
UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 1

OPERATING SYSTEM:

Definition:

An operating system is a program that manages a computer’s hardware. It also provides

a basis for application programs and acts as an intermediary between the computer user and

the computer hardware.

or

An operating system is a group of computer programs that coordinates all the activities

among computer hardware devices. It is the first program loaded into the computer by a boot

program and remains in memory at all times.

An amazing aspect of operating systems is how they vary in accomplishing these tasks.

Mainframe operating systems are designed primarily to optimize utilization of hardware.

Personal computer (PC) operating systems support complex games, business

applications, and everything in between.

Operating systems for mobile computers provide an environment in which a user can

easily interface with the computer to execute programs.

Thus, some operating systems are designed to be convenient, others to be efficient, and

others to be some combination of the two.

OPERATING SYSTEM FUNCTIONS:

The basic functions of an operating system are:

 Booting the computer

 Performs basic computer tasks eg managing the various peripheral devices eg mouse,

keyboard

 Provides a user interface, e.g. command line, graphical user interface (GUI)

 Handles system resources such as computer's memory and sharing of the central

processing unit (CPU) time by various applications or peripheral devices

 Provides file management which refers to the way that the operating system

manipulates, stores, retrieves and saves data.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 2

Booting the computer:

The process of starting or restarting the computer is known as booting. A cold boot is

when you turn on a computer that has been turned off completely. A warm boot is the process

of using the operating system to restart the computer.

Performs basic computer tasks:

The operating system performs basic computer tasks, such as managing the various

peripheral devices such as the mouse, keyboard and printers. For example, most operating

systems now are plug and play which means a device such as a printer will automatically be

detected and configured without any user intervention.

Provides a user interface:

A user interacts with software through the user interface. The two main types of user

interfaces are:

Command Line Interface (CLI):

With a command line interface, the user interacts with the operating system by typing

commands to perform specific tasks. An example of a command line interface is DOS (disk

operating system).

Graphical User Interface (GUI):

With a graphical user interface, the user interacts with the operating system by using a

mouse to access windows, icons, and menus. An example of a graphical user interface is

Windows Vista or Windows 7.

The operating system is responsible for providing a consistent application program

interface (API) which is important as it allows a software developer to write an application on

one computer and know that it will run on another computer of the same type even if the

amount of memory or amount of storage is different on the two machines.

Handles system resources:

The operating system also handles system resources such as the computer's memory

and sharing of the central processing unit (CPU) time by various applications or peripheral

devices.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 3

Programs and input methods are constantly competing for the attention of the CPU and

demand memory, storage and input/output bandwidth. The operating system ensures that

each application gets the necessary resources it needs in order to maximize the functionality of

the overall system.

Provides file management:

The operating system also handles the organization and tracking of files and directories

(folders) saved or retrieved from a computer disk. The file management system allows the user

to perform such tasks as creating files and directories, renaming files, copying and moving files,

and deleting files.

The operating system keeps track of where files are located on the hard drive through

the type of file system. The type two main types of file system are File Allocation table (FAT) or

New Technology File system (NTFS).

http://hsc.csu.edu.au/info_tech/compulsory/os/4014/basic_functions.htm

OPERATING SYSTEM STRUCTURE:

An operating system provides the environment within which programs are executed.

Internally, operating systems vary greatly in their makeup, since they are organized along many

different lines.

One of the most important aspects of operating systems is the ability to multiprogram.

A single program cannot, in general, keep either the CPU or the I/O devices busy at all times.

Single users frequently have multiple programs running. Multiprogramming increases CPU

utilization by organizing jobs (code and data) so that the CPU always has one to execute.

The idea is as follows: The operating system keeps several jobs in memory

simultaneously. Since, in general, main memory is too small to accommodate all jobs; the jobs

are kept initially on the disk in the job pool. This pool consists of all processes residing on disk

awaiting allocation of main memory.

The set of jobs in memory can be a subset of the jobs kept in the job pool. The operating

system picks and begins to execute one of the jobs in memory. Eventually, the job may have to

wait for some task, such as an I/O operation, to complete.

http://hsc.csu.edu.au/info_tech/compulsory/os/4014/basic_functions.htm

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 4

In a non-Multiprogrammed system, the CPU would sit idle. In a Multiprogrammed

system, the operating system simply switches to, and executes, another job. When that job

needs to wait, the CPU switches to another job, and so on. Eventually, the first job finishes

waiting and gets the CPU back. As long as at least one job needs to execute, the CPU is never

idle.

Multiprogrammed systems provide an environment in which the various system

resources (for example, CPU, memory, and peripheral devices) are utilized effectively, but they

do not provide for user interaction with the computer system. Time sharing (or multitasking) is

a logical extension of multiprogramming. In time-sharing systems, the CPU executes multiple

jobs by switching among them, but the switches occur so frequently that the users can interact

with each program while it is running.

Time sharing requires an interactive computer system, which provides direct

communication between the user and the system. The user gives instructions to the operating

system or to a program directly, using a input device such as a keyboard, mouse, touch pad, or

touch screen, and waits for immediate results on an output device. Accordingly, the response

time should be short—typically less than one second.

A time-shared operating system allows many users to share the computer

simultaneously. Since each action or command in a time-shared system tends to be short, only

a little CPU time is needed for each user. As the system switches rapidly from one user to the

next, each user is given the impression that the entire computer system is dedicated to his use,

even though it is being shared among many users.

A time-shared operating system uses CPU scheduling and multiprogramming to provide

each user with a small portion of a time-shared computer; each user has at least one separate

program in memory. A program loaded into memory and executing is called a process. When a

process executes, it typically executes for only a short time before it either finishes or needs to

perform I/O.

I/O may be interactive; that is, output goes to a display for the user, and input comes

from a user keyboard, mouse, or other device. Since interactive I/O typically runs at “people

speeds,” it may take a long time to complete. Input, for example, may be bounded by the user’s

typing speed; seven characters per second is fast for people but incredibly slow for computers.

Rather than let the CPU sit idle as this interactive input takes place, the operating system will

rapidly switch the CPU to the program of some other user.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 5

Time sharing and multiprogramming require that several jobs be kept simultaneously in

memory. If several jobs are ready to be brought into memory, and if there is not enough room

for all of them, then the system must choose among them. Making this decision involves job

scheduling.

When the operating system selects a job from the job pool, it loads that job into

memory for execution. Having several programs in memory at the same time requires some

form of memory management. In addition, if several jobs are ready to run at the same time, the

system must choose which job will run first. Making this decision is CPU scheduling.

Finally, running multiple jobs concurrently requires that their ability to affect one

another be limited in all phases of the operating system, including process scheduling, disk

storage, and memory management. We discuss these considerations throughout the text.

In a time-sharing system, the operating system must ensure reasonable response time.

This goal is sometimes accomplished through swapping, whereby processes are swapped in and

out of main memory to the disk. A more common method for ensuring reasonable response

time is virtual memory, a technique that allows the execution of a process that is not

completely in memory.

The main advantage of the virtual-memory scheme is that it enables users to run

programs that are larger than actual physical memory. Further, it abstracts main memory into a

large, uniform array of storage, separating logical memory as viewed by the user from physical

memory. This arrangement frees programmers from concern over memory-storage limitations.

OPERATING-SYSTEM OPERATIONS:

Modern operating systems are interrupt driven. If there are no processes to execute, no

I/O devices to service, and no users to whom to respond, an operating system will sit quietly,

waiting for something to happen. Events are almost always signaled by the occurrence of an

interrupt or a trap.

A trap (or an exception) is a software-generated interrupt caused either by an error (for

example, division by zero or invalid memory access) or by a specific request from a user

program that an operating-system service be performed. The interrupt-driven nature of an

operating system defines that system’s general structure. For each type of interrupt, separate

segments of code in the operating system determine what action should be taken. An interrupt

service routine is provided to deal with the interrupt.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 6

Since the operating system and the users share the hardware and software resources of

the computer system, we need to make sure that an error in a user program could cause

problems only for the one program running. With sharing, many processes could be adversely

affected by a bug in one program.

For example, if a process gets stuck in an infinite loop, this loop could prevent the

correct operation of many other processes. More subtle errors can occur in a

multiprogramming system, where one erroneous program might modify another program, the

data of another program, or even the operating system itself.

Without protection against these sorts of errors, either the computer must execute only

one process at a time or all output must be suspect. A properly designed operating system must

ensure that an incorrect (or malicious) program cannot cause other programs to execute

incorrectly.

DUAL-MODE AND MULTIMODE OPERATION:

In order to ensure the proper execution of the operating system, we must be able to

distinguish between the execution of operating-system code and user defined code. The

approach taken by most computer systems is to provide hardware support that allows us to

differentiate among various modes of execution.

At the very least, we need two separate modes of operation: user mode and kernel

mode (also called supervisor mode, system mode, or privileged mode). A bit, called the mode

bit, is added to the hardware of the computer to indicate the current mode: kernel (0) or user

(1). With the mode bit, we can distinguish between a task that is executed on behalf of the

operating system and one that is executed on behalf of the user.

When the computer system is executing on behalf of a user application, the system is in

user mode. However, when a user application requests a service from the operating system (via

a system call) the system must transition from user to kernel mode to fulfill the request. This is

shown in Figure 1.1.

At system boot time, the hardware starts in kernel mode. The operating system is then

loaded and starts user applications in user mode. Whenever a trap or interrupt occurs, the

hardware switches from user mode to kernel mode (that is, changes the state of the mode bit

to 0).

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 7

FIGURE 1.1: TRANSITION FROM USER TO KERNEL MODE

Thus, whenever the operating system gains control of the computer, it is in kernel

mode. The system always switches to user mode (by setting the mode bit to 1) before passing

control to a user program.

The dual mode of operation provides us with the means for protecting the operating

system from errant users—and errant users from one another. We accomplish this protection

by designating some of the machine instructions that may cause harm as privileged

instructions.

The hardware allows privileged instructions to be executed only in kernel mode. If an

attempt is made to execute a privileged instruction in user mode, the hardware does not

execute the instruction but rather treats it as illegal and traps it to the operating system.

The instruction to switch to kernel mode is an example of a privileged instruction. Some

other examples include I/O control, timer management, and interrupt management. As we shall

see throughout the text, there are many additional privileged instructions.

The concept of modes can be extended beyond two modes (in which case the CPU uses

more than one bit to set and test the mode). CPUs that support virtualization frequently have a

separate mode to indicate when the virtual machine manager (VMM)—and the virtualization

management software—are in control of the system.

In this mode, the VMM has more privileges than user processes but fewer than the

kernel. It needs that level of privilege so it can create and manage virtual machines, changing

the CPU state to do so. Sometimes, too, different modes are used by various kernel

components.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 8

TIMER:

We must ensure that the operating system maintains control over the CPU. We cannot

allow a user program to get stuck in an infinite loop or to fail to call system services and never

return control to the operating system. To accomplish this goal, we can use a timer. A timer can

be set to interrupt the computer after a specified period.

