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UNIT-VII 

TURING MACHINES 

Introduction 

 Until now we have been interested primarily in simple classes of languages and the ways 

that they can be used for relatively constrainted problems, such as analyzing protocols, searching 

text, or parsing programs.  

 We begin with an informal argument, using an assumed knowledge of C programming, to 

show that there are specific problems we cannot solve using a computer. 

These problems are called “undecidable”.  We then introduce a respected formalism for 

computers called the Turing machine. While a Turing machine looks nothing like a PC, and would be 

grossly inefficient should some startup company decide to manufacture and sell them, the Turing 

machine long has been recognized as an accurate model for what any physical computing device is 

capable of doing. 

TURING MACHINE: 

 The purpose of the theory of undecidable problems is not only to establish the existence 

of such problems – an intellectually exciting idea in its own right – but to provide 

guidance to programmers about what they might or might not be able to accomplish 

through programming. 

 The theory has great impact when we discuss the problems that are decidable, may 

require large amount of time to solve them. These problems are called “intractable 

problems” tend to present greater difficulty to the programmer and system designer 

than do the undecidable problems. 

 We need tools that will allow us to prove everyday questions undecidable or intractable.  

 As a result we need to rebuild our theory of undecidability, based not on programs in C or 

another language, but based on a very simple model of a computer called the Turing 

machine.  

 This device is essentially a finite automaton that has a single tape of infinite length on 

which it may read and write data. 

 One advantage of the Turing machine over programs as representation of what can be 

computed is that the Turing machine is sufficiently simple that we can represent its 

configuration precisely, using simple notation much like the ID’s of a PDA. 

NOTATION or MODEL OF THE TURING MACHINE 

 We may visualize a Turing machine as in figure-1 given as follows. The machine consists 

of a finite control which can be in any of a finite set of states. 
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 There is a tape divided into squares or cells; each cell can hold any one of a finite number 

of symbols. 

 

Figure 1: A Turing Machine 

 Initially the input, which is a finite length string of symbols chosen from the input 

alphabet, is placed on the tape. 

 All other tape cells, extending infinitely to the left and right, initially hold a special symbol 

called the blank. 

 The blank is a tape symbol, but not an input symbol, and there may be other tape 

symbols besides the input symbols and the blank as well. 

 There is a tape head that is always positioned at one of the tape cells. The Turing 

machine is said to be scanning that cell. 

 Initially the tape head is at the left most cells that hold the input. 

 A move of the Turing machine is a function of the state of the finite control and the tape 

symbol scanned. 

 In one move, the Turing machine will: 

1. Change state. The next state optionally may be the same as the current state. 

2. Write a tape symbol in the cell scanned. This tape symbol replaces whatever 

symbol was in that cell. Optionally the symbol written may be the same as the 

symbol currently there. 

3. Move the tape head left or right. In our formalism we require a move, and do not 

allow the head to remain stationary. This restriction does not constrain what a 

truing machine can compute, since any sequence of moves with a stationary head 

could be condensed, along with the next tape head move, into a single state 

change, a new tape symbol, and a move left or right. 

 The formal notation we shall use for a Turing Machine (TM) is similar to that used for 

finite automata or PDA’s. We describe a TM by the 7 – tuple like 

M = (Q, Σ, Γ, δ, q0, B, F) 

 Whose components have the following meanings: 

Q: the finite set of states of the finite control 

Σ: the finite set of input symbols 
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Γ: the complete set of tape symbols; Σ is always a subset of Γ. 

δ: The transition function. δ = Q / F x Γ  Q x Γ x {L, R} 

The arguments of δ(q, X) are a state q and a tape symbol X. The value of δ (q, X), if it is 

defined, is a triple (p, Y, D), where: 

 p is the next state, in Q. 

 Y is the symbol, in Γ, written in the cell being scanned, replacing whatever symbol 

was there. 

 D is a direction, either L or R, standing for “left” or “right”, respectively, and telling us 

the direction in which the head moves. 

q0: the start state, a member of Q, in which the finite control is found initially. 

B: the blank symbol. This symbol is in Γ but not in Σ; i.e. it is not an input symbol. The 

blank appears initially in all but the finite number of initial cells that hold input 

symbols. 

