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MEMORY MANAGEMENT: 

The main purpose of a computer system is to execute programs. These programs, 

together with the data they access, must be at least partially in main memory during execution. 

To improve both the utilization of the CPU and the speed of its response to users, a general-

purpose computer must keep several processes in memory.  

Many memory-management schemes exist, reflecting various approaches, and the 

effectiveness of each algorithm depends on the situation. Selection of a memory-management 

scheme for a system depends onmany factors, especially on the hardware design of the system. 

Most algorithms require hardware support. 

Basic Hardware: 

Main memory and the registers built into the processor itself are the only general-

purpose storage that the CPU can access directly. There are machine instructions that take 

memory addresses as arguments, but none that take disk addresses. Therefore, any 

instructions in execution, and any data being used by the instructions, must be in one of these 

direct-access storage devices. If the data are not in memory, they must be moved there before 

the CPU can operate on them. 

Registers that are built into the CPU are generally accessible within one cycle of the CPU 

clock. Most CPUs can decode instructions and perform simple operations on register contents 

at the rate of one or more operations per clock tick. The same cannot be said of main memory, 

which is accessed via a transaction on the memory bus.  

Completing a memory access may take many cycles of the CPU clock. In such cases, the 

processor normally needs to stall, since it does not have the data required to complete the 

instruction that it is executing. This situation is intolerable because of the frequency of memory 

accesses. The remedy is to add fastmemorybetween the CPUand main memory, typically on the 

CPU chip for fast access called cache.  

To manage a cache built into the CPU, the hardware automatically speeds up memory 

access without any operating-system control. 

Not only are we concerned with the relative speed of accessing physical memory, but 

we also must ensure correct operation. For proper system operation we must protect the 

operating system from access by user processes.  
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On multiuser systems, we must additionally protect user processes from one another. 

This protection must be provided by the hardware because the operating system doesn’t 

usually intervene between the CPU and its memory accesses (because of the resulting 

performance penalty). 

Hardware implements this production in several different ways. Here, we outline one 

possible implementation. We first need to make sure that each process has a separate memory 

space. 

Separate per-process memory space protects the processes from each other and is 

fundamental to having multiple processes loaded in memory for concurrent execution. To 

separate memory spaces, we need the ability to determine the range of legal addresses that 

the process may access and to ensure that the process can access only these legal addresses. 

We can provide this protection by using two registers, usually a base and a limit, as illustrated 

in Figure 3.1. The base register holds the smallest legal physical memory address; the limit 

register specifies the size of the range. 

 

FIGURE 3.1: A BASE AND A LIMIT REGISTER DEFINE A LOGICAL ADDRESS SPACE 

For example, if the base register holds 300040 and the limit register is 120900, then the 

program can legally access all addresses from 300040 through 420939 (inclusive). 

Protection of memory space is accomplished by having the CPU hardware compare 

every address generated in user mode with the registers. Any attempt by a program executing 

in user mode to access operating-system memory or other users’ memory results in a trap to 

the operating system, which treats the attempt as a fatal error (Figure 3.2).  
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This scheme prevents a user program from (accidentally or deliberately) modifying the 

code or data structures of either the operating system or other users. The base and limit 

registers can be loaded only by the operating system, which uses a special privileged 

instruction. Since privileged instructions can be executed only in kernel mode, and since only 

the operating system executes in kernel mode, only the operating system can load the base and 

limit registers.  

 

FIGURE 3.2: HARDWARE ADDRESS PROTECTION WITH BASE AND LIMIT REGISTERS 

This scheme allows the operating system to change the value of the registers but 

prevents user programs from changing the registers’ contents. 

Address Binding: 

Usually, a program resides on a disk as a binary executable file. To be executed, the 

program must be brought into memory and placed within a process. Depending on the memory 

management in use, the process may be moved between disk and memory during its execution. 

The processes on the disk that are waiting to be brought into memory for execution form the 

input queue. 

The normal single-tasking procedure is to select one of the processes in the input queue 

and to load that process into memory. As the process is executed, it accesses instructions and 

data from memory. Eventually, the process terminates, and its memory space is declared 

available. Most systems allow a user process to reside in any part of the physical memory.  

Thus, although the address space of the computer may start at 00000, the first address 

of the user process need not be 00000. You will see later how a user program actually places a 

process in physical memory. 
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In most cases, a user program goes through several steps—some of which may be 

optional—before being executed (Figure 3.3). Addresses may be represented in different ways 

during these steps. Addresses in the source program are generally symbolic (such as the 

variable count).  

A compiler typically binds these symbolic addresses to relocatable addresses (such as 

“14 bytes from the beginning of this module”). The linkage editor or loader in turn binds the 

relocatable addresses to absolute addresses (such as 74014). Each binding is a mapping from 

one address space to another.  

 

FIGURE 3.3: MULTISTEP PROCESSING OF A USER PROGRAM 

Classically, the binding of instructions and data to memory addresses can be done at any 

step along the way: 

• Compile time. If you know at compile time where the process will reside in memory, 

then absolute code can be generated. For example, if you know that a user process will 

reside starting at location R, then the generated compiler code will start at that location 
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and extend up from there. If, at some later time, the starting location changes, then it 

will be necessary to recompile this code. The MS-DOS .COM-format programs are bound 

at compile time. 

• Load time. If it is not known at compile time where the process will reside in memory, 

then the compiler must generate relocatable code. In this case, final binding is delayed 

until load time. If the starting address changes, we need only reload the user code to 

incorporate this changed value. 

• Execution time. If the process can be moved during its execution from one memory 

segment to another, then binding must be delayed until run time. Special hardware 

must be available for this scheme to work. Most general-purpose operating systems use 

this method. 

Logical Versus Physical Address Space: 

An address generated by the CPU is commonly referred to as a logical address, whereas 

an address seen by the memory unit—that is, the one loaded into the memory-address register 

of the memory—is commonly referred to as a physical address. 

The compile-time and load-time address-binding methods generate identical logical and 

physical addresses. However, the execution-time address binding scheme results in differing 

logical and physical addresses. In this case, we usually refer to the logical address as a virtual 

address. We use logical address and virtual address interchangeably in this text. The set of all 

logical addresses generated by a program is a logical address space.  

The set of all physical addresses corresponding to these logical addresses is a physical 

address space. Thus, in the execution-time address-binding scheme, the logical and physical 

address spaces differ. The run-time mapping from virtual to physical addresses is done by a 

hardware device called the memory-management unit (MMU). 

We illustrate this mapping with a simple MMU scheme that is a generalization of the 

base-register scheme. The base register is now called a relocation register. The value in the 

relocation register is added to every address generated by a user process at the time the 

address is sent to memory (see Figure 3.4).  



UNIT-III 

MEMORY MANAGEMENT  R13 

 VIRTUAL MEMORY 
DEADLOCKS 

 

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 6 
 

 

FIGURE 3.4: DYNAMIC RELOCATION USING A RELOCATION REGISTER 

Dynamic Loading: 

The size of a process has been limited to the size of physical memory. To obtain better 

memory-space utilization, we can use dynamic loading. With dynamic loading, a routine is not 

loaded until it is called. All routines are kept on disk in a relocatable load format.  

The main program is loaded into memory and is executed. When a routine needs to call 

another routine, the calling routine first checks to see whether the other routine has been 

loaded. If it has not, the relocatable linking loader is called to load the desired routine into 

memory and to update the program’s address tables to reflect this change. Then control is 

passed to the newly loaded routine. 

The advantage of dynamic loading is that a routine is loaded only when it is needed. This 

method is particularly useful when large amounts of code are needed to handle infrequently 

occurring cases, such as error routines. In this case, although the total program size may be 

large, the portion that is used (and hence loaded) may be much smaller. 

Dynamic loading does not require special support from the operating system. It is the 

responsibility of the users to design their programs to take advantage of such a method. 

Operating systems may help the programmer, however, by providing library routines to 

implement dynamic loading. 
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Dynamic Linking and Shared Libraries: 

Dynamically linked libraries are system libraries that are linked to user programs when 

the programs are run. Some operating systems support only static linking, in which system 

libraries are treated like any other object module and are combined by the loader into the 

binary program image.  

Dynamic linking, in contrast, is similar to dynamic loading. Here, though, linking, rather 

than loading, is postponed until execution time. This feature is usually used with system 

libraries, such as language subroutine libraries. Without this facility, each program on a system 

must include a copy of its language library (or at least the routines referenced by the program) 

in the executable image.  

This requirement wastes both disk space and main memory. With dynamic linking, a 

stub is included in the image for each libraryroutine reference. The stub is a small piece of code 

that indicates how to locate the appropriate memory-resident library routine or how to load 

the library if the routine is not already present.  

When the stub is executed, it checks to see whether the needed routine is already in 

memory. If it is not, the program loads the routine into memory. Either way, the stub replaces 

itself with the address of the routine and executes the routine. Thus, the next time that 

particular code segment is reached, the library routine is executed directly, incurring no cost for 

dynamic linking. Under this scheme, all processes that use a language library execute only one 

copy of the library code.  

This feature can be extended to library updates (such as bug fixes).Alibrary may be 

replaced by a new version, and all programs that reference the library will automatically use the 

new version. Without dynamic linking, all such programs would need to be relinked to gain 

access to the new library. So that programs will not accidentally execute new, incompatible 

versions of libraries, version information is included in both the program and the library. 

More than one version of a library may be loaded into memory, and each program uses 

its version information to decide which copy of the library to use. Versions with minor changes 

retain the same version number, whereas versions with major changes increment the number. 

Thus, only programs that are compiled with the new library version are affected by any 

incompatible changes incorporated in it. Other programs linked before the new library was 

installed will continue using the older library. This system is also known as shared libraries. 
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Unlike dynamic loading, dynamic linking and shared libraries generally require help from 

the operating system. If the processes in memory are protected fromone another, then the 

operating system is the only entity that can check to see whether the needed routine is in 

another process’s memory space or that can allow multiple processes to access the same 

memory addresses. 

SWAPPING: 

A process must be in memory to be executed. A process, however, can be swapped 

temporarily out of memory to a backing store and then brought back into memory for 

continued execution (Figure 3.5). Swapping makes it possible for the total physical address 

space of all processes to exceed the real physical memory of the system, thus increasing the 

degree of multiprogramming in a system. 

 

FIGURE 3.5: SWAPPING OF TWO PROCESSES USING A DISK AS A BACKING STORE 

Standard Swapping: 

Standard swapping involves moving processes between main memory and a backing 

store. The backing store is commonly a fast disk. It must be large enough to accommodate 

copies of all memory images for all users, and it must provide direct access to these memory 

images. The system maintains a ready queue consisting of all processes whose memory images 

are on the backing store or in memory and are ready to run. Whenever the CPU scheduler 

decides to execute a process, it calls the dispatcher.  
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The dispatcher checks to see whether the next process in the queue is in memory. If it is 

not, and if there is no free memory region, the dispatcher swaps out a process currently in 

memory and swaps in the desired process. It then reloads registers and transfers control to the 

selected process. 

The context-switch time in such a swapping system is fairly high. To get an idea of the 

context-switch time, let’s assume that the user process is 100 MB in size and the backing store 

is a standard hard disk with a transfer rate of 50 MB per second. The actual transfer of the 100-

MB process to or from main memory takes 100 MB/50 MB per second = 2 seconds. The swap 

time is 200 milliseconds. Since we must swap both out and in, the total swap time is about 

4,000 milliseconds. 

CONTIGUOUS MEMORY ALLOCATION: 

The main memory must accommodate both the operating system and the various user 

processes.We therefore need to allocate main memory in the most efficient way possible. The 

memory is usually divided into two partitions: one for the resident operating system and one 

for the user processes. We can place the operating system in either low memory or high 

memory. The major factor affecting this decision is the location of the interrupt vector. Since 

the interrupt vector is often in low memory, programmers usually place the operating system in 

low memory as well. 

Memory Protection: 

We can prevent a process from accessing memory, if we have a system with a relocation 

register, together with a limit register. The relocation register contains the value of the smallest 

physical address; the limit register contains the range of logical addresses (for example, 

relocation = 100040 and limit = 74600). Each logical address must fall within the range specified 

by the limit register.  

