
Storage Management UNIT-IV SVEC-16
Secondary Storage Structure

Prepared By: T.M. Jaya Krishna Assistant Professor 1

Disk Structure:

Modern magnetic disk drives are addressed as large one-dimensional arrays of

logical blocks, where the logical block is the smallest unit of transfer. The size of a

logical block is usually 512 bytes, although some disks can be low-level formatted to

have a different logical block size, such as 1,024 bytes..

The one-dimensional array of logical blocks is mapped onto the sectors of the

disk sequentially. Sector 0 is the first sector of the first track on the outermost

cylinder. The mapping proceeds in order through that track, then through the rest of

the tracks in that cylinder, and then through the rest of the cylinders from outermost to

innermost.

By using this mapping, we can—at least in theory—convert a logical block

number into an old-style disk address that consists of a cylinder number, a track

number within that cylinder, and a sector number within that track. In practice, it is

difficult to perform this translation, for two reasons.

 Most disks have some defective sectors, but the mapping hides this by

substituting spare sectors from elsewhere on the disk.

 The number of sectors per track is not a constant on some drives.

Let’s look more closely at the second reason. On media that use constant

linear velocity (CLV), the density of bits per track is uniform. The farther a track is

from the center of the disk, the greater its length, so the more sectors it can hold. As

we move from outer zones to inner zones, the number of sectors per track decreases.

Tracks in the outermost zone typically hold 40 percent more sectors than do

tracks in the innermost zone. The drive increases its rotation speed as the head moves

from the outer to the inner tracks to keep the same rate of data moving under the head.

This method is used in CD-ROM and DVD-ROM drives.

Alternatively, the disk rotation speed can stay constant; in this case, the density

of bits decreases from inner tracks to outer tracks to keep the data rate constant. This

method is used in hard disks and is known as constant angular velocity (CAV).

The number of sectors per track has been increasing as disk technology

improves, and the outer zone of a disk usually has several hundred sectors per track.

Similarly, the number of cylinders per disk has been increasing; large disks have tens

of thousands of cylinders.

Storage Management UNIT-IV SVEC-16
Secondary Storage Structure

Prepared By: T.M. Jaya Krishna Assistant Professor 2

Disk Attachment:

Computers access disk storage in two ways. One way is via I/O ports (or host-

attached storage); this is common on small systems. The other way is via a remote

host in a distributed file system; this is referred to as network-attached storage.

Host-Attached Storage:

Host-attached storage is storage accessed through local I/O ports. These ports

use several technologies. The typical desktop PC uses an I/O bus architecture called

IDE or ATA. This architecture supports a maximum of two drives per I/O bus. A

newer, similar protocol that has simplified cabling is SATA.

High-end workstations and servers generally use more sophisticated I/O

architectures such as fibre channel (FC), a high-speed serial architecture that can

operate over optical fiber or over a four-conductor copper cable. It has two variants.

One is a large switched fabric having a 24-bit address space. This variant is expected

to dominate in the future and is the basis of storage-area networks (SANs).

Because of the large address space and the switched nature of the

communication, multiple hosts and storage devices can attach to the fabric, allowing

great flexibility in I/O communication. The other FC variant is an arbitrated loop

(FC-AL) that can address 126 devices (drives and controllers).

A wide variety of storage devices are suitable for use as host-attached storage.

Among these are hard disk drives, RAID arrays, and CD, DVD, and tape drives. The

I/O commands that initiate data transfers to a host-attached storage device are reads

and writes of logical data blocks directed to specifically identified storage units (such

as bus ID or target logical unit).

Network-Attached Storage:

A network-attached storage (NAS) device is a special-purpose storage system

that is accessed remotely over a data network as shown in figure below:

Figure: Network-attached storage

Storage Management UNIT-IV SVEC-16
Secondary Storage Structure

Prepared By: T.M. Jaya Krishna Assistant Professor 3

Clients access network-attached storage via a remote-procedure-call interface

such as NFS for UNIX systems or CIFS for Windows machines. The remote

procedure calls (RPCs) are carried via TCP or UDP over an IP network—usually the

same local area network (LAN) that carries all data traffic to the clients. Thus, it may

be easiest to think of NAS as simply another storage-access protocol.

