PAGE
48

UNIT – 2 [Part – I]
PROCESS MODELS

2.0 Process Models – Definition
* It is a distinct set of activities, actions, tasks, milestones and work products that are required to engineer high quality software

* These process models are not perfect but they provide a useful roadmap for software engineering work

2.1 THE WATER FALL MODEL
* It is sometimes called the classic life cycle

* It suggests a systematic, sequential approach to software development that begins with customer specification of requirements and progress through

=> Planning

=> Modeling

=> Construction and

=> Deployment

Problems encountered in waterfall model:
(1) Real projects rarely follow the sequential flow. As a result changes cause confusion as the project team proceeds

(2) It is difficult for the customer to state all requirements explicitly
(3) The customer must have patience

* The linear nature of the water fall model leads to “ Blocking State” in which some project team members must wait for other members of the team to complete dependent task
* The water fall model can serve as a useful process model in situations where

=> Requirements are fixed and work is to proceed to completion in a

 linear manner

[image: image1.bmp]
[image: image2.bmp][image: image3.bmp][image: image4.bmp]
[image: image5.bmp]

2.2 INCREMENTAL PROCESS MODELS
* The incremental model combines elements of the water fall model applied in an iterative fashion

* This model applies linear sequences in a staggered fashion as calendar time progresses

* Each linear sequence produces deliverable “increments” of the software

Main Idea:

* When an incremental model is used the first increment is called “ CORE PRODUCT”

* i.e. the basic requirements are addressed but main supplementary features remain undelivered

* The core product is used by customer (Or) undergoes detailed evaluation

* As a result of evaluation a plan is developed for next increment

* The plan addresses the modification of the core product to better meet the needs of the customer and the delivery of the additional features and functionality
* This process is repeated for each increment delivery, until the complete product is developed
* Unlike prototyping model, the incremental model focuses on the delivery of an operational product with each increment

* This model is particularly useful, when staffing is unavailable for a complete implementation by the business deadline that has been established for the project

* Early increments can be implemented with fewer people. If core product is well received additional staff can be added to implement the next increment

 * Increments can be planned to manage technical risks

* For example a major availability of new hardware is under development, whose delivery date is uncertain

* So plan early increments in a way that avoids the use of this hardware, there by enabling partial functionality to be delivered to end-users without inordinate delay
2.3 RAPID APPLICATION DEVELOPMENT MODEL [RAD]
* The RAD model is a “high speed” adaptation of the water fall model, in which rapid development is achieved by using a component, based construction approach

* The RAD process enables a development team to create a “fully functional system” with in a very short period [e.g.60 to 90 days], if the requirements are well understood and project scope is constrained

Communication:
* It works to understand the business problem and the information characteristics that the software must accommodate

Planning:

* It is essential because multiple software teams work in parallel on different system functions

Modeling:

* It encompasses three major phases;

=>Business modeling

=> Data modeling

=> Process modeling

* It establishes design representation that serves as the basis for RAD’s construction activity

Construction:
* It emphasizes the use of pre-existing software components and the application of the automatic code generation

Deployment:

* It establishes a basis for subsequent iterations, if required

RAD – Drawbacks:

(1) For large but scalable projects, RAD requires sufficient human resources to create the right number of RAD teams

(2) If developers and the customers are not committed to rapid fire activities necessary to complete the system in a much abbreviated time frame, RAD projects will fail

(3)If a system cannot be properly modularized, building the component necessary for RAD will be problematic

(4) If high performance is an issue and performance is to be achieved through tuning the interfaces to system components the RAD approach may not work
(5) RAD may not be appropriate, when technical risks are high [e.g. when a new application heavy use of new technology]

2.4 EVOLUTIONARY PROCESS MODELS

* Like all computer systems software also evolve over a period of time
* Making a straight line path to an end-product is unrealistic, if business and product requirements often change as development proceeds

* Suppose if a set of core product (Or) system requirement is well understood, but the details of product (Or) system extensions have not yet to be defined.
* These case, a software engineer needs a process model that has been designed to accommodate a product that evolves over time.

* The evolutionary process modes are more suitable for the above case

Types:

(1) Prototyping Model
(2) Spiral Model

(3) Concurrent Development Model

2.4.1 PROTOTYPE MODEL

* The prototype model may offer the best approach, if

=> Customer defines a set of objectives for software, but does not identify detailed in put, processing (Or) output requirements

=> In other cases, the developer may be unsure of the efficiency of an algorithm (Or) the form that human-machine interaction should take

* The prototyping model assists the software engineer and the customer to better understand

=> What is to be built, when requirements are fuzzy?
Communication:

* The prototype model begins with communication

* The software engineer and customer meet and define the overall objectives for the software

=> Identify what ever requirements are known

=> Outline areas where further definition is mandatory

Quick design:

* The quick design focuses on a representation of those aspects of the software that will be visible to the customer / end user

Example:

* Human interface Layout (Or0 Output display formats

Construction of prototype:

* Ideally the prototype serves as a mechanism for identifying software requirements

* If the working prototype is built, the developer uses the existing programs fragments that ensure working programs to be generated quickly

