
UNIT – VII – SYSTEM AUDIT 2014

SYSTEM AUDIT:

“The process of collecting and evaluating evidence to determine whether a computer

system safeguards assets, maintain data integrity, allows organizational goals to be achieved

and determine the efficient use of resources”. An information technology audit, or information

systems audit, is an examination of the management controls within an Information technology

infrastructure.

The evaluation of obtained evidence determines if the information systems are

safeguarding assets, maintaining data integrity, and operating effectively to achieve the

organization's goals or objectives. These reviews may be performed in conjunction with a

financial statement audit, internal audit, or other form of attestation engagement.

System audit is an audit to verify that systems are appropriate, are efficient, and are

adequately controlled to ensure valid, reliable, timely, and secure input, processing, and output

at all levels of a system's activity.

SOFTWARE ENGINEERING QUALITIES:

Software engineering is the study and application of engineering to the design,

development, and maintenance of software. Software Engineering Qualities are mainly

classified based on the following:

1) Technical Skills

2) Personal Traits

TECHNICAL SKILLS:

1) Basic Computer Science Skills: Hopefully, any software engineer will have these skills and

more. Research skills, reading comprehension, the ability to know how to use library

functions, and understanding computing problems, design patterns, and frameworks are

other skills that are valuable to have.

2) Passion for Code: Programming isn’t for the uninterested. You must have a passion for

code, developing it from a purely scientific skill into a craft or an art. Building code is much

like developing a painting, a sculpture, or a symphony. With the popularity of Open Source,

you don’t have to be alone in code creation — the ability to work with software engineers

and developers from around the world is possibly through the Internet.

3) Fearless Refactoring: Refactoring is the ability to improve code without changing what it

does. The ability to realize that no one should be a slave to original code is key here — that

old code can become unstable and incompatible over time. Refactoring enables the

developer to own the code, instead of the code owning you.

UNIT – VII – SYSTEM AUDIT 2014

4) Develops Quality: In a former era, engineers thought testing was beneath them. Today,

experienced engineers know and understand the value of tests, because their goal is to

create a working system. Exposing bugs and eliminating them is the best way to develop

stellar code. But a good engineer also knows not to waste time writing trivial or redundant

tests, instead focusing on testing the essential parts of each component.

5) Willing to Leverage Existing Code: Why invent the wheel when it’s already working? Life is

too short to continuously invent new codes and libraries. Reuse of internal infrastructure,

use of third-party libraries, and leveraging web-scale services such as the ones offered by

Amazon, are marks of software genius.

6) Focus on Usable and Maintainable Code: Software always works better then it is well

designed and user-centric. Good engineers work hard to make the system simple and

usable. They think about customers all the time and do not try to invent convoluted stuff

that can only be understood and appreciated by geeks. A disciplined engineer thinks about

the maintainability and evolution of the code from its first line, as well. Expressive names

for methods and variables can make the code self-explanatory.

7) Can Code in Multiple Languages: Writing FORTRAN in any language is just the tip of the

iceberg. Just like a person who can speak several languages, an engineer who isn’t tied to

one code language can think outside the box and is a more desirable hire. A willingness to

learn new languages, new libraries and new ways of building systems goes a long way to

creating a great software engineer.

PERSONAL TRAITS:

8) Vision: What is the use in developing code, when it won’t be applicable a year or two down

the road? Visionaries create code and libraries that are open to refactoring, and easy to use

in all code languages. Being able to see the impacts of present-day decisions is paramount

to building great software.

9) Attention to Detail: If you get angry about misspelled database columns, “uncommented”

code, projects that aren’t checked into source control, software that’s not unit tested,

unimplemented features, and so on, then you probably try to avoid those issues yourself.

Bad installation packages, sloppy deployments, or a misspelled column name can bring

down entire systems. Be obsessive about details, and you’ll be on your way to becoming a

software star.

10) Business Acumen: If you don’t understand why your software development is so important

to your clients’ livelihoods, consider this NASA story. “This software never crashes. It never

needs to be re-booted. This software is bug-free. It is perfect, as perfect as human beings

have achieved.

UNIT – VII – SYSTEM AUDIT 2014

Consider these stats: the last three versions of the program — each 420,000 lines long-had

just one error each. The last 11 versions of this software had a total of 17 errors.

Commercial programs of equivalent complexity would have 5,000 errors.” The ability to

understand, why all the coding is done, as it the fruit for any customer or client.

