PAGE
62

UNIT – 4 [Part – I]

DESIGN ENGINEERING

4.1 Design Process and Design:

* Software design is an iterative process through which requirements are translated into a “Blue Print” for constructing the software

* The design is represented at a high-level abstraction [i.e. a level that can be directly traced to the specific system objective, more detailed data, functional and behavioral requirements]
Guidelines for evolution of good design:

(1) The design must implement all of the explicit requirements contained in the analysis model

* It must accommodate all of the implicit requirements, desired by the customer

(2) The design must be readable, understandable guide for those who generate code and who test and subsequently support the software

(3) The design should provide a complete picture of the software, addressing the data, functional and behavioral domains from an implementation perspective

4.2 Quality Guidelines:
(1) A design should exhibit an architecture that

=> has been created using recognizable architectural styles (Or) patterns

=> is composed of components that exhibit good design characteristics

=> can be implemented in an evolutionary fashion, there by facilitating

 Implementation and testing

(2) A design should be a modular [i.e. the software should be logically partitioned into elements (Or) subsystems

(3) A design should contain distinct representation of data architecture, interfaces and components

(4) A design should lead to data structures that are appropriate for the classes to be implemented and are drawn from recognizable data patterns

(5) A design should lead to components that exhibit independent functional characteristics

(6) A design should lead to interfaces that reduce the complexity of connections between components and with the external environment

(7) A design should be derived using a repeatable method that is driven by information obtained during software requirement analysis
(8) A design should be represented using a notation that effectively communicates its meaning
4.3 Quality Attributes:

(1) Functionality:

* It is accessed by evaluating

=> the feature set and capabilities of the program

=> the generality of the functions that are delivered

=> the security of overall system

(2) Usability:

* Ii is accessed by considering

=> human factors

=> overall aesthetics

=> consistency

=> documentation

(3) Reliability:

* It is evaluated by

=> Measuring the frequency and severity of failure

=> the accuracy of output results

=> the Mean-Time-To-Failure [MTTF]

=> the ability to recover from failure

=> the predictability of the program

(4) Performance:
* It is measured by

=> Processing speed

=> Response time

=> Resource consumption

=> Throughput

=> Efficiency

(5) Supportability:

* It combines the ability to

=> extend the program [extensibility]

=> Adaptability

=> Serviceability

4.4 Design Concepts:

(1) Abstraction:

* Many levels of abstraction can be used to find a modular solution to any problem

(i) Procedural Abstraction:

* It refers to a sequence of instructions that have a specific and limited function

* The name of procedural abstraction implies these functions, but specific details

 are suppressed

Example:

* The word Open for a door

* Open implies a long sequence of procedural steps [e.g. Walk to

 the door, reach out and grasp knob, turn knob and pull door , step

 away from moving door etc..]

(ii) Data Abstraction:

* It is a named collection of data that describes a data object

Example:

* We can define a data abstraction called ‘Door’

* The ‘door’ would encompass a set of attributes that describe the

 door [e.g. door type, swing direction, opening mechanism,

 weight etc..]

(2) Architecture:
* It is the

=> Structure or organization of program components interact

=> Structure of data that are used by the components

* The architectural design can be represented using one (Or) more number of different models

(i) Structural Models: It represents architecture as an organized collection

 of program components

(ii) Framework Models: It increases the level of design abstraction, by identity

 design framework, that are encountered in similar types

 of application

(iii) Dynamic Models: It indicates how the structure (Or) system configure may

 change as a function of external events

(iv) Process models: It focus on the design of the business process that the

 system must accommodate

(v) Functional Models: It can be used to represent the functional hierarchy of a

 System

(3) Patterns:
* A design pattern describes a design structure that solves a particular design problem with in a specified context

* Additionally the design pattern may have an impact on the manner in which the pattern is applied and used

* The purpose of each design pattern is to provide a description that enables a designer to determine

=> Whether the pattern is applicable to the current work

=> Whether the pattern can be reused [to save design time]

=> Whether the pattern can serve as a guide for developing a similar but

 functionality (Or) structurally different pattern

(4) Modularity:
* It is the process of dividing the software into separately named and addressable components sometimes called ‘Modules’ that are integrated to satisfy problem requirements

* If we divide software indefinitely the effort required to develop it will become negligibly small

* As the number of modules increases the cost to develop decreases

* As the number of modules increases the cost to integrate the modules also increases
i.e.