The network attached storage unit is usually implemented as a RAID array

with software that implements the RPC interface. Network-attached storage provides a

convenient way for all the computers on a LAN to share a pool of storage with the

same ease of naming and access enjoyed with local host-attached storage. However, it

tends to be less efficient and have lower performance than some direct-attached

storage options.

Storage-Area Network:

One drawback of network-attached storage systems is that the storage I/O

operations consume bandwidth on the data network, thereby increasing the latency of

network communication. This problem can be particularly acute in large client–server

installations—the communication between servers and clients competes for bandwidth

with the communication among servers and storage devices.

A Storage–Area Network (SAN) is a private network (using storage protocols

rather than networking protocols) connecting servers and storage units, as shown in

figure below:

Figure: Storage–Area Network

The power of a SAN lies in its flexibility. Multiple hosts and multiple storage

arrays can attach to the same SAN, and storage can be dynamically allocated to hosts.

A SAN switch allows or prohibits access between the hosts and the storage. As one

example, if a host is running low on disk space, the SAN can be configured to allocate

more storage to that host.

Storage Management UNIT-IV SVEC-16
Secondary Storage Structure

Prepared By: T.M. Jaya Krishna Assistant Professor 4

SANs make it possible for clusters of servers to share the same storage and for

storage arrays to include multiple direct host connections. SANs typically have more

ports—as well as more expensive ports—than storage arrays.

Disk Scheduling:

One of the responsibilities of the operating system is to use the hardware

efficiently. For the disk drives, meeting this responsibility entails having fast access

time and large disk bandwidth. For magnetic disks, the access time has two major

components:

The seek time is the time for the disk arm to move the heads to the cylinder

containing the desired sector.

The rotational latency is the additional time for the disk to rotate the desired

sector to the disk head.

The disk bandwidth is the total number of bytes transferred, divided by the

total time between the first request for service and the completion of the last transfer.

We can improve both the access time and the bandwidth by managing the

order in which disk I/O requests are serviced. Whenever a process needs I/O to or

from the disk, it issues a system call to the operating system. The request specifies

several pieces of information:

 Whether this operation is input or output

 What the disk address for the transfer is

 What the memory address for the transfer is

 What the number of sectors to be transferred is

If the desired disk drive and controller are available, the request can be

serviced immediately. If the drive or controller is busy, any new requests for service

will be placed in the queue of pending requests for that drive.

For a multiprogramming system with many processes, the disk queue may

often have several pending requests. Thus, when one request is completed, the

operating system chooses which pending request to service next. How does the

operating system make this choice? Any one of several disk-scheduling algorithms can

be used.

Storage Management UNIT-IV SVEC-16
Secondary Storage Structure

Prepared By: T.M. Jaya Krishna Assistant Professor 5

FCFS Scheduling:

The simplest form of disk scheduling is, of course, the first-come, first-served

(FCFS) algorithm. This algorithm is intrinsically fair, but it generally does not provide

the fastest service. Consider, for example, a disk queue with requests for I/O to blocks

on cylinders “98, 183, 37, 122, 14, 124, 65, 67”, in that order

If the disk head is initially at cylinder 53, it will first move from 53 to 98, then

to 183, 37, 122, 14, 124, 65, and finally to 67, for a total head movement of 640

cylinders. This schedule is diagrammed in figure below:

Figure: FCFS disk scheduling

The wild swing from 122 to 14 and then back to 124 illustrates the problem

with this schedule. If the requests for cylinders 37 and 14 could be serviced together,

before or after the requests for 122 and 124, the total head movement could be

decreased substantially, and performance could be thereby improved.

SSTF Scheduling:

It seems reasonable to service all the requests close to the current head position

before moving the head far away to service other requests. This assumption is the

basis for the shortest-seek-time-first (SSTF) algorithm. The SSTF algorithm selects

the request with the least seek time from the current head position.

