
FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 1 JKD

Syllabus R09 Regulation

UNIT-VIII

COMPUTABILITY THEORY

CONTEXT SENSITIVE LANGUAGE

 A Context Sensitive Grammar is a 4-tuple , G = (N, Σ P, S) where:

N Set of non terminal symbols

Σ Set of terminal symbols

S Start symbol of the production

P Finite set of Productions

Where all the rules in P are of the form αAβ αϒβ where α, β, ϒ Є (N U Σ)
+
 i.e. ϒ should be non

empty.

In addition a rule of the form S ε provided S does not appear on the right hand side of any

rule.
 The language generated by the context sensitive grammar is called as context sensitive

language.

 In theoretical computer science, a context-sensitive language is a formal language that can be

defined by a context-sensitive grammar.

COMPUTATIONAL PROPERTIES

 Computationally, a context-sensitive language is equivalent with a linear bounded

nondeterministic Turing machine, also called a linear bounded automaton.

 That is a non-deterministic Turing machine with a tape of only kn cells, where n is the

size of the input and k is a constant associated with the machine.

 This means that every formal language that can be decided by such a machine is a

context-sensitive language, and every context-sensitive language can be decided by such

a machine.

PROPERTIES OF CONTEXT-SENSITIVE LANGUAGES

 The union, intersection, concatenation and Kleene star of two context-sensitive

languages is context-sensitive.

 The complement of a context-sensitive language is itself context-sensitive.

 Every context-free language is context-sensitive.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 2 JKD

Syllabus R09 Regulation

LINEAR BOUNDED AUTOMATA

MODEL OF LBA

 The model of LBA is important because of (a) the set of context sensitive languages is accepted

by the model and (b) the infinite storage is restricted in size but not in accessibility to the

storage in comparison with Turing machine model.

 It is called as linear bounded automaton (LBA) because a linear function is used in restricts (to

bound) the length of the tape.

 It should be noted that the study of the context sensitive languages is important from practical

point of view because many compiler languages lie between context sensitive and context free

languages.

 A linear bounded automaton is a nondeterministic Turing machine which has a single tape

whose length is not infinite but bounded by a linear function of the length of the input string.

 The models can be described formally by the following set format:

M = (Q, Σ, Γ, δ, q0, b, ₵, $, F)

 All the symbols have the same meaning as in the basic model of Turing machines with difference

that the input alphabet Σ contains two special symbols ₵ and $.

 ₵ is called the left end marker which is entered in the left most cell of the input tape and

prevents the R/W head from getting off the left end of the tape.

 $ is called the right end marker which is entered in the right most cell of the input tape and

prevents the R/W head from getting off the right end of the tape.

 Both the end markers should not appear on any other cell with in the input tape and the R/W

head should not print any other symbol over both the end markers.

 Let us consider the input string w with |w| = n-2. The input string w can be recognized by an LBA

if it can also be recognized by a Turing machine using no more than kn cells of input tape, where

k is a constant specified in the description of LBA.

 The value of k does not depend on the input string but is precisely a property of the machine.

Whenever we process any string in LBA, we shall assume that the input string is enclosed within

the end markers ₵ and $.

 The above model of LBA can be represented by the block diagram given as follows:

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 3 JKD

Syllabus R09 Regulation

 There are two tapes one is called the input tape and the other is called the working tape. On the

input tape the head never prints and never moves left.

 On the working tape the head can modify the contents in any way, without any restriction.

 In the case of LBA an ID is denoted by (q, w, k) where q Є Q, w Є Γ and k is some integer between

1 and n.

 The transition of ID’s is similar except that k changes to k-1 if the R/W head moves to the left

and to k+1 if the head moves to the right.

 The language accepted by the LBA is defined as the set

{w Є (Σ – {₵, $})* | (q0, ₵w$, 1)

 (q, α, i) for some q Є F and for some integer i between 1 & n}

Note: As a null string can be represented either by the absence of the input string or by a

completely blank tape, an LBA may accept the null string.

RELATION BETWEEN LBA AND CONTEXT SENSITIVE LANGUAGE

 The set of strings accepted by nondeterministic LBA is the set of strings accepted by the context

sensitive grammars, excluding null strings.

 Now we give an important result:

If L is a context sensitive language then L is accepted by LBA. The converse is also true.

TURING MACHINES AND TYPE 0 GRAMMARS

 In this we construct a type 0 grammar generating the set accepted by a given Turing machine M.

the productions are constructed in two steps:

 Step-1: we construct productions which transform the string [q1₵w$] into the string

[q2b], where q1 is the initial state, q2 is an accepting state, ₵ is the left end marker and $

is the right end marker. The grammar obtained by step -1 is called transformational

grammar.

