PAGE
1

UNIT – 1 [PART – 1]

INTRODUCTION TO SOFTWARE ENGINEERING

1.1 Introduction
* No one could foreseen that software become embedded in systems of all kinds. i.e., Medical, Telecommunication, Military, Industrial, Entertainment etc.,

* As software importance has grown, millions of computer programs generated and would have to be corrected, adapted and enhanced
* These maintenance activities would absorb more people and more resources than all work applied to the creation of new software
* So the software community attempted to develop technologies that will make it easier, faster and less expensive to build and maintain high-quality computer programs

* However we have yet to develop a software technology that does it all

* So to achieve this, we need a frame work that encompasses a process, a set of methods and an array of tools
* This frame work is referred to as Software Engineering
1.2 The Evolving Role of Software

* Today software takes a dual role

=> As a Product

=> A vehicle for delivering a product

(1) As a Product:
* It delivers the computing potential embodied by hardware [i.e., Network of computers that are accessible by local hardware]

* Whether the software reside within a cellular phone or operates inside a mainframe computer, it is an information transformer that

=> Producing, Managing, Acquiring, Modifying (Or) transmitting information

(2) A vehicle for delivering a product:
* Software delivers the most important products of our time information, such as

=> It transforms personnel data [eg.,an individual financial transaction]

=> It manages business information to enhance competitiveness

=> It provides a gateway to worldwide information networks

 [eg.,the internet]

=>Provides the means for acquiring information in all of its forms

1.3 Adaptation of Software Engineering Practices:

* The Dramatic improvements in,

=> Hardware performance

=> Profound changes in computing architecture

=> Vast increase in memory and storage capacity

=> Exotic input and output options

* All the above have participated more sophisticated and complex computer based system

* Sophisticated and complexity produce good results, when system succeeds else a huge problem may arise for those who build complex system

* Today huge software industries replaced the lone programmer by teams of software specialist, each focusing on one part of technology required to deliver a complex application

* The questions that were asked of the lone programmer are the same questions that are asked when modem computer systems are built. They are,

(1) Why does it take so long to get software finished?

(2) Why are development costs so high?

(3) Why can’t we find all errors before we give the software to our
 customers?

 (4) Why do we spend so much time and effort maintaining existing

 programs?

(5) Why do we continue to have difficulty in measuring progress as software

 Is being developed and maintained?

* These questions demonstrate industries to concern about software and the manner in which it is developed
* This concern has lead to the adaptation of software engineering practice

1.4 Software:
Definition:

“ It is a set of instruction that when executed provide desired features, functions and performance”

(Or)

“ It is a data structure that enable the programs to adequately manipulate information”

(Or)

“ It is a documents that describe the operation and use of programs”
1.5 Software Characteristics:

* The characteristics of software are different from characteristics of hardware:

(1) Software is developed (Or) engineered; it is not manufactured in the classical sense

* In both software development and hardware manufacturing high quality is achieved using good design

* The manufacturing phase for hardware can introduce quality problems, which are non-existent (Or easily corrected) for software

* Both the activities dependent on people, but the relationship between people applied and work accomplished is entirely different

* Both activities require the construction of a “Product”, but the approaches are different

* Software engineering costs are concentrated in engineering

(2) Software doesn’t “wear out”

* The hardware exhibits relatively high failure rates early in its life, these failures are caused due to design (Or) manufacturing defects

* Once defects are corrected the failure rate drops to a steady-state level, for some period of time

* As time passes, hardware components suffer from the cumulative effects of Dust, Vibration, abuse, temperature extremes and other environmental maladies

* The failure rate rises again, stated simply the hardware begins to “wear out”. This is shown below using “Bath Tub Curve”

* Software is not susceptible to the environmental maladies

* The failure rate curve for software, should take the form of “Idealized Curve”

* Early in the life of a program, undiscovered errors causes high failure rates
* Once these errors are corrected (without introducing other errors), the curve

 Flattens

* So, it is clear that;