Deployment:

* The prototype is deployed and evaluated by the customer

* Feedback is used to refine requirements for the software

Drawbacks:

(i) The customer sees what appears to be a working version of the software, unaware that the prototype is held together

(ii) The developer makes the implementation compromises in order to get a prototype working quickly

(iii) An inefficient algorithm may be implemented simply to demonstrate capability

2.4.2 SPIRAL MODEL:

Definition:

* It is evolutionary software process model that combines the iterative nature of prototyping with the controlled and systematic aspect of the water fall model

Two main features

(i) A cyclic approach for incrementally growing a system’s degree of definition and implementation while decreasing its degree of risk

(ii) An anchor point mile stones for ensuring stake holders commitment to feasible and mutually satisfactory system solutions

Main idea:

* A spiral model is divided into a set of frame work activities, defined by the software engineering team

* Each frame work activities represent one segment of spiral path

* As evolutionary process begins, the software team performs activities that are implied by a circuit around the spiral in a clockwise direction beginning at the centre

* The first circuit around the spiral might result in development of a product specification
* Subsequent passes might be used to develop a prototype and more sophisticated versions of the software

* Each pass through the planning region results in adjustments to the project plan

* Cost and Schedule are adjusted based on feedback derived from the customer after delivery

* Using spiral model software is developed in a series of evolutionary release

* During each iteration the release might me a paper model (Or) prototype

* During later iterations, increasingly more complete versions of the engineered system are produced

* Unlike other process model that end when software is delivered, the spiral model can be adapted to apply throughout the life of the software

* In the above fig first circuit represents concept development project

* Once concept is developed into actual product, process proceeds outwards on spiral, A new product development project commences

* Later circuit around the spiral might be used to represent “product enhancement project”

* Whenever a change is initiated the process starts at the appropriate entry point

Advantages:

(i) It is a realistic approach to the development of large-scale system and software

(ii) It enables the developer to apply the prototyping approach at any stage in th evolution of the product

(iii) It maintains the systematic stepwise approach suggested by classic life cycle and incorporates it into iterative framework
2.4.3 CONCURRENT DEVELOPMENT MODEL

* It is also called as “Concurrent Engineering”
* It can be represented schematically as a series of framework activities, software engineering actions and tasks and their associated states

* At any given time the modeling activity may be in any one of the states
* All activities exist concurrently, but reside in different states

Example:

* Initially in a project, the communication activity has completed its first iteration and exists in awaiting change state

* When initial communication was completed, the modeling activity exists in none state, makes a transition from none state into the under development state

* If customer indicates changes in requirements, the modeling activity moves from under development into awaiting change state

* A series of events will trigger transition from state to state for each of the software engineering activities, actions (Or) tasks

* During early stages of design [a software engineering action that occurs during the modeling activity] an inconsistency in the analysis model will trigger the analysis action from the done state into the awaiting change state
Advantages:

(1) The concurrent process model provides an accurate picture of the current state of a project

(2) It defines the software engineering activities, actions and tasks as a network, instead of sequence of events

(3) Each activity, action (Or) tasks on network exists simultaneously with other activities

2.5 THE UNIFIED PROCESS

* It is an attempt to draw on the best features and characteristics of conventional software process models

* But characteristics them in a way that implements many of the best principles of agile software development

* The unified process emphasizes the important role of software architecture and help the architect focus on,

=> Right goals

=> Understandability

=> Reliance to future changes and

=> Reuse

* It suggests a process flow that is iterative and incremental providing the evolutionary feel

Phases of the Unified Process:

(1) Inception Phase:
* This phase combines both customer communication and planning activities

* By combining these the

=> Business requirements for the software are identified

=> A rough architecture for the system is proposed

=> A plan for the iterative, incremental nature of the ensuring project is

 developed

* In general a use-case describes a sequence of actions that are performed by an actor [e.g. a person, a machine]

* Use-case helps to identify the scope of the project and provide a basis for project planning

(2) Elaboration Phase:

* It refines and expands the preliminary use-cases that were developed on inception phase

* It expands the architectural representation to include five different views of the software:

=> Use-case model

=> Analysis Model

=> Design Model

=> Implementation Model

=> Deployment Model

* The modification to the plan may be made at this time

(3) Construction Phase:

* This phase develops (Or) acquires the software components that will make each use-case operational for end users

* All necessary and required features and functions of software release are imp[lamented in source code

* After implementing components, unit tests are designed and executed for each
* In addition

(4) Transition Phase:
* The software is given to end-users for Beta testing

* The users feed back the reports both defects and necessary changes

* This phase allow software team creates the necessary support information

Example:

=> User Manuals

=> Trouble shooting guides

=> Installation procedures

(5) Production Phase:

* During these phase the

=> On going use of the software is monitored

=> Support for the operating environment [infrastructure] is provided

=> Defect reports and requests for changes ar5e submitted and evaluated

UNIT – 2 [Part – II]

SOFTWARE REQUIREMENTS

2.6 Functional Requirements:
* These are statements of services the system should provide

=> how the system should react to particular inputs and

=> how the system should behave in particular situations

* In some cases, the functional requirements may also explicitly state

=> What the system should not do

* The functional requirements definition of a system should be both

=> Complete [i.e. It means that all services required by the user should be

 defined]