The MMU maps the logical address dynamically by adding the value in the relocation 

register. This mapped address is sent to memory (Figure 3.6). 

When the CPU scheduler selects a process for execution, the dispatcher loads the 

relocation and limit registers with the correct values as part of the context switch. Because 

every address generated by a CPU is checked against these registers, we can protect both the 
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operating system and the other users’ programs and data from being modified by this running 

process. 

 

FIGURE 3.6: HARDWARE SUPPORT FOR RELOCATION AND LIMIT REGISTERS 

The relocation-register scheme provides an effective way to allow the operating 

system’s size to change dynamically. This flexibility is desirable in many situations. For example, 

the operating system contains code and buffer space for device drivers.  

If a device driver (or other operating-system service) is not commonly used, we do not 

want to keep the code and data inmemory, as we might be able to use that space for other 

purposes. Such code is sometimes called transient operating-system code; it comes and goes as 

needed. Thus, using this code changes the size of the operating system during program 

execution. 

Memory Allocation: 

One of the simplest methods for allocating memory is to divide memory into several 

fixed-sized partitions. Each partition may contain exactly one process. Thus, the degree of 

multiprogramming is bound by the number of partitions.  

In this multiple-partition method, when a partition is free, a process is selected from 

the input queue and is loaded into the free partition. When the process terminates, the 

partition becomes available for another process. This method was originally used by the IBM 

OS/360 operating system (called MFT) but is no longer in use.  
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The method described next is a generalization of the fixed-partition scheme (called 

MVT); it is used primarily in batch environments. Many of the ideas presented here are also 

applicable to a time-sharing environment in which pure segmentation is used for memory 

management. 

In the variable-partition scheme, the operating system keeps a table indicating which 

parts of memory are available and which are occupied. Initially, all memory is available for user 

processes and is considered one large block of available memory, a hole. Eventually, as you will 

see, memory contains a set of holes of various sizes. 

As processes enter the system, they are put into an input queue. The operating system 

takes into account the memory requirements of each process and the amount of available 

memory space in determining which processes are allocated memory. When a process is 

allocated space, it is loaded into memory, and it can then compete for CPU time. When a 

process terminates, it releases its memory, which the operating system may then fill with 

another process from the input queue. 

At any given time, then, we have a list of available block sizes and an input queue. The 

operating system can order the input queue according to a scheduling algorithm. Memory is 

allocated to processes until, finally, the memory requirements of the next process cannot be 

satisfied—that is, no available block of memory (or hole) is large enough to hold that process. 

The operating system can then wait until a large enough block is available, or it can skip down 

the input queue to see whether the smaller memory requirements of some other process can 

be met. 

In general, as mentioned, the memory blocks available comprise a set of holes of various 

sizes scattered throughout memory. When a process arrives and needs memory, the system 

searches the set for a hole that is large enough for this process.  

If the hole is too large, it is split into two parts. One part is allocated to the arriving 

process; the other is returned to the set of holes. When a process terminates, it releases its 

block of memory, which is then placed back in the set of holes.  

If the new hole is adjacent to other holes, these adjacent holes are merged to form one 

larger hole. At this point, the system may need to check whether there are processes waiting 

for memory and whether this newly freed and recombined memory could satisfy the demands 

of any of these waiting processes. 
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This procedure is a particular instance of the general dynamic storage allocation 

problem, which concerns how to satisfy a request of size n from a list of free holes. There are 

many solutions to this problem. The first-fit, best-fit, and worst-fit strategies are the ones most 

commonly used to select a free hole from the set of available holes. 

 First fit. Allocate the first hole that is big enough. Searching can start either at the 

beginning of the set of holes or at the location where the previous first-fit search 

ended. We can stop searching as soon as we find a free hole that is large enough. 

 Best fit. Allocate the smallest hole that is big enough. We must search the entire list, 

unless the list is ordered by size. This strategy produces the smallest leftover hole. 

 Worst fit. Allocate the largest hole. Again, we must search the entire list, unless it is 

sorted by size. This strategy produces the largest leftover hole, which may be more 

useful than the smaller leftover hole from a best-fit approach. 

Fragmentation: 

Both the first-fit and best-fit strategies for memory allocation suffer from external 

fragmentation. As processes are loaded and removed from memory, the free memory space is 

broken into little pieces.  

External fragmentation exists when there is enough total memory space to satisfy a 

request but the available spaces are not contiguous: storage is fragmented into a large number 

of small holes.  

This fragmentation problem can be severe. In the worst case, we could have a block of 

free (or wasted) memory between every two processes. If all these small pieces of memory 

were in one big free block instead, we might be able to run several more processes. 

Memory fragmentation can be internal as well as external. Consider a multiple-partition 

allocation scheme with a hole of 18,464 bytes. Suppose that the next process requests 18,462 

bytes. If we allocate exactly the requested block, we are left with a hole of 2 bytes. The 

overhead to keep track of this hole will be substantially larger than the hole itself.  

The general approach to avoid this problem is to break the physical memory into fixed-

sized blocks and allocate memory in units based on block size. With this approach, the memory 

allocated to a process may be slightly larger than the requested memory. The difference 
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between these two numbers is internal fragmentation—unused memory that is internal to a 

partition.  

One solution to the problem of external fragmentation is compaction. The goal is to 

shuffle the memory contents so as to place all free memory together in one large block.  

Compaction is not always possible, however. If relocation is static and is done at 

assembly or load time, compaction cannot be done. It is possible only if relocation is dynamic 

and is done at execution time.  

Another possible solution to the external-fragmentation problem is to permit the logical 

address space of the processes to be noncontiguous, thus allowing a process to be allocated 

physical memory wherever such memory is available. Two complementary techniques achieve 

this solution: segmentation and paging. Fragmentation is a general problem in computing that 

can occur wherever we must manage blocks of data. 

Basic Method: 

The programmers think of memory not as a linear array of bytes, some containing 

instructions and others containing data rather, they prefer to view memory as a collection of 

variable-sized segments, with no necessary ordering among the segments (Figure 3.7). 

 

FIGURE 3.7 PROGRAMMER’S VIEW OF A PROGRAM 
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When writing a program, a programmer thinks of it as a main program with a set of 

methods, procedures, or functions. It may also include various data structures: objects, arrays, 

stacks, variables, and so on. Each of these modules or data elements is referred to by name. 

The programmer talks about “the stack,” “the math library,” and “the main program” without 

caring what addresses in memory these elements occupy. 

SEGEMENTATION: 

Segmentation is a memory-management scheme that supports this programmer view 

of memory. A logical address space is a collection of segments. Each segment has a name and a 

length.  

The addresses specify both the segment name and the offset within the segment. The 

programmer therefore specifies each address by two quantities: a segment name and an offset. 

For simplicity of implementation, segments are numbered and are referred to by a segment 

number, rather than by a segment name. Thus, a logical address consists of a two tuple: 

<segment-number, offset>. 

Normally, when a program is compiled, the compiler automatically constructs segments 

reflecting the input program. A C compiler might create separate segments for the following: 

1. The code 

2. Global variables 

3. The heap, from which memory is allocated 

4. The stacks used by each thread 

5. The standard C library 

Libraries that are linked in during compile time might be assigned separate segments. 

The loader would take all these segments and assign them segment numbers. 

Segmentation Hardware: 

Although the programmer can now refer to objects in the program by a two-

dimensional address, the actual physical memory is still, of course, a one dimensional sequence 
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of bytes. Thus, we must define an implementation to map two-dimensional user-defined 

addresses into one-dimensional physical addresses.  

This mapping is effected by a segment table. Each entry in the segment table has a 

segment base and a segment limit. The segment base contains the starting physical address 

where the segment resides in memory, and the segment limit specifies the length of the 

segment. The use of a segment table is illustrated in Figure 3.8. 

A logical address consists of two parts: a segment number, s, and an offset into that 

segment, d. The segment number is used as an index to the segment table. The offset d of the 

logical address must be between 0 and the segment limit.  

If it is not, we trap to the operating system. When an offset is legal, it is added to the 

segment base to produce the address in physical memory of the desired byte. The segment 

table is thus essentially an array of base–limit register pairs. 

 

FIGURE 3.8: SEGMENTATION HARDWARE 

As an example, consider the situation shown in Figure 3.9. We have five segments 

numbered from 0 through 4. The segments are stored in physical memory as shown. The 

segment table has a separate entry for each segment, giving the beginning address of the 

segment in physical memory (or base) and the length of that segment (or limit). 
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PAGING: 

Segmentation permits the physical address space of a process to be noncontiguous. 

Paging is another memory-management scheme that offers this advantage. However, paging 

avoids external fragmentation and the need for compaction, whereas segmentation does not. It 

also solves the considerable problem of fitting memory chunks of varying sizes onto the backing 

store. Most memory-management schemes used before the introduction of paging suffered 

from this problem.  

The problem arises because, when code fragments or data residing in main memory 

need to be swapped out, space must be found on the backing store. The backing store has the 

same fragmentation problems discussed in connection with main memory, but access is much 

slower, so compaction is impossible.  

Because of its advantages over earlier methods, paging in its various forms is used in 

most operating systems, from those for mainframes through those for smartphones. Paging is 

implemented through cooperation between the operating system and the computer hardware.  

 

FIGURE 3.9: EXAMPLE OF SEGMENTATION 



UNIT-III 

MEMORY MANAGEMENT  R13 

 VIRTUAL MEMORY 
DEADLOCKS 

 

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 17 
 

Basic Method: 

The basic method for implementing paging involves breaking physical memory into 

fixed-sized blocks called frames and breaking logical memory into blocks of the same size called 

pages. When a process is to be executed, its pages are loaded into any available memory 

frames from their source (a file system or the backing store).  

The backing store is divided into fixed-sized blocks that are the same size as the memory 

frames or clusters of multiple frames. The hardware support for paging is illustrated in Figure 

3.10.  

 

FIGURE 3.10: PAGING HARDWARE 

Every address generated by the CPU is divided into two parts: a page number (p) and a 

page offset (d). The page number is used as an index into a page table. The page table contains 

the base address of each page in physical memory. This base address is combined with the page 

offset to define the physical memory address that is sent to the memory unit. The paging model 

of memory is shown in Figure 3.11. 
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FIGURE 3.11: PAGING MODEL OF LOGICAL AND PHYSICAL MEMORY 

The page size (like the frame size) is defined by the hardware. The size of a page is a 

power of 2, varying between 512 bytes and 1 GB per page, depending on the computer 

architecture. The selection of a power of 2 as a page size makes the translation of a logical 

address into a page number and page offset particularly easy. If the size of the logical address 

space is 2m, and a page size is 2n bytes, then the high-order m-n bits of a logical address 

designate the page number, and the n low-order bits designate the page offset. Thus, the 

logical address is as follows: 

 

Where p is an index into the page table and d is the displacement within the page. As a 

concrete example, consider the memory in Figure 3.12. Here, in the logical address, n= 2 and m 

= 4. Using a page size of 4 bytes and a physical memory of 32 bytes (8 pages), we show how the 

programmer’s view of memory can be mapped into physical memory. 
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FIGURE 3.12: PAGING EXAMPLE FOR A 32-byte MEMORY WITH 4-byte PAGES 

When we use a paging scheme,we have no external fragmentation: any free frame can 

be allocated to a process that needs it. However, we may have some internal fragmentation. 

Notice that frames are allocated as units. If the memory requirements of a process do not 

happen to coincide with page boundaries, the last frame allocated may not be completely full.  

For example, if page size is 2,048 bytes, a process of 72,766 bytes will need 35 pages 

plus 1,086 bytes. It will be allocated 36 frames, resulting in internal fragmentation of 2,048 − 

1,086 = 962 bytes. In the worst case, a process would need n pages plus 1 byte. It would be 

allocated n + 1 frames, resulting in internal fragmentation of almost an entire frame. 

