III B.Tech I Semester Examinations, MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) If $G = (\{S\}, \{0, 1\}, \{S \rightarrow 0S1, S \rightarrow \varepsilon\}, S)$, find L(G).
 - (b) If $G=(\{S\}, \{a\}, \{S \rightarrow SS\}, S)$ find the language generated by G. [8+8]
- 2. Convert the following grammar to Greibach Normal Form $G = (\{A1, A2, A3\}, \{a,b\},P,A)$

Where P consists of the following

A1→A2 A3

 $A2 \rightarrow A3 A1 \mid b$

$$A3 \rightarrow A1 A2 \mid a$$
 [16]

- 3. (a) Design Push Down Automata for $L=\{0^n1^{2n} \mid n \geq 1\}$ by final state method.
 - (b) Draw the transaction diagram for above language L. [12+4]
- 4. (a) Show that there exist no finite automaton accepting all palindromes over {a, b}.
 - (b) Show that $\{a^nb^n \mid n > 0\}$ is not a regular set without using the pumping lemma. [8+8]
- 5. (a) Construct a NFA accepting {ab, ba} and use it to find a deterministic automaton accepting the same set.
 - (b) $M = (\{q1, q2, q3\}, \{0, 1\}, \delta, q1, \{q3\})$ is a NFA where δ is given by δ $(q1, 0) = \{q2, q3\}, \delta$ (q1, 1) = q1 δ $(q2, 0) = \{q1, q2 \ \delta(q2, 1) = \emptyset$ $\delta(q3, 0) = \{q2\}, \delta(q3, 1) = \{q1, q2\}$ construct an equivalent DFA. [8+8]
- 6. Design Turing Machine for $L = \{ 0^n 1^n 0^n \mid n \ge 1 \}.$ [16]
- 7. Construct LR(0) items for the grammar given find it's equivalent DFA S \to aSA | b A \to Ab | a [16]
- 8. (a) Construct a Deterministic acceptor equivalent to $M=(\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\})$ and δ is given in table (figure 1).
 - (b) Construct a Moore machine equivalent to the Mealy machine M given in table.

[8+8]

R07

Set No. 2

States/ Σ	a	b	
$\rightarrow q_0$	$\{q_0, q_1\}$	\mathbf{q}_2	
$\mathbf{q_{1}}$	\mathbf{q}_0	\mathbf{q}_1	
1	-	$\{q_0,q_1\}$	

figure - 1

R07

Set No. 4

Code No: 07A50501

Figure 1:

III B.Tech I Semester Examinations, MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Explain the following
 - (a) Multi tape Turing Machine
 - (b) Multi dimensional Turing Machine
 - (c) Multi head Turing Machine.

[6+5+5]

- 2. State and explain about closure properties of Context Free Languages. [16]
- 3. (a) Differentiate Moore and Mealy machines
 - (b) Define NFA with ε moves.
 - (c) Construct a Mealy machine which can output EVEN, ODD according as the total number of 1's encountered is even or odd. The input symbols are 0 and 1. [5+4+7]
- 4. (a) Let G be the grammar. $S \rightarrow aS \mid aSbS \mid \varepsilon$. Prove that $L(G) = \{x \mid \text{such that each prefix of } x \text{ has at least as many a's as b's} \}$
 - (b) Show that {abc, bca, cab} can be generated by a regular grammar whose terminal set is {a, b, c} [8+8]
- 5. (a) Give NFA accepting the set of all strings of 0's and 1's such that the 10th symbol from the right is a 1.
 - (b) Give DFA accepting the set of all strings with 3 consecutive 0's over the alphabet $\{0,1\}$.
 - (c) Define Finite Automata. Give an example.

[6+5+5]

6. Convert the following grammar to Chomsky Normal Form

 $S \rightarrow ABA$

 $A \rightarrow aA \mid \varepsilon$

 $B \rightarrow bB \mid \varepsilon$ and simplify the grammar

[16]

R07

Set No. 4

7. Construct LR(0) items for the grammar given find it's equivalent DFA.

$$S' \to S$$

$$S \to AS \mid a$$

$$A \rightarrow aA \mid b$$

[16]

- 8. Using pumping lemma show that the following sets are not regular:
 - (a) $\{a^nb^{2n} \mid n > 0\}$

(b)
$$\{a^n b^m \mid 0 < n < m\}$$

[8+8]

R07

Code No: 07A50501

Set No. 1

III B.Tech I Semester Examinations, MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Find regular expressions representing the following sets
 - (a) the set of all stings over $\{0, 1\}$ having at most one pair of 0's or atmost of one pair of 1's
 - (b) the set of all strings over {a, b} in which the number of occurrences of a is devisible by 3
 - (c) the set of all strings over {a, b} in which there are at least two occurrences of b between any two occurrences of a.
 - (d) the set of all strings over {a, b} with three consecutive b's.

