
Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 1

File System:

For most users, the file system is the most visible aspect of an operating

system. It provides the mechanism for on-line storage of and accesses to both data and

programs of the operating system and all the users of the computer system.

The file system consists of two distinct parts: a collection of files, each storing

related data, and a directory structure, which organizes and provides information about

all the files in the system.

File Concept:

Computers can store information on various storage media, such as magnetic

disks, magnetic tapes, and optical disks. So that the computer system will be

convenient to use, the operating system provides a uniform logical view of

information storage.

The operating system abstracts from the physical properties of its storage

devices to define a logical storage unit, the file. Files are mapped by the operating

system onto physical devices. These storage devices are usually nonvolatile, so the

contents are persistent through power failures and system reboots.

Definition: A file is a named collection of related information that is recorded on

secondary storage.

From a user's perspective, a tile is the smallest allotment of logical secondary

storage; that is, data cannot be written to secondary storage unless they are within a

file. Commonly, files represent programs (both source and object forms) and data.

Data files may be numeric, alphabetic, alphanumeric, or binary.

Files may be free form, such as text files, or may be formatted rigidly. In

general, a file is a sequence of bits, bytes, lines, or records, the meaning of which is

defined by the file's creator and user. The concept of a file is thus extremely general.

Many different types of information may be stored in a file—source programs,

object programs, executable programs, numeric data, text, payroll records, graphic

images, sound recordings, and so on.

A file has a certain defined structure, which depends on its type. A text file is a

sequence of characters organized into lines (and possibly pages).

A source file is a sequence of subroutines and functions, each of which is

further organized as declarations followed by executable statements.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 2

An object file is a sequence of bytes organized into blocks understandable by

the system's linker. An executable file is a series of code sections that the loader can

bring into memory and execute.

File Attributes:

A file is named, for the convenience of its human users, and is referred to by

its name. A name is usually a string of characters, such as example.c. Some systems

differentiate between uppercase and lowercase characters in names, whereas other

systems do not.

When a file is named, it becomes independent of the process, the user, and

even the system that created it. For instance, one user might create the file example.c,

and another user might edit that file by specifying its name.

The file's owner might write the file to a floppy disk, send it in an e-mail, or

copy it across a network, and it could still be called example.c on the destination

system.

A file's attributes vary from one operating system to another but typically

consist of these:

 Name: The symbolic file name is the only information kept in human

readable form.

 Identifier: This unique tag, usually a number, identifies the file within the

file system; it is the non-human-readable name for the file.

 Type: This information is needed for systems that support different types

of files.

 Location: This information is a pointer to a device and to the location of

the file on that device.

 Size: The current size of the file (in bytes, words, or blocks) and possibly

the maximum allowed size are included in this attribute.

 Protection: Access-control information determines who can do reading,

writing, executing, and so on.

 Time, date, and user identification: This information may be kept for

creation, last modification, and last use. These data can be useful for

protection, security, and usage monitoring.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 3

The information about all files is kept in the directory structure, which also

resides on secondary storage. Typically, a directory entry consists of the file's name

and its unique identifier. The identifier in turn locates the other file attributes.

It may take more than a kilobyte to record this information for each file. In a

system with many files, the size of the directory itself may be megabytes. Because

directories, like files, must be nonvolatile, they must be stored on the device and

brought into memory piecemeal, as needed.

File Operations:

A file is an abstract data type. To define a file properly, we need to consider

the operations that can be performed on files. The operating system can provide

system calls to create, write, read, reposition, delete, and truncate files. Let's examine

what the operating system must do to perform each of these six basic file operations.

It should then be easy to see how other, similar operations, such as renaming a

file, can be implemented.

 Creating a file. Two steps are necessary to create a file. First, space in the file

system must be found for the file. Second, an entry for the new file must be

made in the directory.

 Writing a file. To write a file, we make a system call specifying both the name

of the file and the information to be written to the file. Given the name of the

file, the system searches the directory to find the file's location.

The system must keep a write pointer to the location in the file where the next

write is to take place. The write pointer must be updated whenever a write

occurs.

 Reading a file: To read from a file, we use a system call that specifies the

name of the file and where (in memory) the next block of the file should be

put. Again, the directory is searched for the associated entry, and the system

needs to keep a read pointer to the location in the file where the next read is to

take place.

Once the read has taken place, the read pointer is updated. Because a process is

usually either reading from or writing to a file, the current operation location

can be kept as a per-process current-file-position pointer. Both the read and

write operations use this same pointer, saving space and reducing system

complexity.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 4

 Repositioning within a file: The directory is searched for the appropriate

entry & the current-file-position pointer is repositioned to a given value.

Repositioning within a file need not involve any actual I/O. This file operation

is also known as files seek.

 Deleting a file: To delete a file, we search the directory for the named file.

Having found the associated directory entry, we release all file space, so that it

can be reused by other files, and erase the directory entry.

 Truncating a file: The user may want to erase the contents of a file but keep

its attributes. Rather than forcing the user to delete the file and then recreate it,

this function allows all attributes to remain unchanged—except for file

length—but lets the tile be reset to length zero and its file space released.

Most of the file operations mentioned involve searching the directory for the

entry associated with the named file. To avoid this constant searching, many systems

require that an open() system call be made before a file is first used actively.

The operating system keeps a small table, called the open-file table, containing

information about all open files. When a file operation is requested, the file is

specified via an index into this table, so no searching is required.

When the file is no longer being actively used, it is closed by the process, and

the operating system removes its entry from the open-file table, create and delete are

system calls that work with closed rather than open files.

File Types:

When we design a file system—indeed, an entire operating system—we

always consider whether the operating system should recognize and support file types.

If an operating system recognizes the type of a file, it can then operate on the file in

reasonable ways.

A common technique for implementing file types is to include the type as part

of the file name. The name is split into two parts—a name and an extension, usually

separated by a period as shown in figure (Common file types).

In this way, the user and the operating system can tell from the name alone

what the type of a file is. For example, most operating systems allow users to specify

file names as a sequence of characters followed by a period and terminated by an

extension of additional characters. File name examples include resume.doc,

Scrver.java, and ReaderThread.c.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 5

The system uses the extension to indicate the type of the file and the type of

operations that can be done on that file. Only a file with a .com, .exe, or .bat extension

can be executed, for instance.

