
UNIT – VIII – SYSTEM METHODOLOGY 2014

SYSTEM METHODOLOGY:

The need for a Systems Methodology was perceived in the second half of the 20th

Century, to show how and why systems engineering worked and was so effective.

Systems engineering was seen as a powerful method for solving complex problems,

particularly in respect of major projects in the space program and the defense industry. These

early successes were based on systems science and system methods that were themselves

relatively new, having emerged in response to perceived limitations in the hard sciences,

notably their inability to explain life and the counterintuitive behavior of wholes, or gestalt.

Systems methods concerned themselves with the synthesis of whole open systems and

with emergence, the latter caused by interactions between the parts within a system. Such

methods, although effective, seemed alien (unknown) and arcane (deep) to engineers

concerned with methods, based on Cartesian reduction, for creating tangible and material end

products.

The need was perceived for a systems methodology, one that was accessible to

engineers along with other disciplines from the applied and life sciences, so that the whole

process, from addressing the problem to creating the optimum solution, could be understood

and pursued.

System Methodology:

"Has mankind evolved to a point that there exists, or that with creative additions and re-

combinations of modest proportions, there can be shown to be available, a common systems

methodology, in terms of which we can conceive of, plan, design, construct, and use systems

(procedures, machines, teams of people) of any arbitrary type in the service of mankind, and

with low rates of failure?"

Systems methodology looks like:

By definition, if it is a methodology, it is context free - it can be used for any kind of

problem and to create any kind of systems solution - provided one exists. (In the real world,

every problem need not have a solution).

OBJECTIVES OF THE METHODOLOGY:

 Systems methodology shows how they should be work

 It examines how various components work together to produce a particular outcome

UNIT – VIII – SYSTEM METHODOLOGY 2014

 By diagramming the linkages between each system activity. Systems methodology

makes it easier to understand the relationships among various activities and the impact

of each on the other.

 It shows the processes as part of larger systems whose objectives are to serve a specific

client need.

 Systems methodology is valuable when an overall picture is needed.

 It shows direct and support services interact, where critical inputs come from, and how

products or services are expected to meet the needs in the community.

 When the teams do not know where to start, Systems methodology can help in locating

problems areas or in analyzing the problem by showing the various parts of the systems.

 Systems methodology can also reveal data collection needs : indicators of inputs,

process , and outcomes

 It can be helpful in monitoring performance.

Aspects of the systems methodology:

Some of the most important of aspects of the Systems methodology are:

 Human dimension

 Logic dimension

 Knowledge dimension

 Time dimension

TIME DIMENSION:

The systems methodology contains processes and tasks at its heart; some processes

necessarily involve sequence. Without knowing the problem first, e.g., it is not sensible to

predicate a remedy .so, for some aspects there is a natural, inescapable, logical sequence,

which will take time to perform.

Complexity appears to emanate (originate) from at least three aspects: connectivity,

variety and tangling, or the degree of interweaving of strands and parts of any systems. The

greater the complexity of an issue, the more time may be needed to unravel the knot, to

identify and characterize the various “open systems, and to understand how their various

ramifications interact and interdependent.”

UNIT – VIII – SYSTEM METHODOLOGY 2014

LOGIC DIMENSION:

The systems methodology is necessarily logical and rational where both terms indicate,

inter, an absence of cultural bias.

The thinking /behavior aspect is of concern, epistemologically—the ‘do you know what

you think you know,’ and ‘how do you know what you know’ considerations. Many engineers’

education and training. Moreover, psychologists, anthropologists, and others are not in total

agreement themselves about human behavior, society, psyche, etc.

That which applies to the remedial system in the way of psychology, anthropology, and

others soft factors, applies equally to the systems methodology in operation, where it is an

undoubted complex system in its own right. The systems methodology is comprised of

methods, tools and processes being used and conducted by individuals, teams and teams of

teams , all with behavioral characteristics , all operating in a dynamic, interactive creative

cauldron.

