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UNIT-VI 

PUSHDOWN AUTOMATA 

 The context free languages have a type of automaton that defined them. This automaton, 

called a “pushdown automaton”, is an extension of the nondeterministic finite automaton with ε – 

transitions, which is one of the ways to define the regular languages. 

 The pushdown automaton is essentially an ε – NFA with the addition of a stack. The stack can 

be read, pushed and popped only at the top, just like the “stack” data structure. 

 We define two different versions of the pushdown automaton: one that accepts by entering 

an accepting state, like finite automata do and another version that accepts by emptying its stack, 

regardless of the state it is in. we show that these two variations accept exactly the context free 

languages i.e. grammars can be converted to equivalent pushdown automata and vice-versa. 

 We also consider briefly the subclass of pushdown automata that is deterministic. These 

accept all the regular languages, but only a proper subset of the CFL’s. 

DEFINITION OF PUSHDOWN AUTOMATA 

Informal Introduction 

 The pushdown automaton is in essence a nondeterministic finite automaton with ε – 

transitions permitted and one additional capability: a stack on which it can store a string of 

“stack symbols”. 

 The presence of a stack means that unlike finite automaton, the pushdown automaton can 

remember an infinite amount of information. 

 However, unlike a general purpose computer, which also has the ability to remember 

arbitrarily large amounts of information, the pushdown automaton can only access the 

information on its stack in a first in first out away. 

 As a result, there are languages that could be recognized by some computer program, but 

are not recognizable by any pushdown automaton. 

 In fact pushdown automata recognize all and only the context free languages. While there 

are many languages that are context free, including some we have seen that are not regular 

languages, there are also some simple-to-describe languages that are not context free. 

 An example of non context free language is {0n1n2n | n≥ 1 }, the set of strings consisting of 

equal groups of 0’s 1’s and 2’s 

MODEL 

 A pushdown automaton is essentially a finite automaton with a stack data structure is 

represented in the figure 6.1:  

 



FORMAL LANGUAGES & AUTOMATA THEORY  Jaya Krishna, M.Tech, Asst. Prof. 

Jkdirectory Page | 2 JKD 

Syllabus  R09 Regulation 

 

 

 

 

 

 We can view the pushdown automaton informally as the device suggested in figure 6.1. 

finite state control reads inputs, one symbol at a time. The pushdown automaton is allowed 

to observe the symbol at the top of the stack and to base its transition on its current state, 

input symbol, and the symbol at the top of stack. 

Example 6.1: 

 Let us consider the language, Lwwr = { wwR | w is in (0 + 1)* }, often referred to as “w-w-

reversed” is the even-length palindromes over alphabet {0, 1}. It is the CFL generated by the 

grammar given below (with productions P  0 and P  1 omitted): 

P  ε 

P  0 

P  1 

P  0P0 

P  1P1 

 We can design an informal pushdown automaton accepting Lwwr, as follows. 

 Start in a state q0 that represents a “guess” that we have not yet seen the middle i.e. 

we have not seen the end of the string w that is to be followed by its own reverse. 

While in state q0, we read symbols and store them on the stack by pushing a copy of 

each input symbol on to the stack, in turn. 

 At any time, we may guess that we have seen the middle i.e. the end of w. At this 

time, w will be on the stack, with the right end of w at the top and the left end at the 

bottom. We signify this choice by spontaneously going to state q1. Since the 

automaton is nondeterministic, we actually make both guesses: we guess we have 

seen the end of w, but we also stay in state q0 and continue to read inputs and store 

them on the stack. 

 Once in state q1 we compare input symbols with the symbol at the top of the stack. If 

they match, we consume the input symbol, pop the stack, and proceed. If they do not 

match, we have guessed wrong; our guessed w was not followed by wR. This branch 

dies, although other branches of the nondeterministic automaton may survive and 

eventually lead to acceptance. 

 If we empty the stack, then we have indeed seen some input w followed by wR. We 

accept the input that was read up to this point. 

 

Figure 6.1: A pushdown automata with stack 

data structure. 
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FORMAL DEFINITION OF PUSHDOWN AUTOMATA 

 Formal definition for pushdown automata (PDA) involves seven components. We write the 

specification of a PDA P as follows: 

P = (Q, Σ, Γ, δ, q0, Z0, F) 

 The components have the following meanings: 

 Q: a finite set of states, like the states of a finite automata  

 Σ: a finite set of input symbols, also analogous to the corresponding component of a 

finite automaton. 

 Γ: a finite stack alphabet. It is the set of symbols that we are allowed to push onto the 

stack.  

 δ: the transition function. As for a finite automaton, δ governs the behavior of the 

automaton. Formally, δ takes as argument a triple δ(q, a, X), where: 

1. q is the state in Q 

2. a is either an input symbol in Σ or a = ε, the empty string, which is assumed 

not to be an input symbol. 

3. X is a stack symbol, which is a member of Γ. 

The output of δ is a finite set of pairs (p, γ), where p is the new state and γ is 

the string of stack symbols that replaces X at the top of stack. 