The .com and .exe files are two forms of binary executable files, whereas a .bat

file is a batch file containing, in ASCII format, commands to the operating system.

Figure: Common file types

File Structure:

File types also can be used to indicate the internal structure of the file. Source

and Object files have structures that match the expectations of the programs that read

them. Further, certain files must conform to a required structure that is understood by

the operating system.

For example, the operating system requires that an executable file have a

specific structure so that it can determine where in memory to load the file and what

the location of the first instruction is. Some operating systems extend this idea into a

set of system-supported file structures, with sets of special operations for manipulating

files with those structures.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 6

Access Methods:

Files store information. When it is used, this information must be accessed and

read into computer memory. The information in the file can be accessed in several

ways. Some systems provide only one access method for files. Other systems, such as

those of IBM, support many access methods, and choosing the right one for a

particular application is a major design problem.

Sequential Access:

The simplest access method is sequential access. Information in the file is

processed in order, one record after the other. This mode of access is by far the most

common; for example, editors and compilers usually access files in this fashion.

Reads and writes make up the bulk of the operations on a file. A read

operation—read next—reads the next portion of the file and automatically advances a

file pointer, which tracks the I/O location. Similarly, the write operation—write

next—appends to the end of the file and advances to the end of the newly written

material (the new end of file).

Such a file can be reset to the beginning; and on some systems, a program .may

be able to skip forward or backward n records for some integer n—perhaps only for n

= 1.

Sequential access, which is depicted in figure below, is based on a tape model

of a file and works as well on sequential-access devices as it does on random-access

ones.

Figure: Sequential-access file

Direct Access:

Another method is direct access (or relative access). A file is made up of fixed

length logical records that allow programs to read and write records rapidly in no

particular order. The direct-access method is based on a disk model of a file, since

disks allow random access to any file block.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 7

For direct access, the file is viewed as a numbered sequence of blocks or

records. Thus, we may read block 14, then read block 53, and then write block 7.

There are no restrictions on the order of reading or writing for a direct-access file.

Direct-access files are of great use for immediate access to large amounts of

information. Databases are often of this type. When a query concerning a particular

subject arrives, we compute which block contains the answer and then read that block

directly to provide the desired information.

As a simple example, on an airline-reservation system, we might store all the

information about a particular flight (for example, flight 713) in the block identified

by the flight number. Thus, the number of available seats for flight 713 is stored in

block 713 of the reservation file.

To store information about a larger set, such as people, we might compute a

hash function on the people's names or search a small in-memory index to determine a

block to read and search.

For the direct-access method, the file operations must be modified to include

the block number as a parameter. Thus, we have read n, where n is the block number,

rather than read next, and write n rather than write next.

An alternative approach is to retain read next and write next, as with sequential

access, and to add an operation position file to n, where n is the block number. Then,

to effect a read n, we would, position to n and then read next.

The block number provided by the user to the operating system is normally a

relative block number. A relative block number is an index relative to the beginning

of the file.

Thus, the first relative block of the file is 0, the next is 1, and so on, even

though the actual absolute disk address of the block may be 14703 for the first block

and 3192 for the second.

The use of relative block numbers allows the operating system to decide where

the file should be placed (called the allocation problem) and helps to prevent the user

from accessing portions of the file system that may not be part of her file. Some

systems start their relative block numbers at 0; others start at 1.

Not all operating systems support both sequential and direct access for files.

Some systems allow only sequential file access; others allow only direct access. Some

systems require that a file be defined as sequential or direct when it is created; such a

file can be accessed only in a manner consistent with its declaration.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 8

We can easily simulate sequential access on a direct-access file by simply

keeping a variable cp that defines our current position, as shown in figure below.

Simulating a direct-access file on a sequential-access file, however, is extremely

inefficient and clumsy.

Figure: Simulation of sequential access on a direct-access file.

Other Access Methods:

Other access methods can be built on top of a direct-access method. These

methods generally involve the construction of an index for the file. The index, like an

index in the back of a book, contains pointers to the various blocks. To find a record in

the file, we first search the index and then use the pointer to access the file directly and

to find the desired record.

For example, a retail-price file might list the universal product codes (UPCs)

for items, with the associated prices. Each record consists of a 10-digit UPC and a 6-

digit price, for a 16-byte record.

If our disk has 1,024 bytes per block, we can store 64 records per block. A file

of 120,000 records would occupy about 2,000 blocks (2 million bytes). By keeping the

file sorted by UPC, we can define an index consisting of the first UPC in each block.

This index would have 2,000 entries of 10 digits each, or 20,000 bytes, and thus could

be kept in memory.

To find the price of a particular item, we can make a binary search of the

index. From this search, we learn exactly which block contains the desired record and

access that block.

This structure allows us to search a large file doing little I/O. With large files,

the index file itself may become too large to be kept in memory. One solution is to

create an index for the index file. The primary index file contains pointers to

secondary index files, which point to the actual data items.

For example, IBM’s indexed sequential-access method (ISAM) uses a small

master index that points to disk blocks of a secondary index.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 9

The secondary index blocks point to the actual file blocks. The file is kept

sorted on a defined key. To find a particular item, we first make a binary search of the

master index, which provides the block number of the secondary index.

This block is read in, and again a binary search is used to find the block

containing the desired record. Finally, this block is searched sequentially. In this way,

any record can be located from its key by at most two direct-access reads. Figure

below shows a similar situation as implemented by VMS index and relative files.

Figure: Example of index and relative files

Directory Structure:

Next, we consider how to store files. Certainly, no general-purpose computer

stores just one file. There are typically thousands, millions, even billions of files

within a computer. Files are stored on random-access storage devices, including hard

disks, optical disks, and solid-state (memory-based) disks.

A storage device can be used in its entirety for a file system. It can also be

subdivided for finer-grained control. For example, a disk can be partitioned into

quarters, and each quarter can hold a separate file system.

Storage devices can also be collected together into RAID sets that provide

protection from the failure of a single disk. Sometimes, disks are subdivided and also

collected into RAID sets.