=> Software doesn’t wear out, but it does deteriorate
* Software will undergoes changes during its life time

* The errors will be introduced as changes are made. This causes the failure rate to spike

* Before the curve can return to the original steady state failure, another changes is requested causing the curve to spike again

* So due to changes the software is deteriorating

* The software maintenance involves more complexity than hardware maintenance because,

=> When hardware components wear out, it is replaced by spare part, but

 there are no software parts

(3) Although the industry is moving toward component – based construction, most software continues to be custom built

* In hardware world, component reuse is a natural part of the engineering process

* But in software world it has to be achieved on a broad scale

* A software component should be designed and implemented that can be reused in different programs

Example:

* Today’s user interfaces built with reusable components that enable;

=> Creation of windows

=> Pull-down Menus &

=> Wide variety of interaction mechanism

1.6 The Changing nature of Software

* There are seven broad categories of computer software, that continuing challenges for software engineers are:

(1) System Software: It is a collection of programs written to service other programs

=> Some system software processes complex, but determinate information structure and some other processes largely indeterminate data

Example:

=> Compilers, editors and file management utilities

Characteristics:

=> Heavy interaction with computer hardware

=> Heavy usage by multiple users

=> Complex data structures

=> Multiple external interfaces

=> Concurrent operation

(2) Application Software:

* It is a stand alone program, that solve a specific business need

* This software process business (Or) Technical decision making. In addition it is used to control business functions in real time

Example:

=> Point – of – sale transaction processing

=> Real – time manufacturing process control

(3) Engineering / Scientific Software:
* This software used in various applications such as;

=> Astronomy

=> Molecular biology

=> Automated Manufacturing etc.

* Modern application within the scientific / engineering area is moving away from conventional numerical algorithm

* Computer aided design, system simulation and other interactive application, begun to take on real – time

(4) Embedded Software:

* This Software resides within a product (Or) System
* It is used to implement and control features and functions for the end user and for the system itself

Example:

=> Keypad control for a microwave oven

=> Digital Functions in an automobile such as fuel control, dash board

 Displays and braking system etc.,

(5) Product-line Software:
* It is designed to provide a specific capability, for use by many different customers

* This software focuses on esoteric market place and address mass consumer market

Example:

=> Word processing

=> Spread sheets

=> Computer Graphics

=> Multimedia and entertainment etc.,

(6) Web Applications:
* This Software span a wide array of applications

* Web applications are evolving into sophisticated computing environment, that not only provide stand alone features, computing functions and content to end users, but also integrate corporate database and business application

(7) Artificial Intelligence Software:
* This software makes use of non numerical algorithms, to solve complex problems

* Applications with in this area include;

=> Robotics

=> Expert Systems

=> Pattern recognition

=>Theorem proving and game playing

**

Note:

Legacy Software’s:

* This software system developed decades ago [i.e., older programs] and it have been continually modified to meet changes in business requirements and computing platforms

* The Proliferation of such systems is causes headache for large organizations who find them costly to maintain and risky to evolve
**

1.7 Software Myths:

* It is beliefs about software
* The process used to built it, can be traced to the earliest days of computing

* The myth – have a number of attributes that have made them insidious [i.e. proceeding inconspicuously but harmfully]

* For instance myths appear to be reasonable statements of facts [Sometimes containing elements of truth]

(1) Management Myths:

* Managers in most disciplines are often under pressure to maintain budget, keep schedules from slipping and improve quality

* A software manager often grasp at belief in a software myth, if that belief will lessen the pressure

Myth 1:

We already have a book that is full of standards and procedures for building software…..Won’t that provide my people with everything they need to know?

Reality:

=> The book of standards may well exists……But is it used?

=> Are software practitioners aware of its existence?

=> Does it reflect modern software engineering practices?

=> Is it complete? Is it adaptable?

=> Is it streamlined to improve time to delivery while still maintaining a

 Focus on quality?

