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UNIT-IV 

Regular Grammars: 

Grammar:  

 A grammar is defined as G = (V, Σ, P, S). Where  

 V is a finite nonempty set whose elements are called variables. 

 Σ is a finite nonempty set whose elements are called Terminals. 

 P is a finite set whose elements are αβ, where α and β are strings on V U Σ. And α has 

at least one symbol from V. Elements of P are called productions or production rules or 

rewriting rules. 

 S is a special variable i.e. an element of V called the start symbol and 

 V   Σ = φ 

 We observe the following regarding the production rules: 

 Reverse substitutions is not permitted. For example if S  AB is a production then we 

can place S by AB but we cannot replace AB by S. 

 No inversion operation is permitted. For example if S  AB is a production then, it is not 

necessary that AB  S is a production. 

Example: 

 G = (V, Σ, P, S) is a grammar 

Where  

  V = {<sentence>, <noun>, <verb>, <adverb>} 

  Σ = {Ram, Sam, ate, sang, well} 

  S = <sentence> 

 Then P consists of the following productions: 

 <sentence>  <noun> <verb> 

 <sentence>  <noun> <verb> <adverb> 

 <noun> Ram 

 <noun>  Sam 

 <verb>  ate 

 <verb>  sang 

 <adverb>  well 

Note: we use comma “,” as a separator to separate multiple productions and alternation “|” to 

put several productions together. 

 

 Derivation: Derivation is an ordered tree which is defined as sequence of replacements of a 

substring in a sentential form. Productions are used to derive one string over V U Σ from another 

string.   
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 The formal definition of derivation is as follows: 

 If αβ is a production in a grammar G and ϒ, δ are any two strings on V U Σ, then we say 

ϒαδ directly derives ϒβδ in G. this process is called as one step derivation. 

 For example  

 G = ({S}, {0, 1}, {S  0S1, S  01} has the productions S  0S1. So S in 0S1 can be 

replaced by 0S1 i.e. now S  00S11. 

 In the definition of grammar (V, Σ, P, S), V and Σ are sets of symbols and S Є V. So if we want to 

classify grammars, we have to do it only by considering the form of productions.  

 Chomsky classified the grammars into four types in terms of productions (types 0-3) which is as 

shown in the table below: 

 

 A Type-0 grammar is any phrase structure grammar or simply a grammar without any 

restrictions. Type-0 grammars (unrestricted grammars) include all formal grammars. They 

generate exactly all languages that can be recognized by a Turing machine. These languages are 

also known as the recursively enumerable languages. 

 A grammar is called Type-1 grammar or Context sensitive grammar or context dependent 

grammar if all its productions are Type-1 productions. Type -1 production is of the form αAβ  

αϒβ. Where A is a non-terminal or variable. α, β and ϒ are the strings of terminals and non-

terminals.  

 The symbols α and β may be empty but ϒ must be non empty. And also the production of the 

form S  ε is allowed if S does not appear on the right hand side of the production. 

 A language generated by the Type-1 grammar is called as Type-1 or context sensitive language. 

 A Type-2 grammar or context free grammar is a grammar if it contains only Type-2 productions 

Type-2 production is of the form A  ϒ, where A Є V and ϒ is a string of terminals and non-

terminals i.e. ϒ Є (V U Σ)*. 

 A language generated by the Type-2 grammar is called as Type-2 or context free language. 

 Type-3 grammars (regular grammars) generate the regular languages. Such a grammar restricts 

its rule to a single non-terminal on the left-hand side and a right-hand side consisting of a single 

terminal, possibly followed or precedes, but not both in the same grammar by a single non-

terminal.  A production S  ε is allowed in Type-3 grammar, but in this case S does not appear 

on the right hand side of any production. 
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Regular Grammar 

A regular grammar is a formal grammar that describes the regular language. Where a formal 

grammar is defined as a set of rules for rewriting the strings, along with a start symbol from which 

the rewriting must start.  

