
propertyNo | itemDescription itemDescription | supplierNo propertyNo | supplierNo
PG4 Bed Bed S1 PG4 S1
PG4 Chair Chair S2 PG4 S2
PG16 Bed Bed S2 PGl16 S2

More Notes:

Inference Rules for FD

B Reflexive Rule

if X

< v,

then X=2Y

B Augmentation Rule

{X2>Y}

= XZ

B Transitive Rule:
X227
B Decomposition or Projective Rule

{(X=2Y,

(X2YZ } =

Y27} =

XY

B Union or additive Rule

(XY

, X2 7}

X=2>YZ

B Pseudo Transitive Rule:
WX 7

(XY,

WY—>27} =

Minimal sets of FD

WWW.j ntuworld.com

WWW.jWj 0bs.net

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com

B Algorithm:

X2>A1,

WWW.jWj 0bs.net

Data Base Management Systems

Finding minimal cover F for a set of

Functional Dependencies E

1. set F:=E
2. Replace each
X2>A2....X2An

FD X {Al,A2,..An} in F by the n FD

3. For each FD X=2A in F
for each attribute B that is an element of X

if {{F-{XA}} U {(X- {B}=2A}} is equivalent
then
replace XA with

to

(X-{B})=2A in F

4. for each FD X2 A in F
if {F-{X2A }} 1is equivalent to F then remove XA

from F

First Normal Form:

B A relation
already in
repetitive

Second NF

B A relation

already in

is said to be in First NF if it is
un normalized from and it has no

group

second NF if it is
it has no partial

is said to be in
the First NF and

dependency
B Third NF
B A relation
already in
dependency
B BCNF
B A relation is said to be in Boyce Codd NF if it
already in the third NF and every determinant is a
candidate key. It is a stronger version of the third
NE'.
B Fourth NF
B A relation is said to be in Fourth NF if it is
already in BCNF and it has no multi valued
dependency
B Multi Valued Dependency
B Consider three fields X,Y and Z in a relation.
If for each value of X, there is a well defined
set of values Y and well defined set of values
Z and the set of values of Y is independent of
the set of values of Z, then multi valued
dependency exists.
B rifth NF
B A relation is said to be in Fifth NF if it is
already in fourth NF and it has no join dependency

Third NF if it 1is
has no transitive

is said to be in
second NF and it

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Note: Thischapter only for Bsc.IT

I ntroduction to PL/SQL

PL/SQL stands for procedural language extensions to SQL. It is available as an
enabling technology within other Software Products;, It does not exists as a stand —
alone language with PL/SQL, we can use SQL statementsto manipulate oracle data and
flow of control statements to process the data. Also we can declare constants and
variables defined in subprograms and trap runtimeerrors. Thus PL/SQL combinesthe
data manipulating power of SQL with the data processing power of procedural
languages.

Why Use PI/Sql?

PL/SQL is a complete transaction processing language that provides the following
advantages:

1. It acts as a support for SQL. Since it supports SQL data manipulation statement,
SQL transaction processing statement, SQL functions and SQL predicates we can
access the ORACLE database and manipulateits data flexibly and easily.

2. PL/SQL allows to declare variables and constants and use them in SQL and
procedural statements, any where an expression can beused. PL/SQL variablesand
constants have attributes (% Type, % Rowtype) by which we can reference the data
type and structure of an object with out repeating its definition.

3. Control structures are the most important PL/SQL extension of SQL. It allows you
processthe data using the conditional control statement(IlF-THEN-EL SE), interative
control statement (LOOP END LOOP, FOR-LOOP and WHILE-LOOP) and
sequential control statement (GOTO), with the help of these statements we can
handle any situation.

4. A PL/SQL cursor givesyou away to fetch and process database information. There
are two types of cursors SXPLICIT and IMPLICIT CURSORS. PL/SQL declares
cursor implicitly for all SQL manipulation statementsincluding queriesthat returns
onerow. FOR queriesthat returns more than one row an explicit cursor hasto be
declared.

5. Modularity is promoted because PL/SQL lets you break an application down into
manageable, well-defined logic modules.

6. Errorsareeasily detected and handled.

What Commands Can Be Executed From Sgl*Plus?
You can enter threekinds of commands from the SQL * Plus command prompt:

SQL *Plus commands — for formatting query results, setting options, and editing and
storing SQL commands and PL/SQL blocks. Eg.

SHOW USER WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

SQL commands - like select, create, alter, drop etc. Eg:
SELECT*FROM TAB;
PL/SQL blocks—aset of linethat do a particular task. Eg:

BEGIN

DBMS OUTPUT.PUT_LINE(‘Hello World”);
END;

/

SQL*Plus Basics

Oracle’s SQL*Plusisa command line tool that allows a user to type SQL statementsto
be executed directly against an Oracle database. SQL*Plus has the ability to format
database output, save often used commands and can beinvoked from other Oracle tools
or from the operating system prompt.

