
FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 1 JKD

Syllabus R09 Regulation

UNIT-VI

PUSHDOWN AUTOMATA

 The context free languages have a type of automaton that defined them. This automaton,

called a “pushdown automaton”, is an extension of the nondeterministic finite automaton with ε –

transitions, which is one of the ways to define the regular languages.

 The pushdown automaton is essentially an ε – NFA with the addition of a stack. The stack can

be read, pushed and popped only at the top, just like the “stack” data structure.

 We define two different versions of the pushdown automaton: one that accepts by entering

an accepting state, like finite automata do and another version that accepts by emptying its stack,

regardless of the state it is in. we show that these two variations accept exactly the context free

languages i.e. grammars can be converted to equivalent pushdown automata and vice-versa.

 We also consider briefly the subclass of pushdown automata that is deterministic. These

accept all the regular languages, but only a proper subset of the CFL’s.

DEFINITION OF PUSHDOWN AUTOMATA

Informal Introduction

 The pushdown automaton is in essence a nondeterministic finite automaton with ε –

transitions permitted and one additional capability: a stack on which it can store a string of

“stack symbols”.

 The presence of a stack means that unlike finite automaton, the pushdown automaton can

remember an infinite amount of information.

 However, unlike a general purpose computer, which also has the ability to remember

arbitrarily large amounts of information, the pushdown automaton can only access the

information on its stack in a first in first out away.

 As a result, there are languages that could be recognized by some computer program, but

are not recognizable by any pushdown automaton.

 In fact pushdown automata recognize all and only the context free languages. While there

are many languages that are context free, including some we have seen that are not regular

languages, there are also some simple-to-describe languages that are not context free.

 An example of non context free language is {0n1n2n | n≥ 1 }, the set of strings consisting of

equal groups of 0’s 1’s and 2’s

MODEL

 A pushdown automaton is essentially a finite automaton with a stack data structure is

represented in the figure 6.1:

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 2 JKD

Syllabus R09 Regulation

 We can view the pushdown automaton informally as the device suggested in figure 6.1.

finite state control reads inputs, one symbol at a time. The pushdown automaton is allowed

to observe the symbol at the top of the stack and to base its transition on its current state,

input symbol, and the symbol at the top of stack.

Example 6.1:

 Let us consider the language, Lwwr = { wwR | w is in (0 + 1)* }, often referred to as “w-w-

reversed” is the even-length palindromes over alphabet {0, 1}. It is the CFL generated by the

grammar given below (with productions P 0 and P 1 omitted):

P ε

P 0

P 1

P 0P0

P 1P1

 We can design an informal pushdown automaton accepting Lwwr, as follows.

 Start in a state q0 that represents a “guess” that we have not yet seen the middle i.e.

we have not seen the end of the string w that is to be followed by its own reverse.

While in state q0, we read symbols and store them on the stack by pushing a copy of

each input symbol on to the stack, in turn.

 At any time, we may guess that we have seen the middle i.e. the end of w. At this

time, w will be on the stack, with the right end of w at the top and the left end at the

bottom. We signify this choice by spontaneously going to state q1. Since the

automaton is nondeterministic, we actually make both guesses: we guess we have

seen the end of w, but we also stay in state q0 and continue to read inputs and store

them on the stack.

 Once in state q1 we compare input symbols with the symbol at the top of the stack. If

they match, we consume the input symbol, pop the stack, and proceed. If they do not

match, we have guessed wrong; our guessed w was not followed by wR. This branch

dies, although other branches of the nondeterministic automaton may survive and

eventually lead to acceptance.

 If we empty the stack, then we have indeed seen some input w followed by wR. We

accept the input that was read up to this point.

Figure 6.1: A pushdown automata with stack

data structure.

Input

Stack

Finite

state

control

Accept/reject

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 3 JKD

Syllabus R09 Regulation

FORMAL DEFINITION OF PUSHDOWN AUTOMATA

 Formal definition for pushdown automata (PDA) involves seven components. We write the

specification of a PDA P as follows:

P = (Q, Σ, Γ, δ, q0, Z0, F)

 The components have the following meanings:

 Q: a finite set of states, like the states of a finite automata

 Σ: a finite set of input symbols, also analogous to the corresponding component of a

finite automaton.

 Γ: a finite stack alphabet. It is the set of symbols that we are allowed to push onto the

stack.

 δ: the transition function. As for a finite automaton, δ governs the behavior of the

automaton. Formally, δ takes as argument a triple δ(q, a, X), where:

1. q is the state in Q

2. a is either an input symbol in Σ or a = ε, the empty string, which is assumed

not to be an input symbol.

3. X is a stack symbol, which is a member of Γ.

The output of δ is a finite set of pairs (p, γ), where p is the new state and γ is

the string of stack symbols that replaces X at the top of stack.

