
FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 1 JKD

Syllabus R09 Regulation

UNIT-III

REGULAR LANGUAGES

REGULAR EXPRESSIONS

 Regular expressions are useful for representing certain sets of strings in an algebraic fashion.

 In arithmetic we can use the operations + and x to build up expressions such as (5 + 3) x 4.

 Similarly we can use the regular operations to build up expressions describing languages, which

are called regular expressions. An example is (0 ∪ 1)0*.

 The value of the arithmetic expression is the number 32. The value of the regular expression is a

language.

 In this case the language consisting of all strings starting with a 0 or a 1 followed by any number

of 0s.

 We get this result by dissecting the expression into parts. First the symbol 0 and 1 are shorthand

for the sets {0} and {1}.

 So (0 ∪ 1) means ({0} ∪ {1}). The value of this part is the language {0, 1}. The part 0* means {0}*

and its value is the language consisting of all strings containing any number of 0s.

 Second, like the x symbol in algebra, the concatenation symbol ∘ often is implicit in regular

expressions. Thus (0 ∪ 1)0* actually is shorthand for (0 ∪ 1) ∘ 0*.

 The concatenation attaches the strings from the two parts to obtain the value of the entire

expression.

 Regular expressions have an important role in computer science applications. In applications

involving text, users may want to search for strings that satisfy certain patterns.

 Utilities like AWK and GREP in UNIX, modern languages like PERL and text editors all provide

mechanisms for the description of patterns by using regular expressions.

 Another example of regular expression is (0 ∪ 1)*.

 It starts with language (0 ∪ 1) and applies the * operation. The value of this expression is

the language consisting of all possible strings of 0s and 1s if Σ = {0, 1}, we can write Σ as

shorthand for the regular expression (0 ∪ 1).

 More generally if Σ is any alphabet, the regular expression Σ describes the language

consisting of all the strings over this alphabet, and Σ* describes the language consisting

of all strings over that alphabet.

 Similarly Σ*1 is the language that contains all the strings that end in a 1.

 The language (0Σ*) ∪ (Σ*1) consists of all strings that either start with a 0 or end with a 1.

 Like arithmetic star operation is done first followed by concatenation and finally union,

unless parenthesis are used to change the usual order.

 Regular expressions are closely related to Nondeterministic Finite Automata and can be thought

of as a “user – friendly” alternative to the NFA notation for describing software components.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 2 JKD

Syllabus R09 Regulation

OPERATORS OF REGULAR EXPRESSIONS

 Regular expressions denote languages. For a simple example, the regular expression 01* + 10*

denotes the language consisting of all strings that are either a single 0 followed by any number

of 1s or a single 1 followed by any number of 0s.

 Union of two languages L and M, denoted L ∪ M, is the set of strings that are either in L or M or

both.

 For example if L ={001, 10, 111} and M = {𝜀, 001} then L ∪ M = { 𝜀, 10, 001, 111}.

 Concatenation of two languages L and M is the set of strings that can be formed by taking any

string in L and concatenating it with any string in M.

 For example if L ={001, 10, 111} and M = {𝜀, 001} then L . M, or just LM, is {001, 10, 111,

001001, 10001, 111001}.

 The first three strings in LM are the strings in L concatenated with 𝜀. Since 𝜀 is the

identity for concatenation, the resulting strings are the same as the strings of L.

 The last three strings in LM are formed by taking each string in L concatenating it with

the second string in M, which is 001. For example 10 is concatenated with 001 result in

10001

 Closure or star or Kleene closure of a language L is denoted L* and represents the set of those

strings that can be formed by taking any number of strings from L, possibly with repetitions (i.e.

the same string may be selected more than once) and concatenating all of them.

 For example if L ={0, 1}, then L* is all strings of 0’s, 1’s. if L={0, 11}, then L* consists of those

strings of 0’s and 1’s such that the 1’s come in pairs e.g., 011, 11110, and 𝜀, but not 01011 or

101.

FORMAL DEFINITION OF A REGULAR EXPRESSION

 We give the formal recursive definition of regular expressions over Σ as follows: (say R is a

regular expression) if R is

1. a for some a in the alphabet Σ,

2. ε,

3. φ,

4. (R1 U R2) where R1 and R2 are regular expressions.

5. (R1 ∘ R2) where R1 and R2 are regular expressions (or)

6. (R1*) where R1 is a regular expression.