In other words, SSTF chooses the pending request closest to the current head

position. For our example request queue, the closest request to the initial head position

(53) is at cylinder 65. Once we are at cylinder 65, the next closest request is at cylinder

67.

Storage Management UNIT-IV SVEC-16
Secondary Storage Structure

Prepared By: T.M. Jaya Krishna Assistant Professor 6

From there, the request at cylinder 37 is closer than the one at 98, so 37 is

served next. Continuing, we service the request at cylinder 14, then 98, 122, 124, and

finally 183 as shown in figure below:

Figure: SSTF disk scheduling.

This scheduling method results in a total head movement of only 236

cylinders—little more than one-third of the distance needed for FCFS scheduling of

this request queue. Clearly, this algorithm gives a substantial improvement in

performance.

SSTF scheduling is essentially a form of shortest-job-first (SJF) scheduling;

and like SJF scheduling, it may cause starvation of some requests. Remember that

requests may arrive at any time. Suppose that we have two requests in the queue, for

cylinders 14 and 186, and while the request from 14 is being serviced, a new request

near 14 arrives. This new request will be serviced next, making the request at 186

wait. While this request is being serviced, another request close to 14 could arrive.

In theory, a continual stream of requests near one another could cause the

request for cylinder 186 to wait indefinitely. This scenario becomes increasingly likely

as the pending-request queue grows longer. Although the SSTF algorithm is a

substantial improvement over the FCFS algorithm, it is not optimal.

SCAN Scheduling:

In the SCAN algorithm, the disk arm starts at one end of the disk and moves

toward the other end, servicing requests as it reaches each cylinder, until it gets to the

other end of the disk. At the other end, the direction of head movement is reversed,

and servicing continues.

Storage Management UNIT-IV SVEC-16
Secondary Storage Structure

Prepared By: T.M. Jaya Krishna Assistant Professor 7

The head continuously scans back and forth across the disk. The SCAN

algorithm is sometimes called the elevator algorithm, since the disk arm behaves just

like an elevator in a building, first servicing all the requests going up and then

reversing to service requests the other way.

Let’s return to our example to illustrate. Before applying SCAN to schedule

the requests on cylinders 98, 183, 37, 122, 14, 124, 65, and 67, we need to know the

direction of head movement in addition to the head’s current position.

Assuming that the disk arm is moving toward 0 and that the initial head

position is again 53, the head will next service 37 and then 14. At cylinder 0, the arm

will reverse and will move toward the other end of the disk, servicing the requests at

65, 67, 98, 122, 124, and 183 as shown in figure below:

Figure: SCAN disk scheduling

If a request arrives in the queue just in front of the head, it will be serviced

almost immediately; a request arriving just behind the head will have to wait until the

arm moves to the end of the disk, reverses direction, and comes back.

C-SCAN Scheduling:

Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to

provide a more uniform wait time. Like SCAN, C-SCAN moves the head from one

end of the disk to the other, servicing requests along the way. When the head reaches

the other end, however, it immediately returns to the beginning of the disk without

servicing any requests on the return trip as shown in the figure (C-SCAN disk

scheduling).

Storage Management UNIT-IV SVEC-16
Secondary Storage Structure

Prepared By: T.M. Jaya Krishna Assistant Professor 8

The C-SCAN scheduling algorithm essentially treats the cylinders as a circular

list that wraps around from the final cylinder to the first one.

Figure: C-SCAN disk scheduling

LOOK Scheduling:

As we described them, both SCAN and C-SCAN move the disk arm across the

full width of the disk. In practice, neither algorithm is often implemented this way.

More commonly, the arm goes only as far as the final request in each direction. Then,

it reverses direction immediately, without going all the way to the end of the disk.

