
I/O System & Protection UNIT-V SVEC-16
Protection

Prepared By: T.M. Jaya Krishna Assistant Professor 1

Protection:

The processes in an operating system must be protected from one another’s

activities. To provide such protection, we can use various mechanisms to ensure that

only processes that have gained proper authorization from the operating system can

operate on the files, memory segments, CPU, and other resources of a system.

Protection refers to a mechanism for controlling the access of programs,

processes, or users to the resources defined by a computer system. This mechanism

must provide a means for specifying the controls to be imposed, together with a means

of enforcement. We distinguish between protection and security, which is a measure

of confidence that the integrity of a system and its data will be preserved.

Goals of protection:

As computer systems have become more sophisticated and pervasive in their

applications, the need to protect their integrity has also grown. Protection was

originally conceived as an adjunct to multiprogramming operating systems, so that

untrustworthy users might safely share a common logical name space, such as a

directory of files, or share a common physical name space, such as memory.

Modern protection concepts have evolved to increase the reliability of any

complex system that makes use of shared resources. We need to provide protection for

several reasons. The most obvious is the need to prevent the mischievous, intentional

violation of an access restriction by a user.

Protection can improve reliability by detecting latent errors at the interfaces

between component subsystems. Early detection of interface errors can often prevent

contamination of a healthy subsystem by a malfunctioning subsystem. Also, an

unprotected resource cannot defend against use (or misuse) by an unauthorized or

incompetent user.

A protection-oriented system provides means to distinguish between

authorized and unauthorized usage. The role of protection in a computer system is to

provide a mechanism for the enforcement of the policies governing resource use.

These policies can be established in a variety of ways. Some are fixed in the

design of the system, while others are formulated by the management of a system. Still

others are defined by the individual users to protect their own files and programs. A

protection system must have the flexibility to enforce a variety of policies.

I/O System & Protection UNIT-V SVEC-16
Protection

Prepared By: T.M. Jaya Krishna Assistant Professor 2

Policies for resource use may vary by application, and they may change over

time. For these reasons, protection is no longer the concern solely of the designer of an

operating system. The application programmer needs to use protection mechanisms as

well, to guard resources created and supported by an application subsystem against

misuse.

Principles of Protection:

Frequently, a guiding principle can be used throughout a project, such as the

design of an operating system. Following this principle simplifies design decisions and

keeps the system consistent and easy to understand. A key, time-tested guiding

principle for protection is the principle of least privilege.

It dictates that programs, users, and even systems be given just enough

privileges to perform their tasks. Consider the analogy of a security guard with a

passkey. If this key allows the guard into just the public areas that she guards, then

misuse of the key will result in minimal damage.

If, however, the passkey allows access to all areas, then damage from its being

lost, stolen, misused, copied, or otherwise compromised will be much greater. An

operating system following the principle of least privilege implements its features,

programs, system calls, and data structures so that failure or compromise of a

component does the minimum damage and allows the minimum damage to be done.

The overflow of a buffer in a system daemon (is a program that runs

continuously and exists for the purpose of handling periodic service requests that a

computer system expects to receive. Daemon is a program that runs by itself directly

under the operating system) might cause the daemon process to fail, for example, but

should not allow the execution of code from the daemon process’s stack that would

enable a remote user to gain maximum privileges and access to the entire system.

Such an operating system also provides system calls and services that allow

applications to be written with fine-grained access controls. It provides mechanisms to

enable privileges when they are needed and to disable them when they are not needed.

Managing users with the principle of least privilege entails creating a separate

account for each user, with just the privileges that the user needs. An operator who

needs to mount tapes and back up files on the system has access to just those

commands and files needed to accomplish the job. Some systems implement role-

based access control (RBAC) to provide this functionality.

I/O System & Protection UNIT-V SVEC-16
Protection

Prepared By: T.M. Jaya Krishna Assistant Professor 3

Domain of Protection:

A computer system is a collection of processes and objects. By objects, we

mean both hardware objects (such as the CPU, memory segments, printers, disks,

and tape drives) and software objects (such as files, programs, and semaphores). Each

object has a unique name that differentiates it from all other objects in the system, and

each can be accessed only through well-defined and meaningful operations. Objects

are essentially abstract data types.