 Step-2: we obtain inverse production rules by reversing the productions of the

transformational grammar to get the required type 0 grammar G.

CONSTRUCTION OF GRAMMAR CORRESPONDING TO TM

 For understanding the construction, we have to note that a transition of ID corresponds to a

production. We enclose the ID’s within brackets.

 So acceptance of w by M corresponds to the transformation of initial ID [q1₵w$] into [q2b]. Also

the length of ID may change if R/W head reaches the left end or right end, i.e. when the left

hand side or right hand side bracket is reached.

 So we get productions corresponding to transition of ID’s with (a) no change in length and (b)

change in length.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 4 JKD

Syllabus R09 Regulation

 We now describe the construction which involves two steps:

Step-1:

(1) No change in length of ID’s: (a) right move. qiaj akqi (b) left move. amqiaj qlamak for all am

Є Γ

(2) Change in length of ID’s: (a) left end. [qiaj [qlbak

When b occurs next to the left bracket, it can be deleted. This is achieved by the production [b

 [

(b) Right end. When b occurs to the left of], it can be deleted. This is achieved by the production

ajb] aj] for all aj Є Γ

When R/W head moves to the right of], the length increases. Corresponding to this we have a

production qi] qib] for all qi Є Q

(3) Introduction of end markers: For introducing end markers for the input string, the following

productions are included:

ai [q1₵ai for all ai Є Γ, ai ≠ b

ai ai$] for all ai Є Γ, ai ≠ b

For removing the brackets from [q2b], we include the production [q2b] S

Recall q1 and q2 are initial and final states, respectively.

Step-2:

 To get the required grammar, reverse the arrows of the production obtained in step 1. The

productions we get can be called as inverse productions. The new grammar is called generative

grammar.

 Example: Ref Pg. No. 198-99, “Theory of computer science (Automata, computations and

languages)” Author: K.L.P. Mishra, N. Chandrasekaran.

LINEAR BOUNDED AUTOMATA AND LANGUAGES

 A linear bounded automaton M accepts a string w if, after starting at the initial state with R/W

head reading the left end marker, M halts over the right end marker in a final state. Otherwise w

is rejected.

LR(0) GRAMMAR

 A grammar is said to be LR grammar, if it is sufficient that a left-to-right shift-reduce parser be

able to recognize the handles of right-sentential forms when they appear on top of stack.

 LR Grammar is normally termed as Left-to-right scan of the input producing a rightmost

derivation. Simply L stands for Left-to-right and R stands for Right most derivation

 To understand shift reduce parsing let us consider the construction of the string id * id for the

grammar “EE+T | T, TT*F | F, F (E) | id” as shown in the figure as follows:

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 5 JKD

Syllabus R09 Regulation

DECIDABILITY PROBLEMS

 We begin with certain computational problems concerning finite automata; we give algorithms

for testing whether a finite automaton accepts a string, whether the language of a finite

automaton is empty, and whether two finite automata are equivalent.

 Note that we choose to represent various computational problems by languages. Doing so is

convenient because we have already set up terminology for dealing with languages.

 For example the acceptance problem for DFA’s of testing whether a particular DFA accepts a

given string can be expressed as a language, ADFA. This language contains the encodings of all

DFA’s together with strings that the DFA’s accept.

Let ADFA = {<B, w>| B is a DFA that accepts input string w}

 The problem of testing whether a DFA B accepts an input w is the same as the problem of testing

whether <B, w> is a member of the language ADFA.

 Similarly we can formulate other computational problems in terms of testing membership in a

language. Showing that the language is decidable is the same as showing that the computational

problem is decidable.

 In the following theorem we show that ADFA is decidable. Hence this theorem shows that the

problem of testing whether a given finite automaton accepts a given string is decidable.

DECIDABLE PROBLEMS CONCERNING REGULAR LANGUAGES:

Theorem 6.1: ADFA is a decidable language.

Proof Idea: we simply need to present a TM M that decides ADFA.

 M = “On input <B, w>, where B is a DFA and w is a string:

 Simulate B on input w.

 If the simulation ends in an accept state, accept. If it ends in a nonaccepting state,

reject.”

Proof:

 First let’s examine the input <B, w>. It is a representation of a DFA B together with a string w.

F * id

id

T * id

 F

id

 T * F

 F

id

id

 T * F

 F

id

id

T

 T * F

 F

id

id

T

E

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 6 JKD

Syllabus R09 Regulation

 One reasonable representation of B is simply a list of its five components, i.e. Q, ∑, δ, q0 and F.

when M receives its input, M first determines whether it properly represents a DFA B and a

string w. If not M rejects.