F: the set of final or accepting states, a subset of Q. 

INSTANTANEOUS DESCRIPTION FOR TURING MACHINE 

 Since a TM in principle has an infinitely long tape, we might imagine that it is impossible 

to describe the configurations of a TM briefly. 

 However after any finite number of moves, the TM can have visited only a finite number 

of cells, even though the number of cells visited can eventually grow beyond any finite 

limit. 

 Thus in every ID, there is an infinite prefix and an infinite suffix of that cells that have 

never been visited. 

 These cells must all hold either blanks or one of the finite numbers of input symbols. We 

thus show in an ID only the cells between the leftmost and rightmost nonblanks. 

 Under a special condition, when the head is scanning one of the leading or trailing blanks, 

a finite number of blanks to the left or right of the nonblank portion of the tape must also 

be included in the ID. 

 In addition to representing the tape, we must represent the finite control and the tape-

head position. To do so we embed the state in the tape, and place it immediately to the 

left of the cell scanned. 

 However it is easy to change the names of the states so they have nothing in common 

with the tape symbols, since the operation of the TM does not depend on what the 

states are called. 

 Thus we shall use the string X1X2 . . . Xi-1qXiXi+1. . .Xn to represent the ID in which 

1. q is the state of the Turing machine 
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2. The tape head is scanning the ith symbol from the left. 

3. X1X2 . . . Xn is the portion of the tape between the leftmost and the rightmost 

nonblank. As an exception if the head is to the left of the leftmost nonblank or 

the right of the rightmost nonblank, then some prefix or suffix of X1X2 . . . Xn will 

be blank, and i will be 1 or n, respectively. 

 We describe the Turing machine M = (Q, Σ, Γ, δ, q0, B, F) by the  
 

 notation that was used 

for PDA’s. When the Turing machine M is understood, we shall use just Ⱶ to reflect 

moves.  

 Suppose δ(q, Xi) = (p, Y, L); i.e. the next move is leftward. Then 

X1 X2 . . . Xi-1 q Xi Xi+1 . . . Xn  
 
 

  X1 X2 . . . Xi-2 p Xi-1 Y Xi+1 . . . Xn 

 Notice how this move reflects the change to state p and the fact that the tape head is 

now positioned at cell i-1. There are two important exceptions: 

1. If i = 1, then M moves the blank to the left of X1. In that case, 

X1X2 . . . Xn  
 

 pBYX2. . . Xn 

2. If i = n and Y = B then the symbol B written over Xn joins the infinite sequence of 

trailing blanks and does not appear in the next ID. Thus, 

X1X2 . . . Xn-1 q Xn  
 

 X1X2 . . . Xn-2 p Xn-1 

 Now suppose δ(q, Xi) = (p, Y, R); i.e. the next move is rightward. Then  

X1 X2 . . . Xi-1 q Xi Xi+1 . . . Xn  
 
 

  X1 X2 . . . Xi-1 Y p Xi+1 . . . Xn 

 Here the move reflects the fact that the head has moved to cell i+1. Again there are two 

important exceptions: 

1. If i = n, then i+1st cell holds a blank, and that cell was not part of the previous ID. 

Thus we instead have 

X1 X2 . . . Xn-1 q Xn  
 
 

  X1 X2 . . . Xn-1 Y p B 

2. If i = 1 and Y =B , then the symbol B written over X1 joins the infinite sequence of 

leading blanks and does not appear in the next ID. Thus, 

q X1 X2 . . . Xn  
 
 

 p X2 . . . Xn 

Example- 7.1: 

 Let us design a TM and see how it behaves on a typical input. The TM we construct will 

accept the language consisting of all palindromes of 0’s and 1’s. 

 Initially it is given a finite sequence of 0’s and 1’s on its tape, preceded and followed by 

infinity of blanks. 

 Starting at the left end it checks the first symbol of the input if it is a 0 and changes it to 

X. Similarly if it is a 1, it changes it to Y and moves the right until it sees a blank. 

 Now it moves left and checks whether the symbol read matches the one most recently 

changed. If so it is also changed correspondingly and the machine move back left until it 

finds the leftmost 0 or 1. 
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 This process is continued by moving left and right alternately until all 0’s and 1’s have 

been matched. 