 In items 1 and 2 the regular expressions a and ε represent the language {a} and {ε}, respectively.

 In item 3 the regular expression φ represents the empty language.

 In items 4, 5 and 6 the expressions represents the language obtained by taking the Union or

concatenation of the languages R1 and R2, or the star of the language R1, respectively.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 3 JKD

Syllabus R09 Regulation

Examples

 In the following instances we assume that the alphabet Σ is {0, 1}.

 0*10* = {w | w contains a single 1}.

 Σ*1Σ* = {w | w has at least one 1}.

 Σ*001Σ* = {w | w contains the string 001 as a substring}.

 (01*)* = {w | every 0 in w is followed by at least one 1}.

 (ΣΣ)* = {w | w is a string of even length}.

 (ΣΣΣ)* = {w | the length of w is a multiple of three}.

 01 ∪ 10 = {01, 10}.

 0𝛴*0 ∪1Σ*1∪ 0 ∪ 1 = {w | w starts and ends with the same symbol}.

 (0 ∪ 𝜀)1* = 01* ∪ 1*.

The expression 0 ∪ 𝜀 describes the language {0, 𝜀}, so the concatenation operation adds

either 0 or 𝜀 before every string in 1*.

 (0 ∪ 𝜀)(1 ∪ 𝜀) = { 𝜀, 0, 1, 01}.

 1*∅ = ∅.

Concatenating the empty set to any set yields the empty set.

 ∅*= {𝜀}.

The star operation puts together any number of strings from the language to get a string

in the result. If the language is empty, the star operation can put together 0 strings,

giving only the empty string.

REGULAR SET

 Any set represented by the regular expression is called the regular set. If for example let a, b ∈ Σ

then

 a denotes the set{a}

 a∪b denotes the set {a, b}

 ab denotes the set {ab}

 a* denotes the set {𝜺, a, aa, aaa, …} and

 (a∪b)* denotes the set {a, b}*.

IDENTITY RULES

 If we let R be any regular expression, we have the following identities.

 R ∪ ∅ = R.

Adding the empty language to any other language will not change it.

 R ∘ 𝜀 = R.

Joining the empty string to any string will not change it.

 However exchanging ∅ and 𝜀 in the preceding identities may cause the equalities to fail.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 4 JKD

Syllabus R09 Regulation

 R ∪ 𝜀 may not equal R.

For example if R =0 then L(R) = {0} but L(R ∪ 𝜀) = {∅, 𝜀}.

 R ∘ ∅ may not equal R.

For example if R = 0 then L(R) = {0} but L(R ∘ ∅) = ∅.

 Regular expressions are useful tools in the design of compilers for programming languages.

 Elemental objects in a programming language, called tokens such as the variable names and

constants, may be described with regular expressions.

 For example a numerical constant that may include a fractional part and/or a sign may be

described as a member of the language

(+ ∪ - ∪ 𝜀) (D+ ∪ D+. D* ∪ D*. D+)

 Where D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is the alphabet of decimal digits. Example of generated

strings are: 72, 3.14159, +7., and -.01.

 Once the syntax of the tokens of the programming language has be described with regular

expressions, automatic systems can generate the lexical analyzer, the part of the compiler that

initially processes the input program.

 Some more identity rules are as given below:

I1: φ + R = R I4: ε* = ε and φ* = ε I7: RR* = R*R

I2: φR = Rφ =φ I5: R + R = R I8: (R*)* = R*

I3: εR = Rε = R I6: R*R* = R* I9: ε + RR* = R* = ε + R*R

I10: (PQ)*P = P(QP)* I11: (P + Q)* = (P*Q*) = (P* + Q*)* I12: (P +Q)R = PR + QR and

R(P + Q) =RP + RQ

CONSTRUCTING FINITE AUTOMATA FOR A GIVEN REGULAR EXPRESSION

TRANSITION SYSTEM AND REGULAR EXPRESSIONS

 The following theorem describes the relation between transition systems and regular

expressions.

 According to the theorem every regular expression R can be recognized by a transition system,

i.e. for every string w in the set R there exists a path from the initial state to a final state with

path value w.

 The proof is by the principle of induction on the total number of characters in R. By character we

mean elements of Σ, ε, φ, * and U. for example if R = ε U 10*11*0, the characters are ε, U, 1, 0,

*, 1, 1, *, 0 and the number of characters is 9.