The period may be fixed (for example, 1/60 second) or variable (for example, from 1

millisecond to 1 second). A variable timer is generally implemented by a fixed-rate clock and a

counter. The operating system sets the counter. Every time the clock ticks, the counter is

decremented.

When the counter reaches 0, an interrupt occurs. For instance, a 10-bit counter with a

1-millisecond clock allows interrupts at intervals from 1 millisecond to 1,024 milliseconds, in

steps of 1 millisecond.

Before turning over control to the user, the operating system ensures that the timer is

set to interrupt. If the timer interrupts, control transfers automatically to the operating system,

which may treat the interrupt as a fatal error or may give the program more time. Clearly,

instructions that modify the content of the timer are privileged.

We can use the timer to prevent a user program from running too long. A simple

technique is to initialize a counter with the amount of time that a program is allowed to run. A

program with a 7-minute time limit, for example, would have its counter initialized to 420.

Every second, the timer interrupts, and the counter is decremented by 1. As long as the

counter is positive, control is returned to the user program. When the counter becomes

negative, the operating system terminates the program for exceeding the assigned time limit.

PROTECTION AND SECURITY:

If a computer system has multiple users and allows the concurrent execution of multiple

processes, then access to data must be regulated. For that purpose, mechanisms ensure that

files, memory segments, CPU, and other resources can be operated on by only those processes

that have gained proper authorization from the operating system. For example, memory-

addressing hardware ensures that a process can execute only within its own address space.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 9

The timer ensures that no process can gain control of the CPU without eventually

relinquishing control. Device-control registers are not accessible to users, so the integrity of the

various peripheral devices is protected.

Protection, then, is any mechanism for controlling the access of processes or users to

the resources defined by a computer system. This mechanism must provide means to specify

the controls to be imposed and to enforce the controls.

Protection can improve reliability by detecting latent errors at the interfaces between

component subsystems. Early detection of interface errors can often prevent contamination of

a healthy subsystem by another subsystem that is malfunctioning. Furthermore, an

unprotected resource cannot defend against use (or misuse) by an unauthorized or

incompetent user.

A protection-oriented system provides a means to distinguish between authorized and

unauthorized usage. A system can have adequate protection but still be prone to failure and

allow inappropriate access. Consider a user whose authentication information (her means of

identifying herself to the system) is stolen. Her data could be copied or deleted, even though

file and memory protection are working.

It is the job of security to defend a system from external and internal attacks. Such

attacks spread across a huge range and include viruses and worms, denial -of service attacks

(which use all of a system’s resources and so keep legitimate users out of the system), identity

theft, and theft of service (unauthorized use of a system).

Prevention of some of these attacks is considered an operating-system function on

some systems, while other systems leave it to policy or additional software. Due to the

alarming rise in security incidents, operating-system security features represent a fast-growing

area of research and implementation.

Protection and security require the system to be able to distinguish among all its users.

Most operating systems maintain a list of user names and associated user identifiers (user IDs).

In Windows parlance, this is a security ID (SID). These numerical IDs are unique, one per user.

When a user logs in to the system, the authentication stage determines the appropriate

user ID for the user. That user ID is associated with all of the user’s processes and threads.

When an ID needs to be readable by a user, it is translated back to the user name via the user

name list.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 10

In some circumstances, we wish to distinguish among sets of users rather than

individual users. For example, the owner of a file on a UNIX system may be allowed to issue all

operations on that file, whereas a selected set of users may be allowed only to read the file. To

accomplish this, we need to define a group name and the set of users belonging to that group.

Group functionality can be implemented as a system-wide list of group names and

group identifiers. A user can be in one or more groups, depending on operating-system design

decisions. The user’s group IDs is also included in every associated process and thread.

KERNEL DATA STRUCTURES:

Lists, Stacks, and Queues: An array is a simple data structure in which each element can

be accessed directly. For example, main memory is constructed as an array. If the data item

being stored is larger than one byte, then multiple bytes can be allocated to the item, and the

item is addressed as item number × item size. But what about storing an item whose size may

vary? And what about removing an item if the relative positions of the remaining items must be

preserved? In such situations, arrays give way to other data structures.

After arrays, lists are perhaps the most fundamental data structures in computer

science. Whereas each item in an array can be accessed directly, the items in a list must be

accessed in a particular order. That is, a list represents a collection of data values as a sequence.

The most common method for implementing this structure is a linked list, in which items are

linked to one another. Linked lists are of several types:

FIGURE 1.2 SINGLY LINKED LIST

 In a singly linked list, each item points to its successor in as illustrated in Figure 1.2

 In a doubly linked list, a given item can refer either to its predecessor or to its

successor

 In a circularly linked list, the last element in the list refers to the first element, rather

than to null

Linked lists accommodate items of varying sizes and allow easy insertion and deletion of

items. One potential disadvantage of using a list is that performance for retrieving a specified

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 11

item in a list of size n is linear — O(n), as it requires potentially traversing all n elements in the
worst case. Lists are sometimes used directly by kernel algorithms. Frequently, though, they are
used for constructing more powerful data structures, such as stacks and queues.

A stack is a sequentially ordered data structure that uses the last in, first out (LIFO)

principle for adding and removing items, meaning that the last item placed onto a stack is the
first item removed. The operations for inserting and removing items from a stack are known as
push and pop, respectively. An operating system often uses a stack when invoking function

calls. Parameters, local variables, and the return address are pushed onto the stack when a
function is called; returning from the function call pops those items off the stack.

A queue, in contrast, is a sequentially ordered data structure that uses the first in, first

out (FIFO) principle: items are removed from a queue in the order in which they were inserted.
There are many everyday examples of queues, including shoppers waiting in a checkout line at

a store and cars waiting in line at a traffic signal. Queues are also quite common in operating
systems—jobs that are sent to a printer are typically printed in the order in which they were

submitted, for example.

FIGURE 1.3 DOUBLY LINKED LIST

FIGURE 1.4 CIRCULARLY LINKED LIST

Trees:

A tree is a data structure that can be used to represent data hierarchically. Data values

in a tree structure are linked through parent–child relationships. In a general tree, a parent may

have an unlimited number of children.

In a binary tree, a parent may have at most two children, which we term the left child

and the right child. A binary search tree additionally requires an ordering between the parent’s

two children in which left child <= right child.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 12

Hash Functions and Maps:

A hash function takes data as its input, performs a numeric operation on this data, and

returns a numeric value. This numeric value can then be used as an index into a table (typically

an array) to quickly retrieve the data. Whereas searching for a data item through a list of size n

can require up to O(n) comparisons in the worst case, using a hash function for retrieving data

from table can be as good as O(1) in the worst case, depending on implementation details.

Because of this performance, hash functions are used extensively in operating systems.

One potential difficulty with hash functions is that two inputs can result in the same

output value—that is, they can link to the same table location. We can accommodate this hash

collision by having a linked list at that table location that contains all of the items with the same

hash value. Of course, the more collisions there are, the less efficient the hash function is.

One use of a hash function is to implement a hash map, which associates (or maps) [key:

value] pairs using a hash function. For example, we can map the key operating to the value

system. Once the mapping is established, we can apply the hash function to the key to obtain

the value from the hash map (Figure 1.5).

FIGURE 1.5: HASH MAP

For example, suppose that a user name is mapped to a password. Password

authentication then proceeds as follows: a user enters his user name and password. The hash

function is applied to the user name, which is then used to retrieve the password. The retrieved

password is then compared with the password entered by the user for authentication.

Bitmaps: A bitmap is a string of n binary digits that can be used to represent the status

of n items. For example, suppose we have several resources and the availability of each

resource is indicated by the value of a binary digit: 0 means that the resource is available, while

1 indicates that it is unavailable (or vice-versa).

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 13

The value of the ith position in the bitmap is associated with the ith resource. As an

example, consider the bitmap shown below:

001011101

Resources 2, 4, 5, 6, and 8 are unavailable; resources 0, 1, 3, and 7 are available. The

power of bitmaps becomes apparent when we consider their space efficiency. If we were to use

an eight-bit Boolean value instead of a single bit, the resulting data structure would be eight

times larger. Thus, bitmaps are commonly used when there is a need to represent the

availability of a large number of resources. Disk drives provide a nice illustration. A medium-

sized disk drive might be divided into several thousand individual units, called disk blocks. A

bitmap can be used to indicate the availability of each disk block.

COMPUTING ENVIRONMENTS:

Traditional Computing:

As computing has matured the lines separating many traditional computing

environments have blurred. Consider the “typical office environment.” Just a few years ago, this

environment consisted of PCs connected to a network, with servers providing file and print

services. Remote access was awkward, and portability was achieved by use of laptop

computers. Terminals attached to mainframes were prevalent at many companies as well, with

even fewer remote access and portability options.

The current trend is toward providing more ways to access these computing

environments. Web technologies and increasing WAN bandwidth are stretching the boundaries

of traditional computing. Companies establish portals, which provide Web accessibility to their

internal servers.

Network computers (or thin clients)—which are essentially terminals that understand

web-based computing—are used in place of traditional workstations where more security or

easier maintenance is desired.

Mobile computers can synchronize with PCs to allow very portable use of company

information. Mobile computers can also connect to wireless networks and cellular data

networks to use the company’s Web portal (as well as the myriad other Web resources).

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 14

At home, most users once had a single computer with a slow modem connection to the

office, the Internet, or both. Today, network-connection speeds once available only at great

cost are relatively inexpensive in many places, giving home users more access to more data.

These fast data connections are allowing home computers to serve up Web pages and

to run networks that include printers, client PCs, and servers. Many homes use firewalls to

protect their networks from security breaches.

In the latter half of the 20th century, computing resources were relatively scarce.

(Before that, they were nonexistent!) For a period of time, systems were either batch or

interactive.

Batch systems processed jobs in bulk, with predetermined input from files or other data

sources. Interactive systems waited for input from users. To optimize the use of the computing

resources, multiple users shared time on these systems. Time-sharing systems used a timer and

scheduling algorithms to cycle processes rapidly through the CPU, giving each user a share of

the resources.

Mobile Computing:

Mobile computing refers to computing on handheld smart phones and tablet

computers. These devices share the distinguishing physical features of being portable and

lightweight. Historically, compared with desktop and laptop computers, mobile systems gave

up screen size, memory capacity, and overall functionality in return for handheld mobile access

to services such as e-mail and web browsing. Over the past few years, however, features on

mobile devices have become so rich that the distinction in functionality between, say, a

consumer laptop and a tablet computer may be difficult to discern.

Two operating systems currently dominate mobile computing: Apple iOS and Google

Android. iOS was designed to run on Apple iPhone and iPad mobile devices.

Distributed Systems:

A distributed system is a collection of physically separate, possibly heterogeneous,

computer systems that are networked to provide users with access to the various resources

that the system maintains. Access to a shared resource increases computation speed,

functionality, data availability, and reliability.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 15

Some operating systems generalize network access as a form of file acces s, with the

details of networking contained in the network interface’s device driver. Others make users

specifically invoke network functions. Generally, systems contain a mix of the two modes—for

example FTP and NFS. The protocols that create a distributed system can greatly affect that

system’s utility and popularity.