11) Curiosity: The best software engineers are curious about why something is done one way or

another, yet with the added ability of being objective about the solutions. Many engineers

we know got in trouble as kids for taking things apart to see how they worked. Putting

together software is just a creative, and many software engineers also have artistic hobbies.

This creativity and curiosity is required to think outside the box when designing programs.

The thrill you get from making something work is what keeps you going.

12) Experience: If you’ve been tinkering with software programs since you were a kid, your

abilities as an adult will be quadrupled. Beyond hands-on experience, you might also be

addicted to math and science, and the ability to stay organized. At the same time, great

software engineers also realize that they don’t know it all…the ability to continue to learn is

essential in a field where change is a constant.

13) Discipline: Although you may have passion for your job, this love for your work and for the

next project doesn’t mean that you can be sloppy. Attention to detail is important, but so is

an ability to stay organized. So much bad code belongs to developers who don’t do what

they know should be done.

14) Patience: Bugs are natural. Design glitches are normal. Sloppy coding by other engineers

occurs often. Patience is a key quality for software engineers who want to work in this field.

15) Teamwork: Few projects are small enough or require so few skills that one person can do

them well. Learning how to work as a team in college is one way to get over that “hermit”

image…and working as a team online or in the office can only produce stellar projects.

Successful engineers also become good communicators. They know how to write clear and

concise reports and instructions, and know how to convey ideas to clients and customers.

SOFTWARE DESIGN:

Software design is the process by which an agent creates a specification of a software

artifact, intended to accomplish goals, using a set of primitive components and subject to

constraints. Software design may refer to either "all the activities involved in conceptualizing,

framing, implementing, commissioning, and ultimately modifying complex systems".

Software design usually involves problem solving and planning a software solution. This

includes both low-level component and algorithm design and high-level, architecture design.

UNIT – VII – SYSTEM AUDIT 2014

Software design is the process of implementing software solutions to one or more set of

problems. One of the important parts of software design is the software requirements analysis.

It is a part of the software development process that lists specifications used in software

engineering.

If the software is "semi-automated" or user centered, software design may involve user

experience design yielding a story board to help determine those specifications. If the software

is completely automated (meaning no user or user interface), a software design may be as

simple as a flow chart or text describing a planned sequence of events.

There are also semi-standard methods like Unified Modeling Language and

Fundamental modeling concepts. In either case, some documentation of the plan is usually the

product of the design. Furthermore, a software design may be platform-independent or

platform-specific, depending on the availability of the technology used for the design.

Software design can be considered as creating a solution to a problem in hand with

available capabilities. The main difference between Software analysis and design is that the

output of a software analysis consists of smaller problems to solve. Also, the analysis should not

be very different even if it is designed by different team members or groups. The design focuses

on the capabilities, and there can be multiple designs for the same problem depending on the

environment that solution will be hosted.

Sometimes the design depends on the environment that it was developed for, whether

it is created from reliable frameworks or implemented with suitable design patterns. When

designing software, two important factors to consider are its security and usability.

Software Design Principles:

 The design process should not suffer from “tunnel vision.” A good designer should consider

alternative approaches, judging each based on the requirements of the problem, the

resources available to do the job.

 The design should be traceable to the analysis model. Because a single element of the

design model often traces to multiple requirements, it is necessary to have a means for

tracking how requirements have been satisfied by the design model.

 The design should not reinvent the wheel. Systems are constructed using a set of design

patterns, many of which have likely been encountered before. These patterns should always

be chosen as an alternative to reinvention. Time is short and resources are limited! Design

time should be invested in representing truly new ideas and integrating those patterns that

already exist.

UNIT – VII – SYSTEM AUDIT 2014

 The design should “minimize the intellectual distance” between the software and the

problem as it exists in the real world. That is, the structure of the software design should

(whenever possible) mimic the structure of the problem domain.

 The design should exhibit uniformity and integration. A design is uniform if it appears that

one person developed the entire thing. Rules of style and format should be defined for a

design team before design work begins. A design is integrated if care is taken in defining

interfaces between design components.

 The design should be structured to accommodate change. The design concepts discussed in

the next section enable a design to achieve this principle.

SOFTWARE PRODUCTION:

A Software Product is defined as a packaged configuration of software components, or a

software-based service with auxiliary materials, which is released for and traded in a specific

market.

Examples: ERP software, Bookkeeping service, Operating systems, Desk-top publishing,

Computer-aided design, Software development environments, Customer-relationship

management.