PI/Sqgl Block Structure

PL/SQL is a block structured language. A block lets you group logically related
declarations and statements. The declarations are local to the block and cease to exist
when the block completes. A block has three parts. a declarative part, and executable
part, and an exception handling part (error handling).

DECLARE
<declaration>

BEGIN

<executable statements>
EXCEPTION
<exception handlers>
END;

The declarative part comes first in which the objects can be declared. Once declared
the objects can be manipulated in the executable part. Exceptions raised during
execution can be handled in the exception-handling part. We can nest sub-blocksin the
executable, exception part and not in declarative part. You can define subprograms
(Functions, Procedures) in the declarative part of any block. But it can be called with in
the block only. See example:

DECLARE
<declaration>

BEGIN

SUB-BLOCK1
DECLARE
<declarations>

BEGI Nvwww.jntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

EXCEPTION
<Exception handlers>
END;

SUB-BLOCK?2
DECLARE
<declarations>
BEGIN

<executable statements>
<EXCEPTION>
<exception handlers>
END;

END;

Referring to the following sample PL/SQL block we have the following example.
DECLARE

Num_in_stock NUMBER(5);

BEGIN

SELECT quantity INTO num-in-stock FROM inventory_table
WHERE product = ‘TENNISRACQUET’;

IF num_in_stock>0 THEN

UPDATE INVENTORY_TABLE SET quantity = quantity — 1
WHERE product = “THNNIS RECQUET?;

INSERT INTO purchase record
VALUES (‘TENNISRACQUET PURCHASED?’., SYSDATA);
ELSE

INSERT INTO purchase record
VALUES(‘OUT OF TENNISRACQUETS.’,SYSDATA);

END IF;

COMMIT;

END;

Advantages of PL/SQL

PL/SQL is a completely portable high performance transaction processing language
which provides the following advantages:

Support for Sql:-

PL/SQL lets us to use all SQL data manipulation, cursor control and transaction
control commands aswell as SQL functions, operators, and pseudocolumns.

Higher Productivity:-

PL/SOL adds functionality to momapracechiialcdools such as SOL*Forms, SQL*

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

construct to build applications. Thusit increases productivity by putting better toolsin
your hands.

Better Performance: -

With our PL/SQL Oracle must process SQL statements one at a time. It increases
network traffic. But with PL/SQL an entire block of SQL statements (more than one)
can be sent to Oracle at one time. Also with the procedural capabilities in enhances
performance.

Portability:-

Applications written in PL/SQL are portable to any operating system and platform in
which Oracleruns.

Character Set

A PL/SQL program consists of sequence of statements, each of which is made up of one
or morelinesof text. Text ismade up of combinations of the characters shown below:

% Thenumerals0-9

« Tab, space, carriagereturn

% Thesymbols()+-*/<>=;:@%,”#$" & '{}][]
% Theupper and lower-caselettersA.....Z, a.....z.

PL/SQL is not case sensitive, so lower-case letters are equivalent to the corresponding
upper-case letters except within string (when surrounded by single quotes) or represent
the value of a character variable.

Delimiters:-

A delimitersisa simple or compound symbol that has a special meaning to PL/SQL. A
few examples are given below.

; statement ter minator

% Attributeindicator (cursor attributeslike % isopen and indirect declaration
attributeslike % Rowtype

- Single underscore: (single bytewildcard symbol asin SQL.

: Host variable indicator
<<and>>L abel delimiters

= Alignment oper ator

. Singleline comment

[* and */ Beginning and ending multilane comment block delimiters.

Identifiers:-
An indentifier is a name for a PL/SQL object which includes constants, variables,

exceptions, cursors, subprograms, packages, and reserved words. The properties of
identifiersare; WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Upto 30 charactersin length

Must start with aletter

Can include $ sign, under scor e, and #(pound sign)
Cannot contain spaces.

pODNPRE

Binary Integer:-

It allowsto stroe signed integers (-2* 31 -1 through 2 ~31- Natural and positive are both
subtypes of Binary-integer

Natural allows 0 through 231
Positive allows 1 through 2231

Number

Use the number data type to store fixed or floating point numbers of any size. The
maximum precision of a variablewith Number typeis 38 digits. While declaring we can
optionally specify the valuable precision asfollows:

Number (precision, Scale)

The precision of a Number is the total number of digits. The scale dictates the number
of digits to the right or left of the decimal point at which rounding occurs. The
remaining data typesin number are all sub typesof number. They have the same range
of values as their base type. The remaining data types in number are all sub types of
number. They havethe samerange of values astheir basetype.