 If the input is not a palindrome, the TM will not have a next move and hence will halt 

without accepting. However if it is a palindrome it accepts.  

 The formal specification of TM M is  

M = ({q0, q1, q2, q3, q4, q5, q6}, {0, 1}, {0, 1, X, Y, B}, δ, q0, B, {q6}) 

 Where δ is given by the table as follows: 

State 0 1 X Y B 

q0 (q1, X, R) (q2, Y, R) (q6, X, R) (q6, Y, R) (q6, B, R) 

q1 (q1, 0, R) (q1, 1, R) (q3, X, L) (q3, Y, L) (q3, B, L) 

q2 (q2, 0, R) (q2, 1, R) (q4, X, L) (q4, Y, L) (q4, B, L) 

q3 (q5, X, L) - (q6, X, R) (q6, Y, R) - 

q4 - (q5, Y, L) (q6, X, R) (q6, Y, R) - 

q5 (q5, 0, L) (q5, 1, L) (q0, X, R) (q0, Y, R) - 

Figure 2: A Turing machine to accept the set of all palindromes over {0, 1}* 

 As M performs its computation, the portion of the tape, where M’s tape head has visited, 

will always be a sequence of symbols described by the regular expression(X + Y)*(0 + 

1)*(X + Y)*. 

 That is there will be some 0’s that have been changed to X’s and 1’s that have been 

changed to Y’s followed by 0’s that have not yet been changed to X’s and 1’s  that have 

not yet been changed to Y’s followed again with a string of X’s and Y’s. 

 State q0 is the initial state, and M also enters the state q0 every time it returns to the 

leftmost remaining 0 or 1. Accordingly we have two cases: 

1. If M is in state q0 and it scans a 0, the rule in the upper-left corner of figure-2 tells 

it to go to state q1, change the 0 to an X, and move right over all 0’s and 1’s, that 

it finds on the tape remaining in the same state until it sees an X, Y or B. Now M 

moves one step to the left and changes to state q3. It verifies that the symbol read 

is 0 and changes the 0 to an X and goes to state q5. 

2. If M is in state q0 and it scans a 1 it goes to state q2 changes the 1 to a Y and 

moves right over all 0’s and 1’s, that it finds on the tape remaining in the same 

state until it sees an X, Y or B. Now M moves one step to the left and changes to 

state q4. It then verifies that the symbol read is a 1 and changing it to a Y goes to 

state q5. 

 In state q5 M moves left over 0’s and 1’s until it finds an X or Y. Now it changes state to q0 

once again and moves right. Once again there are two cases: 

1. If M now sees 0’s or 1’s, it repeats the matching cycle we have just described. 
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2. If M sees an X or a Y, then it has changed all the 0’s to X’s and 1’s to Y’s; the input 

was of a palindrome of even length, and hence M should accept. Thus M enters 

state q6 and halts 

 In case M is in state q3 and reads an X or q4 and reads a Y instead of 0 and 1, it concludes 

that the input was a palindrome of odd length. In this case it changes to state q6 and 

halts. 

 On the other hand if M encounters a 1 in state q3 or 0 in state q4, then the input is not a 

palindrome and so M halts without accepting. 

 Here is an example of an accepting computation by M. Its input is 1001. Initially M is in 

state q0, scanning the first 1 i.e. M’s initial ID is q01001.the entire sequence of moves of 

M is : 

q01001 Ⱶ Yq2001 Ⱶ Y0q201 Ⱶ Y00q21 Ⱶ Y001q2 Ⱶ Y00q41 Ⱶ Y00q5Y Ⱶ Y0q50Y Ⱶ Yq500Y Ⱶ 

q5Y00Y Ⱶ Yq000Y Ⱶ YXq10Y Ⱶ YX0q1Y Ⱶ YXq30Y Ⱶ YXq5XY Ⱶ Yq5XXY Ⱶ YXq0XY Ⱶ Yq6XXY 

DESIGN OF TURING MACHINE 

TRANSITION DIAGRAM OF TURING MACHINE 

 We can represent the transitions of a Turing machine pictorially much as we did for the 

PDA.  

 A transition diagram consists of a set of nodes corresponding to the states of the TM. An 

arc from state q to state p is labeled by one or more items of the form X/Y D, where X 

and Y are tape symbols and D is a direction either L or R. 