Versions of SCAN and C-SCAN that follow this pattern are called LOOK and C-

LOOK scheduling, because they look for a request before continuing to move in a

given direction as shown in figure below:

Figure: C-LOOK disk scheduling

Storage Management UNIT-IV SVEC-16
Secondary Storage Structure

Prepared By: T.M. Jaya Krishna Assistant Professor 9

Swap-Space Management:

Swap-space management is another low-level task of the operating system.

Virtual memory uses disk space as an extension of main memory. Since disk access is

much slower than memory access, using swap space significantly decreases system

performance.

The main goal for the design and implementation of swap space is to provide

the best throughput for the virtual memory system. Here we discuss how swap space is

used, where swap space is located on disk, and how swap space is managed.

Swap-Space Use:

Swap space is used in various ways by different operating systems, depending

on the memory-management algorithms in use. For instance, systems that implement

swapping may use swap space to hold an entire process image, including the code and

data segments. Paging systems may simply store pages that have been pushed out of

main memory.

The amount of swap space needed on a system can therefore vary from a few

megabytes of disk space to gigabytes, depending on the amount of physical memory,

the amount of virtual memory it is backing, and the way in which the virtual memory

is used.

Note that it may be safer to overestimate than to underestimate the amount of

swap space required, because if a system runs out of swap space it may be forced to

abort processes or may crash entirely. Overestimation wastes disk space that could

otherwise be used for files, but it does no other harm.

Some systems recommend the amount to be set aside for swap space. Solaris,

for example, suggests setting swap space equal to the amount by which virtual

memory exceeds pageable physical memory.

In the past, Linux has suggested setting swap space to double the amount of

physical memory. Today, that limitation is gone, and most Linux systems use

considerably less swap space.

Some operating systems—including Linux—allow the use of multiple swap

spaces, including both files and dedicated swap partitions. These swap spaces are

usually placed on separate disks so that the load placed on the I/O system by paging

and swapping can be spread over the system’s I/O bandwidth.

Storage Management UNIT-IV SVEC-16
Secondary Storage Structure

Prepared By: T.M. Jaya Krishna Assistant Professor 10

Swap-Space Location:

A swap space can reside in one of two places: it can be carved out of the

normal file system, or it can be in a separate disk partition. If the swap space is simply

a large file within the file system, normal file-system routines can be used to create it,

name it, and allocate its space.

This approach, though easy to implement, is inefficient. Navigating the

directory structure and the disk allocation data structures takes time and (possibly)

extra disk accesses. External fragmentation can greatly increase swapping times by

forcing multiple seeks during reading or writing of a process image.

We can improve performance by caching the block location information in

physical memory and by using special tools to allocate physically contiguous blocks

for the swap file, but the cost of traversing the file-system data structures remains.

Alternatively, swap space can be created in a separate raw partition. No file

system or directory structure is placed in this space. Rather, a separate swap-space

storage manager is used to allocate and deallocate the blocks from the raw partition.

This manager uses algorithms optimized for speed rather than for storage

efficiency, because swap space is accessed much more frequently than file systems

(when it is used). Internal fragmentation may increase, but this trade-off is acceptable

because the life of data in the swap space generally is much shorter than that of files in

the file system.

Since swap space is reinitialized at boot time, any fragmentation is short-lived.

The raw-partition approach creates a fixed amount of swap space during disk

partitioning. Adding more swap space requires either repartitioning the disk (which

involves moving the other file-system partitions or destroying them and restoring them

from backup) or adding another swap space elsewhere.

Stable-Storage Implementation:

By definition, information residing in stable storage is never lost. To

implement such storage, we need to replicate the required information on multiple

storage devices (usually disks) with independent failure modes.

We also need to coordinate the writing of updates in a way that guarantees that

a failure during an update will not leave all the copies in a damaged state and that,

when we are recovering from a failure, we can force all copies to a consistent and

correct value, even if another failure occurs during the recovery.

Storage Management UNIT-IV SVEC-16
Secondary Storage Structure

Prepared By: T.M. Jaya Krishna Assistant Professor 11

We discuss how to meet these needs. A disk write results in one of three

outcomes:

1. Successful completion. The data were written correctly on disk.

2. Partial failure. A failure occurred in the midst of transfer, so only some of

the sectors were written with the new data, and the sector being written during the

failure may have been corrupted.

