
FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 1 JKD

Syllabus R09 Regulation

UNIT-I

Strings, Alphabets, Language and Operations

 Strings of characters are fundamental building blocks in computer science.

 Alphabet is defined as a non empty finite set or nonempty set of symbols.

 The members of alphabet are the symbols of the alphabet.

 We use capital Greek letter Σ to designate the alphabets and Γ (pronounced as gamma) to

designate the typewriter font for symbols.

 Examples:

 Σ1 = {0, 1}

 Σ2 = {a, b, …, z}, the set of all lower case letters

 The set of all ASCII characters or the set of all printable ASCII characters

 Γ = {0, 1, x, y, z}

 String over an alphabet is a finite sequence of symbols from the alphabet, usually written

next to one another and not separated by commas.

 If Σ1 = {0, 1} then 01001 is a string over the alphabet Σ1.

 If Σ2 = {a, b, c,…, z} then abracadabra is a string over Σ2.

 If w is a string over Σ then the length of w is written as |w| which is the number of symbols

that it contains.

 The string of length zero is called the empty string. It is written as ε.

 The empty string plays the role of 0 in a number system. If w has length n then we can write

w = w1, w2, …, ws where each wi Є Σ.

 The reverse of w written as wR is the string obtained by writing b in the opposite order (i.e.

wn, wn-1, … , w1).

 String z is a substring of w if z appears consecutively within w. For example cad is a substring

of abracadabra.

 If we have string x of length m and string y of length n , the concatenation of x and y written

as xy is the string obtained by appending y to the end of x as in x1 . . . xmy1 . . . yn . to

concatenate the string with itself many times we use the notation below:

 The lexicographic ordering of strings is the same as the familiar dictionary ordering except

that shorter strings precede longer strings.

 For example lexicographic ordering of all strings over the alphabet {0, 1} is (ε, 0, 1, 00, 01, 10,

11, 000, 0001, …).

 Powers of an alphabet: If Σ is an alphabet, then

 Σ0 = ε, no matter what the alphabet Σ is. In other words ε is the only string of length 0.

k

xx . . . x = xk

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 2 JKD

Syllabus R09 Regulation

 If Σ = {a, b, c} then Σ1 = {a, b, c}, Σ2 = {aa, ab, ac, ba, bb, bc, ca, cb, cc}, Σ3 = {aaa, aab, aac, aba,

abb, abc, aca, acb, acc, baa, bab, bac, bba,bbb, bbc, bca, bcb, bcc, caa, cab, cac, cba, cbb, cbc,

cca, ccb, ccc}

 The set of all strings over an alphabet Σ is conventionally denoted by Σ*. For instance {0, 1}*

= {ε, 0, 1, 00, 01, 10, 11, 000,… }. Another way is

Σ* = Σ0 ᴜ Σ1 ᴜ Σ2 ᴜ …

 The set of nonempty strings of an alphabet Σ is denoted as Σ+. And the two appropriate

equivalences are :

 Σ+ = Σ1ᴜΣ2ᴜΣ3ᴜ …

 Σ* = Σ+ ᴜ {ε}

 A language is a set of strings.

 A set of strings all of which are chosen from Σ*, where Σ is a particular alphabet, is called

language.

 Examples:

 The language of all strings consisting of n 0’s followed by n 1’s for some n≥0;

{ ε, 01, 0011, 000111, . . . }.

 The set of strings of 0’s and 1’s with an equal number of each :

{ε, 01, 10, 0011, 0101, 1001, . . .}

 The set of binary values whose value is prime: {10, 11, 101, 111, 1011,. . .}

 Σ* is a language for any alphabet Σ.

 ɸ the empty language is a language over any alphabet.

 {ε} the language consisting of only the empty string, is also a language over any

alphabet.

Note: ɸ ≠ {ε}; the former has no strings and the later has one string.

 Operations :

 Boolean logic is a mathematical symbol built around the two values TRUE and FALSE called

as the Boolean values and are often represented by values 1 and 0.