For instance if γ = ε, then stack is popped. If γ = X, then the stack is 

unchanged, and if γ = YZ, then X is replaced by Z and Y is pushed onto the 

stack. 

 q0: the start state. The PDA is in this state before making any transitions. 

 Z0: the start symbol. Initially, the PDA’s stack consists of one instance of this symbol, 

and nothing else. 

 F: the set of accepting states, or final states. 

Example 6.2: 

 Let us design the PDA P to accept the language Lwwr of example 6.1. First there are a few 

details not present in that example that we need to understand in order to manage the stack 

properly. We shall use a stack symbol Z0 to mark the bottom of the stack. 

 We need to have this symbol present so that, after we pop w off the stack and realize that 

we have seen wwR on the input, we still have something on the stack to permit us to make a 

transition to the accepting state, q2. 

 Thus our PDA for Lwwr can be described as 

P = ({q0, q1, q2}, {0, 1}, {0, 1, Z0}, δ, q0, Z0, {q2}) 

 Where δ is defined by the following rules: 
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 δ(q0, 0, Z0) = {(q0, 0Z0)} and δ(q0, 1, Z0) = {(q0, 1Z0)}. One of these rules applies initially, 

when we are in state q0 and we see the start symbol Z0 at the top of the stack. We 

read the first input and push it on to the stack, leaving Z0 below to mark the bottom. 

 δ(q0, 0, 0) = {(q0, 00)}, δ(q0, 0, 1) = {(q0, 01)}, δ(q0, 1, 0) = {(q0, 10)}, and δ(q0, 1, 1) = 

{(q0, 11)}. These four, similar rules allow us to stay in state q0 and read inputs, 

pushing each onto the top of stack and leaving the previous top stack symbol alone. 

 δ(q0, ε, Z0) = {(q1, Z0)}, δ(q0, ε, 0) = {(q1, 0)}, δ(q0, ε, 1) = {(q1, 1)}. These three rules 

allow P to go from state q0 to state q1 spontaneously (on ε input), leaving intact 

whatever symbol is at the top of the stack. 

 δ(q1, 0, 0) = {(q1, ε)}, and δ(q1, 1, 1) = {(q1, ε)}. Now in state q1 we can match input 

symbols against the top symbols on the stack, and pop when the symbols match. 

 δ(q1, ε, Z0) = {(q2, Z0)}. Finally if we expose the bottom-of-stack marker Z0 and we are 

in state q1, then we have found an input of the form wwR. We go to state q2 and 

accept. 

GRAPHICAL NOTATION FOR PDA 

 The transition diagram for PDA contains: 

 The nodes correspond to the states of the PDA. 

 An arrow labeled Start indicates the start state, and doubly circled states are 

accepting, as for finite automata. 

 The arcs correspond to transitions of the PDA in the following sense.  

1. An arc labeled a, X/α from state q to state p means that δ(q, a, X) contains the 

pair (p, α), perhaps among other pairs. 

2. That is, the arc label tells what input is used, and also gives the old and new 

tops of the stack. 

Note: The only thing that the diagram does not tell us is which stack symbol is the start symbol. 

Conventionally, it is Z0, unless we indicate otherwise. 

 The PDA of example 6.1 is represented by the diagram shown in figure 6.2: 

 

 

 

 

 

 

 

 

 

q0 q1 q2 
Start 

0, Z0 / 0 Z0 

1, Z0 / 1 Z0 

0, 0 / 0 0 

0, 1 / 0 1 

1, 0 / 1 0 

1, 1 / 1 1 

 

 

 

 

0, 0 / ε 

1, 1 / ε 

ε, Z0 / Z0 

ε, 0 / 0 

ε, 1 / 1 

 

 

 

 

ε, Z0 / Z0 

 

 

 

 

Figure 6.2: Representing a PDA as a generalized transition 

diagram 
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(q1, 1111, Z0) 

(q1, 111, 1Z0) 

(q0, 1111, Z0) 

(q0, 111, 1Z0) 

(q0, 11, 11Z0) 

(q0, 1, 111Z0) 

(q0, ε, 1111Z0) 

(q1, ε, 1111Z0) 

(q1, 11, 11Z0) 

(q1, 1, 111Z0) 

(q2, 1111, Z0) 

(q1, 11, Z0) 

(q2, 11, Z0) 

(q1, 1, 1Z0) 

(q1, ε, 11Z0) 

(q1, ε, Z0) 

(q2, ε, Z0) 

 Unlike Finite Automata, the Pushdown Automata involves both the state and the contents of 

the stack. 

 Thus we shall represent the configuration of a PDA by a triple (q, w, γ), where  

 q is the state 

 w is the remaining input and  

 γ is the stack contents 

 Conventionally we show the top of the stack at the left end of γ and the bottom at the right 

end. Such a triple is called as Instantaneous Description or ID, of the PDA. 