 Let the number of characters in R be 1. Then R = ε or R = φ or R = ai, ai Є Σ. The transition systems

given in figure below will recognise these regular expressions.

 R = ε R = φ R = ai

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 5 JKD

Syllabus R09 Regulation

 Assume the theorem is true for regular expressions with n characters or less. We must prove

that it is also true for n + 1 characters.

 Let R have n + 1 characters. Then,

R = P U Q or R = PQ or R = P*

 Where P and Q are regular expressions, each having n characters or less. By induction hypothesis

P and Q can be recognized by transition systems G and H , respectively, as shown in figure as

follows:

 The method we are going to give for constructing a finite automata equivalent to the given

regular expression is called the subset method which involves two steps:

ε

ε

ε

G ε

ε

ε Transition system recognizing P

ε

ε

ε

H ε

ε

ε Transition system recognizing Q

Transition system recognizing P U Q

ε
ε

ε

ε H

ε
ε

ε

G
ε

ε

ε

ε

ε

ε

ε

ε

G ε

ε

ε

ε

ε

ε

H ε

ε

ε
Transition System recognizing PQ

ε ε

ε
ε

ε ε ε
ε

G

Transition System recognizing P*

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 6 JKD

Syllabus R09 Regulation

 Construct a transition diagram equivalent to the given regular expression using ε moves.

 Construct the transition table for the transition diagram obtained in step 1. And now

construct the equivalent DFA. Also we can reduce number of states if possible.

Example:

 Construct a finite automata to the regular expression (0 ∪ 1)*(00 ∪ 11)(0 ∪ 1)*

Step-1 (construction of transition diagram)

 First we construct a transition graph with ε moves and then we eliminate ε moves.

 We start with constructing the automata for the given regular expression as given below:

 Now we eliminate the concatenations in the given regular expression by introducing new

states q1 and q2 as given below:

 Now we eliminate the closure operations (* operations) by introducing the new states q5

and q6 and ε moves as given below:

 Now we eliminate concatenations and union from the above diagram as given below:

 Now we eliminate the ε moves in above diagram which results in as given below:

q0 qf
(0 ∪ 1)*(00 ∪ 11) (0 ∪ 1)*

q0 qf
(0 ∪ 1)*

q1 q2

(00 ∪ 11) (0 ∪ 1)*

q0

(00 ∪ 11)
ε

q5 q1 q2 qf q6
ε ε ε

0 ∪ 1 0 ∪ 1

ε
q0

ε

q5 q1 q2 qf q6
ε ε

0 , 1 0 , 1 q7

q8

0 0

1
1

0

1 1

0

q0 qf

0, 1
0, 1

q3

q4

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 7 JKD

Syllabus R09 Regulation

Step-2 (construction of DFA)

 We now construct the transition table for the NFA as follows:

State
Input

0 1

q0 q0, q3 q0, q4

 q3 qf φ

 q4 φ qf

 *qf qf qf

 The successor table is constructed and given in the table as shown below:

State
Input

0 1

[q0] [q0, q3] [q0, q4]

[q0, q3] [q0, q3, qf] [q0, q4]

[q0, q4] [q0, q3] [q0, q4, qf]

*[q0, q3, qf] [q0, q3, qf] [q0, q4, qf]

*[q0, q4, qf] [q0, q3, qf] [q0, q4, qf]

 qf is the only final state for NFA and [q0, q3,qf] and [q0, q4,qf] are the final states for DFA.

 The state diagram for the successor table is the required finite automat (DFA) as

indicated in the diagram given as follows:

 Finally we try to reduce the number of states. This is possible when two states rows are

identical in the successor table.

 As the rows corresponding to [q0, q3, qf] and [q0, q4, qf] are identical, the state diagram

with reduced number of states for the equivalent automata is given as below:

0

[q0, q3]

[q0, q4]

[q0] [q0, q3, qf]
1

0

1 1

0

0, 1

0

[q0, q3]

[q0, q4]

[q0]

[q0, q3, qf]

[q0, q4, qf]

1

0

1 1

0

0 1

1

0

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 8 JKD

Syllabus R09 Regulation

Example

 Construct the nondeterministic finite automata for the regular expression (ab U a)*

First construct transition diagram for a.