Software Production is the process of producing software in ways similar to the

manufacturing of tangible goods. In this way of conducting business, each copy of the software

is priced and sold as though it was a tangible product. The sales process usually is conducted by

per copy or per desktop software licensing.

When this method is used, the software is developed by software engineering firms

specializing in such practices and distributed through retail stores and sold on a per unit basis at

a margin price to the buyer greater than zero, even though software has a zero marginal cost

per copy to the producer. Software manufacturing like all other tangible goods can have errors

and Total Quality Management can be implied in the process.

Both proprietary software and free software can be produced in this model, and sold

and distributed as commercial software.

Proprietary software or closed source software is computer software licensed under

exclusive legal right of the copyright holder with the intent that the licensee is given the right to

use the software only under certain conditions, and restricted from other uses, such as

modification, sharing, studying, redistribution, or reverse engineering. Usually the source code

of proprietary software is not made available.

UNIT – VII – SYSTEM AUDIT 2014

Free software is a computer software that is distributed along with its source code, and

is released under a software license that guarantee users the freedom to run the software for

any purpose as well as to study, adapt/modify, and distribute the original software and the

adapted/changed versions.

Free software is often developed collaboratively by volunteer computer programmers.

Free software differs from proprietary software, which to varying degrees does not give the

user freedoms to study, modify and share the software, and threatens users with legal

penalties if they do not conform to the terms of restrictive software licenses.

Proprietary software is usually sold as a binary executable program without access to

the source code, which prevents users from modifying and patching it, and results in the user

becoming dependent on software companies (vendor lock-in) to provide updates and support.

Free software is also distinct from freeware, which does not require payment for use,

but includes software where the authors or copyright holders of freeware have retained all of

the rights to the software, so that it is not necessarily permissible to reverse engineer, modify,

or redistribute freeware.

SOFTWARE SERVICE:

It is defined as a service provided by the software application which makes us to avail

the facilities through an interface. It is also a service provided by a software application running

online and making its facilities available to users over the Internet via an interface.

A software service is a service program that contains executable code for one or more

services.

A service program can be configured to execute in the context of a user account from

either the built-in (local), primary, or trusted domain. It can also be configured to run in a

special service user account.

A service runs as a background process that can affect system performance,

responsiveness, energy efficiency, and security.

SOFTWARE SPECIFICATION:

A specification is a precise, unambiguous and complete statement of the requirements

of a system (or program or process), written in such a way that it can be used to predict how

the system will behave.

A software specification describes WHAT a program does, a design describes HOW the

program does it, and documentation describes WHY it does it.

UNIT – VII – SYSTEM AUDIT 2014

A specification is a document which forms a contract between the customer and the

designer.

Specification is the second phase in the `staged' model of software development, which

consists of: Requirements; Specification; Design; Implementation; Testing; Maintenance.

A specification is a document by which we can judge the correctness of an

implementation.

SOFTWARE METRICS:

Software metric is a measurement derived from a software product, process, or

resource. Its purpose is to provide a quantitative assessment of the extent to which the

product, process, or resource possesses certain attributes.

Software metrics are necessary in order to effectively manage software development.

This can be done by accurate schedule, better quality products, good productivity and good

cost estimates. The goals of software metrics are to identify and measure essential factors

which effects software development.

Software metrics are used to obtain objective reproducible measurements that can be

useful for quality assurance, performance, debugging, management, and estimating costs.

 Software metric is a measure of some property of a piece of software or its

specifications. Since quantitative measurements are essential in all sciences, there is a

continuous effort by computer science practitioners and theoreticians to bring similar

approaches to software development.

With the help of software metrics it is possible to find defects in code (post release and

prior to release), predicting defective code, predicting project success, and predicting project

risk.

The main objective of software metric is to describe the current state-of-the-art in the

measurement of software products and process. There is still some debate around which

metrics matter and what they mean.

The utility of metrics is limited to quantifying one of the following goals: Schedule of a

software project, Size/complexity of development involved, cost of project, and quality of

software.

Metrics that are gathered from requirements phase include size metrics constituting

functions, lines of code and complexity. Quality of requirements for example, can be measured

as volatility - The degree to which requirements changes over period of time.Traceability can be

UNIT – VII – SYSTEM AUDIT 2014

from requirements to requirements and requirements to design or test documents. Consistency

and Complexity can also be gathered from requirements phase.

