
I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 1

I/O Systems:

The two main jobs of a computer are I/O and processing. In many cases, the

main job is I/O, and the processing is merely incidental. For instance, when we browse

a web page or edit a file, our immediate interest is to read or enter some information,

not to compute an answer.

The role of the operating system in computer I/O is to manage and control I/O

operations and I/O devices. The control of devices connected to the computer is a

major concern of operating-system designers.

Because I/O devices vary so widely in their function and speed (consider a

mouse, a hard disk, and a tape robot), varied methods are needed to control them.

These methods form the I/O subsystem of the kernel, which separates the rest of the

kernel from the complexities of managing I/O devices.

I/O Hardware:

Computers operate a great many kinds of devices. Most fit into the general

categories of storage devices (disks, tapes), transmission devices (network

connections, Bluetooth), and human-interface devices (screen, keyboard, mouse, audio

in and out). Other devices are more specialized, such as those involved in the steering

of a jet.

Despite the incredible variety of I/O devices, though, we need only a few

concepts to understand how the devices are attached and how the software can control

the hardware.

A device communicates with a computer system by sending signals over a

cable or even through the air. The device communicates with the machine via a

connection point, or port—for example, a serial port.

If devices share a common set of wires, the connection is called a bus. A bus is

a set of wires and a rigidly defined protocol that specifies a set of messages that can be

sent on the wires.

In terms of the electronics, the messages are conveyed by patterns of electrical

voltages applied to the wires with defined timings. When device A has a cable that

plugs into device B, and device B has a cable that plugs into device C, and device C

plugs into a port on the computer, this arrangement is called a daisy chain. A daisy

chain usually operates as a bus.

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 2

Buses are used widely in computer architecture and vary in their signaling

methods, speed, throughput, and connection methods. A typical PC bus structure

appears in figure:

Figure: A typical PC bus structure

In the figure, a PCI bus (the common PC system bus) connects the processor–

memory subsystem to fast devices, and an expansion bus connects relatively slow

devices, such as the keyboard and serial and USB ports. In the upper-right portion of

the figure, four disks are connected together on a Small Computer System Interface

(SCSI) bus plugged into a SCSI controller.

Other common buses used to interconnect main parts of a computer include

PCI Express (PCIe), with throughput of up to 16 GB per second, and

HyperTransport, with throughput of up to 25 GB per second.

A controller is a collection of electronics that can operate a port, a bus, or a

device. A serial-port controller is a simple device controller. It is a single chip (or

portion of a chip) in the computer that controls the signals on the wires of a serial port.

By contrast, a SCSI bus controller is not simple.

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 3

Because the SCSI protocol is complex the SCSI bus controller is often

implemented as a separate circuit board (or a host adapter) that plugs into the

computer.

It typically contains a processor, microcode, and some private memory to

enable it to process the SCSI protocol messages. Some devices have their own built-in

controllers. If you look at a disk drive, you will see a circuit board attached to one

side. This board is the disk controller.

It implements the disk side of the protocol for some kind of connection—SCSI

or Serial Advanced Technology Attachment (SATA), for instance. It has microcode

and a processor to do many tasks, such as bad-sector mapping, prefetching, buffering,

and caching.

How can the processor give commands and data to a controller to accomplish

an I/O transfer? The short answer is that the controller has one or more registers for

data and control signals. The processor communicates with the controller by reading

and writing bit patterns in these registers. One way in which this communication can

occur is through the use of special I/O instructions that specify the transfer of a byte

or word to an I/O port address. Alternatively, the device controller can support

memory-mapped I/O.

Some systems use both techniques. For instance, PCs use I/O instructions to

control some devices and memory-mapped I/O to control others. Figure below shows

the usual I/O port addresses for PCs.

Figure: Device I/O port locations on PCs (partial)

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 4

An I/O port typically consists of four registers, called the status, control, data-

in, and data-out registers.

• The data-in register is read by the host to get input.

• The data-out register is written by the host to send output.