Hardware Support: 

The hardware implementation of the page table can be done in several ways. In the 

simplest case, the page table is implemented as a set of dedicated registers. These registers 

should be built with very high-speed logic to make the paging-address translation efficient. 
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Every access to memory must go through the paging map, so efficiency is a major 

consideration.  

The CPU dispatcher reloads these registers, just as it reloads the other registers. 

Instructions to load or modify the page-table registers are, of course, privileged, so that only 

the operating system can change the memory map. 

The use of registers for the page table is satisfactory if the page table is reasonably small 

(for example, 256 entries). Most contemporary computers, however, allow the page table to be 

very large (for example, 1 million entries). For these machines, the use of fast registers to 

implement the page table is not feasible.  

Rather, the page table is kept in main memory, and a page-table base register (PTBR) 

points to the page table. Changing page tables requires changing only this one register, 

substantially reducing context-switch time. The problem with this approach is the time required 

to access a user memory location. 

The standard solution to this problem is to use a special, small, fastlookup hardware 

cache called a translation look-aside buffer (TLB). The TLB is associative, high-speed memory. 

Each entry in the TLB consists of two parts: a key (or tag) and a value. When the associative 

memory is presented with an item, the item is compared with all keys simultaneously. If the 

item is found, the corresponding value field is returned. 

The TLB is used with page tables in the following way. The TLB contains only a few of the 

page-table entries. When a logical address is generated by the CPU, its page number is 

presented to the TLB. If the page number is found, its frame number is immediately available 

and is used to access memory. 

If the page number is not in the TLB (known as a TLB miss), a memory reference to the 

page table must be made. Depending on the CPU, this may be done automatically in hardware 

or via an interrupt to the operating system. When the frame number is obtained, we can use it 

to access memory (Figure 3.13).  
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FIGURE 3.13: PAGING HARDWARE WITH TLB 

In addition, we add the page number and frame number to the TLB, so that they will be 

found quickly on the next reference. If the TLB is already full of entries, an existing entry must 

be selected for replacement. Replacement policies range from least recently used (LRU) 

through round-robin to random. 

The percentage of times that the page number of interest is found in the TLB is called 

the hit ratio. An 80-percent hit ratio, for example, means that we find the desired page number 

in the TLB 80 percent of the time. If it takes 100 nanoseconds to access memory, then a 

mapped-memory access takes 100 nanoseconds when the page number is in the TLB. If we fail 

to find the page number in the TLB then we must first access memory for the page table and 

frame number (100 nanoseconds) and then access the desired byte in memory (100 

nanoseconds), for a total of 200 nanoseconds. 

To find the effective memory-access time, we weight the case by its probability: 

effective access time = 0.80 × 100 + 0.20 × 200 = 120 nanoseconds. 

Protection: 

Memory protection in a paged environment is accomplished by protection bits 

associated with each frame. Normally, these bits are kept in the page table. 
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One bit can define a page to be read–write or read-only. Every reference to memory 

goes through the page table to find the correct frame number. At the same time that the 

physical address is being computed, the protection bits can be checked to verify that no writes 

are being made to a read-only page.  

An attempt to write to a read-only page causes a hardware trap to the operating system 

(or memory-protection violation). We can easily expand this approach to provide a finer level of 

protection. We can create hardware to provide read-only, read–write, or execute-only 

protection; or, by providing separate protection bits for each kind of access, we can allow any 

combination of these accesses. Illegal attempts will be trapped to the operating system. 

One additional bit is generally attached to each entry in the page table: a valid–invalid 

bit. When this bit is set to valid, the associated page is in the process’s logical address space and 

is thus a legal (or valid) page. When the bit is set toinvalid, the page is not in the process’s 

logical address space. Illegal addresses are trapped by use of the valid–invalid bit. The operating 

system sets this bit for each page to allow or disallow access to the page. 

Suppose, for example, that in a system with a 14-bit address space (0 to 16383), we 

have a program that should use only addresses 0 to 10468. Given a page size of 2 KB, we have 

the situation shown in Figure 3.14. 

Addresses in pages 0, 1, 2, 3, 4, and 5 are mapped normally through the page table. Any 

attempt to generate an address in pages 6 or 7, however, will find that the valid–invalid bit is 

set to invalid, and the computer will trap to the operating system (invalid page reference). 

Notice that this scheme has created a problem. Because the program extends only to 

address 10468, any reference beyond that address is illegal. However, references to page 5 are 

classified as valid, so accesses to addresses up to 12287 are valid. Only the addresses from 

12288 to 16383 are invalid. This problem is a result of the 2-KB page size and reflects the 

internal fragmentation of paging. 
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Figure 3.14: VALID (v) OR INVALID (i) BIT IN A PAGE TABLE 

Some systems provide hardware, in the form of a page-table length register (PTLR), to 

indicate the size of the page table. This value is checked against every logical address to verify 

that the address is in the valid range for the process. Failure of this test causes an error trap to 

the operating system. 

Shared Pages: 

An advantage of paging is the possibility of sharing common code. This consideration is 

particularly important in a time-sharing environment. Consider a system that supports 40 users, 

each of whom executes a text editor. If the text editor consists of 150 KB of code and 50 KB of 

data space, we need 8,000 KB to support the 40 users.  

If the code is reentrant code (or pure code), however, it can be shared, as shown in 

Figure 3.15. Here, we see three processes sharing a three-page editor—each page 50 KB in size 

(the large page size is used to simplify the figure). Each process has its own data page. 

Reentrant code is non-self-modifying code: it never changes during execution. Thus, two 

or more processes can execute the same code at the same time. Each process has its own copy 

of registers and data storage to hold the data for the process’s execution. The data for two 

different processes will, of course, be different. Only one copy of the editor need be kept in 

physical memory.  
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Each user’s page table maps onto the same physical copy of the editor, but data pages 

are mapped onto different frames. Thus, to support 40 users, we need only one copy of the 

editor (150 KB), plus 40 copies of the 50 KB of data space per user. The total space required is 

now 2,150 KB instead of 8,000 KB—a significant savings. 

 

FIGURE 3.15: SHARING OF CODE IN A PAGING ENVIRONMENT 

STRUCTURE OF THE PAGE TABLE: 

Hierarchical Paging: 

Most modern computer systems support a large logical address space (232 to 264). In 

such an environment, the page table itself becomes excessively large. For example, consider a 

system with a 32-bit logical address space. If the page size in such a system is 4 KB (212), then a 

page table may consist of up to 1 million entries (232/212).  

Assuming that each entry consists of 4 bytes, each process may need up to 4 MB of 

physical address space for the page table alone. Clearly, we would not want to allocate the 

page table contiguously in main memory. One simple solution to this problem is to divide the 

page table into smaller pieces.We can accomplish this division in several ways. 
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FIGURE 3.16: A TWO-LEVEL PAGE-TABLE SCHEME 

 

FIGURE 3.17: ADDRESS TRANSLATION FOR A TWO-LEVEL 32-BIT PAGING ARCHITECTURE 

One way is to use a two-level paging algorithm, in which the page table itself is also 

paged (Figure 3.16). For example, consider again the system with a 32-bit logical address space 

and a page size of 4 KB. A logical address is divided into a page number consisting of 20 bits and 

a page offset consisting of 12 bits. Because we page the page table, the page number is further 

divided into a 10-bit page number and a 10-bit page offset. Thus, a logical address is as follows: 
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Where p1 is an index into the outer page table and p2 is the displacement within the 

page of the inner page table. The address-translation method for this architecture is shown in 

Figure 3.17. Because address translation works from the outer page table inward, this scheme is 

also known as a forward-mapped page table. 

Hashed Page Tables: 

A common approach for handling address spaces larger than 32 bits is to use a hashed 

page table, with the hash value being the virtual page number. Each entry in the hash table 

contains a linked list of elements that hash to the same location (to handle collisions). Each 

element consists of three fields: (1) the virtual page number, (2) the value of themapped page 

frame, and (3) a pointer to the next element in the linked list. 

The algorithm works as follows: The virtual page number in the virtual address is hashed 

into the hash table. The virtual page number is compared with field 1 in the first element in the 

linked list. If there is a match, the corresponding page frame (field 2) is used to form the desired 

physical address. If there is no match, subsequent entries in the linked list are searched for a 

matching virtual page number. This scheme is shown in Figure 3.18. 

 

FIGURE 3.18: HASHED PAGE TABLE 
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A variation of this scheme that is useful for 64-bit address spaces has been proposed. 

This variation uses clustered page tables, which are similar to hashed page tables except that 

each entry in the hash table refers to several pages (such as 16) rather than a single page. 

Therefore, a single page-table entry can store the mappings for multiple physical-page frames.  

Clustered page tables are particularly useful for sparse address spaces, where memory 

references are noncontiguous and scattered throughout the address space. 

Inverted Page Tables: 

Usually, each process has an associated page table. The page table has one entry for 

each page that the process is using (or one slot for each virtual address, regardless of the 

latter’s validity). This table representation is a natural one, since processes reference pages 

through the pages’ virtual addresses.  

The operating system must then translate this reference into a physical memory 

address. Since the table is sorted by virtual address, the operating system is able to calculate 

where in the table the associated physical address entry is located and to use that value 

directly. One of the drawbacks of this method is that each page table may consist of millions of 

entries. These tables may consume large amounts of physical memory just to keep track of how 

other physical memory is being used. 

To solve this problem, we can use an inverted page table. An inverted page table has 

one entry for each real page (or frame) of memory. Each entry consists of the virtual address of 

the page stored in that real memory location, with information about the process that owns the 

page. Thus, only one page  table is in the system, and it has only one entry for each page of 

physical memory. Figure 3.19 shows the operation of an inverted page table. 



UNIT-III 

MEMORY MANAGEMENT  R13 

 VIRTUAL MEMORY 
DEADLOCKS 

 

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 28 
 

 

FIGURE 3.19: INVERTED PAGE TABLE 

VIRTUAL MEMORY: 

The memory-management algorithms are necessary because of one basic requirement: 

The instructions being executed must be in physical memory. The first approach to meeting this 

requirement is to place the entire logical address space in physical memory. Dynamic loading 

can help to ease this restriction, but it generally requires special precautions and extra work by 

the programmer. 

The requirement that instructions must be in physical memory to be executed seems 

both necessary and reasonable; but it is also unfortunate, since it limits the size of a program to 

the size of physical memory. In fact, an examination of real programs shows us that, in many 

cases, the entire program is not needed. For instance, consider the following: 

 Programs often have code to handle unusual error conditions. 

 Arrays, lists, and tables are often allocated more memory than they actually need. 

 Certain options and features of a program may be used rarely. 

Even in those cases where the entire program is needed, it may not all be needed at the 

same time. The ability to execute a program that is only partially in memory would confer many 

benefits: 
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 A program would no longer be constrained by the amount of physical memory 

that is available. 

 Because each user program could take less physical memory, more programs 

could be run at the same time, with a corresponding increase in CPU utilization 

and throughput but with no increase in response time or turnaround time. 

 Less I/O would be needed to load or swap user programs into memory, so each 

user program would run faster. 

Thus, running a program that is not entirely in memory would benefit both the system 

and the user. 

Virtual memory involves the separation of logical memory as perceived by users from 

physical memory. This separation allows an extremely large virtual memory to be provided for 

programmers when only a smaller physical memory is available (Figure 3.20). 

 

Figure 3.20: Diagram showing virtual memory that is larger than physical memory 

Virtual memory makes the task of programming much easier, because the programmer 

no longer needs to worry about the amount of physical memory available; she can concentrate 

instead on the problem to be programmed. 
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The virtual address space of a process refers to the logical (or virtual) view of how a 

process is stored in memory. Typically, this view is that a process begins at a certain logical 

address—say, address 0—and exists in contiguous memory, as shown in Figure 3.21. 

 

Figure 3.21: Virtual address space 

Physical memory may be organized in page frames and that the physical page frames 

assigned to a process may not be contiguous. It is up to the memorymanagement unit (MMU) 

to map logical pages to physical page frames in memory. 