Partitioning is useful for limiting the sizes of individual file systems, putting

multiple file-system types on the same device, or leaving part of the device available

for other uses, such as swap space or unformatted (raw) disk space.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 10

A file system can be created on each of these parts of the disk. Any entity

containing a file system is generally known as a volume. The volume may be a subset

of a device, a whole device, or multiple devices linked together into a RAID set. Each

volume can be thought of as a virtual disk.

Volumes can also store multiple operating systems, allowing a system to boot

and run more than one operating system. Each volume that contains a file system must

also contain information about the files in the system.

This information is kept in entries in a device directory or volume table of

contents. The device directory (more commonly known simply as the directory)

records information like: name, location, size and type for all files on that volume.

Figure below shows a typical file-system organization.

Figure: A typical file-system organization

Storage Structure:

As we have just seen, a general-

purpose computer system has multiple storage

devices, and those devices can be sliced up

into volumes that hold file systems.

Computer systems may have zero or

more file systems, and the file systems maybe

of varying types. For example, a typical

Solaris system may have dozens of file

systems of a dozen different types, as shown in

the file system list in Figure beside:

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 11

Consider the types of file systems in the Solaris example mentioned above:

 tmpfs—a “temporary” file system that is created in volatile main memory and

has its contents erased if the system reboots or crashes

 objfs—a “virtual” file system (essentially an interface to the kernel that looks

like a file system) that gives debuggers access to kernel symbols

 ctfs—a virtual file system that maintains “contract” information to manage

which processes start when the system boots and must continue to run during

operation

 lofs—a “loop back” file system that allows one file system to be accessed in

place of another one

 procfs—a virtual file system that presents information on all processes as a file

system

 ufs, zfs—general-purpose file systems

The file systems of computers, then, can be extensive. Even within a file

system, it is useful to segregate files into groups and manage and act on those groups.

This organization involves the use of directories. In the remainder of this section, we

explore the topic of directory structure.

Directory Overview:

The directory can be viewed as a symbol table that translates file names into

their directory entries. If we take such a view, we see that the directory itself can be

organized in many ways. The organization must allow us to insert entries, to delete

entries, to search for a named entry, and to list all the entries in the directory. In this

section, we examine several schemes for defining the logical structure of the directory

system.

When considering a particular directory structure, we need to keep in mind the

operations that are to be performed on a directory:

 Search for a file. We need to be able to search a directory structure to find the

entry for a particular file. Since files have symbolic names, and similar names

may indicate a relationship among files, we may want to be able to find all

files whose names match a particular pattern.

 Create a file. New files need to be created and added to the directory.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 12

 Delete a file. When a file is no longer needed, we want to be able to remove it

from the directory.

 List a directory. We need to be able to list the files in a directory and the

contents of the directory entry for each file in the list.

 Rename a file. Because the name of a file represents its contents to its users,

we must be able to change the name when the contents or use of the file

changes. Renaming a file may also allow its position within the directory

structure to be changed.

 Traverse the file system. We may wish to access every directory and every

file within a directory structure. For reliability, it is a good idea to save the

contents and structure of the entire file system at regular intervals. Often, we

do this by copying all files to magnetic tape. This technique provides a backup

copy in case of system failure. In addition, if a file is no longer in use, the file

can be copied to tape and the disk space of that file released for reuse by

another file.

In the following sections, we describe the most common schemes for defining

the logical structure of a directory.

Single-Level Directory:

The simplest directory structure is the single-level directory. All files are

contained in the same directory, which is easy to support and understand (as shown in

figure below).

Figure: Single-level directory

A single-level directory has significant limitations, however, when the number

of files increases or when the system has more than one user. Since all files are in the

same directory, they must have unique names. If two users call their data file test.txt,

then the unique-name rule is violated.

For example, in one programming class, 23 students called the program for

their second assignment prog2.c; another 11 called it assign2.c. Fortunately, most file

systems support file names of up to 255 characters, so it is relatively easy to select

unique file names.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 13

Even a single user on a single-level directory may find it difficult to remember

the names of all the files as the number of files increases. It is not uncommon for a

user to have hundreds of files on one computer system and an equal number of

additional files on another system. Keeping track of so many files is a daunting task.

Two-Level Directory:

As we have seen, a single-level directory often leads to confusion of file names

among different users. The standard solution is to create a separate directory for each

user.

In the two-level directory structure, each user has his own user file directory

(UFD). The UFDs have similar structures, but each lists only the files of a single user.

When a user job starts or a user logs in, the system’s master file directory (MFD) is

searched. The MFD is indexed by user name or account number, and each entry points

to the UFD for that user (Figure below).

Figure: Two-level directory structure

When a user refers to a particular file, only his own UFD is searched. Thus,

different users may have files with the same name, as long as all the file names within

each UFD are unique.

To create a file for a user, the operating system searches only that user’s UFD

to ascertain whether another file of that name exists. To delete a file, the operating

system confines its search to the local UFD; thus, it cannot accidentally delete another

user’s file that has the same name.

The user directories themselves must be created and deleted as necessary. A

special system program is run with the appropriate user name and account

information.

The program creates a new UFD and adds an entry for it to the MFD. The

execution of this program might be restricted to system administrators. Although the

two-level directory structure solves the name-collision problem, it still has

disadvantages. This structure effectively isolates one user from another.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 14

Isolation is an advantage when the users are completely independent but is a

disadvantage when the users want to cooperate on some task and to access one

another’s files. Some systems simply do not allow local user files to be accessed by

other users.

If access is to be permitted, one user must have the ability to name a file in

another user’s directory. To name a particular file uniquely in a two-level directory,

we must give both the user name and the file name. A two-level directory can be

thought of as a tree, or an inverted tree, of height 2. The root of the tree is the MFD.

Its direct descendants are the UFDs.

The descendants of the UFDs are the files themselves. The files are the leaves

of the tree. Specifying a user name and a file name defines a path in the tree from the

root (the MFD) to a leaf (the specified file). Thus, a user name and a file name define

a path name. Every file in the system has a path name. To name a file uniquely, a user

must know the path name of the file desired.

Tree-Structured Directories:

Once we have seen how to view a two-level directory as a two-level tree, the

natural generalization is to extend the directory structure to a tree of arbitrary height

(Figure below).