For instance if γ = ε, then stack is popped. If γ = X, then the stack is

unchanged, and if γ = YZ, then X is replaced by Z and Y is pushed onto the

stack.

 q0: the start state. The PDA is in this state before making any transitions.

 Z0: the start symbol. Initially, the PDA’s stack consists of one instance of this symbol,

and nothing else.

 F: the set of accepting states, or final states.

Example 6.2:

 Let us design the PDA P to accept the language Lwwr of example 6.1. First there are a few

details not present in that example that we need to understand in order to manage the stack

properly. We shall use a stack symbol Z0 to mark the bottom of the stack.

 We need to have this symbol present so that, after we pop w off the stack and realize that

we have seen wwR on the input, we still have something on the stack to permit us to make a

transition to the accepting state, q2.

 Thus our PDA for Lwwr can be described as

P = ({q0, q1, q2}, {0, 1}, {0, 1, Z0}, δ, q0, Z0, {q2})

 Where δ is defined by the following rules:

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 4 JKD

Syllabus R09 Regulation

 δ(q0, 0, Z0) = {(q0, 0Z0)} and δ(q0, 1, Z0) = {(q0, 1Z0)}. One of these rules applies initially,

when we are in state q0 and we see the start symbol Z0 at the top of the stack. We

read the first input and push it on to the stack, leaving Z0 below to mark the bottom.

 δ(q0, 0, 0) = {(q0, 00)}, δ(q0, 0, 1) = {(q0, 01)}, δ(q0, 1, 0) = {(q0, 10)}, and δ(q0, 1, 1) =

{(q0, 11)}. These four, similar rules allow us to stay in state q0 and read inputs,

pushing each onto the top of stack and leaving the previous top stack symbol alone.

 δ(q0, ε, Z0) = {(q1, Z0)}, δ(q0, ε, 0) = {(q1, 0)}, δ(q0, ε, 1) = {(q1, 1)}. These three rules

allow P to go from state q0 to state q1 spontaneously (on ε input), leaving intact

whatever symbol is at the top of the stack.

 δ(q1, 0, 0) = {(q1, ε)}, and δ(q1, 1, 1) = {(q1, ε)}. Now in state q1 we can match input

symbols against the top symbols on the stack, and pop when the symbols match.

 δ(q1, ε, Z0) = {(q2, Z0)}. Finally if we expose the bottom-of-stack marker Z0 and we are

in state q1, then we have found an input of the form wwR. We go to state q2 and

accept.

GRAPHICAL NOTATION FOR PDA

 The transition diagram for PDA contains:

 The nodes correspond to the states of the PDA.

 An arrow labeled Start indicates the start state, and doubly circled states are

accepting, as for finite automata.

 The arcs correspond to transitions of the PDA in the following sense.

1. An arc labeled a, X/α from state q to state p means that δ(q, a, X) contains the

pair (p, α), perhaps among other pairs.

2. That is, the arc label tells what input is used, and also gives the old and new

tops of the stack.

Note: The only thing that the diagram does not tell us is which stack symbol is the start symbol.

Conventionally, it is Z0, unless we indicate otherwise.

 The PDA of example 6.1 is represented by the diagram shown in figure 6.2:

q0 q1 q2
Start

0, Z0 / 0 Z0

1, Z0 / 1 Z0

0, 0 / 0 0

0, 1 / 0 1

1, 0 / 1 0

1, 1 / 1 1

0, 0 / ε

1, 1 / ε

ε, Z0 / Z0

ε, 0 / 0

ε, 1 / 1

ε, Z0 / Z0

Figure 6.2: Representing a PDA as a generalized transition

diagram

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 5 JKD

Syllabus R09 Regulation

(q1, 1111, Z0)

(q1, 111, 1Z0)

(q0, 1111, Z0)

(q0, 111, 1Z0)

(q0, 11, 11Z0)

(q0, 1, 111Z0)

(q0, ε, 1111Z0)

(q1, ε, 1111Z0)

(q1, 11, 11Z0)

(q1, 1, 111Z0)

(q2, 1111, Z0)

(q1, 11, Z0)

(q2, 11, Z0)

(q1, 1, 1Z0)

(q1, ε, 11Z0)

(q1, ε, Z0)

(q2, ε, Z0)

 Unlike Finite Automata, the Pushdown Automata involves both the state and the contents of

the stack.

 Thus we shall represent the configuration of a PDA by a triple (q, w, γ), where

 q is the state

 w is the remaining input and

 γ is the stack contents

 Conventionally we show the top of the stack at the left end of γ and the bottom at the right

end. Such a triple is called as Instantaneous Description or ID, of the PDA.

 For PDA’s we need a notation that describes changes in the state, the input and stack. Thus

we adopt the “turnstyle” notation for connecting pairs of ID’s that represent one or many

moves of a PDA.