* We modularize a design so that,

=> Development can be more easily planned

=> Software increments can be defined and delivered

=> Changes can be more easily accommodated

=> Testing and debugging can be conducted more efficiently

=> Long term maintenance can be conducted without series effects

(5) Information testing:
* It suggests that “modules should be specified and designed so that information [algorithm and data] contained with in a module is in accessible to other modules that have no need for such information

* The use of information hiding provides the greatest benefits when

=> Modifications are required during testing and later

=> during software maintenance

(6) Functional Independence:

* It is achieved by design a software that each module address a specific sub function of requirements and has a simple interface when viewed from other parts of program structure

* Why independence is so important?

=> Independent modules are easier to maintain

=> Error propagate is reduced

=> Reusable modules are possible

* Independence is assessed [estimated] using two qualitative criteria:

=> Cohesion

=> Coupling

4.5 Cohesion:

* It is a measure of the closeness of the relationship between its components

* A component should implement a single logical function (Or) should implement a single logical entity

* All parts of the component should contribute to this implementation

* If a component includes parts that are not directly related to its logical function then it has Low Cohesion

Seven Levels of Cohesion:

(i) Coincidental Cohesion:
* The part of a component are not related, but simply bundled into a single component

(ii) Logical Association:

* Components that perform similar functions such as input, error handling and so on are put together in a single component

(iii) Temporal Cohesion:

* All of the components that are activated at a single time such as

=> Start up (Or) Shut down are brought together

(iv) Procedural Cohesion:

* The elements in a component make up a single control sequence

(v) Communication Cohesion:

* All of the elements of a component operate the same input data (Or) produce the same output data

(vi) Sequential Cohesion:
* The output from one element in the component serves as input fore some other element

(vii) Functional Cohesion:

* Each part of the component is necessary for the execution of a single function

4.6 Coupling:

* It is an indication of the strength of interconnections between the components in a design

* Highly coupled systems, have strong systems with program units dependent on each other
* Loosely coupled systems are made up of components which are independent or almost independent

* Modules are tightly coupled, if they make use of shared variables (Or) if they interchange control information
* Tightly coupling is also referred as common coupling and control coupling

* Loose coupling is achieved by ensuring that

=> Details of the data representation are held with in a component

* Its interface with other components should be through a parameter list

* If shared information is necessary, the sharing should be limited to those components

* Globally accessible information should be avoided wherever possible

(7) Refinement:
* It is actually a process of elaboration

* Refinement enables a designer to specify low-level details, as design progresses

* i.e. The statement describes information conceptually but provide no information about internal workings

* Refinement causes the designer to provide more and more details as each successive refinement occurs

(8) Refactoring:

* It is a process of changing a software system in such a way that it does not alter the external behavior of the code [design], yet improves its internal structure

* The existing system is checked for

=> Unused design elements

=> Inefficient (Or) Unnecessary algorithms

=> Poorly constructed (Or) inappropriate data structures

=> Any other design failures that can be corrected to yield a better design

4.7 The Design Model:

* The design model can be viewed in two different dimensions:

(1) Process dimension:

* It indicates the evolution of the design model as design tasks are executed as part of the software process

(2) Abstraction Dimension:

* It indicates the level of detail, as each element of the analysis model is transformed into a design equivalent and then refined iteratively

(1) Data Design Elements:
* Data design creates a model of data and information that is represented at a high level of abstraction [the customer / user view of data]

* This data model is then refined into more implementation specific representations that can be processed by the computer based system

* The structure of data has always been an important part of software design

* For the creation of high quality application, the design of the data structures and associated algorithms is essential

(2) Architectural design elements:

* The architectural design for software is the equivalent to the floor plan of a house

* The floor plan gives the overall layout of the room, their size and shape, relationship to one another and the doors and windows movement in and out

* i.e. The floor plan gives overall view of the house

* Architectural design elements give us an overall view of the software

* The architectural model is derived from three resources:

(i) Information about the application domain for the software to be built

(ii) Specific analysis model elements, such as dataflow diagram

(iii) the availability of architecture patterns

(3) Interface design elements
* The interface design elements for software tell

=> How information flows into and out of the system?

