III B.Tech I Semester Examinations,MAY 2011
 FORMAL LANGUAGES AND AUTOMATA THEORY
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Explain the terms: Chomsky normal form and Greibach Normal form
(b) Convert to Chomsky normal form the following grammar: $\mathrm{G}=(\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ where
$\mathrm{N}=\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}$
$\mathrm{T}=\{\mathrm{a}, \mathrm{b}\}$
$\mathrm{P}=\rightarrow\{\mathrm{S} \rightarrow \mathrm{aB}$
$\mathrm{S} \rightarrow \mathrm{bA}$
$\mathrm{A} \rightarrow \mathrm{aS}$
$\mathrm{A} \rightarrow \mathrm{b}$ A A
$\mathrm{A} \rightarrow \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{a}$ B B
B \rightarrow b
2. (a) Design a DFA for the language $\mathrm{L}=\left\{\mathrm{ba}^{\mathrm{n}} / \mathrm{n} \geq 0\right\}$.
(b) Design DFA over $\{\mathrm{a}, \mathrm{b}\}$ to accept strings which does not contains two consecutive b's.
3. (a) Describe Chomsky hierarchy of languages.
(b) Explain post Correspondence Problem.
4. (a) Define a Turing machine mathematically. Define the term 'move' in a TM.
(b) Design a TM that recognizes the set
$\left\{0^{2 n} 1^{n} \geq \mid n=0\right\}$.
5. (a) $\mathrm{S} \rightarrow \mathrm{aS}|\mathrm{bS}| \mathrm{a} \mid \mathrm{b}$

Generate the regular expression for the above CFG
Give automata for the above grammar and write what is the language accepted by the above automata? Is both the derived automata and the given CFG generates same language.
(b) $\mathrm{S} \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \in$

What is the language generated by the above grammar?
6. Is Arden's lemma is applicable to an NFA consisting with \in-moves? If not? Then why? Explain.
7. (a) Design a Moore Machine to determine the residue $\bmod 4$ for each binary string treated as integer.
(b) Design a Mealy machine that uses its state to remember the last symbol read and emits output ' y ' whenever current input matches to previous one, and emits n otherwise.
[8+8]
8. Find the PDA that accepts the following language
$\mathrm{L}=\left\{\mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*}:|\mathrm{x}|_{\mathrm{a}}=2|\mathrm{x}|_{\mathrm{b}}\right\}$ via empty stack. Also find the PDA via final state.

III B.Tech I Semester Examinations,MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Describe Chomsky hierarchy of languages.
(b) Explain post Correspondence Problem.
2. (a) Design a Moore Machine to determine the residue $\bmod 4$ for each binary string treated as integer.
(b) Design a Mealy machine that uses its state to remember the last symbol read and emits output ' y ' whenever current input matches to previous one, and emits n otherwise.
3. (a) $\mathrm{S} \rightarrow \mathrm{aS}|\mathrm{bS}| \mathrm{a} \mid \mathrm{b}$

Generate the regular expression for the above CFG
Give automata for the above grammar and write what is the language accepted by the above automata? Is both the derived automata and the given CFG generates same language.
(b) $\mathrm{S} \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \in$

What is the language generated by the above grammar?
4. (a) Define a Turing machine mathematically. Define the term 'move' in a TM.
(b) Design a TM that recognizes the set
$\left\{0^{2 n} 1^{n} \geq \mid n=0\right\}$.
5. Find the PDA that accepts the following language
$\mathrm{L}=\left\{\mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*}:|\mathrm{x}|_{\mathrm{a}}=2|\mathrm{x}|_{\mathrm{b}}\right\}$ via empty stack. Also find the PDA via final state.
6. (a) Design a DFA for the language $\mathrm{L}=\left\{\mathrm{ba}^{\mathrm{n}} / \mathrm{n} \geq 0\right\}$.
(b) Design DFA over $\{\mathrm{a}, \mathrm{b}\}$ to accept strings which does not contains two consecutive b's.
7. Is Arden's lemma is applicable to an NFA consisting with \in-moves? If not? Then why? Explain.
8. (a) Explain the terms: Chomsky normal form and Greibach Normal form
(b) Convert to Chomsky normal form the following grammar: $\mathrm{G}=(\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ where
$\mathrm{N}=\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}$
$\mathrm{T}=\{\mathrm{a}, \mathrm{b}\}$
$P=\rightarrow\{S \rightarrow a B$

$$
\begin{align*}
& \mathrm{S} \rightarrow \mathrm{bA} \\
& \mathrm{~A} \rightarrow \mathrm{aS} \\
& \mathrm{~A} \rightarrow \mathrm{~b} A \mathrm{~A} \\
& \mathrm{~A} \rightarrow \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{a} B \mathrm{~B} \\
& \mathrm{~B} \rightarrow \mathrm{~b}\} \tag{8+8}
\end{align*}
$$