 Let P = (Q, Σ, Γ, δ, q0, Z0, F) be a PDA. Define

 or Ⱶ when P is understood as follows.

 Suppose δ(q, a, X) contains (p, α). Then for all strings w in Σ* and β in Γ*:

(q, aw, Xβ) Ⱶ (p, w, αβ)

 This move reflects the idea that by consuming a (which may be ε) from the input and

replacing X on top of stack by α, we can go from state q to state p.

 Note that what remains on the input, w, and what is below the top of stack, β, do not

influence the action of the PDA; they merely carried along, perhaps to influence events later.

Example 6.3:

 Let us consider the action of the PDA of example 6.2 on the input 1111. Since q0 is the start

state and z0 is start symbol, the initial ID is (q0, 1111, Z0).on this input, the PDA has the

opportunity to guess wrongly several times. The entire sequence of ID’s that the PDA can

reach from the initial ID‘s that the PDA can reach from the initial ID (q0, 1111, Z0) is shown in

figure given below: (arrows represents the Ⱶ relation)

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 6 JKD

Syllabus R09 Regulation

 From the initial ID, there are two choices of move. The first guesses that the middle has not

been seen and leads to ID (q0, 111, 1Z0). In effect, a 1 has been removed from the input and

pushed on to the stack.

 The second choice from the initial ID guesses that the middle has been reached. Without

consuming input, the PDA goes to state q1, leading to the ID (q1, 1111, Z0). Since the PDA

may accept if it is in state q1 and sees Z0 on top of its stack, the PDA goes from there to ID

(q2, 1111, Z0).

 That ID is not exactly an accepting ID, since the input has not been completely consumed.

Had the input been ε rather than 1111, the same sequence of moves would have led to ID

(q2, ε, Z0), which would show that ε is accepted.

 The Pushdown Automata may also guess that it has seen the middle after reading one 1, i.e.

when it is in the ID (q0, 111, 1Z0). That guess also leads to failure, since the entire input

cannot be consumed.

 The correct guess, that middle is reached after reading two 1’s gives us the sequence of ID’s

(q0, 1111, Z0) Ⱶ (q0, 111, 1Z0) Ⱶ (q0, 11, 11Z0) Ⱶ (q0, 11, 11Z0) Ⱶ (q0, 1,1 Z0) Ⱶ (q1, ε, Z0) Ⱶ (q2, ε,

Z0).

 There are three important principles about ID’s and their transitions that we shall need in

order to reason about PDA’s:

 If a sequence of ID’s (computation) is legal for a PDA P, then the computation formed

by adding the same additional input string to the end of the input (second

component) in each ID is also legal.

 If a computation is legal for a PDA P, then the computation formed by adding the

same additional stack symbols below the stack in each ID is also legal.

 If a computation is legal for a PDA P, and some tail of the input is not consumed, then

we can remove this tail from the input in each ID, and the resulting computation will

still be legal.

 Intuitively, data that P never looks at cannot affect ifs computation.

Exercises:

 Suppose the PDA P = ({q0, q1}, {0, 1}, {X, Y, Z}, δ, q0, Z, {q1}) has the following transition

functions:

 δ (q0, 0, Z) = {(q1, Z)}

 δ (q0, 1, Z) = {(q0, XZ)}

 δ (q0, 0, X) = {(q0, ε)}

 δ (q0, 1, X) = {(q0, XX)}

 δ (q1, 0, Z) = {(q1, YZ)}

 δ (q1, 1, Z) = {(q0, Z)}

 δ (q1, 0, Y) = {(q1, YY)}

 δ (q1, 1, Y) = {(q1, ε)}

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 7 JKD

Syllabus R09 Regulation

Starting from the initial ID show all the reachable ID’s when the input w is:

1. 000011

2. 011001

3. 0110110

THE LANGUAGES OF PDA

 We have assumed that a PDA accepts it input by consuming it and entering an accepting

state. We call this approach “acceptance by final state”.

 There is a second approach to define the language of PDA that has important applications.

We may also define for any PDA the language “accepted by empty stack”, i.e. the set of

strings that cause the PDA to empty the stack, starting from the initial ID.

 These two methods are equivalent, in the sense that a language L has a PDA that accepts it

by final state if and only if L has a PDA that accepts it by empty stack.

 However for a given PDA P, the languages that P accepts by final state and empty stack are

usually different.

 We shall now show how to convert a PDA accepting L by final state into another PDA that

accepts L by empty stack and vice-versa.

ACCEPTANCE BY FINAL STATE

 Let P = (Q, Σ, Γ, δ, q0, Z0, F) be a PDA. Then L(P), the language accepted by P by final state, is

{w | (q0, w, Z0)

 (q, ε, α)}

for some state q in F and any stack string α. That is starting in the initial ID with w waiting on

input, P consumes w from the input and enters an accepting state.