 That is whenever δ(q, X) = (p, Y, D), we find the label X/Y D on the arc form q to p. 

However in our diagrams the direction D is represented pictorially by  for “left” and  

for “right”. 

 As for other kinds of transition diagram we represent diagrams, we represent the start 

state by the word “Start” and an arrow entering that state. 

 Thus the only information about the TM one cannot read directly from the diagram is the 

symbol used for the blank. We shall assume that symbol is B unless we state otherwise. 

Example-7.2: 

 The following Figure – 3 shows the transition diagram for the Turing machine of example-

7.1 whose transition function was given in figure-2. 
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Figure 3: Transition diagram for the Turing Machine which accepts the set of all palindromes over {0, 1} 

COMPUTABLE FUNCTIONS 

 Computable functions are the basic objects of study in computability theory. 

 Computable functions are the formalized analogue of the intuitive notion of algorithm.  

 They are used to discuss computability without referring to any concrete model of 

computation such as Turing machines or register machines. 

 Any definition, however, must make reference to some specific model of computation 

but all valid definitions yield the same class of functions. 

 Particular models of computability that give rise to the set of computable functions are 

the Turing-computable functions and the μ-recursive functions. 

 Before the precise definition of computable function, mathematicians often used the 

informal term effectively calculable. This term has since come to be identified with the 

computable functions. 

 Note that the effective computability of these functions does not imply that they can be 

efficiently computed (i.e. computed within a reasonable amount of time). 

 In fact, for some effectively calculable functions it can be shown that any algorithm that 

computes them will be very inefficient in the sense that the running time of the 

algorithm increases exponentially with the length of the input. 

 According to the Church–Turing thesis, computable functions are exactly the functions 

that can be calculated using a mechanical calculation device given unlimited amounts of 

time and storage space.  
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 Equivalently, this thesis states that any function which has an algorithm is computable. 

Note that an algorithm in this sense is understood to be a sequence of steps a person 

with unlimited time and an infinite supply of pen and paper could follow. 

 The basic characteristic of a computable function is that there must be a finite procedure 

(an algorithm) telling how to compute the function. 

COMPUTABLE SETS AND RELATION 

 A set A of natural numbers is called computable if there is a computable, total function f 

such that for any natural number n, f(n) = 1 if n is in A and f(n) = 0 if n is not in A. 

 A set of natural numbers is called computably enumerable if there is a computable 

function f such that for each number n, f(n) is defined if and only if n is in the set. 

 Thus a set is computably enumerable if and only if it is the domain of some computable 

function.  

 The word enumerable is used because the following are equivalent for a nonempty 

subset B of the natural numbers: 

1. B is the domain of a computable function. 

2. B is the range of a total computable function. If B is infinite then the function can 

be assumed to be injective (or one to one). 

 If a set B is the range of a function f then the function can be viewed as an enumeration 

of B, because the list f(0), f(1), ... will include every element of B. 

 In computability theory in computer science, it is common to consider formal languages. 

An alphabet is an arbitrary set.  

 A word on an alphabet is a finite sequence of symbols from the alphabet; the same 

symbol may be used more than once. 

 For example, binary strings are exactly the words on the alphabet {0, 1}. 

 A language is a subset of the collection of all words on a fixed alphabet.  

 For example, the collection of all binary strings that contain exactly 3 ones is a language 

over the binary alphabet. 

 A key property of a formal language is the level of difficulty required to decide whether a 

given word is in the language. Some coding system must be developed to allow a 

computable function to take an arbitrary word in the language as input; this is usually 

considered routine. 

RECURSIVELY ENUMERABLE LANGUAGES 

 A language is computably enumerable if there is a computable function f such that f(w) is 

defined if and only if the word w is in the language. The term enumerable has the same 

etymology as in computably enumerable sets of natural numbers. 

Examples 

 The following functions are computable: 
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1. Each function with a finite domain; e.g., any finite sequence of natural numbers. 

2. Each constant function f : Nk → N, f(n1,...nk) := n.  
3. Addition f : N2 → N, f(n1,n2) := n1 + n2 

4. The function which gives the list of prime factors of a number. 

5. The greatest common divisor of two numbers is a computable function. 

CHURCH HYPOTHESIS 

 In 1900 mathematician David Hilbert delivered a lecture, where he identified for every 

twenty three mathematical problems and posed them as a challenge for the coming 

century. The tenth problem on his list concerned algorithms. 