Note in Figure 3.21 that we allow the heap to grow upward in memory as it is used for 

dynamic memory allocation. Similarly, we allow for the stack to grow downward inmemory 

through successive function calls. The large blank space (or hole) between the heap and the 

stack is part of the virtual address space but will require actual physical pages only if the heap 

or stack grows. 

Virtual address spaces that include holes are known as sparse address spaces. Using a 

sparse address space is beneficial because the holes can be filled as the stack or heap segments 

grow or if we wish to dynamically link libraries (or possibly other shared objects) during 

program execution. 

In addition to separating logical memory from physical memory, virtual memory allows 

files and memory to be shared by two or more processes through page sharing. This leads to 

the following benefits: 
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• System libraries can be shared by several processes through mapping of the shared 

object into a virtual address space. 

• Similarly, processes can share memory 

• Pages can be shared during process creation with the fork() system call, thus speeding 

up process creation. 

DEMAND PAGING: 

Consider how an executable program might be loaded from disk into memory. One 

option is to load the entire program in physical memory at program execution time. However, a 

problem with this approach is that we may not initially need the entire program in memory.  

Suppose a program starts with a list of available options from which the user is to select. 

Loading the entire program into memory results in loading the executable code for all options, 

regardless of whether or not an option is ultimately selected by the user. An alternative 

strategy is to load pages only as they are needed. This technique is known as demand paging 

and is commonly used in virtual memory systems. 

With demand-pages virtual memory, pages are loaded only when they are demanded 

during program execution. Pages that are never accessed are thus never loaded into physical 

memory. 

A demand-paging system is similar to a paging system with swapping (Figure 3.22) 

where processes reside in secondary memory (usually a disk). When we want to execute a 

process, we swap it into memory. Rather than swapping the entire process into memory, 

though, we use a lazy swapper. 
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Figure 3.22: Transfer of a paged memory to contiguous disk space 

A lazy swapper never swaps a page into memory unless that page will be needed. In the 

context of a demand-paging system, use of the term “swapper” is technically incorrect. A 

swapper manipulates entire processes, whereas a pager is concerned with the individual pages 

of a process.We thus use “pager,” rather than “swapper,” in connection with demand paging. 

Basic Concepts 

When a process is to be swapped in, the pager guesses which pages will be used before 

the process is swapped out again. Instead of swapping in a whole process, the pager brings only 

those pages into memory. Thus, it avoids reading into memory pages that will not be used 

anyway, decreasing the swap time and the amount of physical memory needed. 

With this scheme, we need some form of hardware support to distinguish between the 

pages that are in memory and the pages that are on the disk. The valid–invalid bit scheme can 

be used for this purpose. 

 This time, however, when this bit is set to “valid,” the associated page is both legal and 

in memory. If the bit is set to “invalid,” the page either is not valid (that is, not in the logical 

address space of the process) or is valid but is currently on the disk. The page-table entry for a 

page that is brought into memory is set as usual, but the page-table entry for a page that is not 

currently in memory is either simply marked invalid or contains the address of the page on disk. 

This situation is depicted in Figure 3.23. 
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FIGURE 3.23: PAGE TABLE WHEN SOME PAGES ARE NOT IN MAIN MEMORY 

But what happens if the process tries to access a page that was not brought into 

memory? Access to a page marked invalid causes a page fault. The paging hardware, in 

translating the address through the page table, will notice that the invalid bit is set, causing a 

trap to the operating system. This trap is the result of the operating system’s failure to bring 

the desired page into memory. The procedure for handling this page fault is straightforward 

(Figure 3.24). 

1. We check an internal table (usually kept with the process control block) for this process 

to determine whether the reference was a valid or an invalid memory access. 

2. If the reference was invalid, we terminate the process. If it was valid but we have not 

yet brought in that page, we now page it in. 

3. We find a free frame (by taking one fromthe free-frame list, for example). 

4. We schedule a disk operation to read the desired page into the newly allocated frame. 
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5. When the disk read is complete, we modify the internal table kept with the process and 

the page table to indicate that the page is now in memory. 

6. We restart the instruction that was interrupted by the trap. The process can now access 

the page as though it had always been in memory. 

 

FIGURE 2.34: STEPS IN HANDLING A PAGE FAULT 

In the extreme case, we can start executing a process with no pages in memory. When 

the operating system sets the instruction pointer to the first instruction of the process, which is 

on a non-memory-resident page, the process immediately faults for the page. After this page is 

brought into memory, the process continues to execute, faulting as necessary until every page 

that it needs is in memory.  

At that point, it can execute with no more faults. This scheme is pure demand paging: 

never bring a page into memory until it is  required.  

The hardware to support demand paging is the same as the hardware for paging and 

swapping: 

 Page table. This table has the ability to mark an entry invalid through a valid–invalid 

bit or a special value of protection bits. 
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 Secondary memory. This memory holds those pages that are not present in main 

memory. The secondary memory is usually a high-speed disk. It is known as the 

swap device, and the section of disk used for this purpose is known as swap space. 

A crucial requirement for demand paging is the ability to restart any instruction after a 

page fault. 

Performance of Demand Paging: 

Demand paging can significantly affect the performance of a computer system. To see 

why, let’s compute the effective access time for a demand-paged memory. For most computer 

systems, the memory-access time, denoted ma, ranges from 10 to 200 nanoseconds. As long as 

we have no page faults, the effective access time is equal to the memory access time. If, 

however, a page fault occurs, we must first read the relevant page from disk and then access 

the desired word. 

Let p be the probability of a page fault (0 ≤ p ≤ 1). We would expect p to be close to 

zero—that is, we would expect to have only a few page faults. The effective access time is then 

effective access time = (1 − p) × ma + p × page fault time. 

To compute the effective access time, we must know how much time is needed to 

service a page fault. A page fault causes the following sequence to occur: 

1. Trap to the operating system. 

2. Save the user registers and process state. 

3. Determine that the interrupt was a page fault. 

4. Check that the page reference was legal and determine the location of the page on 

the disk. 

5. Issue a read from the disk to a free frame: 

a. Wait in a queue for this device until the read request is serviced. 

b. Wait for the device seek and/or latency time. 

c. Begin the transfer of the page to a free frame. 
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6. While waiting, allocate the CPU to some other user (CPU scheduling, optional). 

7. Receive an interrupt from the disk I/O subsystem (I/O completed). 

8. Save the registers and process state for the other user (if step 6 is executed). 

9. Determine that the interrupt was from the disk. 

10. Correct the page table and other tables to show that the desired page is now in 

memory. 

11. Wait for the CPU to be allocated to this process again. 

12. Restore the user registers, process state, and new page table, and then resume the 

interrupted instruction. 

PAGE REPLACEMENT: 

Page replacement takes the following approach. If no frame is free, we find one that is 

not currently being used and free it.We can free a frame by writing its contents to swap space 

and changing the page table (and all other tables) to indicate that the page is no longer in 

memory (Figure 3.25). We can now use the freed frame to hold the page for which the process 

faulted. We modify the page-fault service routine to include page replacement: 

1. Find the location of the desired page on the disk. 

2. Find a free frame: 

a. If there is a free frame, use it. 

b. If there is no free frame, use a page-replacement algorithm to select a victim 

frame. 

c. Write the victim frame to the disk; change the page and frame tables 

accordingly. 

3. Read the desired page into the newly freed frame; change the page and frame 

tables. 

4. Continue the user process from where the page fault occurred.  
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Notice that, if no frames are free, two page transfers (one out and one in) are required. 

This situation effectively doubles the page-fault service time and increases the effective access 

time accordingly. 

 

FIGURE 3.25: PAGE REPLACEMENT 

We can reduce this overhead by using a modify bit (or dirty bit). When this scheme is 

used, each page or frame has a modify bit associated with it in the hardware. The modify bit for  

a page is set by the hardware whenever any byte in the page is written into, indicating that the 

page has been modified. 

When we select a page for replacement, we examine its modify bit. If the bit is set, we 

know that the page has been modified since it was read in from the disk. In this case, we must 

write the page to the disk. 

If the modify bit is not set, however, the page has not been modified since it was read 

into memory. In this case, we need not write the memory page to the disk: it is already there. 

This technique also applies to read-only pages (for example, pages of binary code).  

Such pages cannot be modified; thus, they may be discarded when desired. This scheme 

can significantly reduce the time required to service a page fault, since it reduces I/O time by 

one-half if the page has not been modified. 
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Page replacement is basic to demand paging. It completes the separation between 

logical memory and physical memory. With this mechanism, an enormous virtual memory can 

be provided for programmers on a smaller physical memory. With no demand paging, user 

addresses are mapped into physical addresses, and the two sets of addresses can be different. 

All the pages of a process still must be in physical memory, however. With demand 

paging, the size of the logical address space is no longer constrained by physical memory. If we 

have a user process of twenty pages, we can execute it in ten frames simply by using demand 

paging and using a replacement algorithm to find a free frame whenever necessary.  

If a page that has been modified is to be replaced, its contents are copied to the disk. A 

later reference to that page will cause a page fault. At that time, the page will be brought back 

into memory, perhaps replacing some other page in the process. 

We must solve two major problems to implement demand paging: we must develop a 

frame-allocation algorithm and a page-replacement algorithm. That is, if we have multiple 

processes in memory, we must decide how many frames to allocate to each process; and when 

page replacement is required, we must select the frames that are to be replaced.  

Designing appropriate algorithms to solve these problems is an important task, because 

disk I/O is so expensive. Even slight improvements in demand-paging methods yield large gains 

in system performance. There are many different page-replacement algorithms. Every 

operating system probably has its own replacement scheme. 

We evaluate an algorithm by running it on a particular string of memory references and 

computing the number of page faults. The string of memory references is called a reference 

string. We can generate reference strings artificially or we can trace a given system and record 

the address of each memory reference. The latter choice produces a large number of data. To 

reduce the number of data, we use two facts. 

First, for a given page size (and the page size is generally fixed by the hardware or 

system), we need to consider only the page number, rather than the entire address.  

Second, ifwehave a reference to a page p, then any references to page p that 

immediately follow will never cause a page fault. Page p will be in memory after the first 

reference, so the immediately following references will not fault. 
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To determine the number of page faults for a particular reference string and page-

replacement algorithm, we also need to know the number of page frames available. Obviously, 

as the number of frames available increases, the number of page faults decreases. 

We next illustrate several page-replacement algorithms. In doing so, we use the 

reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 for a memory with three 

frames. 

FIFO PAGE REPLACEMENT: 

The simplest page-replacement algorithm is a first-in, first-out (FIFO) algorithm. A FIFO 

replacement algorithm associates with each page the time when that page was brought into 

memory. When a page must be replaced, the oldest page is chosen. 

We can create a FIFO queue to hold all pages in memory. We replace the page at the 

head of the queue. When a page is brought into memory, we insert it at the tail of the queue.  

For our example reference string, our three frames are initially empty. The first three 

references (7, 0, 1) cause page faults and are brought into these empty frames. The next 

reference (2) replaces page 7, because page 7 was brought in first.  

Since 0 is the next reference and 0 is already in memory, we have no fault for this 

reference. The first reference to 3 results in replacement of page 0, since it is now first in line. 

Because of this replacement, the next reference, to 0, will fault. 

Page 1 is then replaced by page 0. This process continues as shown in Figure 3.26. Every 

time a fault occurs, we show which pages are in our three frames. There are fifteen faults 

altogether. 

 

FIGURE 3.26: FIFO PAGE-REPLACEMENT ALGORITHM 
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The FIFO page-replacement algorithm is easy to understand and program. However, its 

performance is not always good. On the one hand, the page replaced may be an initialization 

module that was used a long time ago and is no longer needed. On the other hand, it could 

contain a heavily used variable that was initialized early and is in constant use. 

Notice that, even if we select for replacement a page that is in active use, everything still 

works correctly. After we replace an active page with a new one, a fault occurs almost 

immediately to retrieve the active page.  

Some other page must be replaced to bring the active page back into memory. Thus, a 

bad replacement choice increases the page-fault rate and slows process execution. It does not, 

however, cause incorrect execution. 