Therefore, a grammar is usually thought of as a language generator. However, it can also 

sometimes be used as the basis for a "recognizer"—a function in computing that determines 

whether a given string belongs to the language or is grammatically incorrect. 

To describe such recognizers, formal language theory uses separate formalisms, known as 

automata theory. One of the interesting results of automata theory is that it is not possible to 

design a recognizer for certain formal languages. Parsing is the process of recognizing an utterance 

i.e. expression or word (a string in natural languages) by breaking it down to a set of symbols and 

analyzing each one against the grammar of the language. 

The regular grammars are of two types: 1) left regular grammars and 2) right regular 

grammars. 

Right Regular Grammar 

 Right regular grammar is also called as right linear grammar which is a formal grammar (V, Σ, P, 

S) such that all the productions or production rules in P are of one of the following forms: 

 B  a (Where B is a variable or non-terminal in V and a is terminal in Σ) 

 B  aC (Where B and C are in a Variable V and a is terminal in Σ) 

 B  ε (Where B is a variable in V and ε denotes the empty string i.e. the string of length 

0). 

Left Regular Grammar 

 Left regular grammar is also called as left linear grammar which is a formal grammar (V, Σ, P, S) 

such that all the productions or production rules in P are of one of the following forms 

  A → a  d(Where A is a non-terminal in V and a is a terminal in Σ) 

 A → Ba (Where A and B are in V and a is in Σ) 

 A → ε  (Where A is a variable in V  and ε is the empty string) 

Example: 

 An example of a right regular grammar G with N = {S, A}, Σ = {a, b, c}, P consists of the following 

rules: 

S  aS 

S  bA 
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A  ε 

A  cA 

And S is the start symbol. This grammar describes the same language as the regular 

expression a*bc* 

Extended Regular Grammars 

 An extended right regular grammar is one in which all rules obey one of the following:  

 B → a  (Where B is a non-terminal in V and a is a terminal in Σ) 

 A → wB (Where A and B are in V and w is in Σ*) 

 A → ε (Where A is in V and ε is the empty string) 

 An extended right regular grammar is also called as strictly right regular grammar. 

 An extended left regular grammar is one in which all rules obey one of the following: 

 A → a (Where A is a non-terminal in V and a is a terminal in Σ) 

 A → Bw (Where A and B are in V and w is in Σ*) 

 A → ε (Where A is in V and ε is the empty string) 

 An extended left regular grammar is also called as strictly left regular grammar. 

Examples: 

Let us consider the grammar G=({S},{a, b},R,S), where R= 

S  abS 

S  λ 

S  Sab 

EQUIVALENCE BETWEEN REGULAR LINEAR GRAMMAR AND FINITE AUTOMATA, 

INTERCONVERSION 

 The equivalence exists between regular grammar and finite automata in accepting languages. 

CONSTRUCTION OF REGULAR GRAMMAR GENERATING T(M) FOR A GIVEN DFA M 

 Let M = ({q0, … ,qn}, Σ, δ, q0,F). if w is a string in the language of machine M i.e. T(M), then it is 

obtained  by concatenating the labels corresponding to several transitions, the first from q0 and 

the last terminating at some final state.  

 So for the grammar G to be constructed, productions should correspond to transitions. Also, 

there should be provision for terminating the derivation tree once a transition terminating at 

some final state is encountered. 

 With these ideas we construct G as: 

G = ({A0, A1, … ,An}, Σ, P, A0) 
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P is defined by the following rules: 

(1) AiaAi is included in P if δ(qi, a) = qj  F 

(2) AiaAj and Ai  a are included in P if δ(qi, a) = qj Є F. 

We can now show that L(G) = T(M) by using the construction of P. Such a construction gives: 

Ai  aAj  iff δ(qi, a) = qj 

 Ai  a  iff δ(qi, a) = F 

So  A0  a1A1  a1a2A2  . . .  a1 . . .  ak-1Ak  a1a2 … ak iff 

δ(q0, a1) = q1, δ(q1, a2) = q2, . . . . , δ(qk, ak) Є F 

This proves that w = a1 . . . ak Є L(G) iff δ(q0, a1 . . . ak) Є F, i.e. iff w Є T(M). 