 Then M carries out the simulation directly. It keeps track of B’s current state and B’s current

position in the input w by writing this information down on its tape.

 Initially B’s current state is q0 and B’s current input position is the left most symbol of w.

 The states and position are updated according to the specified transition function δ. When M

finishes processing the last symbol of w, M accepts the input if B is in an accepting state; M

rejects the input if B is in a nonaccepting state.

 We can prove a similar theorem for nondeterministic finite automata. Let ANFA = {<B, w> | w is

an NFA that accepts input string w}.

Theorem 6.2: ANFA is a decidable language.

Proof:

 We present a TM N that decides ANFA. We could design N to operate like M, simulating an NFA

instead of a DFA. Instead, we will do it differently to illustrate a new idea: have N use M as a

subroutine.

 Because M is designed to work with DFA’s, N first converts the NFA it receives as input to a DFA

before passing it to M.

 N = “On input <B, w> where B is an NFA, and w is a string:

 Convert NFA B to an equivalent DFA C.

 Run TM M from theorem 6.1 on input <C, w>.

 If M accepts, accept; otherwise, reject.”

 Running TM M in stage 2 means incorporating M into the design of N as a sub procedure.

 Similarly we can determine whether a regular expression generates a given string. Let AREX = {<R,

w>| R is a regular expression that generates string w}.

Theorem 6.3:

AREX is a decidable language.

Proof:

 The following TM P decides AREX.

 P =”On input <R, w> where R is a regular expression and w is a string:

 Convert regular expression R to an equivalent NFA A.

 Run TM N on input <A, w>.

 If N accepts, accept; if N rejects, reject.”

DECIDABILITY PROBLEMS CONCERNING CONTEXT-FREE LANGUAGES

Theorem: ACFG is a decidable language.

Proof:

 The TM S for ACFG follows.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 7 JKD

Syllabus R09 Regulation

S = “On input <G, w>, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky normal form.

2. List all derivations with 2n–1 steps, where n is the length of w, except if n = 0, then instead

list all derivations with 1 step.

3. If any of these derivations generate w, accept; if not reject”

 The problem of determining whether a CFG generates a particular string is related to the

problem of compiling programming languages.

 The algorithm in TM S is very inefficient and would never be used in practice.

UNIVERSAL TURING MACHINE

Theorem: ATM is undecidable.

Proof:

 Before we get to the proof, let’s first observe that ATM is Turing-recognizable. Thus this theorem

shows that recognizers are more powerful than deciders.

 Requiring a TM to halt on all inputs restricts the kinds of languages that it can recognize. The

following Turing machine U recognizes ATM.

 U = “On input <M, w>, where M is a TM and w is a string:

 Simulate M on input w.

 If M ever enters it’s accept state, accept; if M ever enters its reject state, reject.”

 Note that a machine loops on input <M, w> if M loops on w, which is why this machine does not

decide ATM.

 If the algorithm had some way to determine that M was not halting on w, it could reject. Hence

ATM is sometimes called the halting problem. As we demonstrate, an algorithm has no way to

make this determination.

 The Turing machine U is interesting in its own right. It is an example of the Universal Turing

machine first proposed by Turing.

 This machine is called universal because it is capable of simulating any other Turing machine

from the description of that machine.

 The universal Turing machine played an important early role in stimulating the development of

stored-program computers.

 Designing a general purpose Turing machine usually called the Universal Turing machine is a

more complex task. We must design a machine that accepts two inputs i.e. (1) the input data

and (2) a description of computation (algorithm).

A SIMPLE UNDECIDABLE PROBLEM

POST CORRESPONDENCE PROBLEM

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 8 JKD

Syllabus R09 Regulation

 In this section we show that the phenomenon of undecidability is not confined to problems

concerning automata. We give an example of an undecidable problem concerning simple

manipulations of strings. It is called the Post Correspondence Problem or PCP.

 We can now describe this problem easily as a type of puzzle. We begin with a collection of

dominos, each containing two strings, one on each side. An individual domino looks like

 And a collection of dominos looks like

 The task is to make a list of these dominos (repetitions permitted) so that the string we get by

reading off the symbols on the top is the same as the string of symbols on the bottom. This list is

called a match.

 For example the following list is the match for this puzzle.

 Reading of the top string we get abcaaabc, which is the same as reading off the bottom.

For some collections of dominos finding a match may not be possible. For example the collection

below cannot contain a match because every top string is longer than the corresponding bottom

string.

 The post correspondence problem is to determine whether a collection of dominos has a match.