Types of Metrics:

1) Requirement Metrics

Requirements engineering deals with elicitation, analysis, communication and

validation of the requirements, once errors are identified it is easy to fix them compared to

later identification of errors. It is obvious that the cost of fixing these errors in initial stages

is lower than fixing them in later stages of software development.

Many of these errors are caused due to changes in the requirements. In order to

eliminate errors there should be some measurement. Metrics that can be gathered from

requirements are the size of the requirements, requirements traceability, requirements

completeness and requirements volatility.

2) Product Metrics

Product metrics measure the software products at any stage of software

development. They can be applied from requirements phase through installation, these

metrics measures size of the program. They measure number of pages of documents and

complexity of software design. Primitive metrics or direct measurement of an attribute

involves no other entity. It is independent of other entities. It can be LOC, duration of tests

calculated in number of hours, months and number of defects discovered Size of the

software can be measured by its length, functionality and complexity.

a) Object Oriented Metrics

Object Oriented Metrics are helpful for the allocation of resources in software

development. These metrics are particularly used to identify fault-prone classes and

predicts maintenance efforts, error proneness, and error rate.

b) Communication Metrics

Communication Metrics Communication within a team is defined as intra-team

communication while communication among members of different teams is known as inter-

team communication.

Communication artifacts for example electronic mail, weekly meetings, informal

interactions, liaisons, personal e-mail, and informal interactions are available in entire

project capturing information such as code, politics and process.

UNIT – VII – SYSTEM AUDIT 2014

This communication metrics give a good picture of software development process.

These metrics measure the incidents of a specified type within a process. These are

available in initial phases of software development and are easier to collect.

3) Process Metrics

Process metrics measure the process of software development. It includes the type

of methodology used, experience level of human resources and overall development time.

Overall development time of the software product is an objective metrics. If given as a task

this should have same results from all the observers. Computed metrics or indirect

measurement is to make direct measurement interaction visible.

SOFTWARE QUALITY ASSURANCE:

In the context of software engineering, software quality measures how well software is

designed (quality of design), and how well the software conforms to that design (quality of

conformance), although there are several different definitions. It is often described as the

'fitness for purpose' of a piece of software.

In the context of software engineering, software quality refers to two related but

distinct notions that exist wherever quality is defined in a business context:

Software functional quality reflects how well it complies with or conforms to a given

design, based on functional requirements or specifications. That attribute can also be described

as the fitness for purpose of a piece of software or how it compares to competitors in the

marketplace as a worthwhile product.

Software structural quality refers to how it meets non-functional requirements that

support the delivery of the functional requirements, such as robustness or maintainability, the

degree to which the software was produced correctly.

Structural quality is evaluated through the analysis of the software inner structure, its

source code, at the unit level, the technology level and the system level.

Software quality measurement quantifies to what extent a software or system rates

along each of these five dimensions. An aggregated measure of software quality can be

computed through a qualitative or a quantitative scoring scheme or a mix of both and then a

weighting system reflecting the priorities. Software quality is decomposed into process quality,

product quality, and quality in use.

Process quality: Software processes implement best practices of software engineering

in an organizational context. Process quality expresses the degree to which defined processes

were followed and completed.

UNIT – VII – SYSTEM AUDIT 2014

Product quality: Software products are the output of software processes. Product

quality is determined by the degree to which the developed software meets the defined

requirements.

Quality in use: A product that perfectly matches defined requirements does not

guarantee to be useful in the hands of a user when the implemented requirements do not

reflect the intended use. Quality in use addresses the degree to which a product is fit for

purpose when exposed to a particular context of use.

Measurable elements of software quality, i.e. quality characteristics, have to be defined

in order to assess the quality of a software product and to set quality objectives.

A series of attempts to define attributes of software products by which quality can be

systematically described has been combined in the ISO/IEC standards 9126:2001 [ISO01] and

25000:2005 [ISO05] respectively.

The standard provides a quality model with six quality characteristics, namely

functionality, reliability, usability, efficiency, maintainability and portability.

Bugs, i.e. defects, indicate the deviation of the actual quantity of a quality characteristic

from the expected quantity. Defects are often associated with deviations in the behavior of a

software system, affecting its functionality.

The quality model, however, makes clear that defects concern all quality characteristics

of a software system. Hence, a deviation from a defined runtime performance is therefore as

much a defect as a deviation from the expected usability or a flawed computation.