To illustrate the problems that are possible with a FIFO page-replacement algorithm, 

consider the following reference string: 

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 

Figure 3.27 shows the curve of page faults for this reference string versus the number of 

available frames. Notice that the number of faults for four frames (ten) is greater than the 

number of faults for three frames (nine)! This most unexpected result is known as Belady’s 

anomaly: for some page-replacement algorithms, the page-fault rate may increase as the 

number of allocated frames increases. 

 

FIGURE 3.27: PAGE-FAULT CURVE FOR FIFO REPLACEMENT ON A REFERENCE STRING 
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OPTIMAL PAGE REPLACEMENT: 

One result of the discovery of Belady’s anomaly was the search for an optimal page-

replacement algorithm—the algorithm that has the lowest page-fault rate of all algorithms and 

will never suffer from Belady’s anomaly. Such an algorithm does exist and has been called OPT 

or MIN. It is simply this: Replace the page that will not be used for the longest period of time. 

Use of this page-replacement algorithm guarantees the lowest possible page fault rate 

for a fixed number of frames. 

For example, on our sample reference string, the optimal page-replacement algorithm 

would yield nine page faults, as shown in Figure 3.28. The first three references cause faults 

that fill the three empty frames. The reference to page 2 replaces page 7, because page 7 will 

not be used until reference 18, whereas page 0 will be used at 5, and page 1 at 14. The 

reference to page 3 replaces page 1, as page 1 will be the last of the three pages in memory to 

be referenced again. With only nine page faults, optimal replacement is much better than a 

FIFO algorithm, which results in fifteen faults. 

 

FIGURE 3.28: OPTIMAL PAGE-REPLACEMENT ALGORITHM 

Unfortunately, the optimal page-replacement algorithm is difficult to implement, 

because it requires future knowledge of the reference string. 

LRU PAGE REPLACEMENT: 

If the optimal algorithm is not feasible, perhaps an approximation of the optimal 

algorithm is possible. The key distinction between the FIFO and OPT algorithms (other than 

looking backward versus forward in time) is that the FIFO algorithm uses the time when a page 

was brought into memory, whereas the OPT algorithm uses the time when a page is to be used. 

If we use the recent past as an approximation of the near future, then we can replace the page 

that has not been used for the longest period of time. This approach is the least recently used 

(LRU) algorithm. 
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LRU replacement associates with each page the time of that page’s last use. When a 

page must be replaced, LRU chooses the page that has not been used for the longest period of 

time. We can think of this strategy as the optimal page-replacement algorithm looking 

backward in time, rather than forward.  

The result of applying LRU replacement to our example reference string is shown in 

Figure 3.29. The LRU algorithm produces twelve faults. Notice that the first five faults are the 

same as those for optimal replacement. When the reference to page 4 occurs, however, LRU 

replacement sees that, of the three frames in memory, page 2 was used least recently.  

 

FIGURE 3.29: LRU PAGE-REPLACEMENT ALGORITHM 

Thus, the LRU algorithm replaces page 2, not knowing that page 2 is about to be used. 

When it then faults for page 2, the LRU algorithm replaces page 3, since it is now the least 

recently used of the three pages in memory. Despite these problems, LRU replacement with 

twelve faults is much better than FIFO replacement with fifteen. 

The LRU policy is often used as a page-replacement algorithm and is considered to be 

good. The major problem is how to implement LRU replacement. An LRU page-replacement 

algorithm may require substantial hardware assistance. The problem is to determine an order 

for the frames defined by the time of last use. Two implementations are feasible: 

 Counters. In the simplest case, we associate with each page-table entry a time-of-use 

field and add to the CPU a logical clock or counter. The clock is incremented for every 

memory reference. Whenever a reference to a page is made, the contents of the clock 

register are copied to the time-of-use field in the page-table entry for that page. In this 

way, we always have the “time” of the last reference to each page.We replace the page 

with the smallest time value. This scheme requires a search of the page table to find the 

LRU page and a write to memory (to the time-of-use field in the page table) for each 

memory access. The times must also be maintained when page tables are changed (due 

to CPU scheduling). Overflow of the clock must be considered. 



UNIT-III 

MEMORY MANAGEMENT  R13 

 VIRTUAL MEMORY 
DEADLOCKS 

 

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 43 
 

 Stack. Another approach to implementing LRU replacement is to keep a stack of page 

numbers. Whenever a page is referenced, it is removed from the stack and put on the 

top. In this way, the most recently used page is always at the top of the stack and the 

least recently used page is always at the bottom. 

Like optimal replacement, LRU replacement does not suffer from Belady’s anomaly. 

Both belong to a class of page-replacement algorithms, called stack algorithms, that can never 

exhibit Belady’s anomaly.  

A stack algorithm is an algorithm for which it can be shown that the set of pages in 

memory for n frames is always a subset of the set of pages that would be in memory with n + 1 

frames.  

For LRU replacement, the set of pages in memory would be the n most recently 

referenced pages. If the number of frames is increased, these n pages will still be the most 

recently referenced and so will still be in memory. 

COUNTING-BASED PAGE REPLACEMENT: 

There are many other algorithms that can be used for page replacement. For example, 

we can keep a counter of the number of references that have been made to each page and 

develop the following two schemes.  

• The least frequently used (LFU) page-replacement algorithm requires that the page 

with the smallest count be replaced. The reason for this selection is that an actively used 

page should have a large reference count. A problem arises, however, when a page is 

used heavily during the initial phase of a process but then is never used again. Since it 

was used heavily, it has a large count and remains in memory even though it is no longer 

needed. 

• The most frequently used (MFU) page-replacement algorithm is based on the argument 

that the page with the smallest count was probably just brought in and has yet to be 

used. 

ALLOCATION OF FRAMES: 

We turn next to the issue of allocation. How do we allocate the fixed amount of free 

memory among the various processes? If we have 93 free frames and two processes, how many 

frames does each process get?  
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The simplest case is the single-user system. Consider a single-user system with 128 KB of 

memory composed of pages 1 KB in size. This system has 128 frames. The operating system 

may take 35 KB, leaving 93 frames for the user process. Under pure demand paging, all 93 

frames would initially be put on the free-frame list.  

When a user process started execution, it would generate a sequence of page faults. 

The first 93 page faults would all get free frames from the free-frame list. When the free-frame 

list was exhausted, a page-replacement algorithm would be used to select one of the 93 in-

memory pages to be replaced with the 94th, and so on. When the process terminated, the 93 

frames would once again be placed on the free-frame list. 

Minimum Number of Frames: 

Our strategies for the allocation of frames are constrained in various ways.We cannot, 

for example, allocate more than the total number of available frames (unless there is page 

sharing).We must also allocate at least a minimum number of frames. Here, we look more 

closely at the latter requirement. 

One reason for allocating at least a minimum number of frames involves performance. 

Obviously, as the number of frames allocated to each process decreases, the page-fault rate 

increases, slowing process execution. In addition, remember that, when a page fault occurs 

before an executing instruction is complete, the instruction must be restarted. Consequently, 

we must have enough frames to hold all the different pages that any single instruction can 

reference. 

Allocation Algorithms: 

The easiest way to split m frames among n processes is to give everyone an equal share, 

m/n frames (ignoring frames needed by the operating system for the moment). For instance, if 

there are 93 frames and five processes, each process will get 18 frames. The three leftover 

frames can be used as a free-frame buffer pool. This scheme is called equal allocation. 

An alternative is to recognize that various processes will need differing amounts of 

memory. Consider a system with a 1-KB frame size. If a small student process of 10 KB and an 

interactive database of 127 KB are the only two processes running in a system with 62 free 

frames, it does not make much sense to give each process 31 frames. The student process does 

not need more than 10 frames, so the other 21 are, strictly speaking, wasted. 
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To solve this problem, we can use proportional allocation, in which we allocate 

available memory to each process according to its size.  

Global versus Local Allocation: 

Another important factor in the way frames are allocated to the various processes is 

page replacement.With multiple processes competing for frames, we can classify page-

replacement algorithms into two broad categories: global replacement and local replacement.  

Global replacement allows a process to select a replacement frame from the set of all 

frames, even if that frame is currently allocated to some other process; that is, one process can 

take a frame from another. Local replacement requires that each process select from only its 

own set of allocated frames. 

One problem with a global replacement algorithm is that a process cannot control its 

own page-fault rate. The set of pages in memory for a process depends not only on the paging 

behavior of that process but also on the paging behavior of other processes. 

Non-Uniform Memory Access: 

Thus far in our coverage of virtual memory, we have assumed that all main memory is 

created equal—or at least that it is accessed equally. On many computer systems, that is not 

the case. Often, in systems with multiple CPUs , a given CPU can access some sections of main 

memory faster than it can access others. These performance differences are caused by how  

CPUs and memory are interconnected in the system. 

Systems in which memory access times vary significantly are known collectively as non-

uniform memory access (NUMA) systems, and without exception, they are slower than 

systems in which memory and CPUs are located on the same motherboard. 

Managing which page frames are stored at which locations can significantly affect 

performance in NUMA systems. If we treat memory as uniform in such a system, CPUs may wait 

significantly longer for memory access than if we modify memory allocation algorithms to take 

NUMA into account. Similar changes must be made to the scheduling system.  

The goal of these changes is to have memory frames allocated “as close as possible” to 

the CPU on which the process is running. The definition of “close” is “with minimum latency,” 

which typically means on the same system board as the CPU. 
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THRASHING: 

If the number of frames allocated to a low-priority process falls below the minimum 

number required by the computer architecture, we must suspend that process’s execution.We 

should then page out its remaining pages, freeing all its allocated frames. This provision 

introduces a swap-in, swap-out level of intermediate CPU scheduling. 

In fact, look at any process that does not have “enough” frames. If the process does not 

have the number of frames it needs to support pages in active use, it will quickly page-fault. At 

this point, it must replace some page. 

However, since all its pages are in active use, it must replace a page that will be needed 

again right away. Consequently, it quickly faults again, and again, and again, replacing pages 

that it must bring back in immediately.  

This high paging activity is called thrashing. A process is thrashing if it is spending more 

time paging than executing. 

Cause of Thrashing: 

Thrashing results in severe performance problems. Consider the following scenario, 

which is based on the actual behavior of early paging systems. The operating system monitors 

CPU utilization. If CPU utilization is too low, we increase the degree of multiprogramming by 

introducing a new process to the system.  

A global page-replacement algorithm is used; it replaces pages without regard to the 

process to which they belong.Nowsuppose that a process enters a new phase in its execution 

and needs more frames. It starts faulting and taking frames away from other processes. These 

processes need those pages, however, and so they also fault, taking frames from other 

processes. These faulting processes must use the paging device to swap pages in and out. As 

they queue up for the paging device, the ready queue empties. As processes wait for the paging 

device, CPU utilization decreases. 

The CPU scheduler sees the decreasing CPU utilization and increases the degree of 

multiprogramming as a result. The new process tries to get started by taking frames from 

running processes, causing more page faults and a longer queue for the paging device. As a 

result, CPU utilization drops even further, and the CPU scheduler tries to increase the degree of 

multiprogramming even more.  



UNIT-III 

MEMORY MANAGEMENT  R13 

 VIRTUAL MEMORY 
DEADLOCKS 

 

jkmaterials.yolasite.com jkdirectory.yolasite.com Page 47 
 

Thrashing has occurred, and system throughput plunges. The pagefault rate increases 

tremendously. As a result, the effective memory-access time increases. No work is getting 

done, because the processes are spending all their time paging. 

This phenomenon is illustrated in Figure 3.30, in which CPU utilization is plotted against 

the degree of multiprogramming. As the degree of multiprogramming increases, CPU utilization 

also increases, although more slowly, until a maximum is reached. 

 

FIGURE 3.30: TRASHING 

MEMORY-MAPPED FILES: 

Consider a sequential read of a file on disk using the standard system calls open(), 

read(), and write(). Each file access requires a system call and disk access. Alternatively, we can 

use the virtual memory techniques to treat file I/O as routine memory accesses. This approach, 

known as memory mapping a file, allows a part of the virtual address space to be logically 

associated with the file. 