 We manipulate Boolean values with specially designed operations called Boolean

operations. The simplest such operation is the negation or NOT operation, designated with

the symbol ¬.

 The negation of a Boolean value is the opposite value. Thus ¬0 = 1 and ¬1 = 0.

 The conjunction or AND operation is designated with the symbol ʌ. The conjunction of two

Boolean values is 1 if both of those values are 1.

 The disjunction or OR operation is designated with the symbol ᴠ. The disjunction of two

Boolean values is 1 if either of those values is 1. We summarize this a follows:

0 ʌ 0 = 0 0 ᴠ 0 = 0

0 ʌ 1 = 0 0 ᴠ 1 = 1

1 ʌ 0 = 0 1 ᴠ 0 = 1

1 ʌ 1 = 1 1 ᴠ 1 = 1

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 3 JKD

Syllabus R09 Regulation

 We use Boolean operations for combining simple statements in to more complex Boolean

expressions just as we use arithmetic operations + and x to construct complex arithmetic

expressions.

 Several other Boolean operations appear occasionally like exclusive or or XOR operation, it

is designated by the symbol and is 1 if either but not both of its two operands are 1.

 The equality operation written with the symbol ↔ is 1 if both of its operands have the same

value.

 Finally implication operation is designated by the symbol → and is 0 if first operand is 1 and

its second operand is 0 other wise → is 1.

 In addition to standard set operations we can also use operations on strings like

concatenation to generate new languages. If x and y are strings over Σ then the

concatenation of x and y denoted by xy is a new string formed by writing the symbols of x

followed by the symbols of y. So if x = aa and y = bbb then xy = aabbb.

 If L1 and L2 are two languages then we can generate a new language L1L2 which is defined as

follows:

L1L2 = {xy | x Є L1 and y Є L2}

FINITE STATE MACHINE
 A finite-state machine (FSM) or simply a state machine is a mathematical model of computation used

to design both computer programs and sequential logic circuits.

 It is conceived as an abstract machine that can be in one of a finite number of states. The machine is

in only one state at a time; the state it is in at any given time is called the current state.

 It can change from one state to another when initiated by a triggering event or condition, this is

called a transition. A particular FSM is defined by a list of its states, and the triggering condition for

each transition.

 Finite State machine is also termed as finite automaton.

 Finite automata are good models for computers with an extremely limited amount of

memory. A computer can do a lot of useful things with such a small memory.

 The controller for an automatic door is one example of such a device which is often found at

supermarket entrances and exits.

 Also automatic doors swing open when sensing that a person is approaching. It has a pad in

front to detect the presence of a person about to walk through the doorway.

 Another pad is located to the rear of the doorway so that the controller can hold the door

open long enough for the person to pass all the way through and also so that the door does

not strike someone standing behind it as it opens.

 This configuring is shown as below:

Door

Figure 1.1: Top View of an

automatic door

Front Pad Rear Pad

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 4 JKD

Syllabus R09 Regulation

REAR

BOTH

NEITHER

FRONT

REAR

BOTH
FRONT

NEITHER

CLOSED OPEN

Figure 1.2: State Diagram for

automatic door controller

 The controller is in either of two states “OPEN” and “CLSOED”, representing the

corresponding condition of the door.

 As shown in the following figures, there are four possible input conditions “FRONT”

(meaning that a person is standing on the pad in front of the doorway), “REAR” (meaning

that a person is standing on the pad to the rear of the doorway), “BOTH” (meaning that a

person is standing on both pads), and “NEITHER” (meaning that no one is standing on either

pad).

Input Signal
state NEITHER FRONT REAR BOTH

 CLOSED CLOSED OPEN CLOSED CLOSED
 OPEN CLOSED OPEN OPEN OPEN

Figure 1.3 State transition table for automatic door controller

 The controller moves from state to state, depending on the input it receives. When in the

CLOSED state and receiving input NEITHER or REAR it remains in CLOSED state.