The operations that are possible may depend on the object. For example, on a

CPU, we can only execute. Memory segments can be read and written, whereas a CD-

ROM or DVD-ROM can only be read. Tape drives can be read, written, and rewound.

Data files can be created, opened, read, written, closed, and deleted; program files can

be read, written, executed, and deleted.

A process should be allowed to access only those resources for which it has

authorization. Furthermore, at any time, a process should be able to access only those

resources that it currently requires to complete its task. This second requirement,

commonly referred to as the need-to-know principle, is useful in limiting the amount

of damage a faulty process can cause in the system.

For example, when process p invokes procedure A(), the procedure should be

allowed to access only its own variables and the formal parameters passed to it; it

should not be able to access all the variables of process p.

Similarly, consider the case in which process p invokes a compiler to compile

a particular file. The compiler should not be able to access files arbitrarily but should

have access only to a well-defined subset of files related to the file to be compiled.

Domain Structure:

To facilitate the scheme just described, a process operates within a protection

domain, which specifies the resources that the process may access. Each domain

defines a set of objects and the types of operations that may be invoked on each object.

The ability to execute an operation on an object is an access right.

A domain is a collection of access rights, each of which is an ordered pair

<object-name, rights-set>. For example, if domain D has the access right <file F,

{read,write}>, then a process executing in domain D can both read and write file F. It

cannot, however, perform any other operation on that object.

I/O System & Protection UNIT-V SVEC-16
Protection

Prepared By: T.M. Jaya Krishna Assistant Professor 4

Domains may share access rights. For example, in Figure below, we have three

domains: D1, D2, and D3. The access right <O4, {print}> is shared by D2 and D3,

implying that a process executing in either of these two domains can print object O4.

Note that a process must be executing in domain D1 to read and write object O1, while

only processes in domain D3 may execute object O1.

Figure: System with three protection domains

The association between a process and a domain may be either static, if the set

of resources available to the process is fixed throughout the process’s lifetime, or

dynamic. As might be expected, establishing dynamic protection domains is more

complicated than establishing static protection domains.

If the association between processes and domains is fixed, and we want to

adhere to the need-to-know principle, then a mechanism must be available to change

the content of a domain. The reason stems from the fact that a process may execute in

two different phases and may, for example, need read access in one phase and write

access in another.

If a domain is static, we must define the domain to include both read and write

access. However, this arrangement provides more rights than are needed in each of the

two phases, since we have read access in the phase where we need only write access,

and vice versa.

Thus, the need-to-know principle is violated. We must allow the contents of a

domain to be modified so that the domain always reflects the minimum necessary

access rights.

If the association is dynamic, a mechanism is available to allow domain

switching, enabling the process to switch from one domain to another. We may also

want to allow the content of a domain to be changed.

If we cannot change the content of a domain, we can provide the same effect

by creating a new domain with the changed content and switching to that new domain

when we want to change the domain content.

I/O System & Protection UNIT-V SVEC-16
Protection

Prepared By: T.M. Jaya Krishna Assistant Professor 5

A domain can be realized in a variety of ways:

 Each user may be a domain. In this case, the set of objects that can be

accessed depends on the identity of the user. Domain switching occurs

when the user is changed—generally when one user logs out and another

user logs in.

 Each process may be a domain. In this case, the set of objects that can be

accessed depends on the identity of the process. Domain switching occurs

when one process sends a message to another process and then waits for a

response.

 Each procedure may be a domain. In this case, the set of objects that can

be accessed corresponds to the local variables defined within the

procedure. Domain switching occurs when a procedure call is made.

Access matrix:

Our general model of protection can be viewed abstractly as a matrix, called an

access matrix. The rows of the access matrix represent domains, and the columns

represent objects. Each entry in the matrix consists of a set of access rights. Because

the column defines objects explicitly, we can omit the object name from the access

right.

The entry access(i,j) defines the set of operations that a process executing in

domain Di can invoke on object Oj. To illustrate these concepts, we consider the

access matrix shown in Figure below.

Figure: Access Matrix

There are four domains and four objects—three files (F1, F2, F3) and one laser

printer. A process executing in domain D1 can read files F1 and F3. A process

executing in domain D4 has the same privileges as one executing in domain D1; but in

addition, it can also write onto files F1 and F3. The laser printer can be accessed only

by a process executing in domain D2.