Distributed systems depend on networking for their functionality. Networks vary by the

protocols used, the distances between nodes, and the transport media. TCP/IP is the most

common network protocol, and it provides the fundamental architecture of the Internet. Most

operating systems support TCP/IP, including all general-purpose ones.

Client–Server Computing:

As PCs have become faster, more powerful, and cheaper, designers have shifted away

from centralized system architecture. Terminals connected to centralized systems are now

being supplanted by PCs and mobile devices.

Server systems can be broadly categorized as compute servers and file servers:

The compute-server system provides an interface to which a client can send a request

to perform an action (for example, read data). In response, the server executes the action and

sends the results to the client. A server running a database that responds to client requests for

data is an example of such a system.

The file-server system provides a file-system interface where clients can create, update,

read, and delete files. An example of such a system is a web server that delivers files to clients

running web browsers.

Peer-to-Peer Computing:

Another structure for a distributed system is the peer-to-peer (P2P) system model. In

this model, clients and servers are not distinguished from one another. Instead, all nodes within

the system are considered peers, and each may act as either a client or a server, depending on

whether it is requesting or providing a service.

Peer-to-peer systems offer an advantage over traditional client-server systems. In a

client-server system, the server is a bottleneck; but in a peer-to-peer system, services can be

provided by several nodes distributed throughout the network.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 16

Virtualization:

Virtualization is a technology that allows operating systems to run as applications within

other operating systems.

Broadly speaking, virtualization is one member of a class of software that also includes

emulation. Emulation is used when the source CPU type is different from the target CPU type.

For example, when Apple switched from the IBM Power CPU to the Intel x86 CPU for its

desktop and laptop computers, it included an emulation facility called “Rosetta,” which allowed

applications compiled for the IBM CPU to run on the Intel CPU.

A common example of emulation occurs when a computer language is not compiled to

native code but instead is either executed in its high-level form or translated to an intermediate

form. This is known as interpretation.

With virtualization, in contrast, an operating system that is natively compiled for a

particular CPU architecture runs within another operating system also native to that CPU.

Cloud Computing:

Cloud computing is a type of computing that delivers computing, storage, and even

applications as a service across a network. In some ways, it’s a logical extension of

virtualization, because it uses virtualization as a base for its functionality.

There are actually many types of cloud computing, including the following:

 Public cloud—a cloud available via the Internet to anyone willing to pay for the

services

 Private cloud—a cloud run by a company for that company’s own use

 Hybrid cloud—a cloud that includes both public and private cloud components

 Software as a service (SaaS)—one or more applications (such as word processors or

spreadsheets) available via the Internet

 Platform as a service (PaaS)—a software stack ready for application use via the

Internet (for example, a database server)

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 17

 Infrastructure as a service (IaaS)—servers or storage available over the Internet (for

example, storage available for making backup copies of production data)

Figure 1.6 illustrates a public cloud providing IaaS. Notice that both the cloud services

and the cloud user interface are protected by a firewall.

FIGURE 1.6: CLOUD COMPUTING

Real-Time Embedded Systems:

Embedded computers are the most prevalent form of computers in existence. These

devices are found everywhere, from car engines and manufacturing robots to DVDs and

microwave ovens. They tend to have very specific tasks. The systems they run on are usually

primitive, and so the operating systems provide limited features. Usually, they have little or no

user interface, preferring to spend their time monitoring and managing hardware devices, such

as automobile engines and robotic arms.

OPEN-SOURCE OPERATING SYSTEMS:

Open-source operating systems are those available in source-code format rather than as

compiled binary code. Linux is the most famous open source operating system, while Microsoft

Windows is a well-known example of the opposite closed-source approach. Apple’s Mac OS X

and iOS operating systems comprise a hybrid approach. They contain an open-source kernel

named Darwin yet include proprietary, closed-source components as well.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 18

Starting with the source code allows the programmer to produce binary code that can

be executed on a system. Doing the opposite—reverse engineering the source code from the

binaries—is quite a lot of work and useful items such as comments are never recovered.

Learning operating systems by examining the source code has other benefits as well.

There are many benefits to open-source operating systems, including a community of

interested (and usually unpaid) programmers who contribute to the code by helping to debug

it, analyze it, provide support, and suggest changes.

Arguably, open-source code is more secure than closed-source code because many

more eyes are viewing the code. Certainly, open-source code has bugs, but open-source

advocates argue that bugs tend to be found and fixed faster owing to the number of people

using and viewing the code.

Companies that earn revenue from selling their programs often hesitate to open-source

their code, but Red Hat and a myriad of other companies are doing just that and showing that

commercial companies benefit, rather than suffer, when they open-source their code. Revenue

can be generated through support contracts and the sale of hardware on which the software

runs, for example.

HISTORY:

In the early days of modern computing (that is, the 1950s), a great deal of software was

available in open-source format. The original hackers (computer enthusiasts) at MIT’s Tech

Model Railroad Club left their programs in drawers for others to work on. “Homebrew” user

groups exchanged code during their meetings. Later, company-specific user groups, such as

Digital Equipment Corporation’s DEC, accepted contributions of source-code programs,

collected them onto tapes, and distributed the tapes to interested members.

Computer and software companies eventually sought to limit the use of their software

to authorized computers and paying customers. Releasing only the binary files compiled from

the source code, rather than the source code itself, helped them to achieve this goal, as well as

protecting their code and their ideas from their competitors.

Another issue involved copyrighted material. Operating systems and other programs can

limit the ability to play back movies and music or display electronic books to authorized

computers. Such copy protection or digital rights management (DRM) would not be effective if

the source code that implemented these limits were published.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 19

Laws in many countries, including the U.S. Digital Millennium Copyright Act (DMCA),

make it illegal to reverse-engineer DRM code or otherwise try to circumvent copy protection.

To counter the move to limit software use and redistribution, Richard Stallman in 1983

started the GNU project to create a free, open-source, UNIX compatible operating system.

In 1985, he published the GNU Manifesto, which argues that all software should be free

and open-sourced.

He also formed the Free Software Foundation (FSF) with the goal of encouraging the

free exchange of software source code and the free use of that software.

Rather than copyright its software, the FSF “copylefts” the software to encourage

sharing and improvement.

The GNU General Public License (GPL) codifies copylefting and is a common license

under which free software is released.

Fundamentally, GPL requires that the source code be distributed with any binaries and

that any changes made to the source code are released under the same GPL license.

LINUX:

As an example of an open-source operating system, consider GNU/Linux. The GNU

project produced many UNIX-compatible tools, including compilers, editors, and utilities, but

never released a kernel.

In 1991, a student in Finland, Linus Torvalds, released a rudimentary UNIX-like kernel

using the GNU compilers and tools and invited contributions worldwide. The advent of the

Internet meant that anyone interested could download the source code, modify it, and submit

changes to Torvalds. Releasing updates once a week allowed this so-called Linux operating

system to grow rapidly, enhanced by several thousand programmers.

BSD UNIX:

BSD UNIX has a longer and more complicated history than Linux. It started in 1978 as a

derivative of AT&T’s UNIX. Releases from the University of California at Berkeley (UCB) came in

source and binary form, but they were not open source because a license from AT&T was

required.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 20

BSD UNIX’s development was slowed by a lawsuit by AT&T, but eventually a fully

functional, open-source version, 4.4BSD-lite, was released in 1994. Just as with Linux, there are

many distributions of BSD UNIX, including FreeBSD, NetBSD, OpenBSD, and DragonflyBSD.

SOLARIS:

Solaris is the commercial UNIX-based operating system of Sun Microsystems. Originally,

Sun’s SunOS operating system was based on BSD UNIX. Sun moved to AT&T’s System V UNIX as

its base in 1991. In 2005, Sun open-sourced most of the Solaris code as the Open Solaris

project. The purchase of Sun by Oracle in 2009, however, left the state of this project unclear.

OPERATING SYSTEM STRUCTURES:

An operating system provides the environment within which programs are executed.

Internally, operating systems vary greatly in their makeup, since they are organized along many

different lines. The design of a new operating system is a major task. It is important that the

goals of the system be well defined before the design begins. These goals form the basis for

choices among various algorithms and strategies.

We can view an operating system from several vantage points. One view focuses on the

services that the system provides; another, on the interface that it makes available to users and

programmers; a third, on its components and their interconnections.

OPERATING-SYSTEM SERVICES:

An operating system provides an environment for the execution of programs. It provides

certain services to programs and to the users of those programs.

The specific services provided, of course, differ from one operating system to another,

but we can identify common classes.

These operating system services are provided for the convenience of the programmer,

to make the programming task easier.

Figure 1.7 shows one view of the various operating-system services and how they

interrelate. One set of operating system services provides functions that are helpful to the user.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 21

FIGURE 1.7 A VIEW OF OPERATING SYSTEM SERVICES

USER INTERFACE: Almost all operating systems have a user interface (UI). This interface

can take several forms.

One is a command-line interface (CLI), which uses text commands and a method for

entering them (say, a keyboard for typing in commands in a specific format with specific

options).

Another is a batch interface, in which commands and directives to control those

commands are entered into files, and those files are executed.

Most commonly, a graphical user interface (GUI) is used. Here, the interface is a window

system with a pointing device to direct I/O, choose from menus, and make selections and a

keyboard to enter text. Some systems provide two or all three of these variations.

PROGRAM EXECUTION: The system must be able to load a program into memory and to

run that program. The program must be able to end its execution, either normally or

abnormally (indicating error).

I/O OPERATIONS: A running program may require I/O, which may involve a file or an I/O

device. For specific devices, special functions may be desired (such as recording to a CD or DVD

drive or blanking a display screen). For efficiency and protection, users usually cannot control

I/O devices directly. Therefore, the operating system must provide a means to do I/O.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 22

FILE-SYSTEM MANIPULATION: The file system is of particular interest. Obviously,

programs need to read and write files and directories. They also need to create and delete

them by name, search for a given file, and list file information. Finally, some operating systems

include permissions management to allow or deny access to files or directories based on file

ownership.

COMMUNICATIONS: There are many circumstances in which one process needs to

exchange information with another process. Such communication may occur between

processes that are executing on the same computer or between processes that are executing

on different computer systems tied together by a computer network.

Communications may be implemented via shared memory, in which two or more

processes read and write to a shared section of memory, or message passing, in which packets

of information in predefined formats are moved between processes by the operating system.

ERROR DETECTION: The operating system needs to be detecting and correcting errors

constantly. Errors may occur in the CPU and memory hardware (such as a memory error or a

power failure), in I/O devices (such as a parity error on disk, a connection failure on a network,

or lack of paper in the printer), and in the user program (such as an arithmetic overflow, an

attempt to access an illegal memory location, or a too-great use of CPU time). For each type of

error, the operating system should take the appropriate action to ensure correct and consistent

computing.

Another set of operating system functions exists not for helping the user but rather for

ensuring the efficient operation of the system itself. Systems with multiple users can gain

efficiency by sharing the computer resources among the users.