 According to Hilbert’s tenth problem, it was to devise an algorithm that tests whether a 

polynomial has an integral root. 

 He did not use the term algorithm but rather a process according to which it can be 

determined by a finite number of operations. 

 Hilbert explicitly asked that an algorithm be devised. Thus he apparently assumed that 

such an algorithm must exist – someone need only find it.  

 As we now know, no algorithm exists for this task; it is algorithmically unsolvable. 

 The definition came in 1936 papers of Alonzo Church and Alan Turing. Church used a 

notational system called the λ-calculus to define algorithms. Turing did it with his 

machines. 

 These two definitions were shown to be equivalent. This connection between the 

informal notion of algorithm and the precise definition has come to be called the Church-

Turing thesis.  

 In computability theory the Church-Turing thesis is a combined hypothesis about the 

nature of functions whose values are effectively calculable or in more modern terms, 

functions whose values are algorithmically computable. 

 In simple terms the church-Turing thesis states that a function is algorithmically 

computable if and only if it is computable by a Turing machine. 

 The Church–Turing thesis is a statement that characterizes the nature of computation 

and cannot be formally proven. 

 

 

 

 

COUNTER MACHINES 

 A counter machine may be thought of in one of the two ways: 

1. The counter machine has the same structure as the multistack machine but in 

place of each stack is a counter. Counters hold any nonnegative integer, but we 

Intuitive notion of   equals    Turing machine 

algorithms      algorithms 

Figure 4: The Church-Turing thesis 
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can only distinguish between zero and nonzero counters. That is the move of the 

counter machine depends on its state, input symbol, and which if any of the 

counters are zero. In one move the counter machine can: 

a. Change state. 

b. Add or subtract 1 from any of its counters, independently. However a 

counter is not allowed to become negative, so it cannot subtract 1 from a 

counter that is currently 0. 

2. A counter machine may also be regarded as a restricted multistack machine. The 

restrictions are as follows: 

a. There are only two stack symbols, which we shall refer to Z0 (the bottom 

of the stack marker) and X. 

b. Z0 is initially on each stack. 

c. We may replace Z0 only by a string of the form XiZ0 for some i ≥ 0. 

d. We may replace X only by Xi for some i ≥ 0. That is Z0 appears only on the 

bottom of each stack, and all other stack symbols, if any are X. 

THE POWER OF COUNTER MACHINES 

 There are a few observations about the languages accepted by counter machines that 

are obvious but worth stating: 

1. Every language accepted by a counter machine is recursively enumerable. The 

reason is that a counter machine is a special case of a stack machine, and a stack 

machine is a special case of a Multitape Turing machine which accepts only 

recursively enumerable languages. 

2. Every languages accepted by a one-counter machine is a CFL. In fact the 

languages of one-counter machines are accepted by deterministic PDA’s, 

although the proof is surprisingly complex. 

 The difficulty in the proof stems from the fact that the multistack and counter machines 

have an end marker $ at the end of their input. 

TYPES OF TURING MACHINES 

 There are different types of Turing machines 

1. Two way infinite tape 

2. Multitape Turing machines 

3. Non deterministic Turing machines 

4. Two-dimensional Turing machines 

5. Multihead Turing machines 

TWO WAY INFINITE TAPE TURING MACHINE 
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 It is a Turing machine with its input tape infinite in both the directions, the other 

components being the same as that of the basic model. 

MULTIHEAD TURING MACHINE 

 It is a single tape Turing machine having k heads reading symbols on the same tape. In 

one step all the heads sense the scanned symbols and move or write independently. 

 A Multihead Turing machine can be simulated by single head Turing machine. 

TWODIMENSIONAL TURING MACHINES 

 The Turing machine can have two dimensional tapes. 

 When the head is scanning the symbol it can move either left or right or up or down. The 

smallest rectangle containing the non blank portion is m x n, then it has m rows and n 

columns. 

 A one dimensional tape Turing machine which tries to simulate this 2 dimensional Turing 

machine will have 2 tapes. 