 In addition if the input BOTH is received it stays in CLOSED because opening the door risks

knocking someone over on the rear pad.

 But if the input FRONT arrives, it moves to the OPEN state. In the OPEN state, if the input

FRONT, REAR, or BOTH is received, it remains in OPEN. If the input NEITHER arrives, it

returns to CLOSED.

 For example a controller might start in state CLOSED and receive the series of input signals

FRONT, REAR, NEITHER, FRONT, BOTH, NEITHER, REAR, and NEITHER. It then would go

through the series of states CLOSED (starting), OPEN, OPEN, CLOSED, OPEN, OPEN, CLOSED,

CLOSED, and CLOSED.

 This controller is a computer that has just a single bit of memory, capable of recording which

of the two states the controller is in.

 Other common devices have controllers with somewhat larger memories. In an elevator

controller a state may represent the floor the elevator is on and the inputs might be the

signals received the buttons.

 This computer might need several bits to keep track of the information. Controllers for

various household appliances like dishwashers, electronic thermostats, as well as parts of

digital watches and calculators are additional examples of computers with limited memories.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 5 JKD

Syllabus R09 Regulation

Figure 1.4: A finite automaton called M1 that has three states

0, 1

0

1

1

0

 q1 q3 q2

The design of this kind of devices requires keeping the methodology and terminology of

finite automata in mind.

 Finite automata and their probabilistic counterpart Markov Chains are useful tools when we

are attempting to recognize patterns in data. These devices are used in speech processing

and in optical character recognition.

Definitions
 In the beginning to describe the mathematical theory of finite automata, we do so in the

abstract, without reference to any particular application.

 The following figure depicts a finite automaton called M1.

 Figure 1.4 is called as the state diagram of M1. It has three states labeled q1, q2, and q3.

o The start state, q1 is indicated by the arrow pointing at it from nowhere.

o The accept state, q2 is the one indicated with a double circle. The arrow going from

one state to another are called transitions.

o When this automaton receives the input string like 1101, it processes that string and

produces an output. The output is either accept or reject.

o The processing proceeds as follows:

 Start in state q1.

 Read 1, follow transition from q1 to q2.

 Read 1, follow transition from q2 to q2.

 Read 0, follow transition from q2 to q3.

 Read 1, follow transition from q3 to q2.

 Accept because M1 is in an accept state q2 at the end of the input.

 Experimenting with this machine on a variety of input strings reveals that it accepts the

strings 1, 01, 11 and 0101010101.

 In fact M1 accepts any string that ends with a 1 as it goes to its accept state q2 whenever it

reads the symbol 1.

 In addition it accepts strings 100, 0100, 110000 and 0101000000 and any string that ends

with an even number of 0’s following the last 1.

 It rejects other strings such as 0, 10, and 101000.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 6 JKD

Syllabus R09 Regulation

Automaton is defined as a system where energy, materials and information are

transformed, transmitted and used for performing some functions without direct

participation of man.

FINITE AUTOMATON MODEL

 A finite automaton has several parts. It has the set of states and rules for going from one

state to another depending on the input symbol.

 It has an input alphabet that indicates the allowed input symbols.

 It has the start state and a set of accept states.

 The formal definition says that a finite automaton is a list of those five objects: set of states,

input alphabet, rules for moving, start state, and accept states.

 In mathematical language the list of five elements is often called as 5-tuple.

 We use something called transition function frequently denoted by δ to define the rules for

moving.

 If the finite automaton has an arrow from state x to sate y labeled with the input symbol 1,

that means that, if the automaton is in state x when it reads a 1, it moves to state y. we

indicate this with transition function by saying that δ(x,1)=y.

 The block diagram of Finite automaton is depicted in the diagram below:

Figure A: Block Diagram of Finite Automaton

 There are various components in finite automaton

1. Input Tape: The input tape is divided into squares, each square containing a single symbol

from the input alphabet Σ. The end squares of the tape contain end markers ₵ at the left end

and $ at the right end. Absence of the end markers indicates that the tape is of infinite

length. The left to right sequence of symbols between the end markers is the input string to

be processed.