* In many cases the answer to all of these questions is NO

Myth 2:

If we get behind schedule, we can add more programmers and catch up [Some times called ‘Mongolian horde Concept”]

Reality:

* Adding people to a late software project makes it later

* As new people are added, people who were working must spend time in educating the new comers, there by reducing the amount of time spent on productive development effort

* People can be added, but only in a planned and well coordinated manner
Myth 3:

If I decide to out source the software project to a third party, I can just relax and let that firm build it

Reality:

* If an organization does not understand, how to manage and control software projects internally, it will invariably struggle when it out sources software projects

(2) Customer Myths:

* The customer who requests computer software may be,

=> a person

=> a technical group

=> a marketing / sales department (Or)

=> an outside company

* In many cases customer believes myths about software

* Myths lead to false expectations (by the customer) and ultimately, dissatisfaction with the developer

Myth 1:

A general statement of objectives is sufficient to begin writing programs – We can fill in the detail later

Reality:

* An ambiguous statement {i.e. having two meanings} leads to a serious of problems

* But Unambiguous statements are developed only through effective and continuous communication between customer and developer

* So comprehensive and stable statements of requirements is not always possible

Myth 2:
Project requirements continually change, but changes can be easily accommodated because software is flexible

Reality:

* When requirements changes are requested early [before design (Or) code has been started] cost impact is relatively small

* When requirement changes are requested after design (Or) code has been started cost impact is too high
* The change can cause upheaval [i.e. Violent change (Or) disturbance] that require additional resources and major design modification

(3) Practitioner’s Myth:
Myth 1:

Once we write the program and get it to work our job is done

Reality:

* Industry data indicate that between 60 and 80 percent of all efforts expended on software will be expanded after it is delivered to the customer for the first time

Myth 2:

Until I get the program running – I have no way of assessing its quality

Reality:

* Apply any one of the effective software quality mechanism, from the beginning of the project

* Software quality reviews are more effective than testing for finding certain classes of software errors

Myth 3:
The only deliverable work product for a successful project is the working program

Reality:

* A work program is part of software configuration, that includes many elements
* But documentation only provides a foundation for successful engineering and support for software

Myth 4:

Software engineering will make us create voluminous and unnecessary documentation and will invariably slow us down

Reality:

* Software engineering is not about creating documents, it about creating quality

* So better quality leads to reduced rework

* Reduced rework leads to faster delivery times

Conclusion:

* Many software professionals recognizes the fallacy [i.e. mistaken belief] of software myths, this will indirectly promote the poor management and technical practices

* But recognition of software realities is the first step toward formulation of practical solutions for software engineering
UNIT – 1 [PART – II]

A GENERIC VIEW OF PROCESS
1.8 Software Engineering – A Layered Technology:

(i) Quality Focus:
* Any engineering approach [including software engineering] must rest on an organizational commitment to quality

* Total quality management promote a continuous process improvement, this leads to development of effective approaches to software engineering

* The bedrock that supports software engineering is a quality focus

(ii) Process:

* The process layer is the foundation for software engineering

* It is the glue that holds the technology layers together and enables rational and timely development of computer software

* It defines a framework that must be established for;

=> Effective delivery of software engineering technology

* The software process forms the basis for management control

* It establishes the context in which

=> Technical methods are applied

=> Work products are produced [i.e. models, documents, data,

 reports, forms etc..]

=> Milestones are established

=> Quality is ensured and change is probably managed

(iii) Methods:
* It contains a broad array of tasks that include;

=> Communication

=> Requirement analysis

=> Design modeling

=> Program Construction

=> Testing and support

* It depends on a set of basic principles that

=> Govern each area of the technology

=> Include modeling activities and other descriptive techniques

(iv) Tools:

* It provide automated (Or) semi automated support for the process and the methods
* When tools are integrated information created by one tool can be used by another

1.9 A Process Framework:

* It identifying a small number of framework activities that are applicable to all software projects, regardless of their size (Or) complexity