3. Total failure. The failure occurred before the disk write started, so the

previous data values on the disk remain intact.

Whenever a failure occurs during writing of a block, the system needs to detect

it and invoke a recovery procedure to restore the block to a consistent state. To do that,

the system must maintain two physical blocks for each logical block. An output

operation is executed as follows:

1. Write the information onto the first physical block.

2. When the first write completes successfully, write the same information onto

the second physical block.

3. Declare the operation complete only after the second write completes

successfully.

During recovery from a failure, each pair of physical blocks is examined. If

both are the same and no detectable error exists, then no further action is necessary. If

one block contains a detectable error then we replace its contents with the value of the

other block.

If neither block contains a detectable error, but the blocks differ in content,

then we replace the content of the first block with that of the second. This recovery

procedure ensures that a write to stable storage either succeeds completely or results in

no change.

We can extend this procedure easily to allow the use of an arbitrarily large

number of copies of each block of stable storage. Although having a large number of

copies further reduces the probability of a failure, it is usually reasonable to simulate

stable storage with only two copies.

The data in stable storage are guaranteed to be safe unless a failure destroys all

the copies. Because waiting for disk writes to complete (synchronous I/O) is time

consuming, many storage arrays add NVRAM as a cache.

Storage Management UNIT-IV SVEC-16
Secondary Storage Structure

Prepared By: T.M. Jaya Krishna Assistant Professor 12

Since the memory is nonvolatile (it usually has battery power to back up the

unit’s power), it can be trusted to store the data en route to the disks. It is thus

considered part of the stable storage. Writes to it are much faster than to disk, so

performance is greatly improved.

Tertiary storage structure:

Main memory is too small to accommodate all data and programs, and because

the data that it holds are lost when power is lost, the computer system must provide

secondary storage to back up main memory.

Most modern computer systems use disks as the principal on-line storage

medium for both programs and data. Most programs—including compilers,

assemblers, word processors, editors, and formatters—are stored on a disk until loaded

into memory. They then use the disk as both the source and destination of their

processing.

Hence, the proper management of disk storage is of central importance to a

computer system. The operating system is responsible for the following activities in

connection with disk management:

 Free-space management

 Storage allocation

 Disk scheduling

Because secondary storage is used frequently, it must be used efficiently. The

entire speed of operation of a computer may hinge on the speeds of the disk subsystem

and the algorithms that manipulate that subsystem.

There are, however, many uses for storage that is slower and lower in cost (and

sometimes of higher capacity) than secondary storage. Backups of disk data, storage

of seldom-used data, and long-term archival storage are some examples. Magnetic

tape drives and their tapes and CD and DVD drives and platters are typical tertiary

storage devices. The media (tapes and optical platters) vary between WORM (write-

once, read-many-times) and RW (read–write) formats.

Tertiary storage is not crucial to system performance, but it still must be

managed. Some operating systems take on this task, while others leave tertiary-storage

management to application programs. Some of the functions that operating systems

can provide include mounting and unmounting media in devices, allocating and

freeing the devices for exclusive use by processes, and migrating data from secondary

to tertiary storage.

Storage Management UNIT-IV SVEC-16
Secondary Storage Structure

Prepared By: T.M. Jaya Krishna Assistant Professor 13

This provides a third level of storage. Most of the rarely used data is archived

in tertiary storage as it is even slower than primary storage. Tertiary storage stores a

large amount of data that is handled and retrieved by machines, not humans. The

different tertiary storage devices are:

Tape Libraries: These may contain one or more tape drives, a barcode reader

for the tapes and a robot to load the tapes. The capacity of these tape libraries is more

than a thousand times that of hard drives and so they are useful for storing large

amounts of data.

Optical Jukeboxes: These are storage devices that can handle optical disks

and provide tertiary storage ranging from terabytes to petabytes. They can also be

called optical disk libraries, robotic drives etc.