Example: 

 Construct a regular grammar G generating the regular set represented by P = a*b(a + b)*. 

 

Solution: 

 We construct the DFA corresponding to P using the subset method. 

 

 

 

 

 

 

 

 

 

 

 

After eliminating ε – moves we get the DFA straightaway as shown in figure given below: 

 

 

 

 

 

 

Let G = ( {A0, A1}, {a, b}, P, A0), where P is given by 

A0  aA0,  A0  bA1, A0  b 

 
a* b (a + b)* 

 

ε ε b ε 

a 

ε 

a, b 

b 

a a, b 
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   A1  aA1,  A1 bA1,  A1  a, A1  b 

 Hence G is the required regular grammar. 

 

CONSTRUCTION OF TRANSITION SYSTEM M ACCEPTING L(G) FOR A GIVEN REGULAR GRAMMAR G 

 Let us consider the grammar G = ({A0, A1, … ,An}, Σ, P, A0). We construct the transition system M 

whose  

(a) States corresponds to variables 

(b) Initial state corresponds to A0 

(c) Transition in M corresponds to productions in P. 

 As the last production applied in any derivation is of the form Ai  a, the corresponding 

transition terminates at a new state and this is the unique final state. 

Now  

  We define M as ({q0, … ,qn}, Σ, δ, q0, qf). δ is defined as follows: 

(1) Each production Ai  aAj induces a transition from qi to qj with label a. 

(2) Each production Ak  a induces a transition from qk to qf with label a. 

 

From the construction it is easy to see that A0  a1A1  a1a2A2  . . .  a1 . . .  an-1An-1  a1 

… an is a derivation iff there is a path in M starting from q0 and terminating in qf with path values 

a1a2 . . . an. Therefore L(G) = T(M) 

Example: 

 Let G = ({A0, A1}, {a, b}, P, A0), where P consists of A0  aA1, A1 bA1, A1  a, A1  bA0. 

Construct a transition system M accepting L(G) 

 

Solution: 

 Let M = ({q0, q1, qf}, {a, b}, δ, q0, {qf}), where q0 and qf correspond to A0 and A1, respectively and 

qf is the new (final) state introduced.   

 A0  aA1 induces a transition from q0 to q1 with label a. Similarly, A1  bA1 and A1  bA0 induce 

transitions from q1 to q1 with label b and from q1 to q0 with label b, respectively. 

 A1  a induces a transition from q1 to qf with label a. M is given a follows: 

 

 

 

 

 

 

 

a 

b 

qf 

 

q1 

 

q0 
a 

b 
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 Now Let G = ( {A0, A1}, {a, b}, P, A0), where P consists of A0  aA0, A0  bA1,A0  b A1  aA1, A1 

bA1, A1  a, A1  b 

 

Solution: 

 

 

 

 

 

 CONTEXT FREE GRAMMAR 

 Context free grammars have played a central role in compiler technology since the 1960’s; they 

turned implementation of parsers (functions that discover the structure of a program) from a 

time consuming, ad-hoc implementation task into a routine job. 

An informal example 

 Let us consider the language of palindromes. A palindrome is a string that reads the same 

forward and backward, such as otto or madamimadam (“Madam, I’m Adam”). 

 Put another way, string w is palindrome if and only if w = wR (reverse of string). To make things 

simple, we shall consider describing only the palindromes with alphabet {0, 1}. This language 

includes strings like 0110, 1001, 11011 and ε, but not 011 or 0101. 

 It is easy to verify that the language of palindromes Lpal of 0’s and 1’s is not a regular language.  

 To do so we use pumping lemma. If Lpal is regular language let n be the associated constant and 

consider the palindrome w = 0n1n. 