I/O System & Protection UNIT-V SVEC-16
Protection

Prepared By: T.M. Jaya Krishna Assistant Professor 6

The access-matrix scheme provides us with the mechanism for specifying a

variety of policies. The mechanism consists of implementing the access matrix and

ensuring that the semantic properties we have outlined hold.

More specifically, we must ensure that a process executing in domain Di can

access only those objects specified in row i, and then only as allowed by the access-

matrix entries.

The access matrix can implement policy decisions concerning protection. The

policy decisions involve which rights should be included in the (i, j)
th

 entry. We must

also decide the domain in which each process executes. This last policy is usually

decided by the operating system.

The users normally decide the contents of the access-matrix entries. When a

user creates a new object Oj, the column Oj is added to the access matrix with the

appropriate initialization entries, as dictated by the creator. The user may decide to

enter some rights in some entries in column j and other rights in other entries, as

needed.

The access matrix provides an appropriate mechanism for defining and

implementing strict control for both static and dynamic association between processes

and domains. When we switch a process from one domain to another, we are

executing an operation (switch) on an object (the domain).

We can control domain switching by including domains among the objects of

the access matrix. Similarly, when we change the content of the access matrix, we are

performing an operation on an object: the access matrix. Again, we can control these

changes by including the access matrix itself as an object.

Actually, since each entry in the access matrix can be modified individually,

we must consider each entry in the access matrix as an object to be protected. Now,

we need to consider only the operations possible on these new objects (domains and

the access matrix) and decide how we want processes to be able to execute these

operations.

Processes should be able to switch from one domain to another. Switching

from domain Di to domain Dj is allowed if and only if the access right switch ∈

access(i, j). Thus, in Figure (Access matrix of previous figure with domains as

objects.), a process executing in domain D2 can switch to domain D3 or to domain

D4. A process in domain D4 can switch to D1, and one in domain D1 can switch to

D2.

I/O System & Protection UNIT-V SVEC-16
Protection

Prepared By: T.M. Jaya Krishna Assistant Professor 7

Allowing controlled change in the contents of the access-matrix entries

requires three additional operations: copy, owner, and control.

Figure: Access matrix of previous figure with domains as objects

The ability to copy an access right from one domain (or row) of the access

matrix to another is denoted by an asterisk (*) appended to the access right. The copy

right allows the access right to be copied only within the column (that is, for the

object) for which the right is defined. For example, in Figure (a) below, a process

executing in domain D2 can copy the read operation into any entry associated with file

F2. Hence, the access matrix of Figure (a) can be modified to the access matrix shown

in Figure (b).

Figure: Access matrix with copy rights

This scheme has two additional variants:

1. A right is copied from access(i, j) to access(k, j); it is then removed from

access(i, j). This action is a of a right, rather than a copy.

2. Propagation of the copy right may be limited. That is, when the right R∗ is

copied from access(i, j) to access(k, j), only the right R (not R∗) is created.

A process executing in domain Dk cannot further copy the right R.

I/O System & Protection UNIT-V SVEC-16
Protection

Prepared By: T.M. Jaya Krishna Assistant Professor 8

A system may select only one of these three copy rights, or it may provide all

three by identifying them as separate rights: copy, transfer, and limited copy. We also

need a mechanism to allow addition of new rights and removal of some rights.

The owner right controls these operations. If access(i, j) includes the owner

right, then a process executing in domain Di can add and remove any right in any

entry in column j. For example, in Figure (a) below, domain D1 is the owner of F1

and thus can add and delete any valid right in column F1.

Similarly, domain D2 is the owner of F2 and F3 and thus can add and remove

any valid right within these two columns. Thus, the access matrix of Figure (a) below

can be modified to the access matrix shown in Figure (b) below.

Figure: Access matrix with owner rights

The copy and owner rights allow a process to change the entries in a column.

A mechanism is also needed to change the entries in a row. The control right is

applicable only to domain objects. If access(i, j) includes the control right, then a

process executing in domain Di can remove any access right from row j.

For example, suppose that we include the control right in access(D2, D4).