* The process framework include a set of umbrella activities, that are applicable across the entire software process

Framework Activity:
* It contains a set of software engineering actions [A collection of related tasks that produces a major software engineering work product]

Example:

Design is a software engineering action

* Each action contain individual work tasks

* The work tasks accomplish some part of the work implied by the action

1.10 Generic Framework Activities:

(1) Communication:

* It involves heavy communication and collaboration with the customer

* Also it includes requirement gathering and related activities

(2) Planning:

* It describes the

=> Technical tasks to be conducted

=> The risks that are expected

=> Resources that will be required

=> Work products to be produced

=> Work Schedule

(3) Modeling:

* It describes the creation of models – that allow the developer and the customer to understand software requirements and design for those requirements
(4) Construction:

* It combines

=> Code generation [either manual (Or) automated]

=> Testing [Required uncovering errors in the code]

(5) Deployment:

* The software is delivered to customer

* Customer evaluates the delivered product

* Customer provides feedback based on the evaluation

* These generic framework activities can be used during the;

=> Development of small programs

=> Creation of large web applications

=> Engineering of large complex computer based systems

* The software process is different in each case, but framework activities remain same

1.11 Umbrella Activities:

(1) Software project tracking and control:

* Allow the software team to progress against the project plan

* If necessary take action to maintain schedule

(2) Risk Management:

* Find risks that may affect the outcome of the project (Or) quality of the product

(3) Software quality assurance:

* It defines and conducts the activities required to ensure software quality

(4) Formal Technical Reviews:

* Before propagated to the next action (Or) activity, remove uncover errors

(5) Measurements:
* It defines and collects process, projects and product measures that help the team in delivering software

* It can be used in conjunction with other framework and umbrella activities

(6) Software configuration management:

* It manages the effects of change throughout the software process
(7) Reusability management:

* It establishes mechanism to achieve reusable components

* It defines criteria for work product reuse

(8) Work product preparation and production:
* It includes the activities required to create work products such as,

=> Models

=> Documents

=> Logs, forms and lists

1.12 The Capability Maturity Model Integration [CMMI]
* It is developed by Software Engineering Institute [SEI]
* It is a comprehensive process meta-model, that is predicated on a set of system

* A organization can reach a different levels of process capability and maturity by develop a process model based on CMMI guidelines

* The CMMI represents a process meta-model in two different ways:

=> Continues Model

=> Staged Model

(1) Continuous Model:

* It describes a process in two dimensions as shown below;

* Each process area [e.g. Project planning, requirement management] is assessed against specific goals and practices

* Each process area is rated according to the following capability levels;
LEVEL 0: INCOMPLETE

* The process area [e.g. Requirement Management] is either

=> Not performed (Or)

=> Does not achieve all goals and objective, defined by CMMI for

 level – 1 capability

LEVEL 1: PERFORMED
* All of the specific goals of the process area have been satisfied

* Work tasks required to produce defined work products are being conducted

LEVEL 2: MANAGED

* All level-1 criteria have been satisfied

* All people doing the work have access to adequate resources to get the job

* All work tasks and work products are monitored, controlled and reviewed and are evaluated for adherence to the process description

LEVEL 3: DEFINED

 * All level – 2 criteria have been achieved
* The process is tailored from the organizations set of standard processes according to organizations tailoring guidelines

LEVEL 4: QUANTITATIVELY MANAGED

* All level – 3 criteria have been achieved

* The process area is controlled and improved using measurements and quantitative assessment

* Quantitative objectives and process performance are established in managing the process

LEVEL 5: OPTIMIZED

* All level – 4 criteria have been achieved

* The process area is adapted and optimized using quantitative means to meet changing customer needs

CMMI defines each process area in terms of specific goals and specific practices
(i) Specific Goals [SG]: It establish the characteristics that must exist, if the activities implied by a process area are to be effective

(ii) Specific Practices [SP]: It refine a goal into a set of process – related activites

Example:

* Project planning is one the process area, defined by CMMI for project management category