Basic Mechanism: 

Memory mapping a file is accomplished by mapping a disk block to a page (or pages) in 

memory. Initial access to the file proceeds through ordinary demand paging, resulting in a page 

fault. However, a page-sized portion of the file is read from the file system into a physical page 

(some systems may opt to read in more than a page-sized chunk of memory at a time).  

Subsequent reads and writes to the file are handled as routine memory accesses. 

Manipulating files through memory rather than incurring the overhead of using the read() and 

write() system calls simplifies and speeds up file access and usage. 
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Note that writes to the file mapped in memory are not necessarily immediate 

(synchronous) writes to the file on disk. Some systems may choose to update the physical file 

when the operating system periodically checks whether the page in memory has been 

modified.When the file is closed, all the memory-mapped data are written back to disk and 

removed from the virtual memory of the process. 

Some operating systems provide memory mapping only through a specific system call 

and use the standard system calls to perform all other file I/O. However, some systems choose 

to memory-map a file regardless of whether the file was specified as memory-mapped. 

Shared Memory in the Windows API: 

The general outline for creating a region of shared memory using memorymapped files 

in theWindows API involves first creating a file mapping for the file to be mapped and then 

establishing a view of the mapped file in a process’s virtual address space. A second process can 

then open and create a view of the mapped file in its virtual address space. The mapped file 

represents the shared-memory object that will enable communication to take place between 

the processes. 

Memory-Mapped I/O: 

In the case of I/O, each I/O controller includes registers to hold commands and the data 

being transferred. Usually, special I/O instructions allow data transfers between these registers 

and system memory.  

To allow more convenient access to I/O devices, many computer architectures provide 

memory-mapped I/O. In this case, ranges of memory addresses are set aside and are mapped 

to the device registers. Reads and writes to these memory addresses cause the data to be 

transferred to and from the device registers. This method is appropriate for devices that have 

fast response times, such as video controllers. 

ALLOCATING KERNEL MEMORY: 

When a process running in user mode requests additional memory, pages are allocated 

from the list of free page frames maintained by the kernel. 

Kernel memory is often allocated from a free-memory pool different from the list used 

to satisfy ordinary user-mode processes. There are two primary reasons for this: 
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1. The kernel requests memory for data structures of varying sizes, some of which are less 

than a page in size. As a result, the kernel must use memory conservatively and attempt 

to minimize waste due to fragmentation. This is especially important because many 

operating systems do not subject kernel code or data to the paging system. 

2. Pages allocated to user-mode processes do not necessarily have to be in contiguous 

physical memory. However, certain hardware devices interact directly with physical 

memory—without the benefit of a virtual memory interface—and consequently may 

require memory residing in physically contiguous pages. 

There are two strategies for managing free memory that is assigned to kernel processes: 

the “buddy system” and slab allocation. 

Buddy System: 

The buddy system allocates memory from a fixed-size segment consisting of physically 

contiguous pages. Memory is allocated from this segment using a power-of-2 allocator, which 

satisfies requests in units sized as a power of 2 (4 KB, 8 KB, 16 KB, and so forth). A request in 

units not appropriately sized is rounded up to the next highest power of 2. For example, a 

request for 11 KB is satisfied with a 16-KB segment. 

 

Figure 3.31: Buddy system allocation 

Let’s consider a simple example. Assume the size of a memory segment is initially 256 

KB and the kernel requests 21 KB of memory.  
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The segment is initially divided into two buddies—which we will call AL and AR—each 

128 KB in size. One of these buddies is further divided into two 64-KB buddies— BL and BR. 

However, the next-highest power of 2 from 21 KB is 32 KB so either BL or BR is again divided 

into two 32-KB buddies, CL and CR. One of these buddies is used to satisfy the 21-KB request. 

This scheme is illustrated in Figure 3.31, where CL is the segment allocated to the 21-KB 

request. 

An advantage of the buddy system is how quickly adjacent buddies can be combined to 

form larger segments using a technique known as coalescing. The obvious drawback to the  

buddy system is that rounding up to the next highest power of 2 is very likely to cause 

fragmentation within allocated segments. 

Slab Allocation: 

A second strategy for allocating kernel memory is known as slab allocation. A slab is 

made up of one or more physically contiguous pages. A cache consists of one or more slabs.  

There is a single cache for each unique kernel data structure —for example, a separate 

cache for the data structure representing process descriptors, a separate cache for file objects, 

a separate cache for semaphores, and so forth. Each cache is populated with objects that are 

instantiations of the kernel data structure the cache represents.  

For example, the cache representing semaphores stores instances of semaphore 

objects, the cache representing process descriptors stores instances of process descriptor 

objects, and so forth. 

 

Figure 3.32: Slab allocation 
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The relationship among slabs, caches, and objects is shown in Figure 3.32. The figure 

shows two kernel objects 3 KB in size and three objects 7 KB in size, each stored in a separate 

cache. 

The slab-allocation algorithm uses caches to store kernel objects. When a cache is 

created, a number of objects—which are initially marked as free—are allocated to the cache. 

The number of objects in the cache depends on the size of the associated slab. 

In Linux, a slab may be in one of three possible states: 

1. Full. All objects in the slab are marked as used. 

2. Empty. All objects in the slab are marked as free. 

3. Partial. The slab consists of both used and free objects. 

The slab allocator first attempts to satisfy the request with a free object in a partial slab. 

If none exists, a free object is assigned from an empty slab. If no empty slabs are available, a 

new slab is allocated from contiguous physical pages and assigned to a cache; memory for the 

object is allocated from this slab. 

The slab allocator provides two main benefits: 

1. No memory is wasted due to fragmentation. Fragmentation is not an issue because each 

unique kernel data structure has an associated cache, and each cache is made up of one or 

more slabs that are divided into chunks the size of the objects being represented. Thus, 

when the kernel requests memory for an object, the slab allocator returns the exact 

amount of memory required to represent the object. 

2. Memory requests can be satisfied quickly. The slab allocation scheme is thus particularly 

effective for managing memory when objects are frequently allocated and deallocated, as is 

often the case with requests from the kernel. The act of allocating—and releasing—memory 

can be a time-consuming process. However, objects are created in advance and thus can be 

quickly allocated from the cache. Furthermore, when the kernel has finished with an object 

and releases it, it is marked as free and returned to its cache, thus making it immediately 

available for subsequent requests from the kernel.  

The slab allocator first appeared in the Solaris 2.4 kernel. Because of its general-purpose 

nature, this allocator is now also used for certain user-mode memory requests in Solaris.  
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Linux originally used the buddy system; however, beginning with Version 2.2, the Linux 

kernel adopted the slab allocator. 

DEADLOCKS: 

In a multiprogramming environment, several processes may compete for a finite 

number of resources. A process requests resources; if the resources are not available at that 

time, the process enters a waiting state. Sometimes, a waiting process is never again able to 

change state, because the resources it has requested are held by other waiting processes. This 

situation is called a deadlock. 

SYSTEM MODEL: 

A system consists of a finite number of resources to be distributed among a number of 

competing processes. The resources may be partitioned into several types (or classes), each 

consisting of some number of identical instances.  

CPU cycles, files, and I/O devices (such as printers and DVD drives) are examples of 

resource types. If a system has two CPUs, then the resource type CPU has two instances. 

Similarly, the resource type printer may have five instances. 

If a process requests an instance of a resource type, the allocation of any instance of the 

type should satisfy the request. If it does not, then the instances are not identical, and the 

resource type classes have not been defined properly. 

Various synchronization tools, such as mutex locks and semaphores are also considered 

system resources, and they are a common source of deadlock. A process must request a 

resource before using it and must release the resource after using it. A process may request as 

many resources as it requires to carry out its designated task. Obviously, the number of 

resources requested may not exceed the total number of resources available in the system. In 

other words, a process cannot request three printers if the system has only two. 

Under the normal mode of operation, a process may utilize a resource in only the 

following sequence: 

 Request. The process requests the resource. If the request cannot be granted 

immediately (for example, if the resource is being used by another process), then the 

requesting process must wait until it can acquire the resource. 
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 Use. The process can operate on the resource (for example, if the resource is a printer, 

the process can print on the printer). 

 Release. The process releases the resource. 

The request and release of resources may be system calls like request() and release() 

device, open() and close() file, and allocate() and free() memory system calls. 

For each use of a kernel-managed resource by a process or thread, the operating system 

checks to make sure that the process has requested and has been allocated the resource. A 

system table records whether each resource is free or allocated.  

For each resource that is allocated, the table also records the process to which it is 

allocated. If a process requests a resource that is currently allocated to another process, it can 

be added to a queue of processes waiting for this resource.  

A set of processes is in a deadlocked state when every process in the set is waiting for 

an event that can be caused only by another process in the set. The events with which we are 

mainly concerned here are resource acquisition and release. The resources may be either 

physical resources (for example, printers, tape drives, memory space, and CPU cycles) or logical 

resources (for example, semaphores, mutex locks, and files). However, other types of events 

may result in deadlocks. 

DEADLOCK CHARACTERIZATION: 

In a deadlock, processes never finish executing, and system resources are tied up, 

preventing other jobs fromstarting. Beforewe discuss the various methods for dealing with the 

deadlock problem, we look more closely at features that characterize deadlocks. 

Necessary Conditions: 

A deadlock situation can arise if the following four conditions hold simultaneously in a 

system: 

1. Mutual exclusion. At least one resource must be held in a non-sharable mode; that is, 

only one process at a time can use the resource. If another process requests that 

resource, the requesting process must be delayed until the resource has been released. 
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2. Hold and wait. A process must be holding at least one resource and waiting to acquire 

additional resources that are currently being held by other processes. 

3. No preemption. Resources cannot be preempted; that is, a resource can be released 

only voluntarily by the process holding it, after that process has completed its task. 

4. Circular wait. A set {P0, P1, ..., Pn} of waiting processes must exist such that P0 is 

waiting for a resource held by P1, P1 is waiting for a resource held by P2, ..., Pn−1 is 

waiting for a resource held by Pn, and Pn is waiting for a resource held by P0. 

We emphasize that all four conditions must hold for a deadlock to occur. The circular-

wait condition implies the hold-and-wait condition, so the four conditions are not completely 

independent. 

Resource-Allocation Graph: 

Deadlocks can be described more precisely in terms of a directed graph called a system 

resource-allocation graph. This graph consists of a set of vertices V and a set of edges E. The set 

of vertices V is partitioned into two different types of nodes: P = {P1, P2, ..., Pn}, the set 

consisting of all the active processes in the system, and R = {R1, R2, ..., Rm}, the set consisting of 

all resource types in the system. 

Adirected edge fromprocess Pi to resource type Rj is denoted by Pi → Rj ; it signifies that 

process Pi has requested an instance of resource type Rj and is currently waiting for that 

resource. A directed edge from resource type Rj to process Pi is denoted by Rj → Pi ; it signifies 

that an instance of resource type Rj has been allocated to process Pi . A directed edge Pi → Rj is 

called a request edge; a directed edge Rj → Pi is called an assignment edge. 

Pictorially, we represent each process Pi as a circle and each resource type Rj as a 

rectangle. Since resource type Rj may have more than one instance, we represent each such 

instance as a dot within the rectangle. Note that a request edge points to only the rectangle Rj , 

whereas an assignment edge must also designate one of the dots in the rectangle. 

When process Pi requests an instance of resource type Rj , a request edge is inserted in 

the resource-allocation graph. When this request can be fulfilled, the request edge is 

instantaneously transformed to an assignment edge. When the process no longer needs access 

to the resource, it releases the resource. As a result, the assignment edge is deleted. 
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The resource-allocation graph shown in Figure 3.33 depicts the following situation. 

• The sets P, R, and E: 

o P = {P1, P2, P3} 

o R = {R1, R2, R3, R4} 

o E = {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, R3 → P3} 

• Resource instances: 

o One instance of resource type R1 

o Two instances of resource type R2 

o One instance of resource type R3 

o Three instances of resource type R4 

• Process states: 

o Process P1 is holding an instance of resource type R2 and is waiting for an 

instance of resource type R1. 

o Process P2 is holding an instance of R1 and an instance of R2 and is waiting for 

an instance of R3. 

o Process P3 is holding an instance of R3. 