 The contents of the stack at that time are irrelevant.

Example:

 We have claimed that the PDA of example 6.2 accepts the language Lwwr, the language of

strings in {0, 1}* that have the form wwR. Let us see why that statement is true.

 The proof is an if-and-only-if statement: the PDA P of example 6.2 accepts string x by final

state if and only if x is of the form wwR.

 (If) This part is easy; we have only to show the accepting computation of P. If x = wwR, then

observe that

(q0, wwR, Z0)

 (q0, wR, wRZ0) Ⱶ (q1, wR, wRZ0)

 (q1, ε, Z0) Ⱶ (q2, ε, Z0)

 That is one option the PDA has is to read w from its input and store it on its stack, in reverse.

Next it goes spontaneously to state q1 and matches wR on the input with the same string on

its stack, and finally goes spontaneously to state q2.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 8 JKD

Syllabus R09 Regulation

 (only-if) This part is harder. First, observe that the only way to enter accepting state q2 is to

be in state q1 and have Z0 at the top of the stack. Also, any accepting computation of P will

start in state q0, make one transition to q1, and never return to q0.

 Thus it is sufficient to find the conditions on x such that (q0, x, Z0)

 (q1, ε, Z0); these will be

exactly the strings x that P accepts by final state.

ACCEPTANCE BY EMPTY STACK

 For each PDA P = (Q, Σ, Γ, δ, q0, Z0, F), we also define

N(P) = { w | (q0, w, Z0)

 (q, ε, ε)}

for any state q. That is, N(P) is the set of inputs w that P can consume and at the same time

empty its stack. N(P) stands for null stack, a synonym for “empty stack”.

Example:

 The PDA P of example 6.2 never empties its stack, so N(P) = Φ.

 However a small modification will allow P to accept Lwwr by empty stack as well as by final

state. Instead of the transition δ(q1, ε, Z0) = {(q2, Z0)}, use δ(q1, ε, Z0) = {(q2, ε)}. Now P pops

the last symbols off its stack as it accepts, and L(P) = N(P) = Lwwr.

 Since the set of accepting states is irrelevant, we shall sometimes leave off the last (seventh)

component from the specification of a PDA P, if all we care about is the language that P

accepts by empty stack. Thus, we would write P as a six – tuple (Q, Σ, Γ, δ, q0, Z0)

EQUIVALENCE OF ACCEPTANCE BY FINAL STATE AND EMPTY STACK

FROM EMPTY STACK TO FINAL STATE

 We shall show that classes of languages that are L(P) for some PDA P is the same as the class

of languages that are N(P) for some PDA P.

 Our first construction shows how to take a PDA PN that accepts a language L by empty stack

and construct a PDA PF that accepts L by final state.

Theorem:

 If L = N(PN) for some PDA PN = (Q, Σ, Γ, δN, q0, Z0) then there is a PDA PF such that L = L(PF)

Proof:

 The idea behind the proof is in figure 6.3. We use a new symbol X0, which must not be a

symbol of Γ, X0 is both the start symbol of PF and a marker on the bottom of the stack that

lets us know when PN has reached an empty stack.

 That is if PF sees X0 on top of stack, then it knows that PN would empty its stack on the same

input.

 We also need a new start state p0, whose sole function is to push Z0, the start symbol of PN

on to the top of the stack and enter state q0, the start state of PN.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 9 JKD

Syllabus R09 Regulation

PN

 Then PF simulates PN, until stack of PN is empty, which PF detects because it sees X0 on the

top of the stack.

 Finally we need another new state, pf, which is the accepting state of PF this PDA transfers to

state pf whenever it discovers that PN would have emptied its stack.

 The specification of PF is as follows:

PF = (Q {p0, pf}, Σ, Γ {X0}, δF, p0, X0, {pf})

 where δF is defined by:

 δF(p0, ε, X0) = {(q0, Z0X0)}. In its start state, PF makes a spontaneous transition to the

start state of PN, pushing its start symbol Z0 onto the stack.

 For all states q in Q, inputs a in Σ or a = ε, and stack symbols Y in Γ, δF(q, a, Y) contains

all the pairs in δN(q, a, Y).

 In addition to rule (b), δF(q, ε, X0) contains (pf, ε) for every state q in Q.

 We must show that w is in L(PF) if and only if w is in N(PN).

 (If) we are given that (q0, w, Z0)

 (q, ε, ε) for some state q.

 (only if) the converse requires only that we observe the additional transitions of rules (a) and

(c) give us very limited ways to accept w by final state. We must use rule (c) at the last step,

and we can only use that rule if the stack of PF contains only X0. X0’s ever appear on the stack

except at the bottommost position. Furthermore rule (a) is only used at the first step, and it

must be used at the first step.