 If Lpal is regular then we can break w into w = xyz such that y consists of one or more 0’s from the 

first group. Thus xz which would also have to be in Lpal if Lpal were regular would have fewer 0’s 

left of the lone 1 than there are to the right of the 1. 

 Therefore xz cannot be a palindrome. We have now contradicted the assumption that Lpal is 

regular language. 

 There is a natural, recursive definition of when a string of 0’s and 1’s is in Lpal. If start with a basis 

saying that if a string is a palindrome, it must begin and end with the same symbol. 

 Further when the first and last symbols are removed, the resulting string must also be a 

palindrome. That is:  

Basis: ε, 0 and 1 are palindromes. 

Induction: 

 If w is a palindrome, so are 0w0 and 1w1. No string is a palindrome of 0’s and 1’s unless it 

follows from this basis and induction rule. 

b 

a a, b 
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 A context free grammar is a formal notation for expressing such recursive definitions of 

languages. 

 A grammar consists of one or more variables that represent classes of strings, i.e. 

languages.  

 There are rules that say how the strings in each class are constructed. The construction 

can use symbols of the alphabet, strings that are already known to be in one of the 

classes or both.  

Example: 

 The rules that define the palindromes, expressed in the context free grammar notation are 

shown in below: 

 P  ε 

 P  0 

 P  1 

 P  0P0 

 P  1P1s 

 Here, the first three rules form the basis. They tell us that the class of palindromes includes the 

strings ε, 0, and 1. None of the right sides of these rules contains a variable, which is why they 

form a basis for the definition. 

DEFINITION OF CONTEXT FREE GRAMMAR  

 Formally context free grammar is a 4-tuple i.e. (V, Σ, P, S), where  

 V is a finite set called the variables also called as nonterminals or syntactic categories. 

 Each variable represents a language i.e. set of strings. 

 Σ is a finite set of symbols that form the strings of the language being defined. We call 

this alphabet the terminals or terminal symbols. 

 P is a finite set of productions or rules that represents the recursive definition of a 

language. Each  production consists of : 

 A variable that is being (partially) defined by the production. This variable is often 

called the head of the production. 

 A production symbol. 

 A string of zero or more terminals and variables. This string called the body of the 

production represents one way to form strings in the language of the variable of 

the head. 

 One of the variables (S) represents the language being defined; it is called the start 

symbol. Other variables represent the auxiliary classes of strings that are used to help 

define the language of the start symbol. In our example P the only variable, is the start 

symbol. 

Note: By convention, the start variable is the variable on the left hand side of the first rule. 
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Example (CFG): 

 Consider the grammar given below with the productions as: 

 E  I 

 E  E + E 

 E  E * E 

 E  (E) 

 I  a 

 I  b 

 I  Ia 

 I  Ib 

 I  I0 

 I  I1 

 The grammar for expressions is stated formally as G = ({E, I}, Σ, P, E), where Σ is the set of 

symbols {+, *, (, ), a, b, 0, 1} and P is the set of productions shown above. 

 Rule 1 is the basis rule for expressions. It says that an expression can be a single identifier.  

 Rule 2 through 4 describe the inductive case for expressions. Rule 2 says that an expression can 

be two expressions connected by a plus sign. 

  Rule 3 says the same with a multiplication sign. Rule 4 says that if we take any expression and 

put matching parenthesis around it, the result is also an expression. 

 Rule 5 through 10 describe identifiers I. the basis is rule 5 and 6. They say that a and b are 

identifiers. 

 The remaining four rules are the inductive case. They say that if we have identifier, we can 

follow it by a, b, 0, or 1, and the result will be another identifier. 

DERIVATION TREE 

 The derivation in a Context Free Grammar is represented using trees. 

 Such trees representing derivation are called as derivation trees. 

 A derivation tree (also called as parse tree) for a Context Free Grammar G = (V, Σ, P, S) is a tree 

satisfying the following: 

 Every vertex has a label which is a variable or terminal or ε. 

 The root has the label S (i.e. start symbol). 

 The label of an internal vertex is a variable. 