With such a minefield, to talk of logic is, perhaps, tantamount to treading on a mine. The

approach taken in the systems methodology, however, has been to limit the extent of systems

methodology such that its content is logical.

HUMAN DIMENSION:

Social systems become progressively more complex as we diversify activities : create

new generations , business and industries : bring new technologies online , enjoy freedom to

evolve , become ever-more materialistic ; as populations continue to increase , as the hunger

for power and energy continues to grow ; and as the waste products of lifestyles accumulate to

pollute.

World has been made smaller by enhanced communication, by easy speed of travel, by

improved infrastructures etc. this has had the effect of coupling many open systems that were

previously only on the loosest indirect contact. Close coupling increases the rate of interchange

between systems, causing their behavior to become more dynamic, even chaotic.

As many complex systems dynamically interact, change, and, evolve, issues and

problems arise. Many of these are familiar to us; even if there seems to be no way of

addressing them. Meeting the global demand for energy; preventing biosphere becoming even

more polluted; stemming the observed diminution of species diversity; accommodating the

burgeoning human population of the planet; and so on.

UNIT – VIII – SYSTEM METHODOLOGY 2014

The systems methodology is necessarily founded in systems science, in that its

operations recognizes systems, works with systems, configures and re-configures systems,

recognizes dysfunction in systems, and finds provable ways to ‘repair’ those dysfunctions.

To be credible, the systems methodology ‘adopts’ the scientific method, i.e., the

scientific method is ‘built-in.’ the systems methodology incorporates the four steps of the

scientific method , which are generally presented as:

 Observe and describe a phenomenon or group of phenomena.

 Formulate one or more hypotheses to explain the phenomena.

 Use of the hypotheses to predict the existence of other phenomena, or to predict

quantitatively the results of new observations.

Perform experimental tests of the predictions by several independent experimenters

and properly performed experiments.

SOFTWARE LIFECYCLE MODELS:

A software lifecycle model is a standardized format for planning, organizing and running

a new development project.

A software lifecycle model is a description of the sequence of activities carried out in an

software engineering project, and the relative order of these activities.

It provides a fixed generic framework that can be tailored to a specific project. Project

specific parameters will include:

 Size (person-years)

 Budget

 Duration

Project plan = lifecycle model + project parameters

Software Development Life Cycle is a process used by software industry to design,

develop and test high quality software’s. It aims to produce high quality software that meets or

exceeds customer expectations, reaches completion within times and cost estimates.

A typical Software Development life cycle consists of the following stages:

Planning and Requirement Analysis: Requirement analysis is the most important and

fundamental stage in SDLC. It is performed by the senior members of the team with inputs from

UNIT – VIII – SYSTEM METHODOLOGY 2014

the customer, the sales department, market surveys and domain experts in the industry. This

information is then used to plan the basic project approach and to conduct product feasibility

study in the economical, operational, and technical areas.

Planning for the quality assurance requirements and identification of the risks

associated with the project is also done in the planning stage. The outcome of the technical

feasibility study is to define the various technical approaches that can be followed to

implement the project successfully with minimum risks.

Defining Requirements: Once the requirement analysis is done the next step is to clearly

define and document the product requirements and get them approved from the customer or

the market analysts. This is done through ‘SRS’ – Software Requirement Specification document

which consists of all the product requirements to be designed and developed during the project

life cycle.

Designing the product architecture: SRS is the reference for product architects to come

out with the best architecture for the product to be developed; based on the requirements

specified in SRS, usually more than one design approach for the product architecture is

proposed and documented in a DDS - Design Document Specification. This DDS is reviewed by

all the important stakeholders and based on various parameters as risk assessment, product

robustness, design modularity , budget and time constraints , the best design approach is

selected for the product.

