III B.Tech I Semester Examinations,MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) If $G=(\{S\},\{0,1\}$, $\{S \rightarrow 0 S 1, S \rightarrow \varepsilon\}$, $S)$, find $L(G)$.
(b) If $\mathrm{G}=(\{\mathrm{S}\},\{\mathrm{a}\},\{\mathrm{S} \rightarrow \mathrm{SS}\}, \mathrm{S})$ find the language generated by G .
2. Convert the following grammar to Greibach Normal Form $G=(\{A 1, A 2, A 3\}$, \{a,b\},P,A)
Where P consists of the following
$\mathrm{A} 1 \rightarrow \mathrm{~A} 2 \mathrm{~A} 3$
$\mathrm{A} 2 \rightarrow \mathrm{~A} 3 \mathrm{~A} 1 \mid \mathrm{b}$
$\mathrm{A} 3 \rightarrow \mathrm{~A} 1 \mathrm{~A} 2 \mid \mathrm{a}$
3. (a) Design Push Down Automata for $\mathrm{L}=\left\{0^{n} 1^{2 n} \mid \mathrm{n} \geq 1\right\}$ by final state method.
(b) Draw the transaction diagram for above language L.
4. (a) Show that there exist no finite automaton accepting all palindromes over \{a, b \}.
(b) Show that $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid \mathrm{n}>0\right\}$ is not a regular set without using the pumping lemma.
5. (a) Construct a NFA accepting \{ab, ba\} and use it to find a deterministic automaton accepting the same set.
(b) $\mathrm{M}=(\{\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3\},\{0,1\}, \delta, \mathrm{q} 1,\{\mathrm{q} 3\})$ is a NFA where δ is given by
$\delta(\mathrm{q} 1,0)=\{\mathrm{q} 2, \mathrm{q} 3\}, \delta(\mathrm{q} 1,1)=\mathrm{q} 1$
$\delta(\mathrm{q} 2,0)=\{\mathrm{q} 1, \mathrm{q} 2 \quad \delta(\mathrm{q} 2,1)=\emptyset$
$\delta(\mathrm{q} 3,0)=\{\mathrm{q} 2\}, \delta(\mathrm{q} 3,1)=\{\mathrm{q} 1, \mathrm{q} 2\}$
construct an equivalent DFA.
6. Design Turing Machine for $\mathrm{L}=\left\{0^{n} 1^{n} 0^{n} \mid \mathrm{n} \geq 1\right\}$.
7. Construct LR(0) items for the grammar given find it's equivalent DFA
$\mathrm{S} \rightarrow \mathrm{aSA} \mid \mathrm{b}$
$\mathrm{A} \rightarrow \mathrm{Ab} \mid \mathrm{a}$
8. (a) Construct a Deterministic acceptor equivalent to $\mathrm{M}=\left(\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\},\{\mathrm{a}, \mathrm{b}\}, \delta, \mathrm{q}_{0},\left\{\mathrm{q}_{2}\right\}\right)$ and δ is given in table (figure 1).
(b) Construct a Moore machine equivalent to the Mealy machine M given in table.

States $/ \Sigma$	a	b
$\rightarrow \mathrm{q}_{0}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	q_{2}
q_{1}	q_{0}	q_{1}
$\left(\mathrm{q}^{2}\right)$	-	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$

figure - 1

Figure 1:

III B.Tech I Semester Examinations,MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Explain the following
(a) Multi - tape Turing Machine
(b) Multi - dimensional Turing Machine
(c) Multi - head Turing Machine.
2. State and explain about closure properties of Context Free Languages.
3. (a) Differentiate Moore and Mealy machines
(b) Define NFA with ε - moves.
(c) Construct a Mealy machine which can output EVEN, ODD according as the total number of 1's encountered is even or odd. The input symbols are 0 and 1.
4. (a) Let G be the grammar. $\mathrm{S} \rightarrow \mathrm{aS}|\operatorname{aSbS}| \varepsilon$. Prove that $\mathrm{L}(\mathrm{G})=\{\mathrm{x} \mid$ such that each prefix of x has atleast as many a's as b's $\}$
(b) Show that $\{a b c, b c a, ~ c a b\}$ can be generated by a regular grammar whose terminal set is $\{a, b, c\}$
5. (a) Give NFA accepting the set of all strings of 0's and 1's such that the 10th symbol from the right is a 1 .
(b) Give DFA accepting the set of all strings with 3 consecutive 0's over the alphabet $\{0,1\}$.
(c) Define Finite Automata. Give an example.
$[6+5+5]$
6. Convert the following grammar to Chomsky Normal Form
$\mathrm{S} \rightarrow \mathrm{ABA}$
$\mathrm{A} \rightarrow \mathrm{aA} \mid \varepsilon$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \varepsilon$ and simplify the grammar
7. Construct $\operatorname{LR}(0)$ items for the grammar given find it's equivalent DFA.
$S^{\prime} \rightarrow$ S
$S \rightarrow$ AS \mid a
$\mathrm{A} \rightarrow \mathrm{aA} \mid \mathrm{b}$
8. Using pumping lemma show that the following sets are not regular:
(a) $\left\{\mathrm{a}^{n} \mathrm{~b}^{2 n} \mid \mathrm{n}>0\right\}$
(b) $\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid 0<\mathrm{n}<\mathrm{m}\right\}$
[8+8]

III B.Tech I Semester Examinations,MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. Find regular expressions representing the following sets
(a) the set of all stings over $\{0,1\}$ having at most one pair of 0 's or atmost of one pair of 1's
(b) the set of all strings over $\{\mathrm{a}, \mathrm{b}\}$ in which the number of occurrences of a is devisible by 3
(c) the set of all strings over $\{\mathrm{a}, \mathrm{b}\}$ in which there are at least two occurrences of b between any two occurrences of a.
(d) the set of all strings over $\{\mathrm{a}, \mathrm{b}\}$ with three consecutive b's.
2. Explain halting problem of Turing Machine.