 For PDA’s we need a notation that describes changes in the state, the input and stack. Thus 

we adopt the “turnstyle” notation for connecting pairs of ID’s that represent one or many 

moves of a PDA. 

 Let P = (Q, Σ, Γ, δ, q0, Z0, F) be a PDA. Define  
 

 or Ⱶ when P is understood as follows. 

 Suppose δ(q, a, X) contains (p, α). Then for all strings w in Σ* and β in Γ*: 

(q, aw, Xβ) Ⱶ (p, w, αβ) 

 This move reflects the idea that by consuming a (which may be ε) from the input and 

replacing X on top of stack by α, we can go from state q to state p. 

 Note that what remains on the input, w, and what is below the top of stack, β, do not 

influence the action of the PDA; they merely carried along, perhaps to influence events later. 

Example 6.3:  

 Let us consider the action of the PDA of example 6.2 on the input 1111. Since q0 is the start 

state and z0 is start symbol, the initial ID is (q0, 1111, Z0).on this input, the PDA has the 

opportunity to guess wrongly several times. The entire sequence of ID’s that the PDA can 

reach from the initial ID‘s that the PDA can reach from the initial ID (q0, 1111, Z0) is shown in 

figure given below: (arrows represents the Ⱶ relation) 
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 From the initial ID, there are two choices of move. The first guesses that the middle has not 

been seen and leads to ID (q0, 111, 1Z0). In effect, a 1 has been removed from the input and 

pushed on to the stack. 

 The second choice from the initial ID guesses that the middle has been reached. Without 

consuming input, the PDA goes to state q1, leading to the ID (q1, 1111, Z0). Since the PDA 

may accept if it is in state q1 and sees Z0 on top of its stack, the PDA goes from there to ID 

(q2, 1111, Z0). 

 That ID is not exactly an accepting ID, since the input has not been completely consumed. 

Had the input been ε rather than 1111, the same sequence of moves would have led to ID 

(q2, ε, Z0), which would show that ε is accepted. 

 The Pushdown Automata may also guess that it has seen the middle after reading one 1, i.e. 

when it is in the ID (q0, 111, 1Z0). That guess also leads to failure, since the entire input 

cannot be consumed.  

 The correct guess, that middle is reached after reading two 1’s gives us the sequence of ID’s 

(q0, 1111, Z0) Ⱶ (q0, 111, 1Z0) Ⱶ (q0, 11, 11Z0) Ⱶ (q0, 11, 11Z0) Ⱶ (q0, 1,1 Z0) Ⱶ (q1, ε, Z0) Ⱶ (q2, ε, 

Z0). 

 There are three important principles about ID’s and their transitions that we shall need in 

order to reason about PDA’s: 

 If a sequence of ID’s (computation) is legal for a PDA P, then the computation formed 

by adding the same additional input string to the end of the input (second 

component) in each ID is also legal. 

 If a computation is legal for a PDA P, then the computation formed by adding the 

same additional stack symbols below the stack in each ID is also legal. 

 If a computation is legal for a PDA P, and some tail of the input is not consumed, then 

we can remove this tail from the input in each ID, and the resulting computation will 

still be legal. 

 Intuitively, data that P never looks at cannot affect ifs computation. 

Exercises: 

 Suppose the PDA  P = ({q0, q1}, {0, 1}, {X, Y, Z}, δ, q0, Z, {q1}) has the following transition 

functions: 

 δ (q0, 0, Z) = {(q1, Z)} 

 δ (q0, 1, Z) = {(q0, XZ)} 

 δ (q0, 0, X) = {(q0, ε)} 

 δ (q0, 1, X) = {(q0, XX)} 

 δ (q1, 0, Z) = {(q1, YZ)} 

 δ (q1, 1, Z) = {(q0, Z)} 

 δ (q1, 0, Y) = {(q1, YY)} 

 δ (q1, 1, Y) = {(q1, ε)} 
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Starting from the initial ID show all the reachable ID’s when the input w is: 

1. 000011 

2. 011001 

3. 0110110 

THE LANGUAGES OF PDA 

 We have assumed that a PDA accepts it input by consuming it and entering an accepting 

state. We call this approach “acceptance by final state”. 

 There is a second approach to define the language of PDA that has important applications. 

We may also define for any PDA the language “accepted by empty stack”, i.e. the set of 

strings that cause the PDA to empty the stack, starting from the initial ID. 

 These two methods are equivalent, in the sense that a language L has a PDA that accepts it 

by final state if and only if L has a PDA that accepts it by empty stack. 

 However for a given PDA P, the languages that P accepts by final state and empty stack are 

usually different. 

 We shall now show how to convert a PDA accepting L by final state into another PDA that 

accepts L by empty stack and vice-versa. 

ACCEPTANCE BY FINAL STATE 

 Let P = (Q, Σ, Γ, δ, q0, Z0, F) be a PDA. Then L(P), the language accepted by P by final state, is  

{w | (q0, w, Z0) 
 
 
 

 (q, ε, α)}  

for some state q in F and any stack string α. That is starting in the initial ID with w waiting on  

input, P consumes w from the input and enters an accepting state. 