2. Reading head: The head examines only one square at a time and can move one square either

to the left or to the right.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 7 JKD

Syllabus R09 Regulation

3. Finite Control: The input to the finite control will be usually: symbol under the R-head say a,

or the present state of the machine say q to give the following outputs: (a) A motion of R-

head along the tape to the next square. (b) The next state of the finite state machine given

by δ(q, a).

FORMAL DEFINITION OF A FINITE AUTOMATON

 A finite automaton is defined as a 5 – tuple (Q, Σ, δ, q0, F) where

1. Q is the finite set called the states,

2. Σ is the finite set called the alphabet,

3. δ: Q x Σ → Q is the transition function,

4. q0 Є Q is the start state, and

5. F ⊆ Q is the set of accept states.

 By setting F to be the empty set ɸ yields 0 accepts states which is allowable.

 Consider the finite automaton M1 in figure 1.4, where M1 is formally written as M1 = (Q, Σ, δ,

q1,F), where

1. Q = {q1, q2, q3}

2. Σ = {0, 1}

3. δ is described as

 0 1

q1
q2
q3

q1
q3
q2

q2
q2
q2

4. q1 is the start state and

5. F = {q2}

ACCEPTANCE OF STRINGS AND LANGUAGES

ACCEPTABILITY OF STRING BY FINITE AUTOMATON

 Def: A string x is accepted by a finite automaton M = (Q, Σ, δ, q0, F) if δ(q0, x) =q for some q Є

F. This is basically the acceptability of a string by the final state.

Note: A final state is also called an accepting state.

 If A is the set of all strings that machine M accepts then we say that A is the language of

machine M and written as L(M) = A. we say that M recognizes A or M accepts A.

 Because the term accepts has different meanings when we refer to machine accepting

strings and machines accepting languages, we prefer the term recognize for languages to

avoid confusion.

 A machine may accept several strings but it always recognizes only one language.

 If the machine accepts no strings, it still recognizes one language namely the empty language

ɸ.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 8 JKD

Syllabus R09 Regulation

1 0
1

0

 q1 q2

Figure 1.5:

State diagram of the two state

finite automaton M2

Figure 1.6:

State diagram of the two state

finite automaton M3

1 0
1

0

 q1 q2

 In our example let A = {w | w contains at least one 1 and an even number of 0’s follow the

last 1}. Then L(M1) = A or equivalently M1 recognizes A.

 Let L(M1) = {w | δ(q0,w) is in F}. That is the language of M1 is the set of strings w that take

the start state q0 to one of the accepting states.

 Examples:

1) Consider the state diagram of the finite automaton M2.

In the formal description M2 = ({q1, q2}, {0, 1}, δ, q1 {q2}). The transition function δ is

 0 1

q1
q2

q1 q2
q1 q2

2) Consider automaton M3.

 Machine M3 is similar to M2 except for the location of the accept state. As usual machine

accepts all strings that leave it in an accept state when it has finished reading.

 Note that because the start state is also an accept state, M3 accepts the empty string ε.

 In addition to the empty string this machine accepts any string ending with a 0.

 Here

L(M3) = {w | w is the empty string ε or ends in a 0}.

DETERMINISTIC FINITE AUTOMATA

 By introducing the formalism of a deterministic finite automaton, one that is in a single state

after reading any sequence of inputs.

 The term deterministic refers to the fact that on each input there is one and only one state

to which the automaton can transition from its current state.

DEFINITION OF DETERMINISTIC FINITE AUTOMATON

 A deterministic finite automaton consists of

o A finite set of states often denoted Q.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 9 JKD

Syllabus R09 Regulation

o A finite set of input symbols often denoted Σ.

o A transition function that takes as arguments a state and an input symbol and returns

a state. The transition function will commonly be denoted by δ.

o A start state, one of the states in Q.

o A set of final or accepting states F. The set F is a subset of Q.