3 . What are type $0,1,2,3$ grammars? Compare them in different aspects.
4. (a) Construct NFA accepting the set of all strings over an alphabet $\{0,1\}$ of 0 's and 1's such that the 10 th symbol from the right end is a 1 . Construct DFA equivalent to this NFA.
(b) Construct NFA accepting the set of all strings over an alphabet $\{0,1\}$ such that every block of 5 consecutive symbols contains at least two 0's. Construct DFA equivalent to this NFA. $\quad[8+8]$
5. (a) Convert the following grammar to Greibach Normal Form
$\mathrm{S} \rightarrow \mathrm{SS}$
$\mathrm{S} \rightarrow 0 \mathrm{~S} 1 \mid 01$
(b) Show that grammar is ambiguous
$\mathrm{S} \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \varepsilon$
6. State and explain the properties of DCFL.
7. (a) Consider the Finite State Machine whose Transition function δ is given in the form of a transition table (figure 2). Here, $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}, \Sigma=\{0,1\}, \mathrm{F}=\left\{\mathrm{q}_{0}\right\}$. Give the entire sequence of states for the inputstring 110001. Transition Table:
(b) Let $\mathrm{M}=(\mathrm{Q}, \Sigma, \delta, \mathrm{q} 0, \mathrm{~F})$ be a finite automaton. Let R be a relation in Q defined by $q_{1} \mathrm{R} \mathrm{q}_{2}$ if $\delta\left(\mathrm{q}_{1}, \mathrm{a}\right)=\delta\left(q_{2}, \mathrm{a}\right)$ for some $\mathrm{a} \in \Sigma$. Is R an equivalence relation?

States	Input	
	1	0
q_{0}	q_{2}	q_{1}
q_{1}	q_{3}	q_{0}
q_{2}	q_{0}	q_{3}
$\left(\mathrm{q}_{3}\right)$	q_{1}	q_{2}

Figure 2:
8. (a) Find the language generated by the grammar. $\mathrm{S} \rightarrow 0 \mathrm{~A}|1 \mathrm{~S}| 0|1, \mathrm{~A} \rightarrow 1 \mathrm{~A}| 1 \mathrm{~S}$ | 1
(b) Construct context-free grammars to generate the set $\left\{a^{l} b^{m} c^{n} \mid\right.$ one of l, m, n equals 1 and the remaining two are equal $\}$.

III B.Tech I Semester Examinations,MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. What is meant by Chomsky hierarchy of languages. Explain the relations between different types of languages.
2. Explain about various types of Turing Machine.
3. (a) State and explain pumping lemma for CFL.
(b) Show that $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not CFL.
4. (a) Draw the transition diagram of a FA which accepts all strings of 1 's and 0 's in which both the number of 0's and 1's are even.
(b) Construct NFA which accepts the set of all strings over $\{0,1\}$ in which there are at least two occurrences of 1 between any two occurrences of 0 . Construct DFA for the same set.
5. (a) Construct a NFA accepting \{ab, ba\} and use it to find a deterministic automaton accepting the same set.
(b) $\mathrm{M}=(\{\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3\},\{0,1\}, \delta, \mathrm{q} 1,\{\mathrm{q} 3\})$ is a NFA where δ is given by

$$
\begin{array}{lc}
\delta(\mathrm{q} 1,0)=\{\mathrm{q} 2, \mathrm{q} 3\}, & \delta(\mathrm{q} 1,1)=\{\mathrm{q} 1\} \\
\delta(\mathrm{q} 2,0)=\{\mathrm{q} 1, \mathrm{q} 2\}, & \delta(\mathrm{q} 2,1)=\emptyset \\
\delta(\mathrm{q} 3,0)=\{\mathrm{q} 2\}, & \delta(\mathrm{q} 3,1)=\{\mathrm{q} 1, \mathrm{q} 2\}
\end{array}
$$

construct an equivalent DFA.
6. (a) Construct a grammar generating $\mathrm{L}=\left\{\mathrm{wcw}^{R} \mid \mathrm{w} \varepsilon\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$.
(b) Find a CFG with no useless symbols equivalent to
$\mathrm{S} \rightarrow \mathrm{AB} \mid \mathrm{CA}$,
$\mathrm{A} \rightarrow \mathrm{a}$,
$\mathrm{B} \rightarrow \mathrm{BC} \mid \mathrm{AB}$,
$\mathrm{C} \rightarrow \mathrm{aB} \mid \mathrm{b}$
7. Let value (x) be the result when the symbols of x are multiplied from left to right according to the table given.
(a) Is $\mathrm{L}=\{\mathrm{xy}| | x|=|y|$ and valule $(\mathrm{x})=$ value(y$)\}$ regular?
(b) Is $\mathrm{L}=\{\mathrm{xy} \mid$ valule $(\mathrm{x})=$ value(y$)\}$ regular?

	a	a	c
a	a	a	c
b	c	a	b
c	b	c	a

8. Construct Push Down Automata which can accept the language $\mathrm{L}=\{\mathrm{X}, \mathrm{aXa}, \mathrm{bXb}, \mathrm{aaXaa}, \mathrm{abXab}, \mathrm{bbXbb}$, aaaXaaa, .\}.