III B.Tech I Semester Examinations,MAY 2011
 FORMAL LANGUAGES AND AUTOMATA THEORY
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) $\mathrm{S} \rightarrow \mathrm{aS}|\mathrm{bS}| \mathrm{a} \mid \mathrm{b}$

Generate the regular expression for the above CFG
Give automata for the above grammar and write what is the language accepted by the above automata? Is both the derived automata and the given CFG generates same language.
(b) $\mathrm{S} \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \in$

What is the language generated by the above grammar?
2. Is Arden's lemma is applicable to an NFA consisting with \in-moves? If not? Then why? Explain.
3. (a) Explain the terms: Chomsky normal form and Greibach Normal form
(b) Convert to Chomsky normal form the following grammar: $G=(N, T, P, S)$ where
$\mathrm{N}=\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}$
$\mathrm{T}=\{\mathrm{a}, \mathrm{b}\}$
$\mathrm{P}=\rightarrow\{\mathrm{S} \rightarrow \mathrm{aB}$
$\mathrm{S} \rightarrow \mathrm{bA}$
$\mathrm{A} \rightarrow \mathrm{aS}$
$\mathrm{A} \rightarrow \mathrm{b}$ A A
$\mathrm{A} \rightarrow \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{a}$ B B
$\mathrm{B} \rightarrow \mathrm{b}\}$
4. (a) Design a Moore Machine to determine the residue $\bmod 4$ for each binary string treated as integer.
(b) Design a Mealy machine that uses its state to remember the last symbol read and emits output ' y ' whenever current input matches to previous one, and emits n otherwise.

$$
[8+8]
$$

5. (a) Describe Chomsky hierarchy of languages.
(b) Explain post Correspondence Problem.
6. Find the PDA that accepts the following language
$\mathrm{L}=\left\{\mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*}:|\mathrm{x}|_{\mathrm{a}}=2|\mathrm{x}|_{\mathrm{b}}\right\}$ via empty stack. Also find the PDA via final state.
7. (a) Define a Turing machine mathematically. Define the term 'move' in a TM.
(b) Design a TM that recognizes the set $\left\{0^{2 n} 1^{n} \geq \mid n=0\right\}$.
8. (a) Design a DFA for the language $\mathrm{L}=\left\{\mathrm{ba}^{\mathrm{n}} / \mathrm{n} \geq 0\right\}$.
(b) Design DFA over $\{\mathrm{a}, \mathrm{b}\}$ to accept strings which does not contains two consecutive b's.

III B.Tech I Semester Examinations,MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Define a Turing machine mathematically. Define the term 'move' in a TM.
(b) Design a TM that recognizes the set
$\left\{0^{2 \mathrm{n}} 1^{\mathrm{n}} \geq \mid \mathrm{n}=0\right\}$.
2. (a) Describe Chomsky hierarchy of languages.
(b) Explain post Correspondence Problem.
3. (a) $\mathrm{S} \rightarrow \mathrm{aS}|\mathrm{bS}| \mathrm{a} \mid \mathrm{b}$

Generate the regular expression for the above CFG
Give automata for the above grammar and write what is the language accepted by the above automata? Is both the derived automata and the given CFG generates same language.
(b) $\mathrm{S} \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \in$

What is the language generated by the above grammar?
4. (a) Explain the terms: Chomsky normal form and Greibach Normal form
(b) Convert to Chomsky normal form the following grammar: $\mathrm{G}=(\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ where
$\mathrm{N}=\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}$
$\mathrm{T}=\{\mathrm{a}, \mathrm{b}\}$
$\mathrm{P}=\rightarrow\{\mathrm{S} \rightarrow \mathrm{aB}$
$\mathrm{S} \rightarrow$ bA
$\mathrm{A} \rightarrow \mathrm{aS}$
$\mathrm{A} \rightarrow \mathrm{b}$ A A
$\mathrm{A} \rightarrow \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{a}$ B B
B \rightarrow b
5. Find the PDA that accepts the following language
$\mathrm{L}=\left\{\mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*}:|\mathrm{x}|_{\mathrm{a}}=2|\mathrm{x}|_{\mathrm{b}}\right\}$ via empty stack. Also find the PDA via final state.
6. (a) Design a DFA for the language $\mathrm{L}=\left\{\mathrm{ba}^{\mathrm{n}} / \mathrm{n} \geq 0\right\}$.
(b) Design DFA over $\{\mathrm{a}, \mathrm{b}\}$ to accept strings which does not contains two consecutive b's.
7. Is Arden's lemma is applicable to an NFA consisting with \in-moves? If not? Then why? Explain.
8. (a) Design a Moore Machine to determine the residue $\bmod 4$ for each binary string treated as integer.
(b) Design a Mealy machine that uses its state to remember the last symbol read and emits output ' y ' whenever current input matches to previous one, and emits n otherwise.
[8+8]