Figure: Tree-structured directory structure

This generalization allows users to create their own subdirectories and to

organize their files accordingly. A tree is the most common directory structure. The

tree has a root directory, and every file in the system has a unique path name.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 15

A directory (or subdirectory) contains a set of files or subdirectories. A

directory is simply another file, but it is treated in a special way. All directories have

the same internal format. One bit in each directory entry defines the entry as a file (0)

or as a subdirectory (1). Special system calls are used to create and delete directories.

In normal use, each process has a current directory. The current directory

should contain most of the files that are of current interest to the process.

When reference is made to a file, the current directory is searched. If a file is

needed that is not in the current directory, then the user usually must either specify a

path name or change the current directory to be the directory holding that file.

To change directories, a system call is provided that takes a directory name as

a parameter and uses it to redefine the current directory. Thus, the user can change her

current directory whenever she wants.

From one change directory() system call to the next, all open() system calls

search the current directory for the specified file. Note that the search path may or may

not contain a special entry that stands for “the current directory.”

Path names can be of two types: absolute and relative. An absolute path name

begins at the root and follows a path down to the specified file, giving the directory

names on the path.

A relative path name defines a path from the current directory. For example,

in the tree-structured file system (Figure: tree-structured directory structure), if the

current directory is root/spell/mail, then the relative path name prt/first refers to the

same file as does the absolute path name root/spell/mail/prt/first.

Acyclic-Graph Directories:

Consider two programmers who are working on a joint project. The files

associated with that project can be stored in a subdirectory, separating them from other

projects and files of the two programmers. But since both programmers are equally

responsible for the project, both want the subdirectory to be in their own directories. In

this situation, the common subdirectory should be shared.

A shared directory or file exists in the file system in two (or more) places at

once. A tree structure prohibits the sharing of files or directories. An acyclic graph —

that is, a graph with no cycles—allows directories to share subdirectories and files as

shown in figure (Acyclic-graph directory structure).

The same file or subdirectory may be in two different directories. The acyclic

graph is a natural generalization of the tree-structured directory scheme.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 16

It is important to note that a shared file (or directory) is not the same as two

copies of the file. With two copies, each programmer can view the copy rather than the

original, but if one programmer changes the file, the changes will not appear in the

other’s copy.

With a shared file, only one actual file exists, so any changes made by one

person are immediately visible to the other. Sharing is particularly important for

subdirectories; a new file created by one person will automatically appear in all the

shared subdirectories.

When people are working as a team, all the files they want to share can be put

into one directory. The UFD of each team member will contain this directory of shared

files as a subdirectory. Even in the case of a single user, the user’s file organization

may require that some file be placed in different subdirectories.

For example, a program written for a particular project should be both in the

directory of all programs and in the directory for that project. Shared files and

subdirectories can be implemented in several ways. A common way, exemplified by

many of the UNIX systems, is to create a new directory entry called a link.

A link is effectively a pointer to another file or subdirectory. For example, a

link may be implemented as an absolute or a relative path name. When a reference to a

file is made, we search the directory. If the directory entry is marked as a link, then the

name of the real file is included in the link information.

Figure: Acyclic-graph directory structure

We resolve the link by using that path name to locate the real file. Links are

easily identified by their format in the directory entry (or by having a special type on

systems that support types) and are effectively indirect pointers.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 17

The operating system ignores these links when traversing directory trees to

preserve the acyclic structure of the system. Another common approach to

implementing shared files is simply to duplicate all information about them in both

sharing directories. Thus, both entries are identical and equal. Consider the difference

between this approach and the creation of a link.

The link is clearly different from the original directory entry; thus, the two are

not equal. Duplicate directory entries, however, make the original and the copy

indistinguishable.

A major problem with duplicate directory entries is maintaining consistency

when a file is modified. An acyclic-graph directory structure is more flexible than a

simple tree structure, but it is also more complex. Several problems must be

considered carefully. A file may now have multiple absolute path names.

Consequently, distinct file names may refer to the same file. This situation is

similar to the aliasing problem for programming languages. If we are trying to traverse

the entire file system – to find a file, to accumulate statistics on all files, or to copy all

files to backup storage – this problem becomes significant, since we do not want to

traverse shared structures more than once.

Another problem involves deletion. When can the space allocated to a shared

file be deallocated and reused? One possibility is to remove the file whenever anyone

deletes it, but this action may leave dangling pointers to the now-nonexistent file.

Worse, if the remaining file pointers contain actual disk addresses, and the space is

subsequently reused for other files, these dangling pointers may point into the middle

of other files.

In a system where sharing is implemented by symbolic links, this situation is

somewhat easier to handle. The deletion of a link need not affect the original file; only

the link is removed.

If the file entry itself is deleted, the space for the file is deallocated, leaving the

links dangling. We can search for these links and remove them as well, but unless a

list of the associated links is kept with each file, this search can be expensive.

Alternatively, we can leave the links until an attempt is made to use them. At

that time, we can determine that the file of the name given by the link does not exist

and can fail to resolve the link name; the access is treated just as with any other illegal

file name.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 18

General Graph Directory:

A serious problem with using an acyclic-graph structure is ensuring that there

are no cycles. If we start with a two-level directory and allow users to create

subdirectories, a tree-structured directory results.

It should be fairly easy to see that simply adding new files and subdirectories

to an existing tree-structured directory preserves the tree-structured nature. However,

when we add links, the tree structure is destroyed, resulting in a simple graph structure

as shown in figure (General graph directory).

The primary advantage of an acyclic graph is the relative simplicity of the

algorithms to traverse the graph and to determine when there are no more references to

a file. We want to avoid traversing shared sections of an acyclic graph twice, mainly

for performance reasons.

If we have just searched a major shared subdirectory for a particular file

without finding it, we want to avoid searching that subdirectory again; the second

search would be a waste of time.

Figure: General graph directory

If cycles are allowed to exist in the directory, we likewise want to avoid

searching any component twice, for reasons of correctness as well as performance. A

poorly designed algorithm might result in an infinite loop continually searching

through the cycle and never terminating. One solution is to limit arbitrarily the number

of directories that will be accessed during a search.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 19

File-System Structure:

Disks provide most of the secondary storage on which file systems are

maintained. Two characteristics make them convenient for this purpose:

1. A disk can be rewritten in place; it is possible to read a block from the disk,

modify the block, and write it back into the same place.