RESOURCE ALLOCATION: When there are multiple users or multiple jobs running at the

same time, resources must be allocated to each of them. The operating system manages many

different types of resources.

Some (such as CPU cycles, main memory, and file storage) may have special allocation

code, whereas others (such as I/O devices) may have much more general request and release

code. For instance, in determining how best to use the CPU, operating systems have CPU-

scheduling routines that take into account the speed of the CPU, the jobs that must be

executed, the number of registers available, and other factors. There may also be routines to

allocate printers, USB storage drives, and other peripheral devices.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 23

ACCOUNTING: We want to keep track of which users use how much and what kinds of

computer resources. This record keeping may be used for accounting (so that users can be

billed) or simply for accumulating usage statistics. Usage statistics may be a valuable tool for

researchers who wish to reconfigure the system to improve computing services .

PROTECTION AND SECURITY: The owners of information stored in a multiuser or

networked computer system may want to control use of that information. When several

separate processes execute concurrently, it should not be possible for one process to interfere

with the others or with the operating system itself.

Protection involves ensuring that all access to system resources is controlled. Security of

the system from outsiders is also important. Such security starts with requiring each user to

authenticate him or her to the system, usually by means of a password, to gain access to

system resources. It extends to defending external I/O devices, including network adapters,

from invalid access attempts and to recording all such connections for detection of break-ins.

USER AND OPERATING-SYSTEM INTERFACE:

There are several ways for users to interface with the operating system. Here, we

discuss two fundamental approaches. One provides a command-line interface, or command

interpreter, that allows users to directly enter commands to be performed by the operating

system. The other allows users to interface with the operating system via a graphical user

interface, or GUI.

COMMAND INTERPRETERS:

Some operating systems include the command interpreter in the kernel. Others, such as

Windows and UNIX, treat the command interpreter as a special program that is running when a

job is initiated or when a user first logs on (on interactive systems).

On systems with multiple command interpreters to choose from, the interpreters are

known as shells. For example, on UNIX and Linux systems, a user may choose among several

different shells, including the Bourne shell, C shell, Bourne-Again shell, Korn shell, and others.

Third-party shells and free user-written shells are also available. Most shells provide

similar functionality, and a user’s choice of which shell to use is generally based on personal

preference. Figure 1.8 shows the Bourne shell command interpreter being used on Solaris 10.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 24

FIGURE 1.8: THE BOURNE SHELL COMMAND INTERPRETER IN SOLARIS 10

The main function of the command interpreter is to get and execute the next user-

specified command. Many of the commands given at this level manipulate files: create, delete,

list, print, copy, execute, and so on. The MS-DOS and UNIX shells operate in this way. These

commands can be implemented in two general ways.

In one approach, the command interpreter itself contains the code to execute the

command. For example, a command to delete a file may cause the command interpreter to

jump to a section of its code that sets up the parameters and makes the appropriate system

call. In this case, the number of commands that can be given determines the size of the

command interpreter, since each command requires its own implementing code.

An alternative approach—used by UNIX, among other operating systems —implements

most commands through system programs. In this case, the command interpreter does not

understand the command in any way; it merely uses the command to identify a file to be

loaded into memory and executed.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 25

Thus, the UNIX command to delete a file rm file.txt would search for a file called rm,

load the file into memory, and execute it with the parameter file.txt. The function associated

with the rm command would be defined completely by the code in the file rm.

In this way, programmers can add new commands to the system easily by creating new

files with the proper names. The command-interpreter program, which can be small, does not

have to be changed for new commands to be added.

GRAPHICAL USER INTERFACES:

A second strategy for interfacing with the operating system is through a user-friendly

graphical user interface, or GUI. Here, rather than entering commands directly via a command-

line interface, users employ a mouse-based window-and- menu system characterized by a

desktop metaphor.

The user moves the mouse to position its pointer on images, or icons, on the screen (the

desktop) that represent programs, files, directories, and system functions. Depending on the

mouse pointer’s location, clicking a button on the mouse can invoke a program, select a file or

directory—known as a folder—or pull down a menu that contains commands.

Graphical user interfaces first appeared due in part to research taking place in the early

1970s at Xerox PARC research facility. The first GUI appeared on the Xerox Alto computer in

1973. However, graphical interfaces became more widespread with the advent of Apple

Macintosh computers in the 1980s.

The user interface for the Macintosh operating system (Mac OS) has undergone various

changes over the years, the most significant being the adoption of the Aqua interface that

appeared with Mac OS X.

Microsoft’s first version of Windows—Version 1.0—was based on the addition of a GUI

interface to the MS-DOS operating system. Later versions of Windows have made cosmetic

changes in the appearance of the GUI along with several enhancements in its functionality.

Because a mouse is impractical for most mobile systems, smart phones and handheld

tablet computers typically use a touch screen interface. Here, users interact by making gestures

on the touch screen—for example, pressing and swiping fingers across the screen.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 26

Traditionally, UNIX systems have been dominated by command-line interfaces. Various

GUI interfaces are available, however. These include the Common Desktop Environment (CDE)

and X-Windows systems, which are common on commercial versions of UNIX, such as Solaris

and IBM’s AIX system.

In addition, there has been significant development in GUI designs from various open-

source projects, such as K Desktop Environment (or KDE) and the GNOME desktop by the GNU

project. Both the KDE and GNOME desktops run on Linux and various UNIX systems and are

available under open-source licenses, which mean their source code is readily available for

reading and for modification under specific license terms.

Choice of Interface:

The choice of whether to use a command-line or GUI interface is mostly one of personal

preference. System administrators who manage computers and power users who have deep

knowledge of a system frequently use the command-line interface. For them, it is more

efficient, giving them faster access to the activities they need to perform.

Indeed, on some systems, only a subset of system functions is available via the GUI,

leaving the less common tasks to those who are command-line knowledgeable. Further,

command line interfaces usually make repetitive tasks easier, in part because they have their

own programmability.

For example, if a frequent task requires a set of command-line steps, those steps can be

recorded into a file, and that file can be run just like a program. The program is not compiled

into executable code but rather is interpreted by the command-line interface. These shell

scripts are very common on systems that are command-line oriented, such as UNIX and Linux.

The user interface can vary from system to system and even from user to user within a

system. It typically is substantially removed from the actual system structure. The design of a

useful and friendly user interface is therefore not a direct function of the operating system.

SYSTEM CALLS:

System calls provide an interface to the services made available by an operating system.

These calls are generally available as routines written in C and C++, although certain low-level

tasks (for example, tasks where hardware must be accessed directly) may have to be written

using assembly-language instructions.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 27

Before we discuss how an operating system makes system calls available, let’s first use

an example to illustrate how system calls are used: writing a simple program to read data from

one file and copy them to another file.

The first input that the program will need is the names of the two files: the input file and

the output file. These names can be specified in many ways, depending on the operating-

system design. One approach is for the program to ask the user for the names.

In an interactive system, this approach will require a sequence of system calls, first to

write a prompting message on the screen and then to read from the keyboard the characters

that define the two files.

On mouse-based and icon-based systems, a menu of file names is usually displayed in a

window. The user can then use the mouse to select the source name, and a window can be

opened for the destination name to be specified. This sequence requires many I/O system calls.

Once the two file names have been obtained, the program must open the input file and

create the output file. Each of these operations requires another system call. Possible error

conditions for each operation can require additional system calls.

When the program tries to open the input file, for example, it may find that there is no

file of that name or that the file is protected against access. In these cases, the program should

print a message on the console (another sequence of system calls) and then terminate

abnormally (another system call).

If the input file exists, then we must create a new output file. We may find that there is

already an output file with the same name. This situation may cause the program to abort (a

system call), or we may delete the existing file (another system call) and create a new one (yet

another system call). This system-call sequence is shown in Figure 1.9

As you can see, even simple programs may make heavy use of the operating system.

Frequently, systems execute thousands of system calls per second. Most programmers never

see this level of detail, however. Typically, application developers design programs according to

an application programming interface (API).

The API specifies a set of functions that are available to an application programmer,

including the parameters that are passed to each function and the return values the

programmer can expect.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 28

FIGURE 1.9: EXAMPLE OF HOW SYSTEM CALLS ARE USED

Three of the most common APIs available to application programmers are the Windows

API for Windows systems, the POSIX API for POSIX-based systems (which include virtually all

versions of UNIX, Linux, and Mac OSX), and the Java API for programs that run on the Java

virtual machine. A programmer accesses an API via a library of code provided by the operating

system.

In the case of UNIX and Linux for programs written in the C language, the library is called

libc. Note that—unless specified—the system-call names used throughout this text are generic

examples. Each operating system has its own name for each system call. Behind the scenes, the

functions that make up an API typically invoke the actual system calls on behalf of the

application programmer.

For example, the Windows function CreateProcess() (which unsurprisingly is used to

create a new process) actually invokes the NTCreateProcess() system call in the Windows

kernel.

There are several reasons for an application programmer to prefer programming

according to an API rather than invoking actual system calls ; one benefit concerns program

portability. An application programmer designing a program using an API can expect her

program to compile and run on any system that supports the same API.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 29

FIGURE 1.10: EXAMPLE OF STANDARD API

Furthermore, actual system calls can often be more detailed and difficult to work with

than the API available to an application programmer. Nevertheless, there often exists a strong

correlation between a function in the API and its associated system call within the kernel.

For most programming languages, the run-time support system (a set of functions built

into libraries included with a compiler) provides a system call interface that serves as the link to

system calls made available by the operating system.

The system-call interface intercepts function calls in the API and invokes the necessary

system calls within the operating system. Typically, a number is associated with each system

call, and the system-call interface maintains a table indexed according to these numbers.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 30

The system call interface then invokes the intended system call in the operating-system

kernel and returns the status of the system call and any return values.

The caller need know nothing about how the system call is implemented or what it does

during execution. Rather, the caller need only obey the API and understand what the operating

system will do as a result of the execution of that system call. Thus, most of the details of the

operating-system interface are hidden from the programmer by the API and are managed by

the run-time support library.

The relationship between an API, the system-call interface, and the operating system is

shown in Figure 1.11, which illustrates how the operating system handles a user application

invoking the open() system call.

FIGURE 1.11: THE HANDLING OF A USER APPLICATION INVOKING THE open() SYSTEM CALL

Three general methods are used to pass parameters to the operating system. The

simplest approach is to pass the parameters in registers. In some cases, however, there may be

more parameters than registers.

In these cases, the parameters are generally stored in a block, or table, in memory, and

the address of the block is passed as a parameter in a register (Figure 1.12). This is the approach

taken by Linux and Solaris.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 31

Parameters also can be placed, or pushed, onto the stack by the program and popped

off the stack by the operating system. Some operating systems prefer the block or stack

method because those approaches do not limit the number or length of parameters being

passed.

FIGURE 1.12: PASSING OF PARAMETERS AS A TABLE

TYPES OF SYSTEM CALLS:

System calls can be grouped roughly into six major categories: process control, file

manipulation, device manipulation, information maintenance, communications, and protection.