Then construct the transition diagram for b.

Now construct for ab

Now construct for ab U a

Now construct for (ab U a)*

ARDEN’S THEOREM:

 Let P and Q be two regular expressions over an alphabet Σ. If P does not contain ε then the

following equation in R, viz.

R = Q + RP (3.1)

 Has a unique solution (i.e. one and only one solution) given by R = QP*.

Proof:

Given the equation R = Q + RP

a

b

ε a b

ε

ε

a

ε a b

ε

ε

ε

ε

ε

a

ε a b

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 9 JKD

Syllabus R09 Regulation

Now apply R = QP* in R = Q + RP, we get

R = Q + (QP*)P

R = Q(ε + P*P)

But as per the identity rule I9: ε + R*R = R* we get

R = QP*

Hence is satisfied when R = QP*. This means R = QP* is a solution of R = Q + RP.

To prove the uniqueness, consider the following:

 Q + RP = Q + (Q +RP)P

 Q + RP = Q + QP + RPP

 Q + RP = Q + QP + RP2

 Q + RP = Q + QP + (Q + RP)P2

 Q + RP = Q + QP + QP2 + … + QPi + RPi+1

 Q + RP = Q(ε + P + P2 + … + Pi)+ RPi+1

From (3.1),

R = Q(ε + P + P2 + … + Pi)+ RPi+1 for i ≥ 0 (3.2)

 We now show that any solution of (3.1) is equivalent to QP*. Suppose R satisfies (3.1) then it

satisfies (3.2).

 Let w be a string of length i in the set R. Then w belongs to the set Q(ε + P + P2 + … + Pi)+

RPi+1. As P does not contain ε, RPi+1 have no string of length less than i+1 and so w is not in

the set RPi+1. This means w belongs to the set Q(ε + P + P2 + … + Pi), hence to QP*.

 Consider a string w in the set QP*. Then w is in the set QPk for some k ≥ 0 and hence in Q(ε +

P + P2 + … + Pk). So w is on the R.H.S of (3.2). Therefore w is in R (L.H.S of (3.1)).

 Thus R and QP* represent the same set. This proves the uniqueness of the solution (3.1).

CONVERSION OF FINITE AUTOMATA TO REGULAR EXPRESSION

 Construct the regular expression corresponding to the state diagram given as follows:

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 10 JKD

Syllabus R09 Regulation

Solution

 In the given transition diagram, there is only one initial state. Also there is no ε – moves.

 The equations are:

q1 = q10 + q30 + ε, q2 = q11 + q21 + q31, q3 = q20

So

q2 = q11 + q21 + (q20)1 = q11 + q2(1 + 01)

It is of the form R = Q + RP so we get the following:

q2 = q11(1 + 01)*

Also,

 q1 = q10 +q30 +ε = q10 + q200 + ε

 q1 = q10 + (q11(1 + 01)*)00 + ε

 q1 = q1(0 + 1(1 +01)*)00) + ε

Now by applying the Arden’s theorem we get

 q1 = ε(0 +1(1 + 01)*00)* = (0 + 1(1 +01)*00)*

As q1 is the only final state, the regular expression corresponding to the given diagram is

(0 + 1(1 + 01)*00)*

PUMPING LEMMA FOR REGULAR SETS

NONREGULAR LANGUAGES

 To understand the power of finite automata one must understand their limitations. Here we can

show how to prove that certain languages cannot be recognized by any finite automata.

1

0

1
0

1

0

q1

q2

q3

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 11 JKD

Syllabus R09 Regulation

 Let’s take a language B = {0n1n | n ≥ 0}. If we attempt to find a DFA that recognizes B, we

discover that the machine seems to need to remember how many 0s have been seen so far as it

reads the input.

 Because the number of 0s is not limited, the machine will have to keep track of an unlimited

number of possibilities. But it cannot do so with any finite number of states.

 Next we present a method for proving that languages such as B are not regular. Doesn’t the

argument already given prove nonregularity because the number of 0s is unlimited? It does not.

Just because the language appears to require unbounded memory doesn’t mean that it is

necessarily so.

 It does happen to be true for the language B, but other languages seem to require an unlimited

number of possibilities, yet actually they are regular.

 For example consider two languages over the alphabet Σ = {0, 1}:

C = {w | w has an equal number of 0s and 1s}, and

D = {w | w has an equal number of occurrences of 01 and 10 as substrings}.