Subtype Datatype
Dec(prec.scale) Number (prec, Scale)
Decimal(prec.scale) Number (prec.scale)
Double Precision Number

Float (Binary) Number

Int Number (38)

Integer Number (38)
Numeric (Prec, Scales) Number (prec, Scale)
Real Number

Smallint Number (38)

Char

Variables with character data types store text and are manipulated by character
functions. The CHAR data type takes an optional parameter that lets you specify a
maximum length upto 32767 bytes. The syntax is:-

CHAR (maximum_length)

Char Subtypes
The character subtypes have the samev.amgobsualuesastheir basetype.

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Char acter
Varchar 2

It hasthe same syntax as Char. But thedifferenceis, if we assign a character valueto a
Char variable and if the length is shorter than the declared length of the variable
PL/SQL blankpads the value to the declared length. The VARCHAR is a subset of
VARCHAR2.

If we assign a character value to a Varchar2 variable, and if the value is shorter than
the declared length of the variable, PL/SQL neither blankpads the value nor strips
trailing blanks.

Namel Char (10);
Name2 Varchar 2(10);

If we give namel and name2 as Frank, name 1 will be stored internally as ‘Frank’ and
name2 as ‘Frank’. So even though the names are same since the data types are different
they are not same.

Long:-

The variable LONG can store variable-length strings of up to 32760 bytes which is
seven fewer byteslonger than allowed in Varchar2 type variables.

Date: -

The Date data type is to store fixed length data values. It also takes no parameters.
Valid dates include from Jan 1,4712 BC to December 31,4712 AD. When stored in a
database column, date values include to the first day of the current month; the time
portion defaultsto midnight.

Declare Variable:-

Variable are declared in the DECLARE section of the PL/SQL block. Declaration
involves the name of the variable followed by its data type. All statements must end
with a semicolon. Initial values can also be assigned at the time of declaration.
Constants are declared by specifying the key work CONSTANT before the data type.
Thesyntax is.-

Indentifier [Constant] Data Type [Not Null] [:=PI/Sqgl Expression];

Example:

Declare Number

Count Number (9,2)

Secs Per_Day Constant Number := 60* 60* 24
First_ Name Char

Last Name Varchar2
Birth_Day Date

Available \Bool.eannwoMibdom

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Comparisions

PL/SQL supports the comparison of variables and constants in SQL and PL/SQL
statements. These comparisons called Boolean expressions, generally consists of simple
expressions separated by Relational operators (=,!=,<,>, >=, <=). Boolean expressions
are often connected by the logical operators AND, OR, NOT. In PL/SQL a Boolean
expression always evaluatesto TRUE, FALSE OR NULL. In a SQL statement Boolean
expression allow you to control which rowsin atable are affected by the statement. In a
non SQL statement, Boolean expressions arethe basisfor conditional control.

Therearethreekinds of Boolean expression Numeric, Character, Date.

Boolean Expression:-

A character string is a sequence of characters stung together. Like numeric
expressions, character string can be compared. The comparison is based on the

alphabetic ordering.

ename>empname
ename != “frank’

Operator M eaning

= Isthe Same As

I= IsNot The Same As

< Comes Alphabetically before
> Comes Alphabetically After

<= Comes Alphabetical Before
Declaring Variables and Constants:-

PL/SQL supports a variety of data types that you can use for declaring variables and
constants. You can assign values to variables as you declare them and you can change
thevalue of a variablethrough further assignments.

You must assign the value of a constant to it when you declare it, thisvalueisfixed and
cannot be changed at run time.

Example variable declarations ar e given below:-

DECLARE
V_NUM1NUMBER NOT NULL:=10109;
NUM8 NUMBER(3,2);

XYZ NUMBER(2,2):=31.8;

ABC12 NUMBER(9,2):=XYZ* 131,

V_CHR1 CHAR(89);

V_CHR2VARCHAR2(12):= “JANUARY?”;

TODAY DATE:= SYSDATE; WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Example constant declarations are given below: -
DECLARE

Pl CONSTANT NUMBER(9,3) : 3.142,
VAT CONSTANT NUMBER(4,2):=17.5;

When you declare PL/SQL variables to hold column values you must ensure that the
variable type is the same as the column type else you will get a run time error at
execution. You can use the % TYPE attribute to base a variable upon the column
definition as defined within the Oracle data dictionary. The attribute is prefixed with
the schema, table and column name and used where the datatype is required in the
DECLARE SECTION. PL/SQL determines the datatype and size of the variable when
the block is complied and so is always compatible with the column used to populate it.
An examplefollows:-

DECLARE
V_NUM1JD11.BOOK.COST%TYPE;
PL/SQL Editor:-

PL/SQL Editor is nothing but where you type all the pl/sgl programs. In the following
sections we see how to write different types of programs using the standard structures
availablein PL/SQL.