=> How it is communicated among the components defined as part of the

 architecture?

* There are three important elements of interface design

(i) The User interface

(ii) External interface to other systems, devices, networks

(iii) Internal interfaces between various design components

* The interface design for software is the equivalent to a set of detailed drawings for doors, windows and external utilities of a house

(4) Component Level Design Elements:
* The component level design for software fully describes the internal detail for each software component

* To accomplish this component level design defines data structures for all local data objects and algorithmic detail, for all processing that occurs with in a component

* It also describes an interface that allow access to all component operation

Example:

* In above fig, the sensor management component performs all functions associated with safe home sensors including monitoring and configuration them
* A dashed arrow connects the component, to a class named sensor that is assigned to it

(5) Deployment – Level Design Elements:

* It indicate how software functionality and subsystems will be allocated with in the physical computing environment that will support the software

* The deployment diagram shows the computing environment, but does not explicitly indicate configuration details

UNIT – 4 [Part – II]

CREATING AN ARCHITECTURAL DESIGN

4.8 Architectural Design:

* It represents the structure of data and program components that are required to build a computer based system, it considers

=> the architectural style that the system will take

=> the structure and properties of the components that constitute the

 system

=> the interrelationship that occur among all architectural components of a

 System

Software Architecture:

* The software architecture of a program or computing system is the structure (Or) structures of the system which comprises

=> Software components

=> Externally visible properties of those components

=> the relationships among them

* The architectural is not the operational software, but it is a representation that enables a software engineer to

(i) analyze the effectiveness of the design in meeting its stated
 Requirements

(ii) Consider architectural alternatives at a stage when making design

 changes relatively easy

(iii) Reduce the risks associated with the construction of the software

Software Architecture – Importance:

(1) Representations of software architecture are an enabler for communication, between all parties [customer] interested in the development of a computer based system

(2) The architecture highlights early design decision that will have a profound impact on all software engineering works that follows on the ultimate success of the system as an operational entity

(3) Architecture constitutes a relatively small, intellectually graspable model of

=> How the system is structured and

=> How its components work together

4.9 Data design:

* It is an action that translates data objects defined as part of the analysis model into data structure at the software component level

* If necessary a database architecture at the application level

(1) Data design at the architectural level:

* Today small and large business organizations have dozens of data bases with hundreds of gigabytes of data

* The challenge is to extract useful information from this data environment

* To solve this challenge the IT community has developed data mining techniques also called Knowledge Discovery in Data bases [KDD]
* The existence of multiple databases their different structures, the degree of detail contained with the data bases and many other factors make data mining difficult within an existing database environment

* So an alternative solution called a data warehouse is used which adds an additional layer to the data architecture

* A data warehouse is a large, independent database that has access to the data that are stored in databases that serve the set of applications required by a business

(2) Data design at the component level:
* It focuses on the representation of data structures that are directly accessed by one (Or) more software components

Set of principles for data Specification:
(1) The systematic analysis principles applied to function and behavior should also be applied to data, i.e.

=> data objects should be identified

=> alternative data organizations should be considered

=> data modeling on software design should be evaluated

(2) A mechanism for defining the content of each data object should be established and used to define both data and the operations applied to it

(3) All data structures and the operations to be performed on each should be identified

(4) Low level data design decisions should be deferred, until late in the design process. i.e

=> the over all data organizations may be defined during requirements

 Analysis

=> Refined during data design work and

=> Specified in detail during component level design

(5) The representation of a data structure should be known only to those modules that make direct use of the data contained within the structure

(6) A library of useful data structure and the operations that may be applied to them should be developed
(7) A software design and programming language should support the specification and realization of abstract data types

4.10 Architectural Styles and Patterns:
* An architectural style is a transformation that is imposed on the design of an entire system

* The intent is to establish a structure for all components of the system

* The software that is built for computer based system exhibits one of many architectural styles