Figure 1.13 summarizes the types of system calls normally provided by an operating system.

Process Control:

A running program needs to be able to halt its execution either normally (end()) or

abnormally (abort()). If a system call is made to terminate the currently running program

abnormally, or if the program runs into a problem and causes an error trap, a dump of memory

is sometimes taken and an error message generated.

The dump is written to disk and may be examined by a debugger—a system program

designed to aid the programmer in finding and correcting errors, or bugs—to determine the

cause of the problem.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 32

FIGURE 1.13: TYPES OF SYSTEM CALLS

Under either normal or abnormal circumstances, the operating system must transfer

control to the invoking command interpreter. The command interpreter then reads the next

command. In an interactive system, the command interpreter simply continues with the next

command; it is assumed that the user will issue an appropriate command to respond to any

error.

In a GUI system, a pop-up window might alert the user to the error and ask for

guidance. In a batch system, the command interpreter usually terminates the entire job and

continues with the next job. Some systems may allow for special recovery actions in case an

error occurs. If the program discovers an error in its input and wants to terminate abnormally, it

may also want to define an error level. More severe errors can be indicated by a higher-level

error parameter.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 33

A process or job executing one program may want to load() and execute() another

program. This feature allows the command interpreter to execute a program as directed by, for

example, a user command, the click of a mouse, or a batch command.

If control returns to the existing program when the new program terminates, we must

save the memory image of the existing program; thus, we have effectively created a mechanism

for one program to call another program. If both programs continue concurrently, we have

created a new job or process to be Multiprogrammed. Often, there is a system call specifically

for this purpose (create process() or submit job()).

If we create a new job or process, or perhaps even a set of jobs or processes, we should

be able to control its execution. This control requires the ability to determine and reset the

attributes of a job or process, including the job’s priority, its maximum allowable execution

time, and so on (get process attributes() and set process attributes()).We may also want to

terminate a job or process that we created (terminate process()) if we find that it is incorrect or

is no longer needed.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 34

Having created new jobs or processes, we may need to wait for them to finish their

execution. We may want to wait for a certain amount of time to pass (wait time()). More

probably, we will want to wait for a specific event to occur (wait event()). The jobs or processes

should then signal when that event has occurred (signal event()).

Quite often, two or more processes may share data. To ensure the integrity of the data

being shared, operating systems often provide system calls allowing a process to lock shared

data. Then, no other process can access the data until the lock is released. Typically, such system

calls include acquire lock() and release lock().

File Management:

We first need to be able to create() and delete() files. Either system call requires the

name of the file and perhaps some of the file’s attributes. Once the file is created, we need to

open() it and to use it. We may also read(), write(), or reposition() (rewind or skip to the end of

the file, for example).

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 35

Finally, we need to close() the file, indicating that we are no longer using it. We may

need these same sets of operations for directories if we have a directory structure for

organizing files in the file system. In addition, for either files or directories, we need to be able

to determine the values of various attributes and perhaps to reset them if necessary.

File attributes include the file name, file type, protection codes, accounting information,

and so on. At least two system calls, get file attributes() and set file attributes(), are required for

this function. Some operating systems provide many more calls, such as calls for file move() and

copy().

Others might provide an API that performs those operations using code and other

system calls, and others might provide system programs to perform those tasks. If the system

programs are callable by other programs, then each can be considered an API by other sys tem

programs.

Device Management:

A process may need several resources to execute—main memory, disk drives, access to

files, and so on. If the resources are available, they can be granted, and control can be returned

to the user process. Otherwise, the process will have to wait until sufficient resources are

available.

The various resources controlled by the operating system can be thought of as devices.

Some of these devices are physical devices (for example, disk drives), while others can be

thought of as abstract or virtual devices (for example, files).

A system with multiple users may require us to first request() a device, to ensure

exclusive use of it. After we are finished with the device, we release() it. These functions are

similar to the open() and close() system calls for files. Other operating systems allow

unmanaged access to devices.

Once the device has been requested (and allocated to us), we can read(), write(), and

(possibly) reposition() the device, just as we can with files. In fact, the similarity between I/O

devices and files is so great that many operating systems, including UNIX, merge the two into a

combined file–device structure. In this case, a set of system calls is used on both files and

devices. Sometimes, I/O devices are identified by special file names, directory placement, or file

attributes.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 36

The user interface can also make files and devices appear to be similar, even though the

underlying system calls are dissimilar.

Information Maintenance:

Many system calls exist simply for the purpose of transferring information between the

user program and the operating system. For example, most systems have a system call to

return the current time() and date(). Other system calls may return information about the

system, such as the number of current users, the version number of the operating system, the

amount of free memory or disk space, and so on.

Another set of system calls is helpful in debugging a program. Many systems provide

system calls to dump() memory. This provision is useful for debugging. A program trace lists

each system call as it is executed. Even microprocessors provide a CPU mode known as single

step, in which a trap is executed by the CPU after every instruction. The trap is usually caught

by a debugger.

Communication:

There are two common models of inter process communication: the message passing

model and the shared-memory model. In the message-passing model, the communicating

processes exchange messages with one another to transfer information.

Messages can be exchanged between the processes either directly or indirectly through

a common mailbox. Before communication can take place, a connection must be opened. The

name of the other communicator must be known, be it another process on the same system or

a process on another computer connected by a communications network.

Each computer in a network has a host name by which it is commonly known. A host

also has a network identifier, such as an IP address. Similarly, each process has a process name,

and this name is translated into an identifier by which the operating system can refer to the

process. The get_hostid() and get_processid() system calls do this translation.

The identifiers are then passed to the general-purpose open() and close() calls provided

by the file system or to specific open connection() and close connection() system calls,

depending on the system’s model of communication. The recipient process usually must give its

permission for communication to take place with an accept connection() call.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 37

In the shared-memory model, processes use shared memory create() and shared

memory attach() system calls to create and gain access to regions of memory owned by other

processes. Recall that, normally, the operating system tries to prevent one process from

accessing another process’s memory.

Shared memory requires that two or more processes agree to remove this restriction.

They can then exchange information by reading and writing data in the shared areas. The form

of the data is determined by the processes and is not under the operating system’s control. The

processes are also responsible for ensuring that they are not writing to the same location

simultaneously.

Protection:

Protection provides a mechanism for controlling access to the resources provided by a

computer system. Historically, protection was a concern only on multiprogrammed computer

systems with several users. However, with the advent of networking and the Internet, all

computer systems, from servers to mobile handheld devices, must be concerned with

protection.

Typically, system calls providing protection include set permission() and get

permission(), which manipulate the permission settings of resources such as files and disks. The

allow user() and deny user() system calls specify whether particular users can—or cannot—be

allowed access to certain resources.

SYSTEM PROGRAMS:

Another aspect of a modern system is its collection of system programs. According to

logical computer hierarchy, at the lowest level is hardware. Next is the operating system, then

the system programs, and finally the application programs. System programs, also known as

system utilities, provide a convenient environment for program development and execution.

Some of them are simply user interfaces to system calls. Others are considerably more

complex. They can be divided into these categories:

File management: These programs create, delete, copy, rename, print, dump, list, and

generally manipulate files and directories.

Status information: Some programs simply ask the system for the date, time, amount of

available memory or disk space, number of users, or similar status information. Others are

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 38

more complex, providing detailed performance, logging, and debugging information. Typically,

these programs format and print the output to the terminal or other output devices or files or

display it in a window of the GUI. Some systems also support a registry, which is used to store

and retrieve configuration information.

File modification: Several text editors may be available to create and modify the

content of files stored on disk or other storage devices. There may also be special commands to

search contents of files or perform transformations of the text.

Programming-language support: Compilers, assemblers, debuggers, and interpreters

for common programming languages (such as C, C++, Java, and PERL) are often provided with

the operating system or available as a separate download.

Program loading and execution: Once a program is assembled or compiled, it must be

loaded into memory to be executed. The system may provide absolute loaders, relocatable

loaders, linkage editors, and overlay loaders. Debugging systems for either higher-level

languages or machine language are needed as well.

Communications: These programs provide the mechanism for creating virtual

connections among processes, users, and computer systems. They allow users to send

messages to one another’s screens, to browse Web pages, to send e-mail messages, to log in

remotely, or to transfer files from one machine to another.

Background services: All general-purpose systems have methods for launching certain

system-program processes at boot time. Some of these processes terminate after completing

their tasks, while others continue to run until the system is halted. Constantly running system-

program processes are known as services, subsystems, or daemons. One example is the

network daemon.

Along with system programs, most operating systems are supplied with programs that

are useful in solving common problems or performing common operations. Such application

programs include Web browsers, word processors and text formatters, spreadsheets, database

systems, compilers, plotting and statistical-analysis packages, and games.

The view of the operating system seen by most users is defined by the application and

system programs, rather than by the actual system calls.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 39

OPERATING SYSTEM STRUCTURE:

A system as large and complex as a modern operating system must be engineered

carefully if it is to function properly and be modified easily. A common approach is to partition

the task into small components, or modules, rather than have one monolithic system. Each of

these modules should be a well-defined portion of the system, with carefully defined inputs,

outputs, and functions.

SIMPLE STRUCTURE:

Many operating systems do not have well-defined structures. Frequently, such systems

started as small, simple, and limited systems and then grew beyond their original scope. MS-

DOS is an example of such a system. It was originally designed and implemented by a few

people who had no idea that it would become so popular. It was written to provide the most

functionality in the least space, so it was not carefully divided into modules. Figure 1.14 shows

its structure:

FIGURE 1.14: MS-DOS LAYER STRUCTURE

In MS-DOS, the interfaces and levels of functionality are not well separated. For

instance, application programs are able to access the basic I/O routines to write directly to the

display and disk drives. Such freedom leaves MS-DOS vulnerable to errant (or malicious)

programs, causing entire system crashes when user programs fail.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 40

Of course, MS-DOS was also limited by the hardware of its era. Because the Intel 8088

for which it was written provides no dual mode and no hardware protection, the designers of

MS-DOS had no choice but to leave the base hardware accessible.

Another example of limited structuring is the original UNIX operating system. Like MS-

DOS, UNIX initially was limited by hardware functionality. It consists of two separable parts: the

kernel and the system programs. The kernel is further separated into a series of interfaces and

device drivers, which have been added and expanded over the years as UNIX has evolved. We

can view the traditional UNIX operating system as being layered to some extent, as shown in

Figure 1.15:

FIGURE 1.15: TRADITIONAL UNIX SYSTEM STRUCTURE

Everything below the system-call interface and above the physical hardware is the

kernel. The kernel provides the file system, CPU scheduling, memory management, and other

operating-system functions through system calls. Taken in sum, that is an enormous amount of

functionality to be combined into one level.