• The status register contains bits that can be read by the host. These bits

indicate states, such as whether the current command has completed, whether a byte is

available to be read from the data-in register, and whether a device error has occurred.

• The control register can be written by the host to start a command or to

change the mode of a device. For instance, a certain bit in the control register of a

serial port chooses between full-duplex and half-duplex communication, another bit

enables parity checking, a third bit sets the word length to 7 or 8 bits, and other bits

select one of the speeds supported by the serial port.

The data registers are typically 1 to 4 bytes in size. Some controllers have

FIFO chips that can hold several bytes of input or output data to expand the capacity

of the controller beyond the size of the data register. A FIFO chip can hold a small

burst of data until the device or host is able to receive those data.

Polling:

The complete protocol for interaction between the host and a controller can be

intricate, but the basic handshaking notion is simple. We explain handshaking with an

example. Assume that 2 bits are used to coordinate the producer–consumer

relationship between the controller and the host. The controller indicates its state

through the busy bit in the status register.

The controller sets the busy bit when it is busy working and clears the busy bit

when it is ready to accept the next command. The host signals its wishes via the

command-ready bit in the command register.

The host sets the command-ready bit when a command is available for the

controller to execute. For this example, the host writes output through a port,

coordinating with the controller by handshaking as follows:

1. The host repeatedly reads the busy bit until that bit becomes clear.

2. The host sets the write bit in the command register and writes a byte into the

data-out register.

3. The host sets the command-ready bit.

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 5

4. When the controller notices that the command-ready bit is set, it sets the

busy bit.

5. The controller reads the command register and sees the write command. It

reads the data-out register to get the byte and does the I/O to the device.

6. The controller clears the command-ready bit, clears the error bit in the status

register to indicate that the device I/O succeeded, and clears the busy bit to indicate

that it is finished.

This loop is repeated for each byte. In step 1, the host is busy-waiting or

polling: it is in a loop, reading the status register over and over until the busy bit

becomes clear.

In many computer architectures, three CPU-instruction cycles are sufficient to

poll a device: read a device register, logical--and to extract a status bit, and branch if

not zero. Clearly, the basic polling operation is efficient. But polling becomes

inefficient when it is attempted repeatedly yet rarely finds a device ready for service,

while other useful CPU processing remains undone.

In such instances, it may be more efficient to arrange for the hardware

controller to notify the CPU when the device becomes ready for service, rather than to

require the CPU to poll repeatedly for an I/O completion. The hardware mechanism

that enables a device to notify the CPU is called an interrupt.

Application I/O interface:

Here we discuss structuring techniques and interfaces for the operating system

that enable I/O devices to be treated in a standard, uniform way. We explain, for

instance, how an application can open a file on a disk without knowing what kind of

disk it is and how new disks and other devices can be added to a computer without

disruption of the operating system.

Like other complex software-engineering problems, the approach here involves

abstraction, encapsulation, and software layering. Specifically, we can abstract away

the detailed differences in I/O devices by identifying a few general kinds.

Each general kind is accessed through a standardized set of functions—an

interface. he differences are encapsulated in kernel modules called device drivers that

internally are custom-tailored to specific devices but that export one of the standard

interfaces. Figure (A kernel I/O structure) illustrates how the I/O-related portions of

the kernel are structured in software layers.

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 6

Figure: A kernel I/O structure

The purpose of the device-driver layer is to hide the differences among device

controllers from the I/O subsystem of the kernel, much as the I/O system calls

encapsulate the behavior of devices in a few generic classes that hide hardware

differences from applications.

Making the I/O subsystem independent of the hardware simplifies the job of

the operating-system developer. It also benefits the hardware manufacturers. They

either design new devices to be compatible with an existing host controller interface

(such as SATA), or they write device drivers to interface the new hardware to popular

operating systems.

Thus, we can attach new peripherals to a computer without waiting for the

operating-system vendor to develop support code. Unfortunately for device-hardware

manufacturers, each type of operating system has its own standards for the device-

driver interface. A given device may ship with multiple device drivers—for instance,

drivers for Windows, Linux, AIX, and Mac OS X. Devices vary on many dimensions,

as illustrated in Figure (Characteristics of I/O devices).