* Each style describes a system category that includes

(i) a set of components [e.g. a database, Computational modules] that

 performs a function required by a system

(ii) a set of connectors that enable “communication, coordination and

 Cooperation” among components

(iii) Constraints that define how components can be integrated to form the

 system

(iv) Semantic models that enables a designer to understand the overall
 properties of a system, by analyzing the known properties of its

 constituent parts

Architectural Pattern:

* An architectural pattern imposes a transformation on a design of architecture

* A pattern differs from a style in a number of ways:

(i) the scope of a pattern is less broad, focusing on one aspect of the
 architecture rather than the architecture in tits entirety

(ii) a pattern imposes a rule on the architecture, for example

=> describing how the software will handle some aspect of its

 functionality at the infrastructure level [e.g. Concurrency]

(iii) patterns tend to address specific behavioral issues within the context

 of the architectural

 Example:

 How a real time application handles synchronization (Or)

 Interrupts

4.11 Architectural Styles - Classification:

(1) Data – Centered Architecture:
* A data store [e.g. a file or database] resides at the centre of this architecture and is accessed frequently by other components that Update, Add, delete (Or) Modify data within the data store

* In the below figure client software accesses a central repository

* In some cases the data repository is passive [i.e. Client software accesses the data, independent of any changes to the data (Or) the actions of other client software]

* A data – Centered approach promotes:

(i) Integrability [i.e. existing components can be changed and a new

 Client components added to the architecture, without concern about

 Other clients]

(ii) Data can be passed among clients using the black board mechanism

 [i.e. the black board component serves to coordinate the transfer of

 Information between clients]

(iii) Client components independently execute processes

(2) Data – Flow Architecture:
* It is applied when input data are to be transformed through a series of computational (Or) manipulative components into output data

* A pipe and filter structure has a set of components called Filter connected by pipes

* The pipes transmit data from one component to the next
* Each filter works independently

* The filter does not require knowledge of the working of its neighboring filters

(3) Call and return architecture:
* This architectural style enables a software designer to achieve a program structure that is relatively easy to modify and scale

* Two sub styles exist with in this category:

(i) Main program / Sub program architecture:

* This program structure decomposes function into a control hierarchy, where a ‘Main’ program invokes a number of program components, which in turn may invoke other component

(ii) Remote procedure calls architecture:

* The components of a main program / subprogram architecture are distributed across multiple computers on a network

(4) Object – Oriented architecture:

* The components of a system encapsulate data and the operations that must be applied to manipulate the data

* Communication and coordination between components is accomplished via Message Passing

(5) Layered architecture:

4.12 Architectural Design:

* When architectural design begins, the software to be developed must put into the context

* The design should define the external entities [i.e. devices, people] that the software interacts with and the nature of the interaction

* Once context is modeled, the designer specifies the structure of the system by defining software components that implement the architecture

* Until a complete architectural structure has been derived this process continues iteratively

Representing the system Context:

* At the architectural design level, a software architect uses an Architectural Context Diagram [ACD] to modeled the manner in which the software interacts with entities external to its boundaries

* Referring to the below fig, system hat interoperate with the target systems [the system for which an architectural design is to be developed] are represented as:

(i) Super Ordinate Systems:

* System that uses the target system as part of some higher level processing scheme

(ii) Sub Ordinate Systems:

* Systems that are used by the target system and provide data that are necessary to complete target system functionality

(iii) Peer – Level – Systems:

* The systems that interact on a peer-to-peer basis [i.e. information is either produced or consumed by the peers and the target system]

(iv) Actors:

* Those entities [people, devices] that interact with the target system, by producing (Or) consuming information that is necessary for requisite processing

4.13 Defining Archetypes:

* An archetypes is a pattern (Or) class that represents a core abstraction, that is critical to the design of an architecture for the target system

* The target system architecture is composed of archetypes

Example:

* For a safe home security function the following archetypes are defined:

(i) Node: Represents a cohesive collection on input and output elements

Example:

* A node might be

=> Various sensors

=> Variety of alarm indicators

(ii) Detector:

* An abstraction that encompasses all sensing equipment that feeds information into the target system

(iii) Indicator: It represents all mechanisms for indicating that an alarm condition is occurring