 The contents of the stack at that time are irrelevant. 

Example: 

 We have claimed that the PDA of example 6.2 accepts the language Lwwr, the language of 

strings in {0, 1}* that have the form wwR. Let us see why that statement is true. 

 The proof is an if-and-only-if statement: the PDA P of example 6.2 accepts string x by final 

state if and only if x is of the form wwR. 

 (If) This part is easy; we have only to show the accepting computation of P. If x = wwR, then 

observe that  

(q0, wwR, Z0) 
 
 

 (q0, wR, wRZ0) Ⱶ (q1, wR, wRZ0) 
 
 

 (q1, ε, Z0) Ⱶ (q2, ε, Z0) 

 That is one option the PDA has is to read w from its input and store it on its stack, in reverse. 

Next it goes spontaneously to state q1 and matches wR on the input with the same string on 

its stack, and finally goes spontaneously to state q2. 
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 (only-if) This part is harder. First, observe that the only way to enter accepting state q2 is to 

be in state q1 and have Z0 at the top of the stack. Also, any accepting computation of P will 

start in state q0, make one transition to q1, and never return to q0.  

 Thus it is sufficient to find the conditions on x such that (q0, x, Z0) 
 
 

 (q1, ε, Z0); these will be 

exactly the strings x that P accepts by final state. 

ACCEPTANCE BY EMPTY STACK 

 For each PDA P = (Q, Σ, Γ, δ, q0, Z0, F), we also define 

N(P) = { w | (q0, w, Z0) 
 
 

 (q, ε, ε)} 

for any state q. That is, N(P) is the set of inputs w that P can consume and at the same time 

empty its stack. N(P) stands for null stack, a synonym for “empty stack”. 

Example: 

 The PDA P of example 6.2 never empties its stack, so N(P) = Φ. 

 However a small modification will allow P to accept Lwwr by empty stack as well as by final 

state. Instead of the transition δ(q1, ε, Z0) = {(q2, Z0)}, use δ(q1, ε, Z0) = {(q2, ε)}. Now P pops 

the last symbols off its stack as it accepts, and L(P) = N(P) = Lwwr. 

 Since the set of accepting states is irrelevant, we shall sometimes leave off the last (seventh) 

component from the specification of a PDA P, if all we care about is the language that P 

accepts by empty stack. Thus, we would write P as a six – tuple (Q, Σ, Γ, δ, q0, Z0) 

EQUIVALENCE OF ACCEPTANCE BY FINAL STATE AND EMPTY STACK 

FROM EMPTY STACK TO FINAL STATE 

 We shall show that classes of languages that are L(P) for some PDA P is the same as the class 

of languages that are N(P) for some PDA P. 

 Our first construction shows how to take a PDA PN that accepts a language L by empty stack 

and construct a PDA PF that accepts L by final state. 

Theorem: 

 If L = N(PN) for some PDA PN = (Q, Σ, Γ, δN, q0, Z0) then there is a PDA PF such that L = L(PF) 

Proof: 

 The idea behind the proof is in figure 6.3. We use a new symbol X0, which must not be a 

symbol of Γ, X0 is both the start symbol of PF and a marker on the bottom of the stack that 

lets us know when PN has reached an empty stack. 

 That is if PF sees X0 on top of stack, then it knows that PN would empty its stack on the same 

input. 

 We also need a new start state p0, whose sole function is to push Z0, the start symbol of PN 

on to the top of the stack and enter state q0, the start state of PN.  
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PN 

 Then PF simulates PN, until stack of PN is empty, which PF detects because it sees X0 on the 

top of the stack. 

 Finally we need another new state, pf, which is the accepting state of PF this PDA transfers to 

state pf whenever it discovers that PN would have emptied its stack. 

 The specification of PF is as follows: 

PF = (Q   {p0, pf}, Σ, Γ   {X0}, δF, p0, X0, {pf}) 

 where δF is defined by: 

 δF(p0, ε, X0) = {(q0, Z0X0)}. In its start state, PF makes a spontaneous transition to the 

start state of PN, pushing its start symbol Z0 onto the stack. 

 For all states q in Q, inputs a in Σ or a = ε, and stack symbols Y in Γ, δF(q, a, Y) contains 

all the pairs in δN(q, a, Y). 

 In addition to rule (b), δF(q, ε, X0) contains (pf, ε) for every state q in Q. 

 

 

 

 

 

 

 

 

 We must show that w is in L(PF) if and only if w is in N(PN). 

 (If) we are given that (q0, w, Z0) 
 
   (q, ε, ε) for some state q.  

 (only if) the converse requires only that we observe the additional transitions of rules (a) and 

(c) give us very limited ways to accept w by final state. We must use rule (c) at the last step, 

and we can only use that rule if the stack of PF contains only X0. X0’s ever appear on the stack 

except at the bottommost position. Furthermore rule (a) is only used at the first step, and it 

must be used at the first step. 