PI/SQL Structures

Using SQL statements, we can retrieve or manipulate data present in a table. Using
SQL statements above it is not possible to gain the power of procedural language
constructs. This aspect has been taken care of by PL/SQL, which is of a procedural
extension of SQL.

A PL/SQL block can contain DML & DCL statements, but not DDL statements — but
not DDL statements. A PL/SQL block can also contain any number of SQL statements
integrated with flow of control statements. Using PL/SQL we can also trap runtime
errors.

What are Pl/Sqgl structures?

With PL/SQL, you can use SQL statements to manipulate Oracle data and flow control
statements to process data to meet all your requirements. PL/SQL combines the data
manipulating power of SQL with the data-processing power of procedural languages.
PL/SQL provides many different structures to control the flow of your statement
execution and data handling.

Why use PI/Sqgl Structures?
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Control structures are the most important PL/SQL extensions to SQL. Not only does
PL/SQL let you manipulate data, it lets you process the data using conditional, iterative,
sequential, and unconditional flow-control statements such as if-then-else, for loop,
while-loop, exit-when and goto.

Control Structures:-

There are three types of control statements. Conditional control, Iterative control and
Sequential control. The conditional control returns a Boolean value. The iterative
control executes a sequence of statementsrepeatedly. The sequential statements execute
a sequence of statementsin the order in which they occur.

Conditional Control:-

The | F statement lets you execute a series of statements conditionally. There are three
forms|F-THEN, IF-THEN-ELSE, and IF-THEN-EL SIF.

If-then

| F associates a condition with a sequence of statements enclosed by the keywords THEN
and END IF. The statements are executed only when the condition is TRUE.

IF condition THEN

Sequence of statements;
END IF;

Example:

IF Sales>Quata THEN

Combute_bonus(empid);

UPDATE payrole SET pay + bonusWHERE EMPNO = EMP_ID;
END IF;

If-then-else

The second form of IF statements adds the keywords EL SE followed by alternative
sequence of statements. The sequence of statementsin the EL SE clause will be executed
only when the condition evaluatesto FAL SE.

| F condition THEN
Sequence of statement
ELSE
Sequence of statements
END IF;
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Example:-

|F trans_type = ‘CR’ THEN

UPDATE accounts SET balance = balance + credit WHERE.....
EL SE

UPDATE accounts SET balance = balance — debit WHERE
END IF;

The third form introduces the keyword ELSIF to introduce additional conditions. If
any condition evaluates to TRUE then that sequence of statements get executed. We
can have any number of EL SIF clause but thelast oneis optional.

If conditional THEN

Sequence of statements;
ELSIF

Sequence of statements;
ELSIF

Sequence of statements;
END IF;

An example of if-then-else structureisasfollows.

SQL >declare

2 length number (3):=10;

3 breadth number(3):=12;

4 area number (5);

5 begin

6 if length>=0 then

7if breadth <=0 then

8 dbms_output.put_line(*Breadth cant belessthan 0%);
9else

10 area:=.5* length * breadth;

11 dbms_output.put_line(‘Breadth cant be lessthan 0°);
12 end if;

13 else

14 dbms_output.put_line(‘Length cant belessthan 0);
15 end if;

16 end;

17/

Areais60
PL/SQL procedure successfully completed.

Iterative Control

Loop statements lets you use the iterative type of control. There are three forms of
LOOP statements. LOOP, WHILE-LOOP and FOR-LOOP.

L oop WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

The smplest form is the infinite LOOP, WHICH encloses sequence of statements
between the key words LOOP and END LOOP.

LOOP

Sequence of statements;
END LOOP;

Exit

The EXIT statement is used to complete the loop. You can place one or more EXIT
statement inside a LOOP. The EXIT-WHEN statement allows a loop to complete
conditionally when the condition in the WHEN clauseis evaluated.

L oop
If..then
Exit; - Exit Loop
End If;
End L oop;

L oop
Fetch Clinto...

Exit When C1% Notfound...
End L oop;

Example

SQL >declare

2 counter binary_integer:=1;
3 begin

4 loop

5 dbms_output.put_line(*Counter valuesis’ || counter);
6 demb_output.put_line(«);
7 counter:=counter+1,;

8 exit when counter>5;

9 end loop;

10 end;

/

Counter valuesis1

Counter valuesis?2

Counter valuesis?2

Counter valuesis 3

Counter valuesis5

PL/SQL procedure successfully completed.