FROM FINAL STATE TO EMPTY STACK

 Now let us go in the appropriate direction: take a PDA PF that accepts a language L by final

state and construct another PDA PN that accepts L by empty stack.

 The construction is simple and suggested in the figure 6.4. From each accepting state of PF

add a transition on ε to a new state p.

 When in state p, PN pops its stack and does not consume any input.

ε, X0 / ε

ε, X0 / ε

ε, X0 / ε

ε, X0 / ε

 PN p0 q0 pf

ε, X0 /Z0X0

Figure 6.3: PF simulates PN and accepts if PN empties the stack

Start

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 10 JKD

Syllabus R09 Regulation

 Thus whenever PF enters an accepting state after consuming input w, PN will empty its stack

after consuming w.

 To avoid simulating a situation where PF empties its stack without accepting, PN must also

use a marker X0 on the bottom of its stack. The marker is PN’s start symbol, PN must start in a

new state p0, whose sole function is to push the start symbol of PF on the stack and go to the

start state of PF.

 The construction is sketched in Fig. 6.4, and we give it formally in the next theorem.

Theorem:

 Let L be L(PF) for some PDA PF = (Q, Σ, Γ, δF, q0, Z0, F). Then there is a PDA PN such that L =

N(PN).

Proof:

 The construction is suggested in figure 6.4. Let

PN = (Q {p0, p}, Σ, Γ {X0}, δN, p0, X0)

 Where δN is defined by:

 δN(p0, ε, X0) = {(q0, Z0X0)}. We start by pushing the start symbol of PF on to the stack

and going to the start state of PF.

 For all states q in Q, input symbols a in Σ or a = ε, and Y in Γ, δN(q, a, Y) contains every

pair that is in δF(q, a, Y). That is, PN simulates PF.

 For all accepting states q in F and stack symbols Y in Γ or Y = X0, δN(q, ε, Y) contains (p,

ε). By this rule, whenever PF accepts, PN can start emptying its stack without

consuming any more input.

 For all stack symbols Y in Γ or Y = X0, δN(p, ε, Y) = {(p, ε)}. Once in state p, which only

occurs when PF has accepted, PN pops every symbol on its stack, until the stack is

empty. No further input is consumed.

 Now we must prove that w is in N(PN) if and only if w is in L(PF).

 The “if” part is a direct simulation and the “only-if” part requires that we examine the limited

number of things that the constructed PDA PN can do.

 (If) suppose (q0, w, Z0)

 (q, ε, α) for some accepting state q and stack string α.

Figure 6.4: PN simulates PF and empties its stack when and only when PN enters an accepting state

 PF

ε, any/ ε

ε, any/ ε

ε, any/ ε ε, X0 /Z0X0

p
p0 q0

Start

PN

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 11 JKD

Syllabus R09 Regulation

PN

 (Only if) the only way PN can empty its stack is by entering state p, since X0 is sitting at the

bottom of the stack and X0 is not a symbol on which PF has any moves.

 The only way PN can enter state p is if the simulated PF enters an accepting state. The first

move of PN is surely the move given in rule (a). Thus every accepting computation of PN looks

like

(p0, w, X0) Ⱶ (q0, w, Z0X0)

 (q, ε, αX0)

 (p, ε, ε)

 Where q is an accepting state of PF. Moreover between ID’s (q0, w, Z0X0) and (q, ε, αX0), all

the moves are moves of PF.

 In particular X0 was never the top stack symbol prior to reaching ID (q, ε, αX0) (i.e. although α

could be ε, in which case PF can emptied its stack at the same time it accepts). Thus we

conclude that the same computation can occur in PF, without the X0 on the stack; that is (q0,

w, Z0)

 (q, ε, α).

 Now we can see that PF accepts w by final state, so w is in L(PF).

EQUIVALENCE OF PDA’S AND CFG’S

 Now we shall demonstrate that the languages defined by PDA’s are exactly the context-free

languages.

 The plan of attack is suggested by figure 6.5.The goal is to prove that the following three

classes of languages:

 The context – free languages i.e. the languages defined by CFG’s.

 The languages that are accepted by final state by some PDA.

 The languages that are accepted by empty stack by some PDA.

are all the same class. We have already shown that (b) and (c) are the same. It turns out to

be easiest next to show that (a) and (3) are the same, thus implying the equivalence of all

three.

PN PN

PN

Grammar PDA by

empty stack
PDA by final

state

Figure 6.5: Organization of constructions showing equivalence of three ways of defining the CFL’s

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 12 JKD

Syllabus R09 Regulation

FROM GRAMMARS TO PUSHDOWN AUTOMATA

 Given CFG G we construct a PDA that simulates the left most derivations of G. Any left

sentential form that is not a terminal string can be written as xAα, where A is the left most

variable, x is whatever terminals appear to its left, and α is the string of terminals and

variables that appear to the right of A.