Example:

=> Alarm Siren

=> Flashing light

=> Bells

(iv) Controller:

* An abstraction that depicts the mechanism that allows the arming (Or) disarming of a node

* If the controller resides on network, they have the ability to communicate with one another

Refining the architecture into components:

* As the software architecture is refined into components the structure of the system begins to emerge

* One source for the derivation and refinement of components is the application domain

* For example, in a safe home security system function, we might define the set of top level components that address the following functionality:

(i) External Communication Management:

* It coordinates communication of the security system function with external entities

(ii) Control Panel Processing:

* It manages all control panel functionality

(iii) Detector Management:

* It coordinates access to all detectors attached to the system

(iv) Alarm Processing:

* It verifies and acts on all alarm conditions

Describing Instantiations of the system:

* The architectural design that has been modeled to this point is still relatively high level. However further refinement is still necessary

* To accomplish this actual instantiation of the architecture is developed

* Here the architecture is applied to a specific problem, with the intent of demonstrating that the structure and components are appropriate

M

Region of minimum cost

Total

Software Cost

Cost

to Integrate

Cost / Module

Number of Modules

Cost (Or) Effort

No. of modules <=> Development

 <=> Integrating Cost

Module – A

Module – B

Module – C

Module – D

Shared Data Area

Tight – Coupling [Components communicate

 through a shared data area]

Module – A

A’s Data

Module – B

B’s Data

Module – C

C’s Data

Module – D

D’s Data

Loosely Coupled Components

Class Diagram

* Analysis Packages

* CRC Models

* Collaboration

 Diagrams

* DFD

* Control Flow Diagram

* Processing narratives

 Design Class realization

* Subsystems

* Collaboration diagrams

Refinements to

* Design class realization

* Subsystems

* Collaboration diagrams

Use Cases Text

* Use cases Diagrams

* Activity diagrams

* Collaboration Diagrams

* State diagrams

* Sequence diagrams

Class Diagrams

* Analysis packages

* CRC Models

* Collaboration diagram

* DFD

* Control – flow Diagram

* State Diagram

* Sequence diagram

Requirements

* Constraints

* Interoperability

* Targets and configuration

Technical Interface design

Navigation design

GUI Design

Component Diagram

Design Classes

Activity Diagrams

Sequence Diagrams

Refinements to

* Component diagrams

* Design classes

* Activity Diagrams

* Sequence Diagrams

 Design class realization

* Collaboration diagrams

* Component diagram

* Design class

* Activity diagram

* Sequence diagram

Deployment diagram

Architecture elements

Interface elements

Component Level elements

Deployment Level elements

Low

High

Abstraction Dimension

Design Model

Analysis Model

Process Dimension

Control Panel

LCD Display

LED Indicators

Key pad characteristics

Speaker

Wireless Interface

Read Key strokes

Decode Key

Display Status

Send control Msg

Wireless PDA

Mobile Phone

<Interface>

Keypad

Read Key stroke ()

Decode Key ()

UML Interface Representation for Control Panel

Sensor

Management

Sensor

Component Diagram

Security

Control Panel

Home owner Access

CPI Server

External Access

Security

Surveillance

Home Management

Communication

Personal Computer

Deployment Diagram for Same Home

Client Software

Client Software

Client Software

Client Software

Client Software

Client Software

Data Store

[Repository (Or)

Black board]

Filter

Filter

Filter

Filter

Filter

Filter

Filter

Filter

Filter

Pipes

Core Layer

Utility Layer

Application Layer

User Interface Layer

TARGET SYSTEMS

Super Ordinate Systems

Uses

Uses

Actors

Peers

Used By

Depends On

Sub Ordinate Systems

Architectural Context Diagram

Peers

Uses

Control Panel

Sensors

Sensors

Internet Based System

Safe home Product

TARGET SYSTEMS:

Security Function

Home Owner

Surveillance Function

Uses

Architectural Context Diagram for Safe Home Security System

Controller

Node

Detector

Indicator

Communicates

with

Safe Home Executive

External Communication Management

Security

Graphical User Interface

Internet Interface

Internet Interface

Internet Interface

Alarm Processing

Alarm

Phone Communication