2. A disk can access directly any block of information it contains. Thus, it is simple

to access any file either sequentially or randomly, and switching from one file to

another requires only moving the read–write heads and waiting for the disk to

rotate.

To improve I/O efficiency, I/O transfers between memory and disk are

performed in units of blocks. Each block has one or more sectors. Depending on the

disk drive, sector size varies from 32 bytes to 4,096 bytes; the usual size is 512 bytes.

File systems provide efficient and convenient access to the disk by allowing

data to be stored, located, and retrieved easily. A file system poses two quite different

design problems. The first problem is defining how the file system should look to the

user.

This task involves defining a file and its attributes, the operations allowed on a

file and the directory structure for organizing files. The second problem is creating

algorithms and data structures to map the logical file system onto the physical

secondary-storage devices.

The file system itself is generally composed of many different levels. The

structure shown in Figure: Layered file system (shown below) is an example of a

layered design. Each level in the design uses the features of lower levels to create new

features for use by higher levels.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 20

The I/O control levels consist of device drivers and interrupt handlers to

transfer information between the main memory and the disk system. A device driver

can be thought of as a translator. Its input consists of high-level commands such as

“retrieve block 123.”

Its output consists of low-level, hardware-specific instructions that are used by

the hardware controller, which interfaces the I/O device to the rest of the system. The

device driver usually writes specific bit patterns to special locations in the I/O

controller’s memory to tell the controller which device location to act on and what

actions to take.

The basic file system needs only to issue generic commands to the appropriate

device driver to read and write physical blocks on the disk. Each physical block is

identified by its numeric disk address (for example, drive 1, cylinder 73, track 2, and

sector 10). This layer also manages the memory buffers and caches that hold various

file-system, directory, and data blocks.

A block in the buffer is allocated before the transfer of a disk block can occur.

When the buffer is full, the buffer manager must find more buffer memory or free up

buffer space to allow a requested I/O to complete.

Caches are used to hold frequently used file-system metadata to improve

performance, so managing their contents is critical for optimum system performance.

The file-organization module knows about files and their logical blocks, as

well as physical blocks. By knowing the type of file allocation used and the location of

the file, the file-organization module can translate logical block addresses to physical

block addresses for the basic file system to transfer.

Each file’s logical blocks are numbered from 0 (or 1) through N. Since the

physical blocks containing the data usually do not match the logical numbers, a

translation is needed to locate each block.

The file-organization module also includes the free-space manager, which

tracks unallocated blocks and provides these blocks to the file-organization module

when requested.

Finally, the logical file system manages metadata information. Metadata

includes all of the file-system structure except the actual data (or contents of the files).

The logical file system manages the directory structure to provide the file-organization

module with the information the latter needs, given a symbolic file name. It maintains

file structure via file-control blocks.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 21

A file control block (FCB) (an inode in UNIX file systems) contains

information about the file, including ownership, permissions, and location of the file

contents. The logical file system is also responsible for protection.

When a layered structure is used for file-system implementation, duplication of

code is minimized. The I/O control and sometimes the basic file-system code can be

used by multiple file systems. Each file system can then have its own logical file-

system and file-organization modules.

Unfortunately, layering can introduce more operating-system overhead, which

may result in decreased performance. The use of layering, including the decision about

how many layers to use and what each layer should do, is a major challenge in

designing new systems.

Many file systems are in use today, and most operating systems support more

than one. For example, most CD-ROMs are written in the ISO 9660 format, a standard

format agreed on by CD-ROM manufacturers. In addition to removable-media file

systems, each operating system has one or more disk based file systems.

UNIX uses the UNIX file system (UFS), which is based on the Berkeley Fast

File System (FFS).Windows supports disk file-system formats of FAT, FAT32, and

NTFS (or Windows NT File System), as well as CD-ROM and DVD file-system

formats.

Although Linux supports over forty different file systems, the standard Linux

file system is known as the extended file system, with the most common versions

being ext3 and ext4. There are also distributed file systems in which a file system on a

server is mounted by one or more client computers across a network.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 22

I-node:

The inode (index node) is a data structure in a Unix-style file system that

describes a file-system object such as a file or a directory. Each inode stores the

attributes and disk block location(s) of the object's data. File-system object attributes

may include metadata (times of last change, access, modification), as well as owner

and permission data.

Directories are lists of names assigned to inodes. A directory contains an entry

for itself, its parent, and each of its children. It exists in a static form on disk. a

directory entry contains only a name for the associated file and a pointer to the file

itself.

This pointer is an integer called the i-number (for index number) of the file.

When the file is accessed, its i-number is used as an index into a system table (the i-

list) stored in a known part of the device on which the directory resides. The entry

found thereby (the file's i-node) contains the description of the file.

A file system relies on data structures about the files, beside the file content.

The former are called metadata—data that describes data. Each file is associated with

an inode, which is identified by an integer number, often referred to as an i-number or

inode number.

Inodes store information about files and directories (folders), such as file

ownership, access mode (read, write, execute permissions), and file type. On many

types of file system implementations, the maximum number of inodes is fixed at file

system creation, limiting the maximum number of files the file system can hold. A

typical allocation heuristic for inodes in a file system is one percent of total size.

The inode number indexes a table of inodes in a known location on the device.

From the inode number, the kernel's file system driver can access the inode contents,

including the location of the file - thus allowing access to the file.

File Descriptors:

In Unix and related computer operating systems, a file descriptor (FD, less

frequently fildes) is an abstract indicator (handle) used to access a file or other

input/output resource, such as a pipe or network socket.

A file descriptor is a non-negative integer, generally represented in the C

programming language as the type int (negative values being reserved to indicate "no

value" or an error condition).

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 23

Each Unix process (except perhaps a daemon) should expect to have three

standard POSIX file descriptors, corresponding to the three standard streams:

Integer value Name
<unistd.h>

symbolic constant

<stdio.h>

file stream

0 Standard input STDIN_FILENO stdin

1 Standard output STDOUT_FILENO stdout

2 Standard error STDERR_FILENO stderr

In the traditional implementation of UNIX, file descriptors index into a per-

process file descriptor table maintained by the kernel, that in turn indexes into a

system-wide table of files opened by all processes, called the file table.