 Character-stream or block. A character-stream device transfer’s bytes

one by one, whereas a block device transfers a block of bytes as a unit.

 Sequential or random access. A sequential device transfers data in a fixed

order determined by the device, whereas the user of a random-access

device can instruct the device to seek to any of the available data storage

locations.

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 7

 Synchronous or asynchronous. A synchronous device performs data

transfers with predictable response times, in coordination with other

aspects of the system. An asynchronous device exhibits irregular or

unpredictable response times not coordinated with other computer events.

 Sharable or dedicated. A sharable device can be used concurrently by

several processes or threads; a dedicated device cannot.

Figure: Characteristics of I/O devices

 Speed of operation. Device speeds range from a few bytes per second

to a few gigabytes per second.

 Read–write, read only, or write only. Some devices perform both

input and output, but others support only one data transfer direction.

For the purpose of application access, many of these differences are hidden by

the operating system, and the devices are grouped into a few conventional types. The

resulting styles of device access have been found to be useful and broadly applicable.

Although the exact system calls may differ across operating systems, the

device categories are fairly standard. The major access conventions include block I/O,

character-stream I/O, memory-mapped file access, and network sockets.

Operating systems also provide special system calls to access a few additional

devices, such as a time-of-day clock and a timer. Some operating systems provide a

set of system calls for graphical display, video, and audio devices.

Most operating systems also have an escape (or back door) that transparently

passes arbitrary commands from an application to a device driver. In UNIX, this

system call is ioctl() (for “I/O control”).

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 8

The ioctl() system call enables an application to access any functionality that

can be implemented by any device driver, without the need to invent a new system

call.

The ioctl() system call has three arguments:

 The first is a file descriptor that connects the application to the driver

by referring to a hardware device managed by that driver.

 The second is an integer that selects one of the commands implemented

in the driver.

 The third is a pointer to an arbitrary data structure in memory that

enables the application and driver to communicate any necessary

control information or data.

Block and Character Devices:

The block-device interface captures all the aspects necessary for accessing

disk drives and other block-oriented devices. The device is expected to understand

commands such as read() and write(). If it is a random-access device, it is also

expected to have a seek() command to specify which block to transfer next.

Applications normally access such a device through a file-system interface. We

can see that read(), write(), and seek() capture the essential behaviors of block-storage

devices, so that applications are insulated from the low-level differences among those

devices.

The operating system itself, as well as special applications such as database

management systems, may prefer to access a block device as a simple linear array of

blocks. This mode of access is sometimes called raw I/O. If the application performs

its own buffering, then using a file system would cause extra, unneeded buffering.

Likewise, if an application provides its own locking of file blocks or regions,

then any operating-system locking services would be redundant at the least and

contradictory at the worst.

A keyboard is an example of a device that is accessed through a character

stream interface. The basic system calls in this interface enable an application to

get() or put() one character.

On top of this interface, libraries can be built that offer line-at-a-time access,

with buffering and editing services (for example, when a user types a backspace, the

preceding character is removed from the input stream).

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 9

This style of access is convenient for input devices such as keyboards, mice,

and modems that produce data for input “spontaneously” —that is, at times that cannot

necessarily be predicted by the application. This access style is also good for output

devices such as printers and audio boards, which naturally fit the concept of a linear

stream of bytes.

Network Devices:

Because the performance and addressing characteristics of network I/O differ

significantly from those of disk I/O, most operating systems provide a network I/O

interface that is different from the read()–write()–seek() interface used for disks. One

interface available in many operating systems, including UNIX and Windows, is the

network socket interface.

Think of a wall socket for electricity: any electrical appliance can be plugged

in. By analogy, the system calls in the socket interface enable an application to create

a socket, to connect a local socket to a remote address (which plugs this application

into a socket created by another application), to listen for any remote application to

plug into the local socket, and to send and receive packets over the connection.