 A deterministic finite automaton will often be referred to by its acronym: DFA

 DFA in 5-tuple notation is given as below:

A = (Q, Σ, δ, q0, F)

Where A is the name of the DFA, Q is its set of states, Σ its input symbols, δ its transition

function, q0 its start state and F its set of accepting states.

How DFA processes strings?

 The first thing we need to understand about is

o How the DFA decides whether or not to “accept” a sequence of input symbols.

o The “language” of the DFA is the set of all strings that the DFA accepts.

 Let a1a2…..an is a sequence of input symbols. We start out with the DFA in its start state q0.

 We consult the transition function δ, say δ(q0,a1) = q1 to find the state that the DFA A enters

after processing the first input symbol a1.

 We process the next input symbol a2, by evaluating δ(q1,a2); let us suppose this state is q2.

 We continue in this manner finding the states q3, q4, . . . , qn such that δ(qi-1,ai) = qi for each i.

 If qn is a member of F then the input a1a2. . . an is accepted and if not it is “rejected”.

Example: (B)

Let us formally specify DFA that accepts all and only the strings of 0’s and 1’s that

have the sequence 01 somewhere in the string. We can write this language L as:

{w | w is of the form x01y for some strings x and y consisting of 0’s and 1’s only}

Another equivalent description using parameters x and y to the left of the vertical bar

is:

{x01y | x and y are any strings of 0’s and 1’s}

 Examples of strings in the language include 01, 11010, and 100011.

 Examples of strings not in the language include ε, 0, and 111000.

 If the automaton accepts the language L then its input alphabet is Σ = {0, 1}

 To decide whether 01 is a substring of the input, A needs to remember:

1. Has it already seen 01? If so it accepts every sequence of further inputs, i.e. it will

only be in accepting states from now on.

2. Has it never seen 01, but its most recent input was 0, so if it now sees a 1, it will have

seen 01 and can accept everything it sees from here on?

3. Has it never seen 01, but its last input was either nonexistent (it just started) or it last

saw a 1? In this case, A cannot accept until it first sees a 0 and then sees a 1

immediately after.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 10 JKD

Syllabus R09 Regulation

 These three can each be represented by a state. Condition (3) is represented by start state

q0. Surely when just starting we need to see a 0 and then a 1.

 But if in state q0 we next see a 1, then we are no closer to seeing 01 and so we must stay in

state q0. i.e. δ(q0, 1) = q0.

 However if we are in state q0 and we next see a 0, we are in condition (2) i.e. we have never

seen 01 but we have our 0. Thus let us use q2 to represent condition (2).

 Our transition from q0 on input 0 is δ(q0,0) = q2.

 If we are in state q2 and we see a 1 input. We now know there is a 0 followed by a 1. We can

go an accepting state which we shall call q1 and which corresponds to condition (1) above.

i.e. δ(q2, 1) = q1.

 Finally we must design the transitions for state q1. In this state we have already seen a 01

sequence i.e. δ(q1, 0) = δ(q1, 1) = q1.

 Thus Q = {q0, q1, q2}. As we said q0 is the start state and the only accepting state is q1. i.e. F=

{q1}.

 The complete specification of the automaton A that accepts the language L of strings that

have a 01 substring is

A = ({q0, q1, q2}, {0, 1}, δ, q0, {q1})

 Simpler Notations for DFA

 There are two preferred notations for describing automata

1) A transition diagram which is a graph

2) A transition table which is a tabular listing of the δ function

Transition Diagram:

 A transition diagram for DFA A = (Q, Σ, δ, q0, F) is a graph defined as follows:

a) For each state in Q there is a node

b) For each state q in Q and each input symbol a in Σ, let δ(q, a) = p. then the transition

diagram has an arc from node q to node p labeled a. If there are several input symbols

that cause transitions from q to p then the transition diagram can have one arc labeled

by the list of these symbols

c) There is an arrow into the start state q0, labeled start. This arrow does not originate at

any node.

d) Nodes corresponding to accepting state (those in F) are marked by a double circle. States

not in F have a single circle.