 As expected C is not regular, but surprisingly D is regular. Thus our intuition can sometimes lead

us astray, which is why we need mathematical proofs for certainty.

PUMPING LEMMA FOR REGULAR LANGUAGES

 Our technique for proving nonregularity stems from a theorem about regular languages,

traditionally called the pumping lemma. This theorem states that all the regular languages have

a special property. If we can show that a language does not have this property, we are

guaranteed that it is not regular.

 This property states that all strings in the language can be “pumped” if they are at least as long

as a certain special value called the pumping length. That means each such string contains a

section that can be repeated any number of times with the resulting string remaining in the

language.

PUMPING LEMMA

 If A is a regular language then there is a number p (the pumping length) where if s is any string in

A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following

conditions:

 For each i≥ 0, xyiz Є A,

 |y| > 0, and

 |xy| ≤ p.

 The notation where |s| represents the length of the string s, yi means that i copies of y are

concatenated together and y0 equal ε.

 When s is divided into xyz, either x or z may be ε, but condition 2 says that y ≠ ε. Observe that

without condition 2 the theorem would be trivially true.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 12 JKD

Syllabus R09 Regulation

 Condition 3 states that the pieces x and y together have length at most p.

PROOF IDEA:

 Let M = {Q, Σ, δ, q1, F} be a DFA that recognizes A. We assign the pumping length p to be the

number of states of M.

 Now we show that s in A of length at least p may be broken into three pieces xyz satisfying our

three conditions.

 If s in A has length at least p, consider the sequence of states that M goes through when

computing with input s. It starts with q1 the start state, then goes to say q3, then, say q20, then q9

and so on, until it reaches the end of s in state q13. With s in A, we know that M accepts s, so q13

is an accept state.

 If we let n be the length of s, the sequence of states q1, q3, q20, q9, … , q13 has length n + 1.

Because n is at least p, we know that n + 1 is greater than p, the number of states of M.

 Therefore the sequence must contain a repeated state. This result is an example of the

pigeonhole principle. According to this principle, if p pigeons are place into fewer than p holes,

some hole has to have more than one pigeon in it.

 The following figure shows the string s and the sequence of states that M goes through when

processing s. State q9 is the one that repeats.

 We now divide s into the three pieces x, y and z. Piece x is the part of s appearing before q9,

piece y is the part between the two appearances of q9 and piece z is the remaining part of s,

coming after the second occurrence of q9.

 So x takes M from the state q1 to q9, y takes M from q9 back to q9 and z takes M from q9 to the

accepting state q13 as shown in the figure below:

S1 S2 S3 S4 S5 S6 . . . Sn S =

q1 q3 q20 q17 q35 q6 q13 q9 q9

q1

q9

q13

x

y

z

M

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 13 JKD

Syllabus R09 Regulation

CLOSURE PROPERTIES OF REGULAR SETS

 Let A and B be the languages. We define the regular operations Union, concatenation, and start

as follows.

 Union: A U B = {w | w Є A or w Є B}.

 Concatenation: AB = {xy| x Є A and y Є B}.

 Star: A* = {w1 w2 … wk |k ≥ 0 and each wi Є A}.

 Let the alphabet Σ be the standard 26 letters {a, b, . . ., z}. if A = {good, bad} and B = {boy, girl}

then

 A U B = {good, bad, boy, girl}

 AB = {goodboy, goodgirl, badboy, badgirl}

 A* = {ε, good, bad, goodgood, goodbad, badgood, badbad, goodgoodgod, goodgoodbad,

goodbadbad, . . . }

 Let N = {1, 2, 3, . . . } be the set of natural numbers. When we say that N is closed under

multiplication we mean that for any r and s in N the product r X s also is in N. In contrast N is not

closed under division, as 1 and 2 are in N but 1/2 is not.

 Generally speaking, a collection of objects is closed under some operation if applying that

operation to members of the collection returns an object still in the collection.

 We now show that the collection of regular languages is closed under all three of the regular

operations.

 The class of regular languages is closed under the union operation

 In other words if A1 and A2 are regular languages, so A1 U A2.

Proof Idea:

 We have regular languages A1 and A2 and want to show that A1 U A2 also is regular. Because A1

and A2 are regular, we know that some finite automaton M1 recognizes A1 and some finite

automaton M2 recognizes A2.