SG1: Establish Estimates

 SP 1.1 – 1 Estimate the scope of the project

 SP 1.2 – 1 Establish estimates of work product and task attributes

 SP 1.3 – 1 Define Project Life cycle

 SP 1.4 – 1 Determine estimates of effort and cost

SG2: Develop a project plan:

 SP 2.1 – 1 Establish the budget and schedule

 SP 2.2 – 1 Identify project risks

 SP 2.3 – 1 Plan for data management

 SP 2.4 – 1 Plan for project resources

 SP 2.5 – 1 Plan for needed knowledge and skills

 SP 2.6 – 1 Plan customer involvement

 SP 2.7 – 1 Establish the project plan

SG3: Obtain commitment to the plan

 SP 3.1 -1 Review plans that affect the project

 SP 3.2 – 1 Reconcile work and resource levels

 SP 3.3 – 1 Obtain plan commitment

* CMMI also defines a set of five generic goals and related practices for each process area:

GG1: Achieve specific goals

 GP 1.1 – Perform base practices

GG2: Institutionalize a managed process

 GP 2.1 – Establish an organizational policy

 GP 2.2 – Plan the process

 GP 2.3 – Provide resources

 GP 2.4 – Assign responsibility
 GP 2.5 – Train people

 GP 2.6 – Manage configurations

 GP 2.7 – Identify and involve relevant stake holders

 GP 2.8 – Monitor and control the process

 GP 2.9 – Review status with higher level management

GG3: Institutionalize a defined process

 GP 3.1 – Established a defined process

 GP 3.2 – Collect improvement information

GG4: Institutionalize a quantitatively managed process

 GP 4.1 – Establish quantitative objectives for the process

 GP 4.2 – Stabilize sub process performance

GG5: Institutionalize an optimizing process

 GP 5.1 – Ensure continuous process improvement

 GP 5.2 – Correct root cause of the problem

(2) Staged CMMI Model:

* It defines the same process area, goals and practices as continuous model
* The staged model defines five maturity level, rather than five capability levels as in continuous model

* To achieve a maturity level, the specific goals and practices associated with a set of process area must be achieved
**
Note:

Task Set: It defines the actual work to be done, to accomplish the objectives of a software engineering action.

 Requirement gathering is an important software engineering action, that occurs during the communication activity

Example:

* For simple projects task set for requirement gathering might be look like this;

=> Make a list of stake holders for a project

=> Invite all stake holders to an informal meeting

=> Ask each stake holders to make a list of features and functions

 required

=> Discuss requirements and build a final list

=> Prioritize requirements

=> Note areas of Uncertainty

**

1.13 Process Patterns
Definition:

* It is defined as set of activities, actions, work tasks, work products and related behaviors required to develop computer software
* In general terms it provides a template [i.e. a consistent method for describing an important characteristic of the software process]

* By combining patterns a process meets the need of a project

* Patterns can be defined at any level of abstraction. For example it might be used to describe

=> a complete process [ex: Prototyping]

=> an important framework activity [ex: Planning]

=> a task with in a frame work activity [ex: Project – Estimating]

Templates for describing a process pattern
(1) Pattern Name: It gives a meaningful name that describes its function with in the software process

Example:

 Customer – Communication

(2) Intent: The objective of the pattern is described

Example:

 The intent of customer – communication is

=> to establish a collaborative relationship with the customer, in an

 effort to define project scope, business requirements etc..

(3) Type: The pattern type is specified, it suggests three types:

 (a) Task patterns: It define a software engineering action that is part of the process and relevant to successful software engineering practice

Example:

 Requirements gathering

 (b) Stage pattern: It defines a frame work activity for the process [i.e. a stage pattern incorporates multiple task patterns that are relevant to the stage]

Example:

 Communication – This pattern would incorporate the task pattern requirement gathering and others

 (c) Phase patterns: It define the sequence of frame work activity that occur with the process, even when the over all flow of activities is iterative in nature

Example:

 Spiral model (Or) Prototyping

(4) Initial context: It describes the conditions under which the pattern applies. Some queries asked prior to ignition of the pattern. They are

=> What organizational (Or) team related activities have already

 occurred?