FROM FINAL STATE TO EMPTY STACK 

 Now let us go in the appropriate direction: take a PDA PF that accepts a language L by final 

state and construct another PDA PN that accepts L by empty stack. 

 The construction is simple and suggested in the figure 6.4. From each accepting state of PF 

add a transition on ε to a new state p. 

 When in state p, PN pops its stack and does not consume any input.  

ε, X0 / ε 

ε, X0 / ε 

ε, X0 / ε 

ε, X0 / ε 

 

       PN p0 q0 pf 

ε, X0 /Z0X0 

Figure 6.3: PF simulates PN and accepts if PN empties the stack 

Start 
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 Thus whenever PF enters an accepting state after consuming input w, PN will empty its stack 

after consuming w. 

 

 

 

 

 

 

 

 

 

 To avoid simulating a situation where PF empties its stack without accepting, PN must also 

use a marker X0 on the bottom of its stack. The marker is PN’s start symbol, PN must start in a 

new state p0, whose sole function is to push the start symbol of PF on the stack and go to the 

start state of PF. 

 The construction is sketched in Fig. 6.4, and we give it formally in the next theorem. 

Theorem: 

 Let L be L(PF) for some PDA PF = (Q, Σ, Γ, δF, q0, Z0, F). Then there is a PDA PN such that L = 

N(PN). 

Proof: 

 The construction is suggested in figure 6.4. Let 

PN = (Q   {p0, p}, Σ, Γ   {X0}, δN, p0, X0) 

 Where δN is defined by: 

 δN(p0, ε, X0) = {(q0, Z0X0)}. We start by pushing the start symbol of PF on to the stack 

and going to the start state of PF. 

 For all states q in Q, input symbols a in Σ or a = ε, and Y in Γ, δN(q, a, Y) contains every 

pair that is in δF(q, a, Y). That is, PN simulates PF.  

 For all accepting states q in F and stack symbols Y in Γ or Y = X0, δN(q, ε, Y) contains (p, 

ε). By this rule, whenever PF accepts, PN can start emptying its stack without 

consuming any more input. 

 For all stack symbols Y in Γ or Y = X0, δN(p, ε, Y) = {(p, ε)}. Once in state p, which only 

occurs when PF has accepted, PN pops every symbol on its stack, until the stack is 

empty. No further input is consumed. 

 Now we must prove that w is in N(PN) if and only if w is in L(PF).  

 The “if” part is a direct simulation and the “only-if” part requires that we examine the limited 

number of things that the constructed PDA PN can do. 

 (If) suppose (q0, w, Z0) 
 
 

 (q, ε, α) for some accepting state q and stack string α. 

Figure 6.4: PN simulates PF and empties its stack when and only when PN enters an accepting state 

 

       PF 

ε, any/ ε 

ε, any/ ε 

ε, any/ ε ε, X0 /Z0X0 

p 
p0 q0 

Start 

PN 
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PN 

 (Only if) the only way PN can empty its stack is by entering state p, since X0 is sitting at the 

bottom of the stack and X0 is not a symbol on which PF has any moves. 

 The only way PN can enter state p is if the simulated PF enters an accepting state. The first 

move of PN is surely the move given in rule (a). Thus every accepting computation of PN looks 

like 

(p0, w, X0) Ⱶ (q0, w, Z0X0) 
 
 

 (q, ε, αX0) 
 
 

 (p, ε, ε) 

 

 Where q is an accepting state of PF. Moreover between ID’s (q0, w, Z0X0) and (q, ε, αX0), all 

the moves are moves of PF. 

 In particular X0 was never the top stack symbol prior to reaching ID (q, ε, αX0) (i.e. although α 

could be ε, in which case PF can emptied its stack at the same time it accepts). Thus we 

conclude that the same computation can occur in PF, without the X0 on the stack; that is (q0, 

w, Z0) 
 
 

  (q, ε, α). 

 

 Now we can see that PF accepts w by final state, so w is in L(PF). 

EQUIVALENCE OF PDA’S AND CFG’S 

 Now we shall demonstrate that the languages defined by PDA’s are exactly the context-free 

languages. 

 The plan of attack is suggested by figure 6.5.The goal is to prove that the following three 

classes of languages: 

 The context – free languages i.e. the languages defined by CFG’s. 

 The languages that are accepted by final state by some PDA. 

 The languages that are accepted by empty stack by some PDA. 

are all the same class. We have already shown that (b) and (c) are the same. It turns out to 

be easiest next to show that (a) and (3) are the same, thus implying the equivalence of all 

three. 

 

 

 

 

 

PN PN 

PN 

Grammar PDA by 

empty stack 
PDA by final 

state 

Figure 6.5: Organization of constructions showing equivalence of three ways of defining the CFL’s 
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FROM GRAMMARS TO PUSHDOWN AUTOMATA 

 Given CFG G we construct a PDA that simulates the left most derivations of G. Any left 

sentential form that is not a terminal string can be written as xAα, where A is the left most 

variable, x is whatever terminals appear to its left, and α is the string of terminals and 

variables that appear to the right of A. 