 To prove that A1 U A2 is regular we demonstrate a finite automaton call it M that recognized A1

U A2. This is a proof by construction. We construct M from M1 and M2. Machine M must accept

its input exactly when either M1 or M2 would accept it in order to recognize the union language.

PROOF

 Let M1 recognizes A1, where M1 = (Q1, Σ, δ1,q1, F1) and M2 recognizes A2, where M2 = (Q2, Σ, δ2,q2,

F2).

 Construct M to recognize A1 U A2 where M = (Q, Σ, δ, q0, F).

 Q = {(r1, r2) |r1 Є Q1 and r2 Є Q2}. This is the Cartesian product of sets Q1 and Q2 and is

written as Q1 X Q2. It is the set of all Pairs of states, the first from Q1 and the second from

Q2.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 14 JKD

Syllabus R09 Regulation

 Σ, the alphabet, is the same in M1 and M2. For simplicity we assume that both M1 and M2

have the same input alphabet Σ. If they have different alphabets, Σ1 and Σ2, we would

then modify the proof to let Σ = Σ1 U Σ2.

 δ, the transition function, is defined as follows. For each (r1, r2) Є Q and a Є Σ, let

δ((r1, r2), a) = δ1(r1,a), δ2(r2,a)

Hence δ gets a state of M (which actually is a pair of states from M1 and M2), together

with an input symbol, and returns M’s next state.

 q0 is the pair (q1, q2)

 F is the set of pairs in which either member is an accept state of M1 or M2. We can write

it as:

F = {(r1, r2) | r1 Є F1 or r2 Є F2}

 This expression is same as F = (F1 X Q2) U (Q1 X F2). This concludes the construction of

finite automaton M that recognizes the union of A1 and A2.

 The class of regular languages is closed under the Concatenation operation

 In other words, if A1 and A2 are regular languages then so is A1A2.

Proof Idea:

 We have regular languages A1 and A2 and want to show that A1A2 also is regular. Because A1 and

A2 are regular, we know that some finite automaton M1 recognizes A1 and some finite

automaton M2 recognizes A2.

 Construct the automaton M such that it must accept if its input can be broken into two pieces,

where M1 accepts the first piece and M2 accepts the second piece. But the problem is that M

doesn’t know where to break its input i.e. where the first part ends and the second begin.

 To solve this problem we use the new technique called nondeterminism

Nondeterminism

 It is a generalization of determinism, so every deterministic finite automaton is automatically a

nondeterministic finite automaton.

 Suppose that we are running an NFA on an input string and come to a state with multiple ways

to proceed. For example, say that we are in state q1 in some NFA N1 and that the next input

symbol is a 1. After reading that symbol, the machine splits into multiple copies of it and follows

all the possibilities in parallel.

 Each copy of the machine takes one of the possible ways to proceed and continues as before. If

there are subsequent choices, the machine splits again.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 15 JKD

Syllabus R09 Regulation

 If a state with a ε symbol on an exiting arrow is encountered, something similar happens.

Without reading any input, the machine splits into multiple copies, one following each of the

exiting ε-labeled arrows and one staying at the current state. Then the machine proceeds

nondeterministically as before.

SOLVE THE FOLLOWING (FOR YOUR PRACTICE)

 M = ({q1,q2,q3}, {0, 1}, δ, q1, {q3}) is a nondeterministic finite automaton, where δ is given by

δ(q1, 0) = {q2, q3} δ(q1, 1) = {q1}

δ(q2, 0) = {q1, q2} δ(q2, 1) = φ

δ(q3, 0) = {q2} δ(q3, 1) = {q1, q2} Construct an equivalent DFA?

 Construct an NFA accepting the set of all the strings over {a, b} ending in aba. Use it to construct

DFA accepting the same set of all the strings.

 Construct the DFA with reduced states equivalent to the regular expression 10 + (0 + 11)0*1.

 Prove that (a + b)* = a*(ba*)*.

 Construct the transition system corresponding to the regular expression 1) (ab + c*)* and

2) a +bb + bab*a.

 Find the regular expression representing the following sets:

o The set of all strings over {0, 1} having atmost one pair of 0’s or atmost one pair of 1’s.

o The set of all strings over {a, b} in which the number of occurrences of a is divisible by 3.