=> What is the entry state for the process?

=>What software engineering information (Or) project information

 already exists?
Example:
 Planning pattern [a stage pattern]
* It requires that;

=> Customer and software engineer have establish a collaborative

 communication

=> Successful completion of a number of task patterns has occurred

=> Project scope, basic business requirements and project constraints are

 known
(5) Problem: It described the problem to be solved by the pattern
Example:

 The problem to be solved by customer communication might be;

=> Communication between developer and customer is inadequate
 because an effective format for eliciting information is not established

=> a useful mechanism for recording is not created

=> Meaningful reviews are not conducted

(6) Solution: It describes the implementation of the pattern. It also discuss;

=> how the initial state of the process that exist before the pattern is

 implemented

=> how software engineering information (Or) project information that is

 available before initiation of the pattern

(7) Resulting Context: It describe the condition that will result, once the pattern has been successfully implemented
* After the completion of the pattern we ask;

=> What team related activities must have occurred?

=> What is the exit state of the process?

=> What project information has been developed?

(8) Related patterns: A list of process pattern, that are directly related to this one are provided as a hierarchy (Or) or in some other diagrammatic form
Example:
 The stage pattern communication includes the task patterns such as

=> Project team assembly

=> Collaborative guideline definition

=> Scope – Isolation

=> Requirement – gathering

=> Constraint – description and

=> Model creation

(9) Known uses / examples: It indicates the specific instances in which the pattern is applicable

Example:

 Communication is mandatory at the beginning of every software project, it is recommended throughout software project

Conclusion:

* Process patterns provide an effective mechanism for describing any software process

* It enables a software organization to develop hierarchical process description
* Once process patterns have been developed, they can be reused for definition of process variants [i.e. a customized process model can be defined by a software team, using the patterns as building blocks for the process model]

1.14 Process Assessment:

* The software process gives no guarantee that;

=> Software will be delivered on time

=> it will meet the customer needs

* In addition the process should be accessed to ensure that it meets a set of basic process criteria that have been essential for a software engineering

* The relationship between the software process and methods applied for assessment and improvement are shown below

 Software process assessment – Different approaches
(1) Standard CMMI Assessment Methods for Process Improvement [SCAMPI]

* It provides a five step process assessment model. They are

(i) Initiating

(ii) Diagnosing

(iii) Establishing

(iv) Acting

(v) Learning

(2) CMM – Based Appraisal for Internal Process Improvement [CBAIPI]
* It provides a diagnosing techniques for assessing the relatively maturity of a software organization

(3) SPICE [ISO / IEC 15504]

* It defines a set of requirements for software process assessment

* This standard helps the organization in developing an objective evaluation of any defined software process

(4) ISO 9001: 2000 for Software

* This standard is applied to any organization that wants to improve;

=> the over all quality of the products, systems, services it provides

* This standard is directly applicable to software organizations and companies

* This standard uses a “Plan – do – Check – act” cycle that is applied to quality management elements of software projects
Plan => It establishes the process objectives, activities and tasks necessary to achieve high quality software and resultant customer satisfaction

Do => It implements the software products [including both framework and umbrella activities]
Check => It monitors are measures the process to ensure that all requirements established for quality management have been achieved

Act => It initiates the software process improvement activities that continually work to improve the process
1.15 Personal process models

Personal Software Process [PSP]:

* PSP emphasizes personal measurement of both work product that is produced and the resultant quality of the work product

* In addition PSP makes the practitioner responsible for project planning [e.g. estimating and scheduling] and empowers to control the quality of all software work products that are developed

PSP – Five Framework Activities:
(1) Planning:

* This activities isolates requirements

* Based on these develops both size and resource estimates

* In addition a defect estimates [i.e. the number of defects projected for the work] is made