 We call Aα the tail of this left sentential form. If a left sentential form consists of only 

terminals, then its tail is ε. 

 The idea behind the construction of PDA from a grammar is to have a PDA simulate the 

sequence of left sentential forms that the grammar uses to generate a given terminal string 

w.  

 The tail of each sentential form xAα appears on the stack, with A at the top. At that time, x 

will be represented by our having consumed x from the input, leaving whatever of w follows 

its prefix x. i.e. if w = xy, then y will remain on the input. 

 Suppose the PDA is in an ID (q, y, Aα), representing left sentential form xAα. It guesses the 

production to use to expand A, say A  β. The move of the PDA is to replace A on the top of 

the stack by β, entering ID (q, y, βα). Note that there is only one state, q, for this PDA. 

 Now (q, y, βα) may not be a representation of the next left sentential form, because β may 

have a prefix of terminals. In fact, β may have no variables at all and α may have a prefix of 

terminals. 

 Whatever terminals appear at the beginning of βα need to be removed, to expose the next 

variable at the top of the stack. The terminals are compared against the next input symbols, 

to make sure our guesses at the left most derivation of input string w are correct; if not this 

branch of the PDA dies. 

 If succeeded in this way to guess a leftmost derivation of w, then we shall eventually reach 

the left sentential form w. At that point all the symbols on the stack have either been 

expanded (if they are variables) or matched against the input (if they are terminals). The 

stack is empty and we accept by empty stack. 

 The above informal construction can be made precise as follows. Let G = (V, Σ, Q, S) be a CFG. 

Construct a PDA P that accepts L(G) by empty stack as follows: 

P = ({q}, Σ, V   Σ, δ, q, S) 

 Where transition function δ is defined by: 

 For each variable A. 

δ ( q, ε, A) = {(q, β) | A  β is a production of P} 

 For each terminal a, δ (q, a, a) = {(q, ε)}. 
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Example: 

 Let us consider the expression grammar given below to a PDA.  

I  a | b | Ia | Ib | I0 | I1 

E  I | E * E | E + E | (E) 

 The set of terminals for the PDA is {a, b, 0, 1, (, ), +, *}. These eight symbols and the symbols I 

and E form the stack alphabet. 

 The transition function for the PDA is: 

 δ (q, ε, I) = {(q, a), (q, b), (q, Ia), (q, Ib), (q, I0), (q, I1)}. 

 δ (q, ε, E) = {(q, I), (q, E*E), (q, E+E), (q, (E))}. 

 δ (q, a, a) = {(q, ε)}; δ (q, b, b) = {(q, ε)}; δ (q, a, a) = {(q, ε)}; δ (q, 0, 0) = {(q, ε)}; 

δ (q, 1, 1) = {(q, ε)}; δ (q, (, () = {(q, ε)}; δ (q, ), )) = {(q, ε)}; δ (q, *, *) = {(q, ε)}; 

δ (q, +, +) = {(q, ε)}; 

 Note that (a) and (b) come from rule (a), while the eight transitions of (c) come from rule (b). 

Also δ is empty except as defined by (a) through (c). 

FROM PDA’S TO GRAMMARS: 

 Now we complete the proofs of equivalence by showing that for every PDA P, we can find a 

CFG G whose language is the same language that P accepts by empty stack. 

 The idea behind the proof is to recognize that the fundamental event in the history of a 

PDA’s processing of a given input is the net popping of one symbol off the stack, while 

consuming some input. 

 A PDA may change state as it pops stack symbols, so we should also note the state that it 

enters when it finally pops a level off its stack. 

 The figure 6.6 below suggests how we pop a sequence of symbols Y1, Y2 . . . Yk off the stack. 

Some input x1 read while Y1 is popped. 

 

 

 

 

 

 

 

 

 

 We should emphasize that the “pop” is the net effect of (possibly) many moves. For 

example, the first move may change Y1 to some other symbol Z. The next move may replace 

Z by UV; later moves have the effect of popping U, and then other moves pop V. The net 

p1 

pk-1 

p0 

. 

 

. 

 

. 

 

Y1 

Y2 

 

 

 

Yk 

pk 
x1         x2    xk 

Figure 6.6: A PDA makes a sequence of moves that 

have the net effect of popping a symbol off the stack 
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effect is that Y1 has been replaced by nothing i.e. it has been popped, and all the input 

symbols consumed so far constitute x1. 

 We also shown in the figure 6.6 the net change of state. We suppose that the PDA starts out 

in state p0, with Y1 at the top of the stack. After all the moves whose net effect is to pop Y1, 

the PDA is in state p1.  

 It then proceeds to (net) pop Y2, while reading input string x2 and winding up, perhaps after 

many moves, in state p2 with Y2 off the stack. 

 The computation proceeds until each of the symbols on the stack is removed. 