This table records the mode with which the file (or other resource) has been

opened: for reading, writing, appending, and possibly other modes. It also indexes into

a third table called the inode table that describes the actual underlying files.

To perform input or output, the process passes the file descriptor to the kernel

through a system call, and the kernel will access the file on behalf of the process. The

process does not have direct access to the file or inode tables.

The following lists typical operations on file descriptors on modern Unix-like

systems. Most of these functions are declared in the <unistd.h> header, but some are

in the <fcntl.h> header instead.

File-System Implementation:

Overview:

Several on-disk and in-memory structures are used to implement a file system.

These structures vary depending on the operating system and the file system, but some

general principles apply.

On disk, the file system may contain information about how to boot an

operating system stored there, the total number of blocks, the number and location of

free blocks, the directory structure, and individual files.

A boot control block (per volume) can contain information needed by the

system to boot an operating system from that volume. If the disk does not contain an

operating system, this block can be empty. It is typically the first block of a volume. In

UFS, it is called the boot block. In NTFS, it is the partition boot sector.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 24

A volume control block (per volume) contains volume (or partition) details,

such as the number of blocks in the partition, the size of the blocks, a free-block count

and free-block pointers, and a free-FCB count and FCB pointers. In UFS, this is called

a superblock. In NTFS, it is stored in the master file table.

A directory structure (per file system) is used to organize the files. In UFS, this

includes file names and associated inode numbers. In NTFS, it is stored in the master

file table. A per-file FCB contains many details about the file. It has a unique identifier

number to allow association with a directory entry.

In NTFS, this information is actually stored within the master file table, which

uses a relational database structure, with a row per file. The in-memory information is

used for both file-system management and performance improvement via caching.

The data are loaded at mount time, updated during file-system operations, and

discarded at dismount. Several types of structures may be included:

 An in-memory mount table contains information about each mounted volume.

 An in-memory directory-structure cache holds the directory information of

recently accessed directories. (For directories at which volumes are mounted, it

can contain a pointer to the volume table.)

 The system-wide open-file table contains a copy of the FCB of each open file,

as well as other information.

 The per-process open-file table contains a pointer to the appropriate entry in

the system-wide open-file table, as well as other information.

Buffers hold file-system blocks when they are being read from disk or written

to disk. To create a new file, an application program calls the logical file system. The

logical file system knows the format of the directory structures.

To create a new file, it allocates a new FCB. (Alternatively, if the file-system

implementation creates all FCBs at file-system creation time, an FCB is allocated from

the set of free FCBs.)

The system then reads the appropriate directory into memory, updates it with

the new file name and FCB, and writes it back to the disk. A typical FCB is shown in

figure (A typical file-control block). Some operating systems, including UNIX, treat a

directory exactly the same as a file—one with a “type” field indicating that it is a

directory.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 25

Other operating systems, including Windows, implement separate system calls

for files and directories and treat directories as entities separate from files. Whatever

the larger structural issues, the logical file system can call the file-organization module

to map the directory I/O into disk-block numbers, which are passed on to the basic file

system and I/O control system.

Figure: A typical file-control block

Partitions and Mounting:

The layout of a disk can have many variations, depending on the operating

system. A disk can be sliced into multiple partitions, or a volume can span multiple

partitions on multiple disks.

Each partition can be either “raw,” containing no file system, or “cooked,”

containing a file system. Raw disk is used where no file system is appropriate. UNIX

swap space can use a raw partition, for example, since it uses its own format on disk

and does not use a file system.

Boot information can be stored in a separate partition. Again, it has its own

format, because at boot time the system does not have the file-system code loaded and

therefore cannot interpret the file-system format. Rather, boot information is usually a

sequential series of blocks, loaded as an image into memory.

Execution of the image starts at a predefined location, such as the first byte.

This boot loader in turn knows enough about the file-system structure to be able to

find and load the kernel and start it executing. It can contain more than the instructions

for how to boot a specific operating system.

The root partition, which contains the operating-system kernel and sometimes

other system files, is mounted at boot time. Other volumes can be automatically

mounted at boot or manually mounted later, depending on the operating system.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 26

As part of a successful mount operation, the operating system verifies that the

device contains a valid file system. It does so by asking the device driver to read the

device directory and verifying that the directory has the expected format.

If the format is invalid, the partition must have its consistency checked and

possibly corrected, either with or without user intervention. Finally, the operating

system notes in its in-memory mount table that a file system is mounted, along with

the type of the file system. The details of this function depend on the operating system.

Microsoft Windows–based systems mount each volume in a separate name

space, denoted by a letter and a colon. To record that a file system is mounted at F:,

for example, the operating system places a pointer to the file system in a field of the

device structure corresponding to F:.

When a process specifies the driver letter, the operating system finds the

appropriate file-system pointer and traverses the directory structures on that device to

find the specified file or directory.

On UNIX, file systems can be mounted at any directory. Mounting is

implemented by setting a flag in the in-memory copy of the inode for that directory.

The flag indicates that the directory is a mount point. A field then points to an entry in

the mount table, indicating which device is mounted there.

The mount table entry contains a pointer to the superblock of the file system on

that device. This scheme enables the operating system to traverse its directory

structure, switching seamlessly among file systems of varying types.

Directory Implementation:

The selection of directory-allocation and directory-management algorithms

significantly affects the efficiency, performance, and reliability of the file system. In

this section, we discuss the trade-offs involved in choosing one of these algorithms.

Linear List:

The simplest method of implementing a directory is to use a linear list of file

names with pointers to the data blocks. This method is simple to program but time-

consuming to execute.

To create a new file, we must first search the directory to be sure that no

existing file has the same name. Then, we add a new entry at the end of the directory.

To delete a file, we search the directory for the named file and then release the space

allocated to it.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 27

To reuse the directory entry, we can do one of several things. We can mark the

entry as unused (by assigning it a special name, such as an all-blank name, or by

including a used– unused bit in each entry), or we can attach it to a list of free

directory entries.

A third alternative is to copy the last entry in the directory into the freed

location and to decrease the length of the directory. A linked list can also be used to

decrease the time required to delete a file.