[16]

2. Explain halting problem of Turing Machine.

- [16]
- 3. What are type 0, 1, 2, 3 grammars? Compare them in different aspects. [16]
- 4. (a) Construct NFA accepting the set of all strings over an alphabet {0, 1} of 0's and 1's such that the 10th symbol from the right end is a 1. Construct DFA equivalent to this NFA.
 - (b) Construct NFA accepting the set of all strings over an alphabet $\{0, 1\}$ such that every block of 5 consecutive symbols contains at least two 0's. Construct DFA equivalent to this NFA. [8+8]
- 5. (a) Convert the following grammar to Greibach Normal Form

 $S \rightarrow SS$

 $S \rightarrow 0S1 \mid 01$

(b) Show that grammar is ambiguous $S\rightarrow aSbS \mid bSaS \mid \varepsilon$

[8+8]

6. State and explain the properties of DCFL.

[16]

- 7. (a) Consider the Finite State Machine whose Transition function δ is given in the form of a transition table (figure 2). Here, Q = {q₀,q₁,q₂,q₃}, Σ ={0,1},F={q₀}. Give the entire sequence of states for the inputstring 110001.
 Transition Table:
 - (b) Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton. Let R be a relation in Q defined by q_1 R q_2 if δ $(q_1, a) = \delta(q_2, a)$ for some $a \in \Sigma$. Is R an equivalence relation?

[8+8]

R07

Set No. 1

States	Input		
	1	0	
\mathbf{q}_0	\mathbf{q}_2	\mathbf{q}_1	
\mathbf{q}_1	\mathbf{q}_3	${ m q}_0$	
\mathbf{q}_2	\mathbf{q}_0	\mathbf{q}_3	
(3)	\mathbf{q}_1	\mathbf{q}_2	

Figure 2:

- 8. (a) Find the language generated by the grammar. S \rightarrow 0A | 1S | 0 | 1, A \rightarrow 1A | 1S | 1
 - (b) Construct context-free grammars to generate the set $\{a^lb^mc^n \mid \text{ one of } l, m, n \text{ equals } 1 \text{ and the remaining two are equal}\}.$ [8+8]

R07

Set No. 3

Code No: 07A50501

III B.Tech I Semester Examinations, MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. What is meant by Chomsky hierarchy of languages. Explain the relations between different types of languages. [16]
- 2. Explain about various types of Turing Machine. [16]
- 3. (a) State and explain pumping lemma for CFL.
 - (b) Show that $L = \{a^n \ b^n \ c^n \mid n \ge 1\}$ is not CFL. [8+8]
- 4. (a) Draw the transition diagram of a FA which accepts all strings of 1's and 0's in which both the number of 0's and 1's are even.
 - (b) Construct NFA which accepts the set of all strings over $\{0,1\}$ in which there are at least two occurrences of 1 between any two occurrences of 0. Construct DFA for the same set. [8+8]
- 5. (a) Construct a NFA accepting {ab, ba} and use it to find a deterministic automaton accepting the same set.
 - (b) $M = (\{q1, q2, q3\}, \{0, 1\}, \delta, q1, \{q3\})$ is a NFA where δ is given by δ $(q1, 0) = \{q2, q3\}, \quad \delta$ $(q1, 1) = \{q1\}$ δ $(q2, 0) = \{q1, q2\}, \quad \delta$ $(q2, 1) = \emptyset$ δ $(q3, 0) = \{q2\}, \quad \delta$ $(q3, 1) = \{q1, q2\}$ construct an equivalent DFA. [8+8]
- 6. (a) Construct a grammar generating $L = \{wcw^R \mid w \in \{a, b\}^* \}$.
 - (b) Find a CFG with no useless symbols equivalent to $S \to AB \mid CA, \qquad A \to a, \qquad B \to BC \mid AB, \qquad C \to aB \mid b$ [8+8]
- 7. Let value (x) be the result when the symbols of x are multiplied from left to right according to the table given.
 - (a) Is L= $\{xy \mid |x|=|y| \text{ and value}(x)=\text{value}(y)\}$ regular?
 - (b) Is $L = \{xy \mid value(x)=value(y)\}$ regular? [8+8]

	a	a	c
a	a	a	c
b	С	a	b
c	b	c	a

8. Construct Push Down Automata which can accept the language L={X, aXa, bXb, aaXaa, abXab, bbXbb, aaaXaaa,}. [16]

R07

Set No. 3