Loop Labels
Like PL/SQL blocks LOOPS can be labeled. Thelabel, an undeclared identifier enclsed
by double angle brackets, must appear at the beginning of the LOOP statement as
follows:

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

End Loop Label_Name;
<<Outer Block>>

While-loop

The WHILE-LOOP statement associates a condition with a sequence of statement
enclosed by the keywords LOOP and END LOOP. Before each iteration of the LOOP,
the condition is evaluated. If the condition evaluates to TRUE the sequence of
statements are evaluated else theloop is by passed.

While Condition L oop
Sequence Of Statements:
Endloop;

Consider the following example. Thisblock usesa simple WHILE loop to insert 5 rows
into a table. The values of a counter variable, and either of two character strings are
inserted. Which string isinserted depends on the value of the loop index.

<SQL> createtable TEMP
2 (coll number (9,4));

Tablecreated.
<SQL>DECLARE
2X NUMBER: = 100:;
3BEGIN

4 WHILE x<501 LOOP

5INSERT INTO TEMP VALUES (X);
6 x:= x+100;

7 END LOOP;

8 COMMIT;

9 END;

10/

PL/SQL procedure successfully completed.

For-loop

The number of iterations through a WHILE-LOOP is unknown. The number of
iterates through a FOR-LOOP is known before it enters the LOOP, FOR-LOOP

iterates over a specified range of integers. The syntax isasfollows:

For example consider the following example which will check the value | is even or odd
and insertsthe data accordingly.

SQL>createtable TEMP
2 (col1 number(9,4),
3 (col2 number (4), WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Tablecreated

SQL>DECLARE

2 X NUMBER:=100;

3BEGIN

4FORIIN 1.5LO0OP

51FMOD(1,2) =0 THEN - | iseven

6 INSERT INTO temp VALUES(i X, ‘i(even)’;
7ELSE

8INSERT INTO temp VALUES(i X, ‘i(odd)’;
9END IF;

10 x:=x+100;

11 END LOOP;

12 COMMIT;

13 END;

14/

PL/SQL procedure successfully completed.
L oop

Insert Into Temp (Coll.message) Values (Count, ‘Ever Green’):
Insert Ten TimeslsEver Green Into Temp End L oop.

Sequential Control

GOTO and NULL statementsarethe sequential control statements.

Goto

The GOTO statement branches to a label unconditionally. The label must be unique
within its scope and must precede an executable statement or a PL/SQL block. When

executed, the GOTO statement transfers control to the labeled statement or block. The
syntax isbelow:-

aaaaaa

% A GOTO can’t branch into an | F statement, L OOP statement or sub block.

« Alsoit can’t branch from onelF statement clauseto another.

«» A GOTO cant branch out of a subprogram.

% A GOTO statement cant branch from an exception handler into the current
block. WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

NULL STATEMENT

The NULL statement specified inaction, it does nothing other than pass control to the
next statement. It can, however, improve readability. In a construct allowing
alternative actions, the NULL statement serves as a place holder.

If

Score>100 Then

Compute Bonus(Batsma 1d);
Else

Null;

End If:

Cursors

A cursor isavariable that runs through the tuples of some relation. This relation can
be a stored table, or it can be the answer to some query. By fetching into the cursor
each tuple of therelation, we can write a program to read and process the value of each
such tuple. If therelation isstored, we can also update or delete the tuple at the current
Ccursor position.

To processa SQL statement, PL/SQL openswork are called private SQL area. PL/SQL
allows user to name the private work areas and access the stored information. The
PL/SQL construct to identify each and every work area used is called CURSOR. There
aretwo types of cursorsnamely IMPLICIT and EXPLICIT.

Explicit Cursor

The set of rows returned by a query can consist of Zero, one or many rows, depending
upon the number of rowsthat meet the query’s search condition. When a query returns
multiplerows, a cursor can be explicitly defined to:

1) processbeyond thefirst row returned by the query.
2) Keep track of which row isbeing processed.

Therearefour stepsto DECLARE and USE A CURSOR:

DECLARE thecursor

Open the cursor

FETCH data from the cursor
CLOSE the cursor

Declare Cursor
Declarethe cursor to associate its name with a select statement. Forward referencesare
not allowed in PL/SQL. So we must declare cursor before referencing in other

Sstatements.

DECLARE
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

< select statement>:
Example:

CURSOR MY_FIRST ISSELECT ENAME FROM EMP
WHERE SAL >7000;

» Theselect statement must not includethe INTO clause
» Valuescan beassigned to cursor name
» Declared cursorsare scoped just asvariables

Open Cursor

Opening the cursor executes the query and identifies the active set which consists of all
rowsthat meet the query search criteria.