The real disadvantage of a linear list of directory entries is that finding a file

requires a linear search. Directory information is used frequently, and users will notice

if access to it is slow. In fact, many operating systems implement a software cache to

store the most recently used directory information.

A cache hit avoids the need to constantly reread the information from disk. A

sorted list allows a binary search and decreases the average search time. However, the

requirement that the list be kept sorted may complicate creating and deleting files,

since we may have to move substantial amounts of directory information to maintain a

sorted directory.

A more sophisticated tree data structure, such as a balanced tree, might help

here. An advantage of the sorted list is that a sorted directory listing can be produced

without a separate sort step.

Hash Table:

Another data structure used for a file directory is a hash table. Here, a linear

list stores the directory entries, but a hash data structure is also used. The hash table

takes a value computed from the file name and returns a pointer to the file name in the

linear list.

Therefore, it can greatly decrease the directory search time. Insertion and

deletion are also fairly straightforward, although some provision must be made for

collisions—situations in which two file names hash to the same location.

The major difficulties with a hash table are its generally fixed size and the

dependence of the hash function on that size. For example, assume that we make a

linear-probing hash table that holds 64 entries.

The hash function converts file names into integers from 0 to 63 (for instance,

by using the remainder of a division by 64). If we later try to create a 65th file, we

must enlarge the directory hash table—say, to 128 entries.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 28

As a result, we need a new hash function that must map file names to the range

0 to 127, and we must reorganize the existing directory entries to reflect their new

hash-function values.

Alternatively, we can use a chained-overflow hash table. Each hash entry can

be a linked list instead of an individual value, and we can resolve collisions by adding

the new entry to the linked list.

Lookups may be somewhat slowed, because searching for a name might

require stepping through a linked list of colliding table entries. Still, this method is

likely to be much faster than a linear search through the entire directory.

Allocation Methods:

The direct-access nature of disks gives us flexibility in the implementation of

files. In almost every case, many files are stored on the same disk. The main problem

is how to allocate space to these files so that disk space is utilized effectively and files

can be accessed quickly.

Three major methods of allocating disk space are in wide use: contiguous,

linked, and indexed. Each method has advantages and disadvantages. Although some

systems support all three, it is more common for a system to use one method for all

files within a file-system type.

Contiguous Allocation:

Contiguous allocation requires that each file occupy a set of contiguous blocks

on the disk. Disk addresses define a linear ordering on the disk. With this ordering,

assuming that only one job is accessing the disk, accessing block b + 1 after block b

normally requires no head movement. When head movement is needed (from the last

sector of one cylinder to the first sector of the next cylinder), the head need only move

from one track to the next.

Thus, the number of disk seeks required for accessing contiguously allocated

files is minimal, as is seek time when seek is finally needed. Contiguous allocation of

a file is defined by the disk address and length (in block units) of the first block. If the

file is n blocks long and starts at location b, then it occupies blocks b, b + 1, b + 2, ...,

b + n − 1.

The directory entry for each file indicates the address of the starting block and

the length of the area allocated for this file as shown in figure as follows.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 29

Figure: Contiguous allocation of disk space

Accessing a file that has been allocated contiguously is easy. For sequential

access, the file system remembers the disk address of the last block referenced and,

when necessary, reads the next block.

For direct access to block i of a file that starts at block b, we can immediately

access block b + i. Thus, both sequential and direct access can be supported by

contiguous allocation.

Contiguous allocation has some problems, however. One difficulty is finding

space for a new file. The system chosen to manage free space determines how this task

is accomplished.

The contiguous-allocation problem can be seen as a particular application of

the general dynamic storage-allocation problem, which involves how to satisfy a

request of size n from a list of free holes. First fit and best fit are the most common

strategies used to select a free hole from the set of available holes.

Simulations have shown that both first fit and best fit are more efficient than

worst fit in terms of both time and storage utilization. Neither first fit nor best fit is

clearly best in terms of storage utilization, but first fit is generally faster.

All these algorithms suffer from the problem of external fragmentation. As

files are allocated and deleted, the free disk space is broken into little pieces. External

fragmentation exists whenever free space is broken into chunks.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 30

It becomes a problem when the largest contiguous chunk is insufficient for a

request; storage is fragmented into a number of holes, none of which is large enough

to store the data. Depending on the total amount of disk storage and the average file

size, external fragmentation may be a minor or a major problem.

One strategy for preventing loss of significant amounts of disk space to

external fragmentation is to copy an entire file system onto another disk. The original

disk is then freed completely, creating one large contiguous free space.

We then copy the files back onto the original disk by allocating contiguous

space from this one large hole. This scheme effectively compacts all free space into

one contiguous space, solving the fragmentation problem.

Another problem with contiguous allocation is determining how much space is

needed for a file. When the file is created, the total amount of space it will need must

be found and allocated.

How does the creator (program or person) know the size of the file to be

created? In some cases, this determination may be fairly simple (copying an existing

file, for example). In general, however, the size of an output file may be difficult to

estimate.

Linked Allocation:

Linked allocation solves all problems of contiguous allocation. With linked

allocation, each file is a linked list of disk blocks; the disk blocks may be scattered

anywhere on the disk.

The directory contains a pointer to the first and last blocks of the file. For

example, a file of five blocks might start at block 9 and continue at block 16, then

block 1, then block 10, and finally block 25 as shown in figure as follows (Linked

allocation of disk space).

Each block contains a pointer to the next block. These pointers are not made

available to the user. Thus, if each block is 512 bytes in size, and a disk address (the

pointer) requires 4 bytes, then the user sees blocks of 508 bytes.

To create a new file, we simply create a new entry in the directory. With linked

allocation, each directory entry has a pointer to the first disk block of the file. This

pointer is initialized to null (the end-of-list pointer value) to signify an empty file. The

size field is also set to 0. A write to the file causes the free-space management system

to find a free block, and this new block is written to and is linked to the end of the file.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 31

Figure: Linked allocation of disk space

To read a file, we simply read blocks by following the pointers from block to

block. There is no external fragmentation with linked allocation, and any free block on

the free-space list can be used to satisfy a request.

The size of a file need not be declared when the file is created. A file can

continue to grow as long as free blocks are available. Consequently, it is never

necessary to compact disk space.