 If the vertices n1, n2, . . . , nk written with labels X1, X2, . . . , Xk are the sons of the vertex n 

with label A, then A  X1X2 . . . Xk is a production in P.  

 A vertex n is a leaf if its label is a Є Σ or ε. n is the only son of its father if its label is ε. 

 For example let G = ({S, A}, {a, b}, P, S), where P consists of S  aAS | a | SS, A SbA | ba. Now 

the derivation tree is given as follows: 
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 Note: In the above diagram  

 Vertices 4 – 6 are sons of 3 written from left and S  aAS is in P. 

 Vertices 7 and 8 are sons of 5 written from the left, and A  ba is a production in P. 

 Vertex 5 is an internal vertex and its label is A, which is a variable. 

ORDERING OF LEAVES FROM LEFT 

 We can order all vertices of a tree in the following way: 

 The successors of the root (i.e. sons of the root) are ordered from the left. 

 So vertices at level 1 are ordered from left. If v1 and v2 are any two vertices at level 1 

and v1 is to the left of v2 then we say that v1 is to the left of any son of v2. 

 Also any son of v1 is to the left of v2 and to the left of any son of v2. Thus we get a left – 

to – right ordering of vertices at level 2. 

 Repeat this process up to level k, where k is the height of the tree, we have an ordering 

of all vertices from the left. 

 In the above diagram the sons of the root are 2 and 3 ordered from the left. So, the son of 2 i.e. 

“a” is to the left of any son of 3. 

 The sons of 3 ordered from the left are 4 – 5 – 6. The vertices at level 2 in the left to right 

ordering are 10 – 4 – 5 – 6.  

 4 is to the left of 5. The sons of 5 ordered from the left are 7 – 8. So 4 is to the left of 7. Similarly 

8 is to the left of 9. 

 Thus the order of the leaves from the left is 10 – 4 – 7 – 8 – 9. 

 Note: a sub tree is a one which looks like a derivation tree except that the label of the root may 

not be S (i.e. start symbol). 

SENTENTIAL FORM 

 Derivations from the start symbol produce strings that have a special role. We call these 

“sentential forms”. 

1 

3 2 

4 
10 

5 6 

7 8 9 

S 

S 

a 

S 

a 

A 
S 

b 
a a 
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 That is if G = (V, Σ, P, S) is a CFG, then any string α in (V   Σ)* such that S 
 
  α is a sentential form. 

It is of two types 1) left sentential form and 2) right sentential form. 

 S 
 
  α is said to be in left sentential form if the leftmost derivation is applied. 

 S 
 
  α is said to be in right sentential form if the rightmost derivation is applied. 

 For example consider the sentential form  

E * (I + E) 

 Since there is derivation (from example (CFG)) 

E   E * E   E * (E)   E * (E + E)   E * (I + E) 

 However this derivation is neither leftmost nor rightmost, since at the last step the middle E is 

replaced. 

 As an example of a left sentential form consider a * E, with the leftmost derivation. 

E   E * E   I * E   a * E 

 Additionally the derivation 

E   E * E   E * (E)   E * (E + E) 

 Shows that E * (E + E) is a right sentential form. 

LEFTMOST DERIVATION OF STRINGS 

 A derivation A 
 
  w is called a leftmost derivation if we apply a production only to the leftmost 

variable at every step. 

 For example consider the productions of the grammar G given below: 

S  aAS | a, A SbA | SS | ba 

 Now we show how to construct the string aabbaa using leftmost derivation. 

S  aAS  aSbAS  aabAS  aabbaS  aabbaa 

RIGHTMOST DERIVATION OF STRINGS 

 A derivation A 
 
  w is called a rightmost derivation if we apply a production only to the 

rightmost variable at every step. 

 For example consider the productions of the grammar G given below: 

S  aAS | a, A SbA | SS | ba 

 Now we show how to construct the string aabbaa using leftmost derivation. 

S  aAS  aAa  aSbAa  aSbbaa  aabbaa 