 We call Aα the tail of this left sentential form. If a left sentential form consists of only

terminals, then its tail is ε.

 The idea behind the construction of PDA from a grammar is to have a PDA simulate the

sequence of left sentential forms that the grammar uses to generate a given terminal string

w.

 The tail of each sentential form xAα appears on the stack, with A at the top. At that time, x

will be represented by our having consumed x from the input, leaving whatever of w follows

its prefix x. i.e. if w = xy, then y will remain on the input.

 Suppose the PDA is in an ID (q, y, Aα), representing left sentential form xAα. It guesses the

production to use to expand A, say A β. The move of the PDA is to replace A on the top of

the stack by β, entering ID (q, y, βα). Note that there is only one state, q, for this PDA.

 Now (q, y, βα) may not be a representation of the next left sentential form, because β may

have a prefix of terminals. In fact, β may have no variables at all and α may have a prefix of

terminals.

 Whatever terminals appear at the beginning of βα need to be removed, to expose the next

variable at the top of the stack. The terminals are compared against the next input symbols,

to make sure our guesses at the left most derivation of input string w are correct; if not this

branch of the PDA dies.

 If succeeded in this way to guess a leftmost derivation of w, then we shall eventually reach

the left sentential form w. At that point all the symbols on the stack have either been

expanded (if they are variables) or matched against the input (if they are terminals). The

stack is empty and we accept by empty stack.

 The above informal construction can be made precise as follows. Let G = (V, Σ, Q, S) be a CFG.

Construct a PDA P that accepts L(G) by empty stack as follows:

P = ({q}, Σ, V Σ, δ, q, S)

 Where transition function δ is defined by:

 For each variable A.

δ (q, ε, A) = {(q, β) | A β is a production of P}

 For each terminal a, δ (q, a, a) = {(q, ε)}.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 13 JKD

Syllabus R09 Regulation

Example:

 Let us consider the expression grammar given below to a PDA.

I a | b | Ia | Ib | I0 | I1

E I | E * E | E + E | (E)

 The set of terminals for the PDA is {a, b, 0, 1, (,), +, *}. These eight symbols and the symbols I

and E form the stack alphabet.

 The transition function for the PDA is:

 δ (q, ε, I) = {(q, a), (q, b), (q, Ia), (q, Ib), (q, I0), (q, I1)}.

 δ (q, ε, E) = {(q, I), (q, E*E), (q, E+E), (q, (E))}.

 δ (q, a, a) = {(q, ε)}; δ (q, b, b) = {(q, ε)}; δ (q, a, a) = {(q, ε)}; δ (q, 0, 0) = {(q, ε)};

δ (q, 1, 1) = {(q, ε)}; δ (q, (, () = {(q, ε)}; δ (q,),)) = {(q, ε)}; δ (q, *, *) = {(q, ε)};

δ (q, +, +) = {(q, ε)};

 Note that (a) and (b) come from rule (a), while the eight transitions of (c) come from rule (b).

Also δ is empty except as defined by (a) through (c).

FROM PDA’S TO GRAMMARS:

 Now we complete the proofs of equivalence by showing that for every PDA P, we can find a

CFG G whose language is the same language that P accepts by empty stack.

 The idea behind the proof is to recognize that the fundamental event in the history of a

PDA’s processing of a given input is the net popping of one symbol off the stack, while

consuming some input.

 A PDA may change state as it pops stack symbols, so we should also note the state that it

enters when it finally pops a level off its stack.

 The figure 6.6 below suggests how we pop a sequence of symbols Y1, Y2 . . . Yk off the stack.

Some input x1 read while Y1 is popped.

 We should emphasize that the “pop” is the net effect of (possibly) many moves. For

example, the first move may change Y1 to some other symbol Z. The next move may replace

Z by UV; later moves have the effect of popping U, and then other moves pop V. The net

p1

pk-1

p0

.

.

.

Y1

Y2

Yk

pk
x1 x2 xk

Figure 6.6: A PDA makes a sequence of moves that

have the net effect of popping a symbol off the stack

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 14 JKD

Syllabus R09 Regulation

effect is that Y1 has been replaced by nothing i.e. it has been popped, and all the input

symbols consumed so far constitute x1.

 We also shown in the figure 6.6 the net change of state. We suppose that the PDA starts out

in state p0, with Y1 at the top of the stack. After all the moves whose net effect is to pop Y1,

the PDA is in state p1.

 It then proceeds to (net) pop Y2, while reading input string x2 and winding up, perhaps after

many moves, in state p2 with Y2 off the stack.

 The computation proceeds until each of the symbols on the stack is removed.