=> Consistent [i.e. it means that requirements should not have

 contradictory definitions]

2.7 Non – Functional Requirements:
* These are constraints on the services (Or) functions offered by the system

* They include

=> Timing Constraints

=> Constraint on development process

=> Standards and so on…

* Some non-functional requirements may be process rather than product requirements

* Customer imposes these process requirements for two reasons;

=> System Quality

=> System Maintainability

Non – Functional Requirements Types:

(i) Product Requirements:
* These requirements results from the need for the delivered product, to behave in a particular way

Example:

* Requirements on how fast the system must execute and how much memory it requires

* Reliability Requirements [i.e. acceptable failure rate]

* Portability Requirements

(ii) Organizational Requirements:
* These requirements are consequence of organizational policies and procedures

Example:
* Implementation requirements such as programming language (Or) design method used

* Delivery Requirements which specify when the product and its documentation to be delivered

(iii) External Requirements:
* This requirements arise from factors external to the system and its development process

Example:

* Interoperability Requirements which specify how the system interacts with systems in other organizations

* Legislative Requirements, which ensure that the system operates within the law

2.8 The Software Requirements Document
* It is also called as Software Requirement Specification [SRS]

* This requirement document includes;

=> Requirement definition

=> Requirement Specification

* The software requirement document is not a design document

* It should set out

=> what the system should do without specifying, how it should be done

* If services, constraints and properties specified in the document are satisfied by software design than,

=> the design is an acceptable solution to the problem

* There are Six requirements which a software requirements document should satisfy:

(i) It should only specify external system behavior

(ii) It should specify constraints on the implementation

(iii) It should be easy to change

(iv) It should serve as a reference tool, for system maintainers

(v) It should record forethought about the life cycle of the system

(vi) It should characterize acceptable responses to undesired events

Structure of a Requirements document:
	CHAPTER
	DESCRIPTION

	Introduction
	This should describe

=> The need for the system

=> Its functions

=> Explain how it will work with other systems

=> How the system fits into the overall business

	Glossary
	This should describe

=> The technical terms used in the document

* Here no assumption should be made about the experience or expertise of the reader

	System Models
	This should set out the relationship between

=> The system components and its environment

* This might include

 => Object Models

 => Data Flow Models

 => Semantic Data Models

	Functional Requirements Definition
	* The services provided for the user should be described in this section

* This description may use

 => Natural Language

 => Diagrams

 => Other notations

	Non-Functional Requirements Definition
	This should describe

=>The constraints imposed on the software

=> Restrictions on the freedom of the designer

=> The product and the process standards followed should be specified

* It includes

=> Details of specific data representation

=> Response time and memory requirements etc..

	System Evolution
	This should describe
=> The fundamental assumption on which the system is based

=> Anticipated changes due to hardware evolution

=> Changing user needs etc..

	Requirements Specification
	 This should describe the functional requirements in more detail
Example:

Interfaces to other systems may be defined

COMMUNICATION

=> Project Initiation

=> Requirement

 Gathering

PLANNING

=> Estimating

=> Scheduling

=> Tracking

MODELLING

=> Analysis

=> Design

CONSTRUCTION

=> Code

=> Test

DEPLOYMENT

=> Delivery

=> Support

=> Feedback

Increment # 1

Increment # 2

Increment # n

Delivery of

1st Increment

Delivery of

2nd Increment

Delivery of

Nth Increment

Project Calendar Time

Software Functionality & Features

=> Communication

=> Planning

=> Modeling {Analysis, Design}

=> Construction {Code, Test}

=> Deployment {Delivery, Feedback}

Communication

Planning

Modeling

=> Business

 Modeling

=> Data

 Modeling

=> Process

 Modeling

Construction

=> Component

 Reuse

=> Automatic

 Code

 Generation

=> Testing

Team # 1

Construction

=> Component

 Reuse

=> Automatic

 Code

 Generation

=> Testing

Modeling

=> Business

 Modeling

=> Data

 Modeling

=> Process

 Modeling

Construction

=> Component

 Reuse

=> Automatic

 Code

 Generation

=> Testing

Modeling

=> Business

 Modeling

=> Data

 Modeling

=> Process

 Modeling

Deployment

=> Integration

=> Delivery

=> Feedback

Team # 2

Team # n

60 – 90 days

Communication

Modeling Quick Plan

Quick Plan

Construction of Prototype

Deployment

Start

Communication

Planning

=> Estimation

=> Scheduling

 => Risk Analysis

Modeling

=> Analysis

 => Design

Construction

=> Code

 => Test

Deployment

=> Delivery

 => Feedback

Under Development

Awaiting Changes

Under Revision

Under Review

Base lined

Done

None

Modeling Activity

One Element of concurrent process model

Planning

Modeling

Construction

Deployment

Communication

Inception

Elaboration

Construction

Transition

Software Increment

Production

Release

Non – Functional Requirements

Product Requirements

Process Requirements

External Requirements