This monolithic structure was difficult to implement and maintain. It had a distinct

performance advantage, however: there is very little overhead in the system call interface or in

communication within the kernel. We still see evidence of this simple, monolithic structure in

the UNIX, Linux, and Windows operating systems.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 41

LAYERED APPROACH:

A system can be made modular in many ways. One method is the layered approach, in

which the operating system is broken into a number of layers (levels). The bottom layer (layer

0) is the hardware; the highest (layer N) is the user interface. This layering structure is depicted

in Figure 1.16:

FIGURE 1.16: A LAYERED OPERATING SYSTEM

An operating-system layer is an implementation of an abstract object made up of data

and the operations that can manipulate those data. A typical operating-system layer—say, layer

M—consists of data structures and a set of routines that can be invoked by higher-level layers.

Layer M, in turn, can invoke operations on lower-level layers.

The main advantage of the layered approach is simplicity of construction and debugging.

The layers are selected so that each uses functions (operations) and services of only lower-level

layers. This approach simplifies debugging and system verification.

The first layer can be debugged without any concern for the rest of the system, because,

by definition, it uses only the basic hardware (which is assumed correct) to implement its

functions. Once the first layer is debugged, its correct functioning can be assumed while the

second layer is debugged, and so on.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 42

If an error is found during the debugging of a particular layer, the error must be on that

layer, because the layers below it are already debugged. Thus, the design and implementation

of the system are simplified.

Each layer is implemented only with operations provided by lower-level layers. A layer

does not need to know how these operations are implemented; it needs to know only what

these operations do. Hence, each layer hides the existence of certain data structures,

operations, and hardware from higher-level layers.

The major difficulty with the layered approach involves appropriately defining the

various layers. Because a layer can use only lower-level layers, careful planning is necessary.

Another problem with layered implementations is that they tend to be less efficient than other

types.

MICROKERNELS:

In the mid-1980s, researchers at Carnegie Mellon University developed an operating

system called Mach that modularized the kernel using the microkernel approach. This method

structures the operating system by removing all nonessential components from the kernel and

implementing them as system and user-level programs.

The result is a smaller kernel. There is little consensus regarding which services should

remain in the kernel and which should be implemented in user space. Typically, however,

Microkernel's provide minimal process and memory management, in addition to a

communication facility. Figure 1.17 illustrates the architecture of a typical microkernel.

FIGURE 1.17: ARCHITECTURE OF A TYPICAL MICROKERNEL

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 43

The main function of the microkernel is to provide communication between the client

program and the various services that are also running in user space. Communication is

provided through message passing.

One benefit of the microkernel approach is that it makes extending the operating system

easier. All new services are added to user space and consequently do not require modification

of the kernel. When the kernel does have to be modified, the changes tend to be fewer,

because the microkernel is a smaller kernel. The resulting operating system is easier to port

from one hardware design to another.

The microkernel also provides more security and reliability, since most services are

running as user—rather than kernel— processes. If a service fails, the rest of the operating

system remains untouched.

Unfortunately, the performance of microkernel’s can suffer due to increased system-

function overhead.

MODULES:

Perhaps the best current methodology for operating-system design involves using

loadable kernel modules. Here, the kernel has a set of core components and links in additional

services via modules, either at boot time or during run time.

This type of design is common in modern implementations of UNIX, such as Solaris,

Linux, and Mac OS X, as well as Windows. The idea of the design is for the kernel to provide

core services while other services are implemented dynamically, as the kernel is running.

Linking services dynamically is preferable to adding new features directly to the kernel,

which would require recompiling the kernel every time a change was made. Thus, for example,

we might build CPU scheduling and memory management algorithms directly into the kernel

and then add support for different file systems by way of loadable modules.

The overall result resembles a layered system in that each kernel section has defined,

protected interfaces; but it is more flexible than a layered system, because any module can call

any other module. The approach is also similar to the microkernel approach in that the primary

module has only core functions and knowledge of how to load and communicate with other

modules; but it is more efficient, because modules do not need to invoke message passing in

order to communicate.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 44

HYBRID SYSTEMS:

In practice, very few operating systems adopt a single, strictly defined structure.

Instead, they combine different structures, resulting in hybrid systems that address

performance, security, and usability issues. For example, both Linux and Solaris are monolithic,

because having the operating system in a single address space provides very efficient

performance.

However, they are also modular, so that new functionality can be dynamically added to

the kernel. Windows is largely monolithic as well (again primarily for performance reasons), but

it retains some behavior typical of microkernel systems, including providing support for

separate subsystems (known as operating-system personalities) that run as user-mode

processes. Windows systems also provide support for dynamically loadable kernel modules.

OPERATING-SYSTEM DEBUGGING:

Debugging is the activity of finding and fixing errors in a system, both in hardware and in

software. Performance problems are considered bugs, so debugging can also include

performance tuning, which seeks to improve performance by removing processing bottlenecks.

FAILURE ANALYSIS:

If a process fails, most operating systems write the error information to a log file to alert

system operators or users that the problem occurred. The operating system can also take a

core dump—a capture of the memory of the process— and store it in a file for later analysis.

(Memory was referred to as the “core” in the early days of computing.) Running programs and

core dumps can be probed by a debugger, which allows a programmer to explore the code and

memory of a process.

A failure in the kernel is called a crash. When a crash occurs, error information is saved

to a log file, and the memory state is saved to a crash dump. Operating-system debugging and

process debugging frequently use different tools and techniques due to the very different

nature of these two tasks.

PERFORMANCE TUNING:

Performance tuning seeks to improve performance by removing processing bottlenecks.

To identify bottlenecks, we must be able to monitor system performance.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 45

Thus, the operating system must have some means of computing and displaying

measures of system behavior. In a number of systems, the operating system does this by

producing trace listings of system behavior. All interesting events are logged with their time and

important parameters and are written to a file.

Later, an analysis program can process the log file to determine system performance

and to identify bottlenecks and inefficiencies. These same traces can be run as input for a

simulation of a suggested improved system. Traces also can help people to find errors in

operating-system behavior

Another approach to performance tuning uses single-purpose, interactive tools that

allow users and administrators to question the state of various system components to look for

bottlenecks; One such tool employs the UNIX command top to display the resources used on

the system, as well as a sorted list of the “top” resource-using processes. Other tools display

the state of disk I/O, memory allocation, and network traffic.

The Windows Task Manager is a similar tool for Windows systems. The task manager

includes information for current applications as well as processes, CPU and memory usage, and

networking statistics.

DTRACE:

DTrace is a facility that dynamically adds probes to a running system, both in user

processes and in the kernel. These probes can be queried via the D programming language to

determine an astonishing amount about the kernel, the system state, and process activities.

SYSTEM BOOT:

After an operating system is generated, it must be made available for use by the

hardware. But how does the hardware know where the kernel is or how to load that kernel?

The procedure of starting a computer by loading the kernel is known as booting the system. On

most computer systems, a small piece of code known as the bootstrap program or bootstrap

loader locates the kernel, loads it into main memory, and starts its execution.

Some computer systems, such as PCs, use a two-step process in which a simple

bootstrap loader fetches a more complex boot program from disk, which in turn loads the

kernel.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 46

When a CPU receives a reset event—for instance, when it is powered up or rebooted—

the instruction register is loaded with a predefined memory location, and execution starts

there. At that location is the initial bootstrap program. This program is in the form of read-only

memory (ROM), because the RAM is in an unknown state at system startup. ROM is convenient

because it needs no initialization and cannot easily be infected by a computer virus.

The bootstrap program can perform a variety of tasks. Usually, one task is to run

diagnostics to determine the state of the machine. If the diagnostics pass, the program can

continue with the booting steps. It can also initialize all aspects of the system, from CPU

registers to device controllers and the contents of main memory. Sooner or later, it starts the

operating system.

Some systems—such as cellular phones, tablets, and game consoles—store the entire

operating system in ROM. Storing the operating system in ROM is suitable for small operating

systems, simple supporting hardware, and rugged operation. A problem with this approach is

that changing the bootstrap code requires changing the ROM hardware chips. Some systems

resolve this problem by using erasable programmable read-only memory (EPROM), which is

read-only except when explicitly given a command to become writable. All forms of ROM are

also known as firmware.

For large operating systems (including most general-purpose operating systems like

Windows, Mac OS X, and UNIX) or for systems that change frequently, the bootstrap loader is

stored in firmware, and the operating system is on disk. In this case, the bootstrap runs

diagnostics and has a bit of code that can read a single block at a fixed location (say block zero)

from disk into memory and execute the code from that boot block. The program stored in the

boot block may be sophisticated enough to load the entire operating system into memory and

begin its execution.

PROCESSES:

A process can be thought of as a program in execution. A process will need certain

resources—such as CPU time, memory, files, and I/O devices —to accomplish its task. These

resources are allocated to the process either when it is created or while it is executing.

A process is the unit of work in most systems. Systems consist of a collection of

processes: operating-system processes execute system code, and user processes execute user

code. All these processes may execute concurrently.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 47

Although traditionally a process contained only a single thread of control as it ran, most

modern operating systems now support processes that have multiple threads. The operating

system is responsible for several important aspects of process and thread management: the

creation and deletion of both user and system processes; the scheduling of processes; and the

provision of mechanisms for synchronization, communication, and deadlock handling for

processes.

PROCESS CONCEPT:

A batch system executes jobs, whereas a time-shared system has user programs, or

tasks. Even on a single-user system, a user may be able to run several programs at one time: a

word processor, a Web browser, and an e-mail package.

And even if a user can execute only one program at a time, such as on an embedded

device that does not support multitasking, the operating system may need to support its own

internal programmed activities, such as memory management. In many respects, all these

activities are similar, so we call all of them processes.

The terms job and process are used almost interchangeably.

THE PROCESS

Informally, a process is a program in execution. A process is more than the program

code, which is sometimes known as the text section. It also includes the current activity, as

represented by the value of the program counter and the contents of the processor’s registers.

A process generally also includes the process stack, which contains temporary data

(such as function parameters, return addresses, and local variables), and a data section, which

contains global variables.

A process may also include a heap, which is memory that is dynamically allocated during

process run time. The structure of a process in memory is shown in Figure 1.18. We emphasize

that a program by itself is not a process. A program is a passive entity, such as a file containing a

list of instructions stored on disk (often called an executable file).

In contrast, a process is an active entity, with a program counter specifying the next

instruction to execute and a set of associated resources. A program becomes a process when an

executable file is loaded into memory.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 48

Two common techniques for loading executable files are double-clicking an icon

representing the executable file and entering the name of the executable file on the command

line (as in prog.exe or a.out). Although two processes may be associated with the same

program, they are nevertheless considered two separate execution sequences.

FIGURE 1.18: PROCESS IN MEMORY

PROCESS STATE:

As a process executes, it changes state. The state of a process is defined in part by the

current activity of that process. A process may be in one of the following states:

 New: The process is being created.

 Running: Instructions are being executed.

 Waiting: The process is waiting for some event to occur (such as an I/O

completion or reception of a signal).

 Ready: The process is waiting to be assigned to a processor.