Linked allocation does have disadvantages, however. The major problem is

that it can be used effectively only for sequential-access files. To find the ith block of

a file, we must start at the beginning of that file and follow the pointers until we get to

the ith block.

Each access to a pointer requires a disk read, and some require a disk seek.

Consequently, it is inefficient to support a direct-access capability for linked-

allocation files.

Another disadvantage is the space required for the pointers. If a pointer

requires 4 bytes out of a 512-byte block, then 0.78 percent of the disk is being used for

pointers, rather than for information. Each file requires slightly more space than it

would otherwise.

The usual solution to this problem is to collect blocks into multiples, called

clusters, and to allocate clusters rather than blocks. For instance, the file system may

define a cluster as four blocks and operate on the disk only in cluster units. Pointers

then use a much smaller percentage of the file’s disk space.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 32

This method allows the logical-to-physical block mapping to remain simple

but improves disk throughput (because fewer disk-head seeks are required) and

decreases the space needed for block allocation and free-list management.

The cost of this approach is an increase in internal fragmentation, because

more space is wasted when a cluster is partially full than when a block is partially full.

Clusters can be used to improve the disk-access time for many other algorithms as

well, so they are used in most file systems.

Yet another problem of linked allocation is reliability. Recall that the files are

linked together by pointers scattered all over the disk, and consider what would

happen if a pointer were lost or damaged.

A bug in the operating-system software or a disk hardware failure might result

in picking up the wrong pointer. This error could in turn result in linking into the free-

space list or into another file.

An important variation on linked allocation is the use of a file-allocation table

(FAT). This simple but efficient method of disk-space allocation was used by the MS-

DOS operating system. A section of disk at the beginning of each volume is set aside

to contain the table.

The table has one entry for each disk block and is indexed by block number.

The FAT is used in much the same way as a linked list. The directory entry contains

the block number of the first block of the file. The table entry indexed by that block

number contains the block number of the next block in the file.

This chain continues until it reaches the last block, which has a special end-of-

file value as the table entry. An unused block is indicated by a table value of 0.

Allocating a new block to a file is a simple matter of finding the first 0-valued table

entry and replacing the previous end-of-file value with the address of the new block.

The 0 is then replaced with the end-of-file value. An illustrative example is the

FAT structure shown in Figure (File-allocation table) as follows for a file consisting of

disk blocks 217, 618, and 339.

Indexed Allocation:

Linked allocation solves the external-fragmentation and size-declaration

problems of contiguous allocation. However, in the absence of a FAT, linked

allocation cannot support efficient direct access, since the pointers to the blocks are

scattered with the blocks themselves all over the disk and must be retrieved in order.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 33

Figure: File-allocation table

Indexed allocation solves this problem by bringing all the pointers together

into one location: the index block. Each file has its own index block, which is an array

of disk-block addresses. The ith entry in the index block points to the ith block of the

file.

Figure: Indexed allocation of disk space

The directory contains the address of the index block as shown in figure above.

To find and read the i
th

 block, we use the pointer in the i
th

 index-block entry. This

scheme is similar to the paging scheme.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 34

When the file is created, all pointers in the index block are set to null. When

the i
th

 block is first written, a block is obtained from the free-space manager, and its

address is put in the i
th

 index-block entry.

Indexed allocation supports direct access, without suffering from external

fragmentation, because any free block on the disk can satisfy a request for more space.

Indexed allocation does suffer from wasted space, however. The pointer overhead of

the index block is generally greater than the pointer overhead of linked allocation.

Consider a common case in which we have a file of only one or two blocks.

With linked allocation, we lose the space of only one pointer per block. With indexed

allocation, an entire index block must be allocated, even if only one or two pointers

will be non-null.

This point raises the question of how large the index block should be. Every

file must have an index block, so we want the index block to be as small as possible. If

the index block is too small, however, it will not be able to hold enough pointers for a

large file, and a mechanism will have to be available to deal with this issue.

Mechanisms for this purpose include the following:

Linked scheme: An index block is normally one disk block. Thus, it can be

read and written directly by itself. To allow for large files, we can link together several

index blocks. For example, an index block might contain a small header giving the

name of the file and a set of the first 100 disk-block addresses. The next address (the

last word in the index block) is null (for a small file) or is a pointer to another index

block (for a large file).

Multilevel index: A variant of linked representation uses a first-level index

block to point to a set of second-level index blocks, which in turn point to the file

blocks. To access a block, the operating system uses the first-level index to find a

second-level index block and then uses that block to find the desired data block.

This approach could be continued to a third or fourth level, depending on the

desired maximum file size. With 4,096-byte blocks, we could store 1,024 four-byte

pointers in an index block. Two levels of indexes allow 1,048,576 data blocks and a

file size of up to 4 GB.

Combined scheme: Another alternative, used in UNIX-based file systems, is

to keep the first, say, 15 pointers of the index block in the file’s inode. The first 12 of

these pointers point to direct blocks; that is, they contain addresses of blocks that

contain data of the file.

Storage Management UNIT-IV SVEC-16
File System

Prepared By: T.M. Jaya Krishna Assistant Professor 35

Thus, the data for small files (of no more than 12 blocks) do not need a

separate index block. If the block size is 4 KB, then, up to 48 KB of data can be

accessed directly. The next three pointers point to indirect blocks. The first points to a

single indirect block, which is an index block containing not data but the addresses of

blocks that do contain data.

The second, points to a double indirect block, which contains the address of a

block that contains the addresses of blocks that contain pointers to the actual data

blocks. The last pointer contains the address of a triple indirect block. A UNIX inode

is shown in Figure below:

Figure: The UNIX Inode

Under this method, the number of blocks that can be allocated to a file exceeds

the amount of space addressable by the 4-byte file pointers used by many operating

systems. A 32-bit file pointer reaches only 232 bytes, or 4 GB. Many UNIX and Linux

implementations now support 64-bit file pointers, which allows files and file systems

to be several exbibytes in size. The ZFS file system supports 128-bit file pointers.

Indexed-allocation schemes suffer from some of the same performance

problems as does linked allocation. Specifically, the index blocks can be cached in

memory, but the data blocks may be spread all over a volume.