 

FIGURE 3.33: RESOURCE-ALLOCATION GRAPH 
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Given the definition of a resource-allocation graph, it can be shown that, if the graph 

contains no cycles, then no process in the system is deadlocked. If the graph does contain a 

cycle, then a deadlock may exist. 

If each resource type has exactly one instance, then a cycle implies that a deadlock has 

occurred. If the cycle involves only a set of resource types, each of which has only a single 

instance, then a deadlock has occurred. Each process involved in the cycle is deadlocked. In this 

case, a cycle in the graph is both a necessary and a sufficient condition for the existence of 

deadlock. 

If each resource type has several instances, then a cycle does not necessarily imply that 

a deadlock has occurred. In this case, a cycle in the graph is a necessary but not a sufficient 

condition for the existence of deadlock. 

 

FIGURE 3.34: RESOURCE-ALLOCATION GRAPH WITH A DEADLOCK 

To illustrate this concept, we return to the resource-allocation graph depicted in Figure 

3.33. Suppose that process P3 requests an instance of resource type R2. Since no resource 

instance is currently available,we add a request edge P3→ R2 to the graph (Figure 3.34). At this 

point, two minimal cycles exist in the system: 

P1 → R1 → P2 → R3 → P3 → R2 → P1 

P2 → R3 → P3 → R2 → P2 

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource R3, 

which is held by process P3. Process P3 is waiting for either process P1 or process P2 to release 

resource R2. In addition, process P1 is waiting for process P2 to release resource R1. 
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Now consider the resource-allocation graph in Figure 3.35. In this example, we also have 

a cycle: 

P1 → R1 → P3 → R2 → P1 

 

FIGURE 3.35: RESOURCE-ALLOCATION GRAPH WITH A CYCLE BUT NO DEADLOCK 

However, there is no deadlock. Observe that process P4 may release its instance of 

resource type R2. That resource can then be allocated to P3, breaking the cycle. In summary, if 

a resource-allocation graph does not have a cycle, then the system is not in a deadlocked state. 

If there is a cycle, then the system may or may not be in a deadlocked state. 

METHODS FOR HANDLING DEADLOCKS: 

Generally speaking, we can deal with the deadlock problem in one of three ways: 

• We can use a protocol to prevent or avoid deadlocks, ensuring that the system will 

never enter a deadlocked state. 

• We can allow the system to enter a deadlocked state, detect it, and recover. 

• We can ignore the problem altogether and pretend that deadlocks never occur in 

the system. 

The third solution is the one used by most operating systems, including Linux 

andWindows. It is then up to the application developer to write programs that handle 

deadlocks. To ensure that deadlocks never occur, the system can use either a 

deadlockprevention or a deadlock-avoidance scheme. Deadlock prevention provides a set of 

methods to ensure that at least one of the necessary conditions cannot hold. 
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Deadlock avoidance requires that the operating system be given additional information 

in advance concerning which resources a process will request and use during its lifetime. With 

this additional knowledge, the operating system can decide for each request whether or not 

the process should wait. To decide whether the current request can be satisfied or must be 

delayed, the system must consider the resources currently available, the resources currently 

allocated to each process, and the future requests and releases of each process. 

If a system does not employ either a deadlock-prevention or a deadlock avoidance 

algorithm, then a deadlock situation may arise. In this environment, the system can provide an 

algorithm that examines the state of the system to determine whether a deadlock has occurred 

and an algorithm to recover from the deadlock (if a deadlock has indeed occurred). 

DEADLOCK PREVENTION: 

By ensuring that at least one of the necessary conditions cannot hold, we can prevent 

the occurrence of a deadlock. We elaborate on this approach by examining each of the four 

necessary conditions separately. 

Mutual Exclusion: 

The mutual exclusion condition must hold. That is, at least one resource must be 

nonsharable. Sharable resources, in contrast, do not require mutually exclusive access and thus 

cannot be involved in a deadlock.  

Read-only files are a good example of a sharable resource. If several processes attempt 

to open a read-only file at the same time, they can be granted simultaneous access to the file. A 

process never needs to wait for a sharable resource.  

In general, however, we cannot prevent deadlocks by denying the mutual-exclusion 

condition, because some resources are intrinsically nonsharable. For example, a mutex lock 

cannot be simultaneously shared by several processes. 

Hold and Wait: 

To ensure that the hold-and-wait condition never occurs in the system, we must 

guarantee that, whenever a process requests a resource, it does not hold any other resources. 

One protocol that we can use requires each process to request and be allocated all its resources 

before it begins execution.  
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We can implement this provision by requiring that system calls requesting resources for 

a process precede all other system calls. An alternative protocol allows a process to request 

resources only when it has none. A process may request some resources and use them. Before 

it can request any additional resources, it must release all the resources that it is currently 

allocated. 

Both these protocols have two main disadvantages. First, resource utilization may be 

low, since resources may be allocated but unused for a long period. Second, starvation is 

possible. A process that needs several popular resources may have to wait indefinitely, because 

at least one of the resources that it needs is always allocated to some other process. 

No Preemption: 

The third necessary condition for deadlocks is that there be no preemption of resources 

that have already been allocated. To ensure that this condition does not hold, we can use the 

following protocol. If a process is holding some resources and requests another resource that 

cannot be immediately allocated to it (that is, the process must wait), then all resources the 

process is currently holding are preempted. In otherwords, these resources are implicitly 

released.  

The preempted resources are added to the list of resources for which the process is 

waiting. The process will be restarted only when it can regain its old resources, as well as the 

new ones that it is requesting. 

Alternatively, if a process requests some resources, we first check whether they are 

available. If they are, we allocate them. If they are not, we check whether they are allocated to 

some other process that is waiting for additional resources.  

If so, we preempt the desired resources from the waiting process and allocate them to 

the requesting process. If the resources are neither available nor held by a waiting process, the 

requesting process must wait. While it is waiting, some of its resources may be preempted, but 

only if another process requests them.  

A process can be restarted only when it is allocated the new resources it is requesting 

and recovers any resources that were preempted while it was waiting. This protocol is often 

applied to resources whose state can be easily saved and restored later, such as CPU registers 

and memory space.  
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Circular Wait: 

The fourth and final condition for deadlocks is the circular-wait condition. One way to 

ensure that this condition never holds is to impose a total ordering of all resource types and to 

require that each process requests resources in an increasing order of enumeration. 

To illustrate, we let R = {R1, R2, ..., Rm} be the set of resource types. We assign to each 

resource type a unique integer number, which allows us to compare two resources and to 

determine whether one precedes another in our ordering. Formally, we define a one-to-one 

function F: R→N, where N is the set of natural numbers. For example, if the set of resource 

types R includes tape drives, disk drives, and printers, then the function F might be defined as 

follows: 

F(tape drive) = 1 

F(disk drive) = 5 

F(printer) = 12 

We can now consider the following protocol to prevent deadlocks: Each process can 

request resources only in an increasing order of enumeration. That is, a process can initially 

request any number of instances of a resource type —say, Ri . After that, the process can 

request instances of resource type Rj if and only if F(Rj ) > F(Ri ). 

Alternatively, we can require that a process requesting an instance of resource type Rj 

must have released any resources Ri such that F(Ri ) ≥ F(Rj ). Note also that if several instances 

of the same resource type are needed, a single request for all of them must be issued. If these 

two protocols are used, then the circular-wait condition cannot hold. 

DEADLOCK AVOIDANCE: 

Deadlock-prevention algorithms, prevent deadlocks by limiting how requests can be 

made. The limits ensure that at least one of the necessary conditions for deadlock cannot 

occur. Possible side effects of preventing deadlocks by this method, however, are low device 

utilization and reduced system throughput. 

An alternative method for avoiding deadlocks is to require additional information about 

how resources are to be requested. For example, in a system with one tape drive and one 

printer, the system might need to know that process P will request first the tape drive and then 

the printer before releasing both resources, whereas process Q will request first the printer and 
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then the tape drive. With this knowledge of the complete sequence of requests and releases for 

each process, the system can decide for each request whether or not the process should wait in 

order to avoid a possible future deadlock. 

The various algorithms that use this approach differ in the amount and type of 

information required. The simplest and most useful model requires that each process declare 

the maximum number of resources of each type that it may need. 

A deadlock-avoidance algorithm dynamically examines the resource-allocation state to 

ensure that a circular-wait condition can never exist. The resourceallocation state is defined by 

the number of available and allocated resources and the maximum demands of the processes. 

Safe State: 

A state is safe if the system can allocate resources to each process (up to its maximum) 

in some order and still avoid a deadlock. More formally, a system is in a safe state only if there 

exists a safe sequence.  

A sequence of processes <P1, P2, ..., Pn> is a safe sequence for the current allocation 

state if, for each Pi , the resource requests that Pi can still make can be satisfied by the currently 

available resources plus the resources held by all Pj, with j < i. In this situation, if the resources 

that Pi needs are not immediately available, then Pi can wait until all Pj have finished. When 

they have finished, Pi can obtain all of its needed resources, complete its designated task, 

return its allocated resources, and terminate. When Pi terminates, Pi+1 can obtain its needed 

resources, and so on. If no such sequence exists, then the system state is said to be unsafe. 
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FIGURE 3.36: SAFE, UNSAFE, AND DEADLOCKED STATE SPACES 

A safe state is not a deadlocked state. Conversely, a deadlocked state is an unsafe state. 

Not all unsafe states are deadlocks, however (Figure 3.36). An unsafe state may lead to a 

deadlock. 

As long as the state is safe, the operating system can avoid unsafe (and deadlocked) 

states. In an unsafe state, the operating system cannot prevent processes from requesting 

resources in such a way that a deadlock occurs. The behavior of the processes controls unsafe 

states. 

To illustrate, we consider a system with twelve magnetic tape drives and three 

processes: P0, P1, and P2. Process P0 requires ten tape drives, process P1 may need as many as 

four tape drives, and process P2 may need up to nine tape drives. Suppose that, at time t0, 

process P0 is holding five tape drives, process P1 is holding two tape drives, and process P2 is 

holding two tape drives. (Thus, there are three free tape drives.) 

 

At time t0, the system is in a safe state. The sequence <P1, P0, P2> satisfies the safety 

condition. Process P1 can immediately be allocated all its tape drives and then return them (the 

system will then have five available tape drives); then process P0 can get all its tape drives and 

return them (the system will then have ten available tape drives); and finally process P2 can get 

all its tape drives and return them (the system will then have all twelve tape drives available). 

A system can go from a safe state to an unsafe state. Suppose that, at time t1, process 

P2 requests and is allocated one more tape drive. The system is no longer in a safe state. At this 

point, only process P1 can be allocated all its tape drives. When it returns them, the system will 

have only four available tape drives.  

Since process P0 is allocated five tape drives but has a maximum of ten, it may request 

five more tape drives. If it does so, it will have to wait, because they are unavailable. Similarly, 

process P2 may request six additional tape drives and have to wait, resulting in a deadlock. Our 

mistake was in granting the request from process P2 for one more tape drive. If we had made 
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P2 wait until either of the other processes had finished and released its resources, then we 

could have avoided the deadlock. 

Resource-Allocation-Graph Algorithm: 

If we have a resource-allocation system with only one instance of each resource type, 

we can use a variant of the resource-allocation graph for deadlock avoidance. In addition to the 

request and assignment edges already described, we introduce a new type of edge, called a 

claim edge. 

A claim edge Pi → Rj indicates that process Pi may request resource Rj at some time in 

the future. This edge resembles a request edge in direction but is represented in the graph by a 

dashed line. When process Pi requests resource Rj , the claim edge Pi → Rj is converted to a 

request edge. Similarly, when a resource Rj is released by Pi , the assignment edge Rj → Pi is 

reconverted to a claim edge Pi → Rj . 

Note that the resources must be claimed a priori in the system. That is, before process 

Pi starts executing, all its claim edges must already appear in the resource-allocation graph. We 

can relax this condition by allowing a claim edge Pi → Rj to be added to the graph only if all the 

edges associated with process Pi are claim edges. 