To support the implementation of servers, the socket interface also provides a

function called select() that manages a set of sockets. A call to select() returns

information about which sockets have a packet waiting to be received and which

sockets have room to accept a packet to be sent.

The use of select() eliminates the polling and busy waiting that would

otherwise be necessary for network I/O. These functions encapsulate the essential

behaviors of networks, greatly facilitating the creation of distributed applications that

can use any underlying network hardware and protocol stack.

Many other approaches to inter process communication and network

communication have been implemented. For instance, Windows provides one

interface to the network interface card and a second interface to the network protocols.

In UNIX, which has a long history as a proving ground for network technology, we

find half-duplex pipes, full-duplex FIFOs, full-duplex STREAMS, message queues,

and sockets.

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 10

Clocks and Timers:

Most computers have hardware clocks and timers that provide three basic

functions:

 Give the current time.

 Give the elapsed time.

 Set a timer to trigger operation X at time T.

These functions are used heavily by the operating system, as well as by time

sensitive applications. Unfortunately, the system calls that implement these functions

are not standardized across operating systems.

The hardware to measure elapsed time and to trigger operations is called a

programmable interval timer. It can be set to wait a certain amount of time and then

generate an interrupt, and it can be set to do this once or to repeat the process to

generate periodic interrupts.

The scheduler uses this mechanism to generate an interrupt that will preempt a

process at the end of its time slice. The disk I/O subsystem uses it to invoke the

periodic flushing of dirty cache buffers to disk.

The network subsystem uses it to cancel operations that are proceeding too

slowly because of network congestion or failures. The operating system may also

provide an interface for user processes to use timers.

The operating system can support more timer requests than the number of

timer hardware channels by simulating virtual clocks. To do so, the kernel (or the

timer device driver) maintains a list of interrupts wanted by its own routines and by

user requests, sorted in earliest-time-first order.

It sets the timer for the earliest time. When the timer interrupts, the kernel

signals the requester and reloads the timer with the next earliest time. On many

computers, the interrupt rate generated by the hardware clock is between 18 and 60

ticks per second.

Nonblocking and Asynchronous I/O:

Another aspect of the system-call interface relates to the choice between

blocking I/O and nonblocking I/O. When an application issues a blocking system call,

the execution of the application is suspended. The application is moved from the

operating system’s run queue to a wait queue.

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 11

After the system call completes, the application is moved back to the run

queue, where it is eligible to resume execution. When it resumes execution, it will

receive the values returned by the system call.

The physical actions performed by I/O devices are generally asynchronous—

they take a varying or unpredictable amount of time. Nevertheless, most operating

systems use blocking system calls for the application interface, because blocking

application code is easier to understand than nonblocking application code.

Some user-level processes need nonblocking I/O. One example is a user

interface that receives keyboard and mouse input while processing and displaying data

on the screen. Another example is a video application that reads frames from a file on

disk while simultaneously decompressing and displaying the output on the display.

One way an application writer can overlap execution with I/O is to write a

multithreaded application. Some threads can perform blocking system calls, while

others continue executing. Some operating systems provide nonblocking I/O system

calls.

A nonblocking call does not halt the execution of the application for an

extended time. Instead, it returns quickly, with a return value that indicates how many

bytes were transferred. An alternative to a nonblocking system call is an asynchronous

system call.

An asynchronous call returns immediately, without waiting for the I/O to

complete. The application continues to execute its code. The completion of the I/O at

some future time is communicated to the application, either through the setting of

some variable in the address space of the application or through the triggering of a

signal or software interrupt or a call-back routine that is executed outside the linear

control flow of the application.

The difference between nonblocking and asynchronous system calls is that a

nonblocking read() returns immediately with whatever data are available—the full

number of bytes requested, fewer, or none at all.

An asynchronous read() call requests a transfer that will be performed in its

entirety but will complete at some future time. These two I/O methods are shown in

Figure (Two I/O methods: (a) synchronous and (b) asynchronous).

A good example of nonblocking behavior is the select() system call for

network sockets. This system call takes an argument that specifies a maximum waiting

time. By setting it to 0, an application can poll for network activity without blocking.