This problem is unsolvable by algorithms.

Theorem:

 PCP is undecidable.

Proof:

 Refer: Pg. No. 204-209 in “Introduction to the Theory of Computation” - second edition – Author:

Michael Sipser.

TURING REDUCIBILITY

 A reduction is a way of converting one problem to another problem such a way that a solution to

the second problem can be used to solve the first problem.

 For example suppose that we want to find a way around a new city. We know that doing so

would be easy if we had a map. Thus we can reduce the problem of finding the way around the

city to the problem of obtaining a map of the city.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 9 JKD

Syllabus R09 Regulation

 Reducibility always involves two problems, which we call A and B. If A reduces to B, we can use a

solution to B to solve A. so in our example, A is the problem of finding the way around the city

and B is the problem of obtaining a map.

 Note that reducibility says nothing about solving A or B alone, but only about the solvability of A

in the presence of a solution to B.

 Reducibility plays an important role in classifying problems by decidability and later in

complexity theory as well.

 When A is reducible to B, solving A cannot be harder than solving B because a solution to B gives

the solution to A.

 In terms of computability theory if A is reducible to B and B is decidable, then A is also decidable.

Equivalently, if A is undecidable and reducible to B, then B is also undecidable.

Definition:

 An oracle for a language B is an external device that is capable of reporting whether any string w

is a member of B. An oracle Turing machine is a modified Turing machine that has the additional

capability of querying an oracle.

 We write MB to describe an oracle Turing machine that has an oracle for language B.

Example:

 Consider an oracle for ATM. An oracle Turing machine with an oracle for ATM can decide more

languages than an ordinary Turing machine can. Such a machine can (obviously) decide ATM

itself, by querying the oracle about the input.

 It can also decide ETM, the emptiness testing problem for TM’s with the following procedure:

called TA
TM.

 TA
TM = “ On Input <M>, where M is a TM:

 Construct the following TM N.

N = “On any input:

 Run M in parallel on all strings in ∑*.

 If M accepts any of these strings, accept.”

 Query the oracle to determine whether <N, 0> Є ATM.

 If the oracle answers No, accept; if YES, reject.”

 If M’s language isn’t empty, N will accept every input and in particular input 0. Hence the oracle

will answers YES, and TA
TM will reject.

 Conversely if M’s language is empty, TA
TM will accept.

 Thus TA
TM decides ETM. So we say that ETM is decidable relative to ATM. That brings us the

definition of Turing reducibility.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 10 JKD

Syllabus R09 Regulation

Definition

 Language A is Turing reducible to language B, written A ≤T B, if A is decidable relative to B.

DEFINITION OF P AND NP PROBLEMS

Definition of P

 P is the class of languages that are decidable in polynomial time on a deterministic single-tape

Turing machine. In other words, P is

 The class P plays a central role in our theory and is important because

1. P is invariant for all models of computation that are Polynomially equivalent to the

deterministic single-tape Turing machine, and

2. P roughly corresponds to the class of problems that are realistically solvable on a computer.

 Item 1 indicates that P is mathematically robust in class. It isn’t affected by the particulars of the

model of computation that we are using.

 Item 2 indicates that P is relevant from a practical standpoint. When a problem is in P, we have a

method of solving it that runs in time nk and on the constant k.

 Whether this running time is practical depends on k and on the application. Of course a running

time of n100 is unlikely to be of any practical use. Nevertheless, calling polynomial time the

threshold of practical solvability has proven to be useful.

 For example consider a directed graph G contains nodes s and t as shown in the figure below:

 The PATH problem is to determine whether a directed path exists from s to t. let PATH Є P

Proof: A polynomial time algorithm M for PATH operates as follows.

M = “On input <G, s, t> where G is directed graph with nodes s and t.

1. Place a mark on nodes s.

2. Repeat the following until no additional nodes are marked:

s
t

G

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 11 JKD

Syllabus R09 Regulation

3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an

unmarked node b, mark node b.

4. If t is marked, accept. Otherwise, reject.”

Definition of NP:

 A verifier for a language A is an algorithm V, where

A = {w | V accepts <w, c> for some string c}.

 We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier

runs in polynomial time in the length of w. Language A is polynomially verifiable if it has a

polynomial time verifier.

 NP is the class of languages that have polynomial time verifiers.

P versus NP:

 P versus NP problem is a major unsolved problem in computer science. Informally, it asks

whether every problem whose solution can be quickly verified by a computer can also be quickly

solved by a computer.

 The informal term quickly used above means the existence of an algorithm for the task that runs

in polynomial time. The general class of questions for which some algorithm can provide an

answer in polynomial time is called "class P" or just "P".