 Our construction of an equivalent grammar uses variables each of which represents an event

consisting of:

1. The net popping of some symbol X from the stack, and

2. A change in state from some p at the beginning to q when X has finally been replaced

by ε on the stack.

 We represent such a variable by the composite symbol [pXq]. Remember that this sequence

of characters is our way of describing one variable; it not five grammar symbols.

 The formal construction is given by the theorem given below:

Theorem 6(a):

 Let P = (Q, Σ, Γ, δ, q0, Z0) be a PDA. Then there is a context free grammar G such that L(G) =

N(P).

Proof:

 We shall construct G = (V, Σ, R, S), where the set of variables V consists of:

1. The special symbol S, which is the start symbol and

2. All symbols of the form [pXq], where p and q are states in Q, and X is a stack symbol,

in Γ.

 The productions of G are as follows:

 For all states p, G has the production S [q0Z0p]. It is intended to generate all those

strings w that cause P to pop Z0 from its stack while going from state q0 to state p.

i.e. (q0, w, Z0)

 (p, ε, ε)

 Let δ(q, a, X) contain the pair (r, Y1Y2….Yk), where:

1. a is either the symbol in Σ or a = ε.

2. k can be any number, including 0, in which case the pair is (r, ε).

Then for all lists of states r1, r2, , rk, G has the production

[qXrk] a[rY1r1][r1Y2r2] [rk-1ykrk]

 This production says that one way to pop X and go from state q to state rk is to read a

(which may be ε), then use some input to pop Y1 off the stack while going from state r

to state r1, then read some more input that pop Y2 off the stack and goes from state

r1 to r2 and so on.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 15 JKD

Syllabus R09 Regulation

Example:

 Let us convert the PDA PN = ({q}, {0, 1},{Z, A, B}, δN, q, Z) to a grammar. Recall that PN accepts

all strings such that, the number of 0’s is equal to the number of 1’s. Since p has only one

state and three stack symbols, the construction is simple. There are only four variables in the

grammar G.

 S, the start symbol, which is in every grammar constructed by the method of theorem

6(a), and

 [qZq]

 [qAq]

 [qBq]

 The last three are the only triples that can be assembled from the states and stack symbols

of PN.

 The productions of grammar G are as follows:

 The only production for S is S [qZq]. However if there were n states of the PDA,

then there would be n productions of this type, since the last state could be any of

the n states. The first state would have to be the start state and the stack symbol

would have to be the start symbol, as in our productions above.

 The production [qZq] 0[qZq][qAq] results from the fact that δN(q, 0, Z) contains (q,

ZA). Again for this simple example there is only one production. However if there

were n states then this one rule would produce n2 productions since the two middle

states of the body could also be any one state. That is if p and r were any two states

of the PDA, then production [qZp] 0[qZr][rAp] would be produced. In a similar way

we get the productions.

 [qZq] 1[qZq][qBq].

 [qAq] 0[qAq][qAq].

 [qBq] 1[qBq][qBq].

 From the fact that δN(q, 0, B) contains (q, ε), we have production [qBq] 0. Notice

that in this case, the list of stack symbols by which B is replaced is empty, so the only

symbols in the body are the input symbol that caused the move. Similarly

 [qAq] 1.

 [qAq] ε.

 We may for convenience, replace the triple [qZq] by some less complex symbol, say X and

similarly [qAq] and [qBq] by A and B, respectively. If we do then the complete grammar

consists of the productions:

S X

X 0XA

X 1XB

A 0AA

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 16 JKD

Syllabus R09 Regulation

B 1BB

A 1

B 0

X ε

 In fact, if we notice that X and S derive exactly the same strings, we may identify them as one

and write the complete grammar as

G = ({S, A, B}, {0, 1}, {S 0SA | 1SB | ε, A 0AA | 1, B 1BB | 0}, S)

INTRODUCTION TO DCFL

 In formal language theory, deterministic context-free languages (DCFL) are a proper subset

of context-free languages. They are the context-free languages that can be accepted by a

deterministic pushdown automaton.

 The notion of the DCFL is closely related to the deterministic pushdown automaton (DPDA).

It is where the language power of a pushdown automaton is reduced if we make it

deterministic; the pushdown automaton becomes unable to choose between different state

transition alternatives and as a consequence cannot recognize all context-free languages.

 Unambiguous grammars do not always generate a DCFL. For example, the language of even-

length palindromes on the alphabet of 0 and 1 has the unambiguous context-free grammar S

→ 0S0 | 1S1 | ε. The problem of whether a given context-free language is deterministic is

undecidable.

 A pushdown automaton A=(Q,Σ, Γ, δ, q0,Z0, F) is deterministic if:

 Whenever (q, a, X) is nonempty for some a Є Σ, then (q, ε, X) is empty, and

 For each q ∈ Q, a ∈ Σ {ε} and X ∈ Γ, δ(q, a, X) contains at most one element.