Then, a process executing in domain D2 could modify domain D4, as shown in Figure

below:

Figure: Modified access matrix

I/O System & Protection UNIT-V SVEC-16
Protection

Prepared By: T.M. Jaya Krishna Assistant Professor 9

Implementation of the Access Matrix:

How can the access matrix be implemented effectively? In general, the matrix

will be sparse; that is, most of the entries will be empty. Although data structure

techniques are available for representing sparse matrices, they are not particularly

useful for this application, because of the way in which the protection facility is used.

Here, we first describe several methods of implementing the access matrix and then

compare the methods.

Global Table:

The simplest implementation of the access matrix is a global table consisting

of a set of ordered triples <domain, object, rights-set>. Whenever an operation M is

executed on an object Oj within domain Di, the global table is searched for a triple

<Di , Oj , Rk>, with M ∈ Rk . If this triple is found, the operation is allowed to

continue; otherwise, an exception (or error) condition is raised.

This implementation suffers from several drawbacks. The table is usually large

and thus cannot be kept in main memory, so additional I/O is needed. Virtual memory

techniques are often used for managing this table. In addition, it is difficult to take

advantage of special groupings of objects or domains. For example, if everyone can

read a particular object, this object must have a separate entry in every domain.

Access Lists for Objects:

Each column in the access matrix can be implemented as an access list for one

object. Obviously, the empty entries can be discarded. The resulting list for each

object consists of ordered pairs <domain, rights-set>, which define all domains with a

nonempty set of access rights for that object.

This approach can be extended easily to define a list plus a default set of

access rights. When an operation M on an object Oj is attempted in domain Di , we

search the access list for object Oj , looking for an entry <Di , Rk> with M ∈ Rk . If

the entry is found, we allow the operation; if it is not, we check the default set.

If M is in the default set, we allow the access. Otherwise, access is denied, and

an exception condition occurs. For efficiency, we may check the default set first and

then search the access list.

Capability Lists for Domains:

Rather than associating the columns of the access matrix with the objects as

access lists, we can associate each row with its domain.

I/O System & Protection UNIT-V SVEC-16
Protection

Prepared By: T.M. Jaya Krishna Assistant Professor 10

A capability list for a domain is a list of objects together with the operations

allowed on those objects. An object is often represented by its physical name or

address, called a capability.

To execute operation M on object Oj, the process executes the operation M,

specifying the capability (or pointer) for object Oj as a parameter. Simple possession

of the capability means that access is allowed.

The capability list is associated with a domain, but it is never directly

accessible to a process executing in that domain. Rather, the capability list is itself a

protected object, maintained by the operating system and accessed by the user only

indirectly.

Capability-based protection relies on the fact that the capabilities are never

allowed to migrate into any address space directly accessible by a user process (where

they could be modified). If all capabilities are secure, the object they protect is also

secure against unauthorized access.

To provide inherent protection, we must distinguish capabilities from other

kinds of objects, and they must be interpreted by an abstract machine on which higher-

level programs run. Capabilities are usually distinguished from other data in one of

two ways:

 Each object has a tag to denote whether it is a capability or accessible data.

The tags themselves must not be directly accessible by an application program.

Hardware or firmware support may be used to enforce this restriction.

Although only one bit is necessary to distinguish between capabilities and

other objects, more bits are often used. This extension allows all objects to be

tagged with their types by the hardware. Thus, the hardware can distinguish

integers, floating-point numbers, pointers, Booleans, characters, instructions,

capabilities, and uninitialized values by their tags.

 Alternatively, the address space associated with a program can be split into two

parts. One part is accessible to the program and contains the program’s normal

data and instructions. The other part, containing the capability list, is accessible

only by the operating system. A segmented memory space is useful to support

this approach.

A Lock–Key Mechanism:

The lock–key scheme is a compromise between access lists and capability

lists. Each object has a list of unique bit patterns, called locks. Similarly, each domain

has a list of unique bit patterns, called keys.

I/O System & Protection UNIT-V SVEC-16
Protection

Prepared By: T.M. Jaya Krishna Assistant Professor 11

A process executing in a domain can access an object only if that domain has a

key that matches one of the locks of the object. As with capability lists the list of keys

for a domain must be managed by the operating system on behalf of the domain. Users

are not allowed to examine or modify the list of keys (or locks) directly.

Access Control:

Each file and directory is assigned an owner, a group, or possibly a list of

users, and for each of those entities, access-control information is assigned. A similar

function can be added to other aspects of a computer system. A good example of this

is found in Solaris 10.