 Terminated: The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states that they

represent are found on all systems, however. Certain operating systems also more finely

delineate process states. It is important to realize that only one process can be running on any

processor at any instant. Many processes may be ready and waiting, however. The state

diagram corresponding to these states is presented in Figure 1.19.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 49

FIGURE 1.19: DIAGRAM OF PROCESS STATE

PROCESS CONTROL BLOCK:

Each process is represented in the operating system by a process control block (PCB)—

also called a task control block. A PCB is shown in Figure 1.20. It contains many pieces of

information associated with a specific process, including these:

• Process state. The state may be new, ready, running, waiting, halted, and so on.

• Program counter. The counter indicates the address of the next instruction to be

executed for this process.

• CPU registers. The registers vary in number and type, depending on the computer

architecture. They include accumulators, index registers, stack pointers, and general-purpose

registers, plus any condition-code information. Along with the program counter, this state

information must be saved when an interrupt occurs, to allow the process to be continued

correctly afterward.

• CPU-scheduling information. This information includes a process priority, pointers to

scheduling queues, and any other scheduling parameters.

• Memory-management information. This information may include such items as the

value of the base and limit registers and the page tables, or the segment tables, depending on

the memory system used by the operating system.

• Accounting information. This information includes the amount of CPU and real time

used, time limits, account numbers, job or process numbers, and so on.

• I/O status information. This information includes the list of I/O devices allocated to the

process, a list of open files, and so on.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 50

FIGURE 1.20: PROCESS CONTROL BLOCK (PCB)

THREADS:

The process model discussed so far has implied that a process is a program that

performs a single thread of execution. For example, when a process is running a word-

processor program, a single thread of instructions is being executed.

This single thread of control allows the process to perform only one task at a time. The

user cannot simultaneously type in characters and run the spell checker within the same

process, for example.

Most modern operating systems have extended the process concept to allow a process

to have multiple threads of execution and thus to perform more than one task at a time. This

feature is especially beneficial on multicore systems, where multiple threads can run in parallel.

On a system that supports threads, the PCB is expanded to include information for each

thread. Other changes throughout the system are also needed to support threads.

PROCESS SCHEDULING:

The objective of multiprogramming is to have some process running at all times, to

maximize CPU utilization. The objective of time sharing is to switch the CPU among processes so

frequently that users can interact with each program while it is running.

To meet these objectives, the process scheduler selects an available process (possibly

from a set of several available processes) for program execution on the CPU. For a single-

processor system, there will never be more than one running process.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 51

If there are more processes, the rest will have to wait until the CPU is free and can be

rescheduled.

SCHEDULING QUEUES:

As processes enter the system, they are put into a job queue, which consists of all

processes in the system. The processes that are residing in main memory and are ready and

waiting to execute are kept on a list called the ready queue.

This queue is generally stored as a linked list. A ready-queue header contains pointers to

the first and final PCBs in the list. Each PCB includes a pointer field that points to the next PCB

in the ready queue.

The system also includes other queues. When a process is allocated the CPU, it executes

for a while and eventually quits, is interrupted, or waits for the occurrence of a particular event,

such as the completion of an I/O request.

The list of processes waiting for a particular I/O device is called a device queue. Each

device has its own device queue (Figure 1.21).

FIGURE 1.21: THE READY QUEUE AND VARIOUS I/O DEVICE QUEUES

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 52

A common representation of process scheduling is a queueing diagram, such as that in

Figure 1.22. Each rectangular box represents a queue. Two types of queues are present: the

ready queue and a set of device queues. The circles represent the resources that serve the

queues, and the arrows indicate the flow of processes in the system.

FIGURE 1.22: QUEUEING-DIAGRAM REPRESENTATION OF PROCESS SCHEDULING

A new process is initially put in the ready queue. It waits there until it is selected for

execution, or dispatched. Once the process is allocated the CPU and is executing, one of several

events could occur:

 The process could issue an I/O request and then be placed in an I/O queue.

 The process could create a new child process and wait for the child’s

termination.

 The process could be removed forcibly from the CPU, as a result of an interrupt,

and be put back in the ready queue.

In the first two cases, the process eventually switches from the waiting state to the

ready state and is then put back in the ready queue. A process continues this cycle until it

terminates, at which time it is removed from all queues and has its PCB and resources

deallocated.

SCHEDULERS: A process migrates among the various scheduling queues throughout its

lifetime. The operating system must select, for scheduling purposes, processes from these

queues in some fashion.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 53

The selection process is carried out by the appropriate scheduler. Often, in a batch

system, more processes are submitted than can be executed immediately. These processes are

spooled to a mass-storage device (typically a disk), where they are kept for later execution.

The long-term scheduler, or job scheduler, selects processes from this pool and loads

them into memory for execution.

The short-term scheduler, or CPU scheduler, selects from among the processes that are

ready to execute and allocates the CPU to one of them.

The primary distinction between these two schedulers lies in frequency of execution.

The short-term scheduler must select a new process for the CPU frequently. A process may

execute for only a few milliseconds before waiting for an I/O request.

The long-term scheduler executes much less frequently; minutes may separate the

creation of one new process and the next. The long-term scheduler controls the degree of

multiprogramming (the number of processes in memory). If the degree of multiprogramming is

stable, then the average rate of process creation must be equal to the average departure rate

of processes leaving the system.

It is important that the long-term scheduler make a careful selection. In general, most

processes can be described as either I/O bound or CPU bound.

An I/O-bound process is one that spends more of its time doing I/O than it spends doing

computations. A CPU-bound process, in contrast, generates I/O requests infrequently, using

more of its time doing computations.

Some operating systems, such as time-sharing systems, may introduce an additional,

intermediate level of scheduling. The key idea behind a medium-term scheduler is that

sometimes it can be advantageous to remove a process from memory (and from active

contention for the CPU) and thus reduce the degree of multiprogramming. Later, the process

can be reintroduced into memory, and its execution can be continued where it left off. This

scheme is called swapping.

The process is swapped out, and is later swapped in, by the medium-term scheduler.

Swapping may be necessary to improve the process mix or because a change in memory

requirements has overcommitted available memory, requiring memory to be freed up.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 54

CONTEXT SWITCH:

Interrupts cause the operating system to change a CPU from its current task and to run

a kernel routine. Such operations happen frequently on general-purpose systems. When an

interrupt occurs, the system needs to save the current context of the process running on the

CPU so that it can restore that context when its processing is done, essentially suspending the

process and then resuming it. The context is represented in the PCB of the process. It includes

the value of the CPU registers, the process state, and memory-management information.

Switching the CPU to another process requires performing a state save of the current

process and a state restore of a different process. This task is known as a context switch.

When a context switch occurs, the kernel saves the context of the old process in its PCB

and loads the saved context of the new process scheduled to run. Context-switch time is pure

overhead, because the system does no useful work while switching.

Switching speed varies from machine to machine, depending on the memory speed, the

number of registers that must be copied, and the existence of special instructions (such as a

single instruction to load or store all registers). A typical speed is a few milliseconds. Context-

switch times are highly dependent on hardware support.

OPERATIONS ON PROCESSES:

The processes in most systems can execute concurrently, and they may be created and

deleted dynamically. Thus, these systems must provide a mechanism for process creation and

termination.

PROCESS CREATION:

During the course of execution, a process may create several new processes ; the

creating process is called a parent process, and the new processes are called the children of

that process. Each of these new processes may in turn create other processes, forming a tree of

processes.

Most operating systems (including UNIX, Linux, and Windows) identify processes

according to a unique process identifier (or pid), which is typically an integer number. The pid

provides a unique value for each process in the system, and it can be used as an index to access

various attributes of a process within the kernel.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 55

Figure 1.23 illustrates a typical process tree for the Linux operating system, showing the

name of each process and it’s pid.

We use the term process rather loosely, as Linux prefers the term task instead. The init

process (which always has a pid of 1) serves as the root parent process for all user processes.

Once the system has booted, the init process can also create various user processes .

FIGURE 1.23: A TREE OF PROCESSES ON A TYPICAL LINUX SYSTEM

In Figure 1.23, we see two children of init—kthreadd and sshd. The kthreadd process is

responsible for creating additional processes that perform tasks on behalf of the kernel . The

sshd process is responsible for managing clients that connect to the system by using ssh (which

is short for secure shell).

The login process is responsible for managing clients that directly log onto the system. In

this example, a client has logged on and is using the bash shell, which has been assigned pid

8416. Using the bash command-line interface, this user has created the process ps as well as

the emacs editor.

In general, when a process creates a child process, that child process will need certain

resources (CPU time, memory, files, I/O devices) to accomplish its task. A child process may be

able to obtain its resources directly from the operating system, or it may be constrained to a

subset of the resources of the parent process.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 56

The parent may have to partition its resources among its children, or it may be able to

share some resources (such as memory or files) among several of its children. Restricting a child

process to a subset of the parent’s resources prevents any process from overloading the system

by creating too many child processes.

When a process creates a new process, two possibilities for execution exist:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

There are also two address-space possibilities for the new process:

1. The child process is a duplicate of the parent process (it has the same program

and data as the parent).

2. The child process has a new program loaded into it.

A new process is created by the fork() system call. The new process consists of a copy of

the address space of the original process. This mechanism allows the parent process to

communicate easily with its child process.

Both processes (the parent and the child) continue execution at the instruction after the

fork(), with one difference: the return code for the fork() is zero for the new (child) process,

whereas the (nonzero) process identifier of the child is returned to the parent.

After a fork() system call, one of the two processes typically uses the exec() system call to

replace the process’s memory space with a new program. The exec() system call loads a binary

file into memory (destroying the memory image of the program containing the exec() system

call) and starts its execution. In this manner, the two processes are able to communicate and

then go their separate ways. The C program given below illustrates the UNIX system calls

previously described.

#include <sys/types.h>

#include <stdio.h>

#include <unistd.h>

int main()

{

pid t pid;

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 57

/* fork a child process */

pid = fork();

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

return 1;

}

else if (pid == 0) { /* child process */

execlp("/bin/ls","ls",NULL);

}

else { /* parent process */

/* parent will wait for the child to complete */

wait(NULL);

printf("Child Complete");

}

return 0;

}

We now have two different processes running copies of the same program. The only

difference is that the value of pid (the process identifier) for the child process is zero, while that

for the parent is an integer value greater than zero (in fact, it is the actual pid of the child

process). The child process inherits privileges and scheduling attributes from the parent, as well

certain resources, such as open files.

The child process then overlays its address space with the UNIX command /bin/ls (used

to get a directory listing) using the execlp() system call (execlp() is a version of the exec() system

call). The parent waits for the child process to complete with the wait() system call. When the

child process completes (by either implicitly or explicitly invoking exit()), the parent process

resumes from the call to wait(), where it completes using the exit() system call. This is also

illustrated in Figure 1.24.

FIGURE 1.24: PROCESS CREATION USING THE fork() SYSTEM CALL

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 58

PROCESS TERMINATION:

A process terminates when it finishes executing its final statement and asks the

operating system to delete it by using the exit() system call. At that point, the process may

return a status value (typically an integer) to its parent process (via the wait() system call).