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 12

But using select() introduces extra overhead, because the select() call only

checks whether I/O is possible. For a data transfer, select() must be followed by some

kind of read() or write() command.

Figure: Two I/O methods: (a) synchronous and (b) asynchronous

Vectored I/O:

Vectored I/O allows one system call to perform multiple I/O operations

involving multiple locations. For example, the UNIXreadv system call accepts a

vector of multiple buffers and either reads from a source to that vector or writes from

that vector to a destination.

The same transfer could be caused by several individual invocations of system

calls, but this scatter–gather method is useful for a variety of reasons. Multiple

separate buffers can have their contents transferred via one system call, avoiding

context-switching and system-call overhead.

Without vectored I/O, the data might first need to be transferred to a larger

buffer in the right order and then transmitted, which is inefficient.

Kernel I/O Subsystem:

Kernels provide many services related to I/O. Several services—scheduling,

buffering, caching, spooling, device reservation, and error handling—are provided by

the kernel’s I/O subsystem and build on the hardware and device driver infrastructure.

The I/O subsystem is also responsible for protecting itself from errant processes and

malicious users.

I/O Scheduling:

To schedule a set of I/O requests means to determine a good order in which to

execute them. The order in which applications issue system calls rarely is the best

choice.

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 13

Scheduling can improve overall system performance, can share device access

fairly among processes, and can reduce the average waiting time for I/O to complete.

Here is a simple example to illustrate. Suppose that a disk arm is near the

beginning of a disk and that three applications issue blocking read calls to that disk.

Application 1 requests a block near the end of the disk, application 2 requests one near

the beginning, and application 3 requests one in the middle of the disk.

The operating system can reduce the distance that the disk arm travels by

serving the applications in the order 2, 3, 1. Rearranging the order of service in this

way is the essence of I/O scheduling.

Operating-system developers implement scheduling by maintaining await

queue of requests for each device. When an application issues a blocking I/O system

call, the request is placed on the queue for that device. The I/O scheduler rearranges

the order of the queue to improve the overall system efficiency and the average

response time experienced by applications.

The operating system may also try to be fair, so that no one application

receives especially poor service, or it may give priority service for delay-sensitive

requests.

When a kernel supports asynchronous I/O, it must be able to keep track of

many I/O requests at the same time. For this purpose, the operating system might

attach the wait queue to a device-status table. The kernel manages this table, which

contains an entry for each I/O device, as shown in Figure below:

Figure: Device-status table

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 14

Each table entry indicates the device’s type, address, and state (not

functioning, idle, or busy). If the device is busy with a request, the type of request and

other parameters will be stored in the table entry for that device.

Scheduling I/O operations is one way in which the I/O subsystem improves the

efficiency of the computer. Another way is by using storage space in main memory or

on disk via buffering, caching, and spooling.

Buffering:

A buffer, of course, is a memory area that stores data being transferred

between two devices or between a device and an application. Buffering is done for

three reasons. One reason is to cope with a speed mismatch between the producer and

consumer of a data stream.

A second use of buffering is to provide adaptations for devices that have

different data-transfer sizes. Such disparities are especially common in computer

networking, where buffers are used widely for fragmentation and reassembly of

messages.

A third use of buffering is to support copy semantics for application I/O. An

example will clarify the meaning of “copy semantics.” Suppose that an application has

a buffer of data that it wishes to write to disk. It calls the write() system call, providing

a pointer to the buffer and an integer specifying the number of bytes to write.

After the system call returns, what happens if the application changes the

contents of the buffer? With copy semantics, the version of the data written to disk is

guaranteed to be the version at the time of the application system call, independent of

any subsequent changes in the application’s buffer.

A simple way in which the operating system can guarantee copy semantics is

for the write() system call to copy the application data into a kernel buffer before

returning control to the application. The disk write is performed from the kernel

buffer, so that subsequent changes to the application buffer have no effect.

Caching:

A cache is a region of fast memory that holds copies of data. Access to the

cached copy is more efficient than access to the original. For instance, the instructions

of the currently running process are stored on disk, cached in physical memory, and

copied again in the CPU’s secondary and primary caches.