OPEN<cursor_name>;
Fetch Cursor

The fetch statement retrieves the rows in the active set one at a time. Each time the
fetch is executed the cursor and advancesto the next row in the active set.

FETCH<cursor_name>INTO<var, var2..>;

For each column value returned by the query associated with the cursor, there must be
acorresponding variablein the INTO list. Their datatypes must also be compatible.

Close Cursor

Close the cursor to free up the resources. The close statement disables the cursor and
the active set becomes undefined. No morerows can be fetched from a closed cursor.

CLOSE<cursor_name>;
Example

SQL>DECLARE CURSOR c11S

2 SELECT ename, sal FROM emp;

3 name emp.enamedo type;

4 salary emp.sal%type;

5BEGIN

6 OPEN

7forlinl.5

8LOOP

9FETCH c1INTO name, salary;

10 dbms_output.put_ling(*‘Nameis’ || name || ‘Salary is’|| salary);
11 end loop;

12 close cl;

13 end;

14/ WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

NameisALLEN Salary is 1600
NameisWARD Salary is 1250
Nameis JONES Salary is 2975
NameisSMITH Salary is 1250

PL/SQL procedure successfully completed.

1) DECLARE
/* Output variablesto hold theresult of the query:*/
2) aTle%TYPE;
3) b TLi%TYPE;
[*cursor declaration:*/
4) CURSOR T1Cursor IS
5) SELECT ef
6) FROM T1
7) WHERE e<f
8) FOR UPDATE;
9) BEGIN
10 OPEN T1Cursor;
11 LOOP
I* retrieve each row of theresult of the above query
into PL/SQL variables:*/
12) FETCH T1Cursor INTO a,b;
/* If thereareno morerowsto fetch, exit theloop:*/
13) EXIT WHEN T1 CURSOR% NOTFOUNT;
14) /DELETE FROM T1WHERE CURRENT OF T1Cursor;
[* Insert thereversetuple:*/
15) INSERT INTO T1VALUES (b,a);
16) END LOOP;
[*Freecursor used by the query.*/
17) CLOSE T1 Cursor;
18) END;
19) .
20) run;

Subprograms

The PL/SQL programs can be stored in the database as stored programs and can be
invoked whenever required. This avoids repassing when multiple usersinvokeit. This
also provides security and integrity control by allowing access on the sub program and

not on the database objects directly. Actually subprograms are named PL/SQL blocks
that can take parameters and beinvoked.

What Is A Subprogram?
Subprograms are PL/SQL blocksthat can take parameter and can be invoked.

PL/SOL has two types of subprogransvdi?ROQAEDURES and FUNCTIONS. A

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Why Use Subprograms?

» Provides extensibility
» Provides modularity
» Promotesreusability and manageability

Using Subprograms

Subprograms have a declarative part, an executable part and an optional exception
handling part. The declarative part contains declarations of types, cursors, constants,
variables, exceptions, and nested subprograms. These objects are local and cease to
exist when exited from the subprogram. The executable part contains statements that
assign values, control execution, and manipulate ORACLE data. The exception
handling part contains exception handlers, which deal with exceptions raised during
exception.

A procedureisasubprogram that performsa specific action. The syntax is:

PROCEDURE name [parameter [,parameter])] | Slocal declaration
BEGIN

Executable statements
[EXCEPTIONS]

END [name];

Where parameter standsfor
Var_name[IN/OUT/IN OUT] datatype
[{:='"DEFAULT} value]

A procedure has two parts the SPECIFICATION and the BODY. A specification
begins with the keyword PROCEDURE and ends with the procedure name or
parameter list. A body beginswith the keywords|S and ends with the keyboard END.
A body has three parts a DECLARATIVE PART, an EXECUTABLE part, and an
optional EXCEPTION handling part.

PL/SQL procedures behave very must like proceduresin other programming language.
Here is an example of a PL/SQL PROCEDURE addtuplel that, given an integer I,
insertsthetuple (i, ‘xxx’) into the following examplerelation:

CREATE TABLE T2(

aINTEGER,

b CHAR(10)
CREATE Procedure addtuplel (i IN NUMBER) AS
BEGIN

INSERT INTO T2 VALUES(i. “xxx’);
END addtuplel,

A procedure is introduced by the keywords CREATE PROCEDURE followed by the
procedure name and its parameters. An option is to follow CREATE by OR
REPLACE. The advantage of doing so is that should you have already made the
definition, you will not get an erronvw@mtheatierohand, should the previous definition

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

be a different procedure of the same name, you will not be warned, and the old
procedurewill belost.