All the resources of the process—including physical and virtual memory, open files, and

I/O buffers—are deallocated by the operating system. Termination can occur in other

circumstances as well. A process can cause the termination of another process via an

appropriate system call.

Usually, such a system call can be invoked only by the parent of the process that is to be

terminated. Otherwise, users could arbitrarily kill each other’s jobs. Note that a parent needs to

know the identities of its children if it is to terminate them. Thus, when one process creates a

new process, the identity of the newly created process is passed to the parent.

A parent may terminate the execution of one of its children for a variety of reasons,

such as these:

 The child has exceeded its usage of some of the resources that it has been

allocated. (To determine whether this has occurred, the parent must have a

mechanism to inspect the state of its children.)

 The task assigned to the child is no longer required.

 The parent is exiting, and the operating system does not allow a child to

continue if its parent terminates.

Some systems do not allow a child to exist if its parent has terminated. In such systems,

if a process terminates (either normally or abnormally), then all its children must also be

terminated. This phenomenon, referred to as cascading termination, is normally initiated by the

operating system.

INTERPROCESS COMMUNICATION:

Processes executing concurrently in the operating system may be either independent

processes or cooperating processes. A process is independent if it cannot affect or be affected

by the other processes executing in the system. Any process that does not share data with any

other process is independent.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 59

A process is cooperating if it can affect or be affected by the other processes executing

in the system. Clearly, any process that shares data with other processes is a cooperating

process.

There are several reasons for providing an environment that allows process

cooperation:

 Information sharing. Since several users may be interested in the same piece of

information (for instance, a shared file), we must provide an environment to allow

concurrent access to such information.

 Computation speedup. If we want a particular task to run faster, we must break it

into subtasks, each of which will be executing in parallel with the others.

o Notice that such a speedup can be achieved only if the computer has

multiple processing cores.

 Modularity. We may want to construct the system in a modular fashion, dividing the

system functions into separate processes or threads.

 Convenience. Even an individual user may work on many tasks at the same time. For

instance, a user may be editing, listening to music, and compiling in parallel.

Cooperating processes require an interprocess communication (IPC) mechanism that will

allow them to exchange data and information. There are two fundamental models of

interprocess communication: shared memory and message passing.

In the shared-memory model, a region of memory that is shared by cooperating

processes is established. Processes can then exchange information by reading and writing data

to the shared region.

In the message-passing model, communication takes place by means of messages

exchanged between the cooperating processes. The two communications models are

contrasted in Figure 1.25.

Both of the models just mentioned are common in operating systems, and many

systems implement both. Message passing is useful for exchanging smaller amounts of data,

because no conflicts need be avoided. Message passing is also easier to implement in a

distributed system than shared memory.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 60

FIGURE 1.25: COMMUNICATIONS MODELS. (A) MESSAGE PASSING. (B) SHARED MEMORY

Shared memory can be faster than message passing, since message-passing systems are

typically implemented using system calls and thus require the more time-consuming task of

kernel intervention. In shared-memory systems, system calls are required only to establish

shared memory regions. Once shared memory is established, all accesses are treated as routine

memory accesses, and no assistance from the kernel is required.

SHARED-MEMORY SYSTEMS:

Interprocess communication using shared memory requires communicating processes

to establish a region of shared memory. Typically, a shared-memory region resides in the

address space of the process creating the shared-memory segment. Other processes that wish

to communicate using this shared-memory segment must attach it to their address space.

Normally, the operating system tries to prevent one process from accessing another

process’s memory. Shared memory requires that two or more processes agree to remove this

restriction. They can then exchange information by reading and writing data in the shared

areas. The form of the data and the location are determined by these processes and are not

under the operating system’s control. The processes are also responsible for ensuring that they

are not writing to the same location simultaneously.

To illustrate the concept of cooperating processes, let’s consider the producer–

consumer problem (Figure 1.26), which is a common paradigm for cooperating processes. A

producer process produces information that is consumed by a consumer process. For example,

a compiler may produce assembly code that is consumed by an assembler. The assembler, in

turn, may produce object modules that are consumed by the loader.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 61

item next produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER SIZE) == out)

; /* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

}

FIGURE 1.26: THE PRODUCER PROCESS USING SHARED MEMORY

One solution to the producer–consumer problem uses shared memory. To allow

producer and consumer processes to run concurrently, we must have available a buffer of

items that can be filled by the producer and emptied by the consumer. This buffer will reside in

a region of memory that is shared by the producer and consumer processes.

A producer can produce one item while the consumer is consuming another item. The

producer and consumer must be synchronized, so that the consumer does not try to consume

an item that has not yet been produced.

Two types of buffers can be used. The unbounded buffer places no practical limit on the

size of the buffer. The consumer may have to wait for new items, but the producer can always

produce new items. The bounded buffer assumes a fixed buffer size. In this case, the consumer

must wait if the buffer is empty, and the producer must wait if the buffer is full.

MESSAGE-PASSING SYSTEMS:

Message passing provides a mechanism to allow processes to communicate and to

synchronize their actions without sharing the same address space. It is particularly useful in a

distributed environment, where the communicating processes may reside on different

computers connected by a network. For example, an Internet chat program could be designed

so that chat participants communicate with one another by exchanging messages.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 62

A message-passing facility provides at least two operations: send(message)

receive(message)

Messages sent by a process can be either fixed or variable in size. If only fixed-sized

messages can be sent, the system-level implementation is straightforward. This restriction,

however, makes the task of programming more difficult. Conversely, variable-sized messages

require a more complex system level implementation, but the programming task becomes

simpler. This is a common kind of tradeoff seen throughout operating-system design.

If processes P and Q want to communicate, they must send messages to and receive

messages from each other: a communication link must exist between them. This link can be

implemented in a variety of ways. We are concerned here not with the link’s physical

implementation (such as shared memory, hardware bus, or network) but rather with its logical

implementation. Here are several methods for logically implementing a link and the

send()/receive() operations:

 Direct or indirect communication

 Synchronous or asynchronous communication

 Automatic or explicit buffering

NAMING:

Processes that want to communicate must have a way to refer to each other. They can

use either direct or indirect communication. Under direct communication, each process that

wants to communicate must explicitly name the recipient or sender of the communication. In

this scheme, the send() and receive() primitives are defined as:

 send(P, message)—Send a message to process P.

 receive(Q, message)—Receive a message from process Q.

A communication link in this scheme has the following properties:

 A link is established automatically between every pair of processes that want to

communicate. The processes need to know only each other’s identity to

communicate.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 63

 A link is associated with exactly two processes.

 Between each pair of processes, there exists exactly one link.

This scheme exhibits symmetry in addressing; that is, both the sender process and the

receiver process must name the other to communicate. A variant of this scheme employs

asymmetry in addressing. Here, only the sender names the recipient; the recipient is not

required to name the sender. In this scheme, the send() and receive() primitives are defined as

follows:

 send(P, message)—Send a message to process P.

 receive(id, message)—Receive a message from any process. The variable id is set

to the name of the process with which communication has taken place.

The disadvantage in both of these schemes (symmetric and asymmetric) is the limited

modularity of the resulting process definitions. With indirect communication, the messages are

sent to and received from mailboxes, or ports. A mailbox can be viewed abstractly as an object

into which messages can be placed by processes and from which messages can be removed.

Each mailbox has a unique identification.

For example, POSIX message queues use an integer value to identify a mailbox. A

process can communicate with another process via a number of different mailboxes, but two

processes can communicate only if they have a shared mailbox. The send() and receive()

primitives are defined as follows:

• send(A, message)—Send a message to mailbox A.

• receive(A, message)—Receive a message from mailbox A.

In this scheme, a communication link has the following properties:

• A link is established between a pair of processes only if both members of the pair have

a shared mailbox.

• A link may be associated with more than two processes.

• Between each pair of communicating processes, a number of different links may exist,

with each link corresponding to one mailbox.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 64

A mailbox may be owned either by a process or by the operating system. If the mailbox

is owned by a process (that is, the mailbox is part of the address space of the process), then we

distinguish between the owner (which can only receive messages through this mailbox) and the

user (which can only send messages to the mailbox).

Since each mailbox has a unique owner, there can be no confusion about which process

should receive a message sent to this mailbox. When a process that owns a mailbox terminates,

the mailbox disappears. Any process that subsequently sends a message to this mailbox must

be notified that the mailbox no longer exists.

In contrast, a mailbox that is owned by the operating system has an existence of its own.

It is independent and is not attached to any particular process. The operating system then must

provide a mechanism that allows a process to do the following:

 Create a new mailbox.

 Send and receive messages through the mailbox.

 Delete a mailbox.

The process that creates a new mailbox is that mailbox’s owner by default. Initially, the

owner is the only process that can receive messages through this mailbox. However, the

ownership and receiving privilege may be passed to other processes through appropriate

system calls. Of course, this provision could result in multiple receivers for each mailbox.

SYNCHRONIZATION:

Communication between processes takes place through calls to send() and receive()

primitives. There are different design options for implementing each primitive. Message passing

may be blocking or nonblocking— also known as synchronous and asynchronous.

 Blocking send. The sending process is blocked until the message is received by

the receiving process or by the mailbox.

 Nonblocking send. The sending process sends the message and resumes

operation.

 Blocking receive. The receiver blocks until a message is available.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 65

 Nonblocking receive. The receiver retrieves either a valid message or a null.

Different combinations of send() and receive() are possible. When both send() and

receive() are blocking, we have a rendezvous between the sender and the receiver. The solution

to the producer–consumer problem becomes trivial when we use blocking send() and receive()

statements. The producer merely invokes the blocking send() call and waits until the message is

delivered to either the receiver or the mailbox. Likewise, when the consumer invokes receive(),

it blocks until a message is available. This is illustrated in Figures 1.27 and 1.28.

message next produced;

while (true) {

/* produce an item in next produced */

send(next produced);

}

FIGURE 1.27 THE PRODUCER PROCESS USING MESSAGE PASSING

message next consumed;

while (true) {

receive(next consumed);

/* consume the item in next consumed */

}

FIGURE 1.28 THE CONSUMER PROCESS USING MESSAGE PASSING

BUFFERING:

Whether communication is direct or indirect, messages exchanged by communicating

processes reside in a temporary queue. Basically, such queues can be implemented in three

ways:

 Zero capacity. The queue has a maximum length of zero; thus, the link cannot have

any messages waiting in it. In this case, the sender must block until the recipient

receives the message.

UNIT-I
OPERATING SYSTEMS OVERVIEW R13

OPERATING SYSTEM STRUCTURE
PROCESSES

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 66

 Bounded capacity. The queue has finite length n; thus, at most n messages can

reside in it. If the queue is not full when a new message is sent, the message is

placed in the queue (either the message is copied or a pointer to the message is

kept), and the sender can continue execution without waiting. The link’s capacity is

finite, however. If the link is full, the sender must block until space is available in the

queue.

 Unbounded capacity. The queue’s length is potentially infinite; thus, any number of

messages can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no buffering.

The other cases are referred to as systems with automatic buffering.