 Our construction of an equivalent grammar uses variables each of which represents an event 

consisting of: 

1. The net popping of some symbol X from the stack, and  

2. A change in state from some p at the beginning to q when X has finally been replaced 

by ε on the stack. 

   We represent such a variable by the composite symbol [pXq]. Remember that this sequence 

of characters is our way of describing one variable; it not five grammar symbols.  

 The formal construction is given by the theorem given below: 

Theorem 6(a): 

 Let P = (Q, Σ, Γ, δ, q0, Z0) be a PDA. Then there is a context free grammar G such that L(G) = 

N(P). 

Proof: 

 We shall construct G = (V, Σ, R, S), where the set of variables V consists of: 

1. The special symbol S, which is the start symbol and  

2. All symbols of the form [pXq], where p and q are states in Q, and X is a stack symbol, 

in Γ. 

 The productions of G are as follows: 

 For all states p, G has the production S  [q0Z0p]. It is intended to generate all those 

strings w that cause P to pop Z0 from its stack while going from state q0 to state p. 

i.e. (q0, w, Z0) 
 
 

 (p, ε, ε) 

 Let δ(q, a, X) contain the pair (r, Y1Y2….Yk), where: 

1. a is either the symbol in Σ or a = ε. 

2. k can be any number, including 0, in which case the pair is (r, ε). 

Then for all lists of states r1, r2, . . . . , rk, G has the production 

[qXrk]  a[rY1r1][r1Y2r2] . . . . [rk-1ykrk] 

 This production says that one way to pop X and go from state q to state rk is to read a 

(which may be ε), then use some input to pop Y1 off the stack while going from state r 

to state r1, then read some more input that pop Y2 off the stack and goes from state 

r1 to r2 and so on. 
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Example: 

 Let us convert the PDA PN = ({q}, {0, 1},{Z, A, B}, δN, q, Z) to a grammar. Recall that PN accepts 

all strings such that, the number of 0’s is equal to the number of 1’s. Since p has only one 

state and three stack symbols, the construction is simple. There are only four variables in the 

grammar G. 

 S, the start symbol, which is in every grammar constructed by the method of theorem 

6(a), and  

 [qZq] 

 [qAq] 

 [qBq] 

 The last three are the only triples that can be assembled from the states and stack symbols 

of PN. 

 The productions of grammar G are as follows: 

 The only production for S is S  [qZq]. However if there were n states of the PDA, 

then there would be n productions of this type, since the last state could be any of 

the n states. The first state would have to be the start state and the stack symbol 

would have to be the start symbol, as in our productions above. 

 The production [qZq]  0[qZq][qAq] results from the fact that δN(q, 0, Z) contains (q, 

ZA). Again for this simple example there is only one production. However  if there 

were n states then this one rule would produce n2 productions since the two middle 

states of the body could also be any one state. That is if p and r were any two states 

of the PDA, then production [qZp]  0[qZr][rAp] would be produced. In a similar way 

we get the productions. 

 [qZq]  1[qZq][qBq]. 

 [qAq]  0[qAq][qAq]. 

 [qBq]  1[qBq][qBq]. 

 From the fact that δN(q, 0, B) contains (q, ε), we have production [qBq]  0. Notice 

that in this case, the list of stack symbols by which B is replaced is empty, so the only 

symbols in the body are the input symbol that caused the move. Similarly  

 [qAq]  1. 

 [qAq]  ε. 

 We may for convenience, replace the triple [qZq] by some less complex symbol, say X and 

similarly [qAq] and [qBq] by A and B, respectively. If we do then the complete grammar 

consists of the productions: 

S  X 

X  0XA 

X  1XB 

A  0AA 
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B  1BB 

A  1 

B  0 

X  ε 

 In fact, if we notice that X and S derive exactly the same strings, we may identify them as one 

and write the complete grammar as 

G = ({S, A, B}, {0, 1}, {S  0SA | 1SB | ε, A  0AA | 1, B  1BB | 0}, S) 

 

INTRODUCTION TO DCFL 

 In formal language theory, deterministic context-free languages (DCFL) are a proper subset 

of context-free languages. They are the context-free languages that can be accepted by a 

deterministic pushdown automaton. 

 The notion of the DCFL is closely related to the deterministic pushdown automaton (DPDA). 

It is where the language power of a pushdown automaton is reduced if we make it 

deterministic; the pushdown automaton becomes unable to choose between different state 

transition alternatives and as a consequence cannot recognize all context-free languages. 

 Unambiguous grammars do not always generate a DCFL. For example, the language of even-

length palindromes on the alphabet of 0 and 1 has the unambiguous context-free grammar S 

→ 0S0 | 1S1 | ε. The problem of whether a given context-free language is deterministic is 

undecidable. 

 A pushdown automaton  A=(Q,Σ, Γ, δ, q0,Z0, F) is deterministic if: 

 Whenever (q, a, X) is nonempty for some a Є Σ, then (q, ε, X) is empty, and 

 For each q ∈ Q, a ∈ Σ   {ε} and X ∈ Γ, δ(q, a, X) contains at most one element. 