Now suppose that process Pi requests resource Rj. The request can be granted only if 

converting the request edge Pi → Rj to an assignment edge Rj → Pi does not result in the 

formation of a cycle in the resource-allocation graph.We check for safety by using a cycle-

detection algorithm. An algorithm for detecting a cycle in this graph requires an order of n2 

operations, where n is the number of processes in the system.  

 

FIGURE 3.37: RESOURCE-ALLOCATION GRAPH FOR DEADLOCK AVOIDANCE 
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If no cycle exists, then the allocation of the resource will leave the system in a safe state. 

If a cycle is found, then the allocation will put the system in an unsafe state. In that case, 

process Pi will have to wait for its requests to be satisfied. To illustrate this algorithm, we 

consider the resource-allocation graph of Figure 3.37. 

 

FIGURE 3.38: AN UNSAFE STATE IN A RESOURCE-ALLOCATION GRAPH 

Suppose that P2 requests R2. Although R2 is currently free, we cannot allocate it to P2, 

since this action will create a cycle in the graph (Figure 3.38). A cycle, as mentioned, indicates 

that the system is in an unsafe state. If P1 requests R2, and P2 requests R1, then a deadlock will 

occur. 

Banker’s Algorithm: 

The resource-allocation-graph algorithm is not applicable to a resource allocation 

system with multiple instances of each resource type. The deadlock avoidance algorithm that 

we describe next is applicable to such a system but is less efficient than the resource-allocation 

graph scheme. This algorithm is commonly known as the banker’s algorithm. 

The name was chosen because the algorithm could be used in a banking system to 

ensure that the bank never allocated its available cash in such a way that it could no longer 

satisfy the needs of all its customers. 

When a new process enters the system, it must declare the maximum number of 

instances of each resource type that it may need. This number may not exceed the total 

number of resources in the system.  

When a user requests a set of resources, the system must determine whether the 

allocation of these resources will leave the system in a safe state. If it will, the resources are 

allocated; otherwise, the process must wait until some other process releases enough 

resources. 
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Several data structures must be maintained to implement the banker’s algorithm. These 

data structures encode the state of the resource-allocation system. We need the following data 

structures, where n is the number of processes in the system and m is the number of resource 

types: 

 Available.Avector of lengthmindicates the number of available resources of each 

type. If Available[j] equals k, then k instances of resource type Rj are available. 

 Max. An n × m matrix defines the maximum demand of each process. If Max[i][j] 

equals k, then process Pi may request at most k instances of resource type Rj . 

 Allocation. An n × m matrix defines the number of resources of each type currently 

allocated to each process. If Allocation[i][j] equals k, then process Pi is currently 

allocated k instances of resource type Rj . 

 Need. An n × m matrix indicates the remaining resource need of each process. If 

Need[i][j] equals k, then process Pi may need k more instances of resource type Rj to 

complete its task. Note that Need[i][j] equalsMax[i][j] − Allocation[i][j].  

These data structures vary over time in both size and value. 

Safety Algorithm: 

We can now present the algorithm for finding out whether or not a system is in a safe 

state. This algorithm can be described as follows: 

1. LetWork and Finish be vectors of length m and n, respectively. Initialize Work = 

Available and Finish[i] = false for i = 0, 1, ..., n − 1. 

2. Find an index i such that both 

a. Finish[i] == false 

b. Needi ≤Work  

If no such i exists, go to step 4. 

3. Work =Work + Allocationi 

Finish[i] = true 

Go to step 2. 

4. If Finish[i] == true for all i, then the system is in a safe state. 
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This algorithm may require an order ofm × n2 operations to determine whether a state 

is safe. 

Resource-Request Algorithm: 

Next, we describe the algorithm for determining whether requests can be safely 

granted. Let Requesti be the request vector for process Pi . If Requesti [ j] == k, then process Pi 

wants k instances of resource type Rj . When a request for resources is made by process Pi , the 

following actions are taken: 

1. If Requesti ≤Needi , go to step 2. Otherwise, raise an error condition, since the 

process has exceeded its maximum claim. 

2. If Requesti ≤ Available, go to step 3. Otherwise, Pi must wait, since the resources are 

not available. 

3. Have the system pretend to have allocated the requested resources to process Pi by 

modifying the state as follows: 

Available = Available–Requesti ; 

Allocationi = Allocationi + Requesti ; 

Needi = Needi –Requesti ; 

If the resulting resource-allocation state is safe, the transaction is completed, and 

process Pi is allocated its resources. However, if the new state is unsafe, then Pi must wait for 

Requesti , and the old resource-allocation state is restored. 

AN ILLUSTRATIVE EXAMPLE: 

To illustrate the use of the banker’s algorithm, consider a system with five processes P0 

through P4 and three resource types A, B, and C. Resource type A has ten instances, resource 

type B has five instances, and resource type C has seven instances. Suppose that, at time T0, 

the following snapshot of the system has been taken: 
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The content of the matrix Need is defined to be Max − Allocation and is as follows: 

 

We claim that the system is currently in a safe state. Indeed, the sequence <P1, P3, P4, 

P2, P0> satisfies the safety criteria. Suppose now that process P1 requests one additional 

instance of resource type A and two instances of resource type C, so Request1 = (1,0,2). To 

decide whether this request can be immediately granted, we first check that Request1 ≤ 

Available—that is, that (1,0,2) ≤ (3,3,2), which is true. We then pretend that this request has 

been fulfilled, and we arrive at the following new state: 

 

We must determine whether this new system state is safe. To do so, we execute our 

safety algorithm and find that the sequence <P1, P3, P4, P0, P2> satisfies the safety 

requirement. Hence, we can immediately grant the request of process P1. 

You should be able to see, however, that when the system is in this state, a request for 

(3,3,0) by P4 cannot be granted, since the resources are not available. Furthermore, a request 

for (0,2,0) by P0 cannot be granted, even though the resources are available, since the resulting 

state is unsafe. 

DEADLOCK DETECTION: 

If a system does not employ either a deadlock-prevention or a deadlock avoidance 

algorithm, then a deadlock situation may occur. In this environment, the system may provide: 

 An algorithm that examines the state of the system to determine whether a 

deadlock has occurred 
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 An algorithm to recover from the deadlock 

SINGLE INSTANCE OF EACH RESOURCE TYPE: 

If all resources have only a single instance, then we can define a deadlock detection 

algorithm that uses a variant of the resource-allocation graph, called a wait-for graph. We 

obtain this graph from the resource-allocation graph by removing the resource nodes and 

collapsing the appropriate edges. 

 

FIGURE 3.39: (A) RESOURCE-ALLOCATION GRAPH. (B) CORRESPONDING WAIT-FOR GRAPH 

More precisely, an edge from Pi to Pj in a wait-for graph implies that process Pi is 

waiting for process Pj to release a resource that Pi needs. An edge Pi → Pj exists in a wait-for 

graph if and only if the corresponding resourceallocation graph contains two edges Pi → Rq and 

Rq → Pj for some resource Rq . In Figure 3.39, we present a resource-allocation graph and the 

corresponding wait-for graph. 

As before, a deadlock exists in the system if and only if the wait-for graph contains a 

cycle. To detect deadlocks, the system needs to maintain the wait-for graph and periodically 

invoke an algorithm that searches for a cycle in the graph. An algorithm to detect a cycle in a 

graph requires an order of n2 operations, where n is the number of vertices in the graph. 

SEVERAL INSTANCES OF A RESOURCE TYPE: 

The wait-for graph scheme is not applicable to a resource-allocation system with 

multiple instances of each resource type. We turn now to a deadlock – detection algorithm that 

is applicable to such a system. The algorithm employs several time-varying data structures that 

are similar to those used in the banker’s algorithm:  
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 Available. A vector of lengthmindicates the number of available resources of each 

type. 

 Allocation. An n × m matrix defines the number of resources of each type currently 

allocated to each process. 

 Request. An n × m matrix indicates the current request of each process. If 

Request[i][j] equals k, then process Pi is requesting k more instances of resource 

type Rj . 

Detection-Algorithm Usage: 

When should we invoke the detection algorithm? The answer depends on two factors: 

1. How often is a deadlock likely to occur? 

2. How many processes will be affected by deadlock when it happens? 

If deadlocks occur frequently, then the detection algorithm should be invoked 

frequently. Resources allocated to deadlocked processes will be idle until the deadlock can be 

broken. In addition, the number of processes involved in the deadlock cycle may grow. 

Deadlocks occur only when some process makes a request that cannot be granted 

immediately. This request may be the final request that completes a chain of waiting processes. 

In the extreme, then, we can invoke the deadlockdetection algorithm every time a request for 

allocation cannot be granted immediately. In this case, we can identify not only the deadlocked 

set of processes but also the specific process that “caused” the deadlock. 

RECOVERY FROM DEADLOCK: 

When a detection algorithm determines that a deadlock exists, several alternatives are 

available. One possibility is to inform the operator that a deadlock has occurred and to let the 

operator deal with the deadlock manually. Another possibility is to let the system recover from 

the deadlock automatically.  

There are two options for breaking a deadlock. One is simply to abort one or more 

processes to break the circular wait. The other is to preempt some resources from one or more 

of the deadlocked processes. 
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Process Termination: 

To eliminate deadlocks by aborting a process, we use one of two methods. In both 

methods, the system reclaims all resources allocated to the terminated processes. 

 Abort all deadlocked processes. This method clearly will break the deadlock cycle, 

but at great expense. The deadlocked processes may have computed for a long time, 

and the results of these partial computations must be discarded and probably will 

have to be recomputed later. 

 Abort one process at a time until the deadlock cycle is eliminated. This method 

incurs considerable overhead, since after each process is aborted, a deadlock-

detection algorithm must be invoked to determine whether any processes are still 

deadlocked. 

Aborting a process may not be easy. If the process was in the midst of updating a file, 

terminating it will leave that file in an incorrect state. Similarly, if the process was in the midst 

of printing data on a printer, the system must reset the printer to a correct state before printing 

the next job.  

If the partial termination method is used, then we must determine which deadlocked 

process (or processes) should be terminated. This determination is a policy decision, similar to 

CPU-scheduling decisions. The question is basically an economic one; we should abort those 

processes whose termination will incur the minimum cost. Unfortunately, the term minimum 

cost is not a precise one. 

Many factors may affect which process is chosen, including: 

1. What the priority of the process is 

2. How long the process has computed and how much longer the process will compute 

before completing its designated task 

3. Howmanyandwhat typesof resources theprocesshasused(for example, whether the 

resources are simple to preempt) 

4. How many more resources the process needs in order to complete 

5. How many processes will need to be terminated 
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6. Whether the process is interactive or batch 

Resource Preemption: 

To eliminate deadlocks using resource preemption, we successively preempt some 

resources fromprocesses and give these resources to other processes until the deadlock cycle is 

broken. 

If preemption is required to deal with deadlocks, then three issues need to be 

addressed: 

1. Selecting a victim. Which resources and which processes are to be preempted? As in 

process termination, we must determine the order of preemption to minimize cost. 

Cost factors may include such parameters as the number of resources a deadlocked 

process is holding and the amount of time the process has thus far consumed. 

2. Rollback. If we preempt a resource from a process, what should be done with that 

process? Clearly, it cannot continue with its normal execution; it is missing some 

needed resource. We must roll back the process to some safe state and restart it 

from that state. 

3. Since, in general, it is difficult to determine what a safe state is, the simplest solution 

is a total rollback: abort the process and then restart it. Although it is more effective 

to roll back the process only as far as necessary to break the deadlock, this method 

requires the system to keep more information about the state of all running 

processes. 

4. Starvation. How do we ensure that starvation will not occur? That is, how can we 

guarantee that resources will not always be preempted from the same process? 

In a system where victim selection is based primarily on cost factors, it may happen that 

the same process is always picked as a victim. As a result, this process never completes its 

designated task, a starvation situation any practical system must address. Clearly, we must 

ensure that a process can be picked as a victim only a (small) finite number of times. The most 

common solution is to include the number of rollbacks in the cost factor. 