There can any number of parameters, each followed by a mode and a type. The
possible modesareIN (read-only), OUT (write-only), and INOUT (read and write).

BEGIN
Addtyplel(99);
END;

The following procedure also inserts a tuple into T2, but it takes both components as
arguments:

CREATE PROCEDURE addtuple2(

XT2,a%TYPE
y T2,0% TYPE)
AS
BEGIN
INSERT INTO T2(A,B)
VALUES(x,y);

END addtuplez;

Now, to add a tuple2(10, ‘abc’) to T2:
BEGIN

Addtyple2(10, ‘abc’);
END;

Thefollowingillustratesthe use of an OUT parameter:

CREATE TABLE T3(
alNTEGER,
b INTEGER

);

CREATE PROCEDURE addtuple3(a NUMBER, b OUT NUMBER)
AS
BEGIN
B :=4;
INSERT INTO T3VALUES(A,B);
END;
DECLARE
v NUMBER,;
BEGIN addtuple3(10,v);
END;

Note that assigning values to parameters declared as OUT or INOUT causes the
corresponding input arguments to be written. Because of this, the input argument for
an OUT or INOUT parameter should be something with an “lvaluse”, such as a
variable like v in the example above. A constant or a literal argument should not be
passed in for an OUT/INOUT parameter.

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

SQL>CREATE OR REPLACE PROCEDURE MYPROC1

21S

3TEMP_SAL NUMBER;

4 BEGIN

5 SELECT SAL INTO TEMP_SAL FROM EMP WHERE EMPNO = 7369;
6 IF TEMP_SAL>0 THEN

7 UPDATE EMP SET SAL = (TEMP_SAL +200) WHERE EMPNO = 7369;
8 ELSE

9 UPDATE EMP SET SAL =200 WHERE EMPNO = 7369;

10 END IF;

11 COMMIT;

12 EXCEPTION

13 WHEN NO_DATA_FOUND THEN

14 INSERT INTO ERR(CODE, MESSAGE) VALUES(1, ‘EMPLOYE 7369 NOT
FOUND?);

15 END MYPROC1;

Procedure created.

The procedure named MYPROCL1 isdefined in thefirst ine. CREATE OR REPLACE
asks Oracleto create a new procedureor if a procedure with thisname already existsin
this schema to replace it. You may leave out the OR REPLACE if you don’t want this
to happen. The DECLARE section is now implicitly the section between the procedure
definition and the BEGIN statement — it is declared after the procedure declaration.
The END statement now ends a named block rather than an unnamed block. Nothing
elseisrequired for a procedureto run. To execute the stored procedure ssimply do the
fallowing.

SQL>EXEC MYPROC];

PL/SQL procedure successfully completed.

Functions:

A Function is a subprogram that computes a value. It differs from Procedure as
function returnsavalue.

The Syntax is:-

Function Name [(Argument [,Argument...]
Return Datatypels

[Local Declaration]

Begin

Executable Statements

[Exception]

END [name];

Where argument standsfor the following:-
Var_name][in | out | in out] datatype
[{:=|DEFAULT} VALUE]

A function has two parts SPECIFICATION and Body. The specification begins with
the keywords FUNCTION and endsvwitlwithel RETURN clause which specified the

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

the keyword END with an optional name. BODY has three parts as that of the
procedure.

The function below demonstrates the syntax of a PL/SQL function block, note that as
with a procedure the OR REPLACE clause can be left out if you don’t want the
replacement of an existing function with the same name. Function definition vary from
procedure definitions in that you must explicitly name a variable to return and you
must return avaluein thevariableviathe RETURN statement.

CREATE OR REPLACE FUNCTION MYFUNC1

RETURN NUMBER

ISsalary NUMBER(5);

BEGIN

SELECT SAL INTO salary FROM EMP where empno = 7369;
RETURN (salary);

END MYFUNC1];

Functional Sal_Ok (Salary Real, Title Read)
Return Boolean Is

Min_Sal Real;

Max_Sal Real,

Begin

Select Losal, Hisal IntoMin_Sal, Max_Sal
From SalsWhere Job = Title;

Return (Salary>=Min_Sal) And

(Salary <=Max_Sal);

End Sal_Ok;

If the salary is out of range sal_ok is set to false; otherwise, sal_ok is set to true. A
function iscalled asa part of an expression. Thefunction sal_ok iscalled as

IF SAL_OK(NEW_SAL, NEW_TITLE) THEN

Functions should not be called inside SQL statements.

A RETURN statement immediately completes the execution of subprogram and returns
control to the caller. A subprogram can contain several return statement. Executing
any one of them completes the program.