* Finally the development tasks are identified and a project schedule is created

* All defects metrics are recorded in a worksheet

(2) High Level Design:

* External specification for each component to be constructed are developed and a component design is created

* When uncertainty exists prototypes are built

* All issues are recorded and tracked

(3) High Level Design review:
* Formal verification methods are applied to find uncover errors in the design

* Metrics are maintained for all important tasks and work results

(4) Development:

* The component level design is refined and reviewed

* Code is generated, reviewed, compiled and tested

* Metrics are maintained for all important tasks and work results

(5) Postmortem:
* Using the measures and the metrics collected the effectiveness of the process is determined

* Measures and metrics provide guidance for modifying the process to improve its effectiveness

Conclusion:

* PSP stresses each software engineer to identify errors early and important to understand the types of errors that he is likely to make

* When PSP is properly introduced the software engineering productivity and quality are significant

Drawbacks:
* PSP is intellectually challenging

* Training is relatively lengthy and training costs are high

* The required level of measurement is difficult for many software people

1.16 Team Process Model [TSP]

* Te goal of TSP is to built a “Self-Directed” project team that organizes itself to produce high quality software

* The self-directed team defines the roles and responsibilities for each team member

=> Tracks quantitative project data [productivity and quality]

=> Identifies a team process that is appropriate for the project

=> Identify a strategy for implementing the process

=> Continually access the risk and reacts to it

=> Tracks, manages and reports project status

TSP – Objectives:
(i) Build Self-Directed teams, that plan and tracks their work, establish goals and own their process and plans

* The self-directed team may contain 3 to 20 engineers

(ii) Show managers how to coach and motivate their teams
* Also show how to help them sustain peak performance

(iii) Accelerate software process improvement by making CMM Level – 5 behaviors normal and expected
(iv) Provide improvement guidance to high maturity organizations

(v) Facilitate university teaching of industrial grade team skills

TSP – Framework activities:

=> Launch

=> High Level Design

=> Implementation

=> Integration and Testing

=> Postmortem

* Tsp makes use of wide variety of

=> Scripts

=> Forms and Standards that guide the members in their work

Example: Launch Script

=> Review project objectives with management and agree on and document team goals

=> Establish team roles

=> Define the teams development process

=> Make a quality plan and set quality targets

=> Plan for the needed support facilities

=> Produce an over all development strategy

=> Make a development plan, for the entire project

=> Make detailed plans for each engineer for the next phase

=> Merge the individual plan into a team plan

=> Rebalance team workload to achieve a minimum overall schedule

=> Assess project risks and assign tracking responsibility for each key risk

Conclusion:

* Like PSP, TSP is a rigorous approach to software engineering that provides distinct and quantifiable benefits in productivity and quality

Failure

Rate

Time

“Infant Mortality”

“Wear Out”

Time

Failure

Rate

Change

Actual Curve

Idealized Curve

Increased Failure rate due

to Side Effects

TOOLS

METHODS

PROCESS

A QUALITY FOCUS

Work Tasks

Work Products

Quality Assurance Points

Project Milestones

Framework activity # 1

Software engineering action # 1.1

Task Sets

Software engineering action # 1.k

Task Sets

Task Sets

Task Sets

Software engineering action # n.1

Framework activity # n

Work Tasks

Work Products

Quality Assurance Points

Project Milestones

Software engineering action # n. m

Umbrella Activities

Process Framework

Software Process

A Process Framework

1

2

3

4

5

Capability

 Level

Process Area

PP

REQM

MA

CM

PPQA

Others

CMMI Process Area Capability

PP – Project Planning

REQM – Requirements Managements

MA – Measurements and Analysis

CM – Configuration Management

PPQA – Process and Product QA

Software Process

Software process Assignment

Capability determination

Software process Improvement

Identify

Modifications to

Identify

Capabilities and risks of

Motivates

Leads

to

Leads

to

 Is

Examined by