Building or Developing the Product: In this stage of SDLC the actual development starts

and the product is built. The programming code is generated as per DDS during this stage. If the

design is performed in a detailed and organized manner, code generation can be accomplished

without much hassle. Developers have to follow the coding guidelines defined by their

organization and programming tools like compilers, interpreters, debuggers etc are used to

generate the code. Different high level programming languages are used for coding. The

programming language is chosen with respect to the type of software being developed.

Testing the Product: This stage is usually a subset of all the stages as in the modern

SDLC models; the testing activities are mostly involved in all the stages of SDLC. However this

stage refers to the testing only stage of the product where products defects are reported,

tracked, fixed and retested, until the product reaches the quality standards defined in the SRS.

Deployment in the Market and Maintenance: Once the product is tested and ready to

be deployed it is released formally in the appropriate market. Sometime product deployment

happens in stages as per the organizations’ business strategy. The product may first be released

in a limited segment and tested in the real business environment (UAT- User acceptance

testing).

UNIT – VIII – SYSTEM METHODOLOGY 2014

Then based on the feedback, the product may be released as it is or with suggested

enhancements in the targeting market segment. After the product is released in the market, its

maintenance is done for the existing customer base.

There are various kinds of lifecycle models to choose from, e.g.:

 Waterfall Model

 Iterative Model

 Spiral Model

The other related methodologies are Agile Model, RAD Model – Rapid Application

Development and Prototyping Models.

WATERFALL MODEL:

The Waterfall Model was first Process Model to be introduced. It is also referred to as a

linear-sequential life cycle model. It is very simple to understand and use. In a waterfall model,

each phase must be completed before the next phase can begin and there is no overlapping in

the phases. Following is a diagrammatic representation of different phases of waterfall model.

The sequential phases in Waterfall model are:

UNIT – VIII – SYSTEM METHODOLOGY 2014

 Requirement Gathering and analysis: All possible requirements of the system to be

developed are captured in this phase and documented in a requirement specification

doc.

 System Design: The requirement specifications from first phase are studied in this phase

and system design is prepared. System Design helps in specifying hardware and system

requirements and also helps in defining overall system architecture.

 Implementation: With inputs from system design, the system is first developed in small

programs called units, which are integrated in the next phase. Each unit is developed

and tested for its functionality which is referred to as Unit Testing.

 Integration and Testing: All the units developed in the implementation phase are

integrated into a system after testing of each unit. Post integration the entire system is

tested for any faults and failures.

 Deployment of system: Once the functional and non functional testing is done, the

product is deployed in the customer environment or released into the market.

 Maintenance: There are some issues which come up in the client environment. To fix

those issues patches are released. Also to enhance the product some better versions are

released. Maintenance is done to deliver these changes in the customer environment.

ITERATIVE MODEL:

In Iterative model, iterative process starts with a simple implementation of a small set of

the software requirements and iteratively enhances the evolving versions until the complete

system is implemented and ready to be deployed.

An iterative life cycle model does not attempt to start with a full specification of

requirements. Instead, development begins by specifying and implementing just part of the

software, which is then reviewed in order to identify further requirements. This process is then

repeated, producing a new version of the software at the end of each iteration of the model.

Iterative process starts with a simple implementation of a subset of the software

requirements and iteratively enhances the evolving versions until the full system is

implemented. At each iteration, design modifications are made and new functional capabilities

are added. The basic idea behind this method is to develop a system through repeated cycles

(iterative) and in smaller portions at a time (incremental).

Following is the pictorial representation of Iterative and Incremental model:

UNIT – VIII – SYSTEM METHODOLOGY 2014

SPIRAL MODEL:

The spiral model combines the idea of iterative development with the systematic,

controlled aspects of the waterfall model.

The spiral model has four phases. A software project repeatedly passes through these

phases in iterations called Spirals.

Identification:

This phase starts with gathering the business requirements in the baseline spiral. In the

subsequent spirals as the product matures, identification of system requirements, subsystem

requirements and unit requirements are all done in this phase.

This also includes understanding the system requirements by continuous

communication between the customer and the system analyst. At the end of the spiral the

product is deployed in the identified market.