Example:

 The following figure shows the transition diagram for the DFA that we designed in three

states. There is a start arrow entering the start state q0, and the one accepting state q1, is

represented by double circle.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 11 JKD

Syllabus R09 Regulation

Figure 1.7: Transition Diagram for the DFA accepting all strings with substring 01

1

0

0

1 0, 1 q0 q0 q2

1

q1
Start

 Out of each state is one arc labeled 0 and one arc labeled 1, although the two arcs are

combined into the one with a double label in the case q1.

Transition Tables:

 A transition table is a conventional tabular representation of a function like δ that takes two

arguments and returns a value.

 The rows of the table correspond to the states and columns correspond to the inputs. The

entry for the row corresponding to state q and the column corresponding the input a is the

state δ(q, a).

Example:

 The following figure shows the transition table, where the start state is marked with an

arrow, and the accepting states are marked with a star.

 Since we can deduce the sets of states and input symbols by looking at row and column

heads, we can now read from the transition table all the information we need to specify the

finite automaton uniquely.

 0 1

 q0
 *q1
 q2

q2
q1
q2

q0
q1
q1

NONDETERMINISTIC FINITE AUTOMATA

 A nondeterministic finite automaton (NFA) has the power to be in several states at once.

 This ability is often expressed as an ability to guess something about its input.

An informal view of Nondeterministic Finite Automata

 Like DFA, an NFA has a finite set of states, a finite set of input symbols, one start state and a

set of accepting states.

 It also has transition function which we shall commonly call Δ. The difference between DFA

and NFA is in the type of Δ.

 For NFA, Δ is a function that takes a state and input symbol as arguments but returns a set of

zero, one or more states.

Figure 1.8: Transition Table for the DFA of example B

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 12 JKD

Syllabus R09 Regulation

Example:

 The following figure shows a finite automaton which accepts exactly those strings that have

the symbol 1 in the second last position.

 State q0 is the initial state from where it moves when it sees a 1 and guesses that there is

only one more symbol to follow. Since it is possible that there is more than one symbol to be

examined, there are transitions from q0 to itself on reading either 0 or 1.

 Note that now there are two possible transitions labeled 1 out of q0 and hence NFA has two

options – it can move to either q0 or q1.

DEFINITION OF NONDETERMINISTIC FINITE AUTOMATA

 An NFA is represented essentially like a DFA:

A = (Q, Σ, Δ, q0, F)

Where:

1. Q is finite set of states.

2. Σ is finite set of input symbols.

3. q0 a member of Q is the start state

4. F is a subset of Q is the set of the final (or accepting) states.

5. Δ, the transition function is a function that takes a state in Q and an input symbol in Σ

as arguments and returns a subset of Q. The difference between an NFA and DFA is in

the type of value that Δ returns a set of states in the case of an NFA and a single state

in the case of DFA. (Δ: Q x Σ P(Q))

Example

 The NFA of figure 1.9 can be specified formally as ({q0, q1, q2}, {0, 1}, Δ, q0,{q2}) where the

transition function Δ is given by the table of figure 1.10.

 0 1

q0
 q1

q0
q2
φ

q0,q1
q2
ɸ *q2

Figure 1.10: Transition Table for an NFA that accepts all strings ending in 01

1, 0

1 1, 0 q0 q0 q1

1

q2
Start

Figure 1.9: An NFA accepting the set of all strings whose second last symbol is 1

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 13 JKD

Syllabus R09 Regulation

 Language Recognizer:

 A device that accepts valid strings is called the Language recognizer. For example finite

automata are language recognizer.

 Recognizers are Machines. The Machines take a string as input. The Machines will accept the

input if when run, the Machine stops at an accept state. Otherwise the input is rejected.

 If a Machine M recognizes all strings in Language L, and accepts input provided by a given

string S, M is said to accept S. Otherwise M is said to reject S. S is in L if and only if M accepts

S.

 Another example for language recognizer are PDA’s (Push Down Automaton)