 A language L is a deterministic context-free language (DCFL) if it is accepted by a

deterministic pushdown automaton (DPDA).

DETERMINISTIC PDA

 While PDA’s are by definition allowed to be nondeterministic the deterministic subcase is

quite important. In particular, parser generally behave like deterministic PDA’s, so the class

of languages that can be accepted by these automata is interesting for the insights it gives us

into what constructs are suitable for use in programming language.

DEFINITION OF DETERMINISTIC PDA

 Intuitively, a PDA is deterministic if there is never a choice of move in any situation. These

choices are of two kinds.

 If δ(q, a, X) contains more than one pair, then surely the PDA is nondeterministic because we

can choose among these pairs when deciding on the next move.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 17 JKD

Syllabus R09 Regulation

 However even if δ(q, a, X) is always a singleton, we could still have a choice between using a

real input symbol, or making a move on ε.

 Thus we define a PDA P = (Q, Σ, Γ, δ, q0, Z0, F) to be deterministic (a deterministic PDA or

DPDA), if and only if the following conditions are met:

 δ(q, a, X) has at most one member for any q in Q, a in Σ or a = ε, and X in Γ.

 If δ(q, a, X) is non empty, for some a in Σ, then δ(q, ε, X) must be empty.

Example:

 Consider the language L = {0n1n | n ≥ 1}. It turns out that this language can be recognized by

a deterministic PDA.

 The strategy of the PDA is to store 0’s on its stack, until it sees a 1. It then goes to another

state, in which it pops the 0’s each time it reads a 1.

 If it finds the bottom before reading the entire input, it dies: its input cannot be of the form

0m1m.

 If it succeeds in popping its stack down to the initial symbol, which marks the bottom of the

stack, when the entire input has been read, then it accepts its input.

 The DPDA for language L is shown as a transition diagram in figure 6.7:

REGULAR LANGUAGES AND DETERMINISTIC PDA’S

 The DPDA’s accept a class of languages that is between the regular languages and the CFL’s.

Theorem:

 If L is a regular language, then L = L(P) for some DPDA P.

Proof:

 Essentially a DPDA can simulate the deterministic finite automaton. The PDA keeps some

stack symbol Z0 on its stack, because a PDA has to have the stack, but really the PDA ignores

its stack and just uses its state.

 Formally, let A = (Q, Σ, δA, q0, F) be a DFA. Construct DPDA P = (Q, Σ, {Z0}, δP, q0, Z0, F) by

defining δP(q, a, Z0) = {(p, Z0)} for all states p and q in Q, such that δA(q, a) = p.

 If we want the DPDA to accept by empty stack, then we find that our language recognizing

capability is rather limited.

Figure 6.7: A Deterministic PDA accepting {0n1n| n > 1}

q0 q1 q2
Start

0, Z0 / 0 Z0

0, 0 / 0 0

1, 0 / ε

1, 0/ε ε, Z0 / Z0

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 18 JKD

Syllabus R09 Regulation

 Say that a language L has the prefix property if there are no two different strings x and y in L

such that x is a prefix of y.

Theorem:

 A language L is N(P) for some DPDA P if and only if L has the prefix property and L is L(P’) for

some DPDA P’.

DPDA’s and context free languages

 We have already seen that a DPDA can accept languages like Lwcwr that are not regular. To

see this language is not regular, suppose it were, and use the pumping lemma.

 If n is the constant of the pumping lemma, then consider the strings w = 0nc0n, which is in

Lwcwr.

 However when we pump this string, it is the first group of 0’s whose length must change so

we get in Lwcwr strings that have the “center” marker not in the center.

 Since these strings are not in Lwcwr, we have contradiction and conclude that Lwcwr is not

regular.

 On the other hand, there are CFL’s like Lwwr that cannot be L(P) for any DPDA P. A formal

proof is complex, but the intuition is transparent.

 If P is DPDA accepting Lwwr, then given a sequence of 0’s it must store them on the stack, or

do something equivalent to count an arbitrary number of 0’s. For instance if could store one

X for two 0’s it sees, and use the state to remember whether the number was even or odd.

 Suppose that P has seen n 0’s and then sees 110n. if must verify that there were n 0’s after

the 11, and to do so it must pop its stack.

 Now P has seen 0n110n. If it sees an identical string next, it must accept, because the

complete input is of the form wwR, with w = 0n110n. However, if it sees 0m110m for some m ≠

n, P must not accept. Since its stack is empty.

 It cannot remember what arbitrary integer n was and must not able to recognize Lwwr

correctly.

 Our conclusion is that

 The language accepted by DPDA’s by final state properly included the regular

languages, but are properly included in the CFL’s.