Design:

Design phase starts with the conceptual design in the baseline spiral and involves

architectural design, logical design of modules, physical product design and final design in the

subsequent spirals.

Construct or Build:

Construct phase refers to production of the actual software product at every spiral. In

the baseline spiral when the product is just thought of and the design is being developed a POC

(Proof of Concept) is developed in this phase to get customer feedback.

Then in the subsequent spirals with higher clarity on requirements and design details a

working model of the software called build is produced with a version number. These builds are

sent to customer for feedback.

UNIT – VIII – SYSTEM METHODOLOGY 2014

Evaluation and Risk Analysis:

Risk Analysis includes identifying, estimating, and monitoring technical feasibility and

management risks, such as schedule slippage and cost overrun. After testing the build, at the

end of first iteration, the customer evaluates the software and provides feedback.

Based on the customer evaluation, software development process enters into the next

iteration and subsequently follows the linear approach to implement the feedback suggested

by the customer. The process of iterations along the spiral continues throughout the life of the

software.

Following is a diagrammatic representation of spiral model listing the activities in each

phase:

VERIFICATION AND VALIDATION:

During and after the implementation process, the program being developed must

checked to ensure that it meets its specifications and delivers the functionality expected by the

people paying for the software. Verification and activities take place at each stage of the

software process. V &V starts with requirements reviews and continues through design reviews

and code inspections to product testing.

UNIT – VIII – SYSTEM METHODOLOGY 2014

As per the Boehm, Validation is: “Are we building the right product.” Verification is:

“Are we building the product right.”

 Verification is the process of determining whether or not the products of a given phase

of software development fulfill the specifications established during the previous phase

 Verification involves checking of functional and non-functional requirements to ensure

that the software confirms to its specification.

 Validation is the process of evaluating software at the end of the software

development to ensure compliance with the software requirements. Clearly, for high

reliability we need to perform both activities. Together they are often called V&V

activities.

 Validation is the process of determine whether a fully developed system confirms to its

requirements specifications

 Validation is an analysis process that is done after checking the confirms of the system

to its specifications.

The goal of verification process is to asses and improves the quality of the work

products generated during development and modifications of software.

The ultimate goal of the verification and validation process is to establish confidence

that the software system is ‘fit for purpose’. This means that the system: must be good enough

for its intended use. The level of required confidence depends on the system’s purpose, the

expectations of the system users and the current marketing environment for the system.

GOALS AND REQUIREMENTS OF VERIFICATION:

Everything must be verified: In principle, all design processes and all of these processes

must be verified.

In fact, once we have tested a system for proper behave our, we should check whether

our tests were executed properly themselves. Verifying the validity of experiments is standard

practice in established scientific disciplines.

The results of verification may not be binary: It cannot be stated that a piece of

software is absolutely error free, but an approximation of ideal correctness is often considered

satisfactory and may in some way be certificated. It is common to hear or read sentences such

as “the new release of this product corrects several errors.”

Verification may be objective or subjective: some instances of verification may be the

result of an objective activity, such as performing a test by supplying some input data to the

UNIT – VIII – SYSTEM METHODOLOGY 2014

system and checking the output, or measuring the response time of an interactive system to

given stimuli.

Even implicit qualities must be verified: the desired software qualities should be stated

explicitly in the requirements specification document. Some requirements, however, may have

been left out, either because they are implicit or because they were forgotten.

Verification and Validation process approaches:

1) Software testing involves running an implementation of the software with test data.

You examine the outputs of the software and its operational behavior to check that it is

performing as required; testing is a dynamic technique of verification and validation.

2) Software inspections or peer reviews analyze check system representations such as the

requirements document, design diagrams and the programs and the program source

code. You cause inspections at all stages of the process. Inspections may be

supplemented by some automatic analysis of the source code. You can use inspections

at all stages of the process. Inspections may be supplemented by some automatic

analysis of source text of a system or associated documents.