Function Balance (Acc_Id Integer) Return Real Is
Acct_Bal Real,
Begin
Select Bal Into Acct_Bal From Accts
Where Acct No = Acct_id;
Return Acct_Bal;
End Balance;
WWW.j ntuworld.com

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

Introduction to Triggers:-

Triggers are a special PL/SQL construct similar to procedures. However, a procedure
is executed explicitly from another block via a procedure call, while atrigger is executed
implicitly whenever the triggering event happens.

ORACLE allows you to define procedures that are implicitly executed when an insert,
update, delete statement is issued against the associated table. These procedures are
called database triggers. Triggers can be defined only on tables and not on views. The
triggerswhich we usein FORMS are different since they are fired only when a trigger
point is executed with in a specific application in FORMS. The database trigger is
executed against a table, no matter what user or application issuesthe statement (insert,
update, delete). So the triggering event is either a INSERT, DELETE, or UPDATE
command.

Database triggerscan be used to:

Audit data modifications

L og eventstransparently

Enforce complex businessrules

Derive column values automatically
Implement complex security authorizations
Maintain replicate tables

VVVVYY

A trigger hasthree basic parts.-

> Atriggering event or statement
» A trigger restriction
> Atrigger action

A trigger event or statement isthe SQL statement that causes a trigger to be fired. A
trigger event can be an insert, update or delete statement for a specific table.

A trigger restriction specifiesa BOOLEAN expression that must be run for the trigger
to fire. Thetrigger action wont take place if it evaluatesto false. For example, it will
firewhen the condition istrue.

Quantity_On_Hand<Reorder L evel

A trigger action isthe procedurethat containsthe SQL statementsand PL/SQL codeto
be executed when a triggering statement isissued and thetrigger restriction evaluatesto
true.

Someimportant pointsto note:

> You can create only BEFORE and AFTER triggers for tables. (INSTEAD OF
triggers are only available for views; typically they are used to implement view
updates.)

> You may specify up to three triggering events using the keyword OR.
Furthermore, UPDATE canvhevgptiornalls. dolfowed by the keyword OF a list of

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

attribute(s) in <table name>. If present, the OF clause defines the event to be
only an update of the attribute(s) listed after OF. Here are some examples.

... INSERT ONR....
... INSERT OR DELETE OR UPDATE ONR ...
...UPDATE OF A,B OR INSERT ON R...

> |If FOR EACH ROW option is specified, the trigger is row-level; otherwise, the
trigger is statement-level.

> For a row-level trigger, a trigger restriction can be specified in the WHEN
clause, enclosed by parentheses. The trigger restriction is a SQL condition that
must be satisfied in order for ORACLE to firethetrigger. Thiscondition cannot
contain subqueries. Without the WHEN clause, a trigger is fired by every
triggering event.

> <trigger_body> is a PL/SQL block, rather than sequence of SQL statements.
Oracle has placed certain restrictions on what you do in <trigger_body>, in
order to avoid situations where one trigger performs an action that triggers a
second trigger, which then triggers a third, and so on, which could potentially
create an infinite loop.

Therestrictions on <trigger _body> include:

» You cannot modify the same relation whose modifiction is the event triggering
thetrigger.

> You cannot modify a relation connected to the triggering relation by another
constraint such as aforeign-key constraint.

Typesof Triggers
Therearetwo kinds of triggers namely

» DML triggersand
> Instead-of triggers

In the case of DML triggers you can write triggers for insert, update or delete
operations on a detabase table. In the case of instead-of triggersyou can definetriggers
even on views. Thiskind of triggerscan be defined on views only.

The general syntax of triggersisgiven below:

Create[or replace] trigger trigger_name

{ Before | After | Instead of } triggering_event
referencing_clause

[when trigger _condition]

[for each row]

trigger_body;

In the above syntax trigger name refers to the name of the trigger, triggering event
specifies the event that fires the trigger. The referencing clause is used to refer to the
data in the row currently being modified, trigger condition is a valid condition in the
when clause and trigger body is themaijmicode of. chetrigger.

http://www.pdfmachine.com?cl

WWW.j ntuwor ld.com WWW.jWj 0bs.net

Data Base Management Systems

There are two levels of triggers namely ROW level and STATEMENT level. A row
trigger is fired for each time the table is affected by the triggering statement. A
statement type trigger is fired once on behalf of the triggering statement regardless of
the number of rowsin thetable affected.

TRIGGER TIMING

BEFORE triggers execute the trigger action before the triggering statement. AFTER
triggers execute the action after the triggering statement is executed. So with these
combinations we can create four types asfollows:

» BEFORE statement trigger
» BEFORE row trigger

» AFTER statement trigger
> After row trigger

WWW.j ntuworld.com

http://www.pdfmachine.com?cl