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 15

The difference between a buffer and a cache is that a buffer may hold the only

existing copy of a data item, whereas a cache, by definition, holds a copy on faster

storage of an item that resides elsewhere.

Caching and buffering are distinct functions, but sometimes a region of

memory can be used for both purposes. For instance, to preserve copy semantics and

to enable efficient scheduling of disk I/O, the operating system uses buffers in main

memory to hold disk data.

These buffers are also used as a cache, to improve the I/O efficiency for files

that are shared by applications or that are being written and reread rapidly. When the

kernel receives a file I/O request, the kernel first accesses the buffer cache to see

whether that region of the file is already available in main memory.

Spooling and Device Reservation:

A spool is a buffer that holds output for a device, such as a printer, that cannot

accept interleaved data streams. Although a printer can serve only one job at a time,

several applications may wish to print their output concurrently, without having their

output mixed together.

The operating system solves this problem by intercepting all output to the

printer. Each application’s output is spooled to a separate disk file. When an

application finishes printing, the spooling system queues the corresponding spool file

for output to the printer. The spooling system copies the queued spool files to the

printer one at a time.

In some operating systems, spooling is managed by a system daemon process.

In others, it is handled by an in-kernel thread. In either case, the operating system

provides a control interface that enables users and system administrators to display the

queue, remove unwanted jobs before those jobs print, suspend printing while the

printer is serviced, and so on.

Error Handling:

An operating system that uses protected memory can guard against many kinds

of hardware and application errors, so that a complete system failure is not the usual

result of each minor mechanical malfunction.

Devices and I/O transfers can fail in many ways, either for transient reasons, as

when a network becomes overloaded, or for “permanent” reasons, as when a disk

controller becomes defective. Operating systems can often compensate effectively for

transient failures.

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 16

For instance, a disk read() failure results in a read() retry, and a network send()

error results in a resend(), if the protocol so specifies. Unfortunately, if an important

component experiences a permanent failure, the operating system is unlikely to

recover.

As a general rule, an I/O system call will return one bit of information about

the status of the call, signifying either success or failure. In the UNIX operating

system, an additional integer variable named errno is used to return an error code—

one of about a hundred values—indicating the general nature of the failure (for

example, argument out of range, bad pointer, or file not open).

I/O Protection:

Errors are closely related to the issue of protection. A user process may

accidentally or purposely attempt to disrupt the normal operation of a system by

attempting to issue illegal I/O instructions. We can use various mechanisms to ensure

that such disruptions cannot take place in the system.

To prevent users from performing illegal I/O, we define all I/O instructions to

be privileged instructions. Thus, users cannot issue I/O instructions directly; they must

do it through the operating system. To do I/O, a user program executes a system call to

request that the operating system perform I/O on its behalf.

The operating system, executing in monitor mode, checks that the request is

valid and, if it is, does the I/O requested. The operating system then returns to the user.

Kernel Data Structures:

The kernel needs to keep state information about the use of I/O components. It

does so through a variety of in-kernel data structures, such as the open-file table

structure.

The kernel uses many similar structures to track network connections,

character-device communications, and other I/O activities. UNIX provides file-system

access to a variety of entities, such as user files, raw devices, and the address spaces of

processes.

Although each of these entities supports a read() operation, the semantics

differ. For instance, to read a user file, the kernel needs to probe the buffer cache

before deciding whether to perform a disk I/O.

To read a raw disk, the kernel needs to ensure that the request size is a multiple

of the disk sector size and is aligned on a sector boundary. To read a process image, it

is merely necessary to copy data from memory.

I/O System & Protection UNIT-V SVEC-16
I/O Systems

Prepared By: T.M. Jaya Krishna Assistant Professor 17

UNIX encapsulates these differences within a uniform structure by using an

object-oriented technique. The open-file record, shown in Figure below, contains a

dispatch table that holds pointers to the appropriate routines, depending on the type of

file.

Figure: UNIX I/O kernel structure