Solaris 10 advances the protection available in the operating system by

explicitly adding the principle of least privilege via role-based access control

(RBAC). This facility revolves around privileges. A privilege is the right to execute a

system call or to use an option within that system call (such as opening a file with

write access).

Privileges can be assigned to processes, limiting them to exactly the access

they need to perform their work. Privileges and programs can also be assigned to

roles. Users are assigned roles or can take roles based on passwords to the roles. In

this way, a user can take a role that enables a privilege, allowing the user to run a

program to accomplish a specific task, as depicted in Figure below:

Figure: Role-based access control in Solaris 10

This implementation of privileges decreases the security risk associated with

superusers and setuid programs.

I/O System & Protection UNIT-V SVEC-16
Protection

Prepared By: T.M. Jaya Krishna Assistant Professor 12

Revocation of Access Rights:

In a dynamic protection system, we may sometimes need to revoke access

rights to objects shared by different users. Various questions about revocation may

arise:

• Immediate versus delayed. Does revocation occur immediately, or is it

delayed? If revocation is delayed, can we find out when it will take place?

• Selective versus general. When an access right to an object is revoked, does

it affect all the users who have an access right to that object, or can we specify a select

group of users whose access rights should be revoked?

• Partial versus total. Can a subset of the rights associated with an object be

revoked, or must we revoke all access rights for this object?

• Temporary versus permanent. Can access be revoked permanently (that is,

the revoked access right will never again be available), or can access be revoked and

later be obtained again?

With an access-list scheme, revocation is easy. The access list is searched for

any access rights to be revoked, and they are deleted from the list. Revocation is

immediate and can be general or selective, total or partial, and permanent or

temporary.

Capabilities, however, present a much more difficult revocation problem, as

mentioned earlier. Since the capabilities are distributed throughout the system, we

must find them before we can revoke them. Schemes that implement revocation for

capabilities include the following:

 Reacquisition: Periodically, capabilities are deleted from each domain. If a

process wants to use a capability, it may find that that capability has been

deleted. The process may then try to reacquire the capability. If access has

been revoked, the process will not be able to reacquire the capability.

 Back-pointers: A list of pointers is maintained with each object, pointing to

all capabilities associated with that object. When revocation is required, we can

follow these pointers, changing the capabilities as necessary. This scheme was

adopted in the MULTICS system. It is quite general, but its implementation is

costly.

 Indirection: The capabilities point indirectly, not directly, to the objects. Each

capability points to a unique entry in a global table, which in turn points to the

I/O System & Protection UNIT-V SVEC-16
Protection

Prepared By: T.M. Jaya Krishna Assistant Professor 13

object. We implement revocation by searching the global table for the desired

entry and deleting it. Then, when an access is attempted, the capability is found

to point to an illegal table entry.

o Table entries can be reused for other capabilities without difficulty,

since both the capability and the table entry contain the unique name of

the object. The object for a capability and its table entry must match.

This scheme was adopted in the CAL system. It does not allow

selective revocation.

 Keys: A key is a unique bit pattern that can be associated with a capability.

This key is defined when the capability is created, and it can be neither

modified nor inspected by the process that owns the capability. A master key

is associated with each object; it can be defined or replaced with the set-key

operation.

o When a capability is created, the current value of the master key is

associated with the capability. When the capability is exercised, its key

is compared with the master key. If the keys match, the operation is

allowed to continue; otherwise, an exception condition is raised.

o Revocation replaces the master key with a new value via the set-key

operation, invalidating all previous capabilities for this object. This

scheme does not allow selective revocation, since only one master key

is associated with each object.

o If we associate a list of keys with each object, then selective revocation

can be implemented. Finally, we can group all keys into one global

table of keys. A capability is valid only if its key matches some key in

the global table. We implement revocation by removing the matching

key from the table.

o With this scheme, a key can be associated with several objects, and

several keys can be associated with each object, providing maximum

flexibility. In key-based schemes, the operations of defining keys,

inserting them into lists, and deleting them from lists should not be

available to all users.

o In particular, it would be reasonable to allow only the owner of an

object to set the keys for that object. This choice, however, is a policy

decision that the protection system can implement but should not

define.