 For some questions, there is no known way to find an answer quickly, but if one is provided with

information showing what the answer is, it may be possible to verify the answer quickly. The

class of questions for which an answer can be verified in polynomial time is called NP.

P = the class of languages for which membership can be decided quickly.

NP = the class of languages for which membership can be verified quickly.

NP-COMPLETENESS

 One important advance on the P versus NP question came in the early 1970’s with the work of

Stephen Cook and Leonid Levin. They discovered certain problems in NP whose individual

complexity is related to that of the entire class.

 If a polynomial time algorithm exists for any of these problems, all problems in NP would be

polynomial time solvable. These problems are called NP-complete.

 The phenomenon of NP-completeness is important for both theoretical and practical reasons.

 On the theoretical side, a researcher trying to show that P is unequal to NP may focus on an NP-

complete problem. Furthermore a researcher attempting to prove that P equals NP only needs

to find a polynomial time algorithm for an NP-complete problem to achieve this goal.

 On the practical side, the phenomenon of NP-completeness may prevent wasting time searching

for a nonexistent polynomial time algorithm to solve a particular problem.

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 12 JKD

Syllabus R09 Regulation

 The first NP complete problem that we present is called the satisfiability problem. For example

consider a Boolean formula i.e. an expression involving Boolean variables and operations, as

given below:

Ф = (

 A Boolean formula is satisfiable if some assignment of 0’s and 1’s to the variables makes the

formula evaluate to 1. The preceding formula is satisfiable because the assignment x =0 and y =

1 and z = 0 makes Ф evaluate to 1. We say the assignment satisfies Ф.

NP – HARD

 NP-hard is called as non-deterministic polynomial-time hard.

 In computational complexity theory, it is a class of problems that are, informally, "at least as

hard as the hardest problems in NP".

 A problem H is NP-hard if and only if there is an NP-complete problem L that is polynomial time

Turing-reducible to H (i.e., L ≤ TH). In other words, L can be solved in polynomial time by an

oracle machine with an oracle for H.

 Informally, we can think of an algorithm that can call such an oracle machine as a subroutine for

solving H, and solves L in polynomial time, if the subroutine call takes only one step to compute.

NP-hard problems may be of any type: decision problems, search problems, or optimization

problems.

 As consequences of definition, we have (note that these are claims, not definitions):

1. Problem H is at least as hard as L, because H can be used to solve L;

2. Since L is NP-complete, and hence the hardest in class NP, also problem H is at least as hard

as NP, but H does not have to be in NP and hence does not have to be a decision problem

(even if it is a decision problem, it need not be in NP);

3. Since NP-complete problems transform to each other by polynomial-time many-one

reduction (also called polynomial transformation), all NP-complete problems can be solved

in polynomial time by a reduction to H, thus all problems in NP reduce to H; note, however,

that this involves combining two different transformations: from NP-complete decision

problems to NP-complete problem L by polynomial transformation, and from L to H by

polynomial Turing reduction;

4. If there is a polynomial algorithm for any NP-hard problem, then there are polynomial

algorithms for all problems in NP, and hence P = NP;

5. If P ≠ NP, then NP-hard problems have no solutions in polynomial time, while P = NP does

not resolve whether the NP-hard problems can be solved in polynomial time;

6. If an optimization problem H has an NP-complete decision version L, then H is NP-hard.

 A common mistake is to think that the NP in NP-hard stands for non-polynomial. Although it is

widely suspected that there are no polynomial-time algorithms for NP-hard problems, this has

FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof.

Jkdirectory Page | 13 JKD

Syllabus R09 Regulation

never been proven. Moreover, the class NP also contains all problems which can be solved in

polynomial time.

 The Euler diagram for P, NP, NP-Complete, NP-hard set of problems is given as follows:

NP-NAMING CONVENTION

The NP-family naming system is confusing: NP-hard problems are not all NP, despite having

NP as the prefix of their class name. However, the names are now entrenched and unlikely to

change. On the other hand, the NP-naming system has some deeper sense, because the NP family is

defined in relation to the class NP:

NP-Hard

 At least as hard as the hardest problems in NP. Such problems need not be in NP; indeed, they

may not even be decision problems.

NP-complete

 These are the hardest problems in NP. Such a problem is in NP.

APPLICATION AREAS

NP-hard problems are often tackled with rules-based languages in areas such as:

1. Configuration

2. Data mining

3. Selection

4. Diagnosis

5. Process monitoring and control

6. Scheduling

7. Planning

8. Rosters or schedules

9. Tutoring systems

10. Decision support