 A language L is a deterministic context-free language (DCFL) if it is accepted by a 

deterministic pushdown automaton (DPDA). 

DETERMINISTIC PDA 

 While PDA’s are by definition allowed to be nondeterministic the deterministic subcase is 

quite important. In particular, parser generally behave like deterministic PDA’s, so the class 

of languages that can be accepted by these automata is interesting for the insights it gives us 

into what constructs are suitable for use in programming language. 

DEFINITION OF DETERMINISTIC PDA 

 Intuitively, a PDA is deterministic if there is never a choice of move in any situation. These 

choices are of two kinds. 

 If δ(q, a, X) contains more than one pair, then surely the PDA is nondeterministic because we 

can choose among these pairs when deciding on the next move. 
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 However even if δ(q, a, X) is always a singleton, we could still have a choice between using a 

real input symbol, or making a move on ε. 

 Thus we define a PDA P = (Q, Σ, Γ, δ, q0, Z0, F) to be deterministic (a deterministic PDA or 

DPDA), if and only if the following conditions are met: 

 δ(q, a, X) has at most one member for any q in Q, a in Σ or a = ε, and X in Γ. 

 If δ(q, a, X) is non empty, for some a in Σ, then δ(q, ε, X) must be empty. 

Example: 

 Consider the language L = {0n1n | n ≥ 1}.  It turns out that this language can be recognized by 

a deterministic PDA. 

 The strategy of the PDA is to store 0’s on its stack, until it sees a 1. It then goes to another 

state, in which it pops the 0’s each time it reads a 1. 

 If it finds the bottom before reading the entire input, it dies: its input cannot be of the form 

0m1m. 

 If it succeeds in popping its stack down to the initial symbol, which marks the bottom of the 

stack, when the entire input has been read, then it accepts its input. 

 The DPDA for language L is shown as a transition diagram in figure 6.7: 

 

 

 

 

 

 

 

 

 

REGULAR LANGUAGES AND DETERMINISTIC PDA’S 

 The DPDA’s accept a class of languages that is between the regular languages and the CFL’s.  

Theorem: 

 If L is a regular language, then L = L(P) for some DPDA P. 

Proof: 

 Essentially a DPDA can simulate the deterministic finite automaton. The PDA keeps some 

stack symbol Z0 on its stack, because a PDA has to have the stack, but really the PDA ignores 

its stack and just uses its state. 

 Formally, let A = (Q, Σ, δA, q0, F) be a DFA. Construct DPDA P = (Q, Σ, {Z0}, δP, q0, Z0, F) by 

defining δP(q, a, Z0) = {(p, Z0)} for all states p and q in Q, such that δA(q, a) = p. 

 If we want the DPDA to accept by empty stack, then we find that our language recognizing 

capability is rather limited. 

Figure 6.7: A Deterministic PDA accepting {0n1n| n > 1} 

q0 q1 q2 
Start 

0, Z0 / 0 Z0 

0, 0 / 0 0 

 

 

 

 

1, 0 / ε 

1, 0/ε ε, Z0 / Z0 
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 Say that a language L has the prefix property if there are no two different strings x and y in L 

such that x is a prefix of y. 

Theorem: 

 A language L is N(P) for some DPDA P if and only if L has the prefix property and L is L(P’) for 

some DPDA P’. 

DPDA’s and context free languages 

 We have already seen that a DPDA can accept languages like Lwcwr that are not regular. To 

see this language is not regular, suppose it were, and use the pumping lemma. 

 If n is the constant of the pumping lemma, then consider the strings w = 0nc0n, which is in 

Lwcwr. 

 However when we pump this string, it is the first group of 0’s whose length must change so 

we get in Lwcwr strings that have the “center” marker not in the center. 

 Since these strings are not in Lwcwr, we have contradiction and conclude that Lwcwr is not 

regular. 

 On the other hand, there are CFL’s like Lwwr that cannot be L(P) for any DPDA P. A formal 

proof is complex, but the intuition is transparent. 

 If P is DPDA accepting Lwwr, then given a sequence of 0’s it must store them on the stack, or 

do something equivalent to count an arbitrary number of 0’s. For instance if could store one 

X for two 0’s it sees, and use the state to remember whether the number was even or odd. 

 Suppose that P has seen n 0’s and then sees 110n. if must verify that there were n 0’s after 

the 11, and to do so it must pop its stack. 

 Now P has seen 0n110n. If it sees an identical string next, it must accept, because the 

complete input is of the form wwR, with w = 0n110n. However, if it sees 0m110m for some m ≠ 

n, P must not accept. Since its stack is empty. 

 It cannot remember what arbitrary integer n was and must not able to recognize Lwwr 

correctly. 

 Our conclusion is that 

 The language accepted by DPDA’s by final state properly included the regular 

languages, but are properly included in the CFL’s. 


