PAGE
61

UNIT – 3 [Part – I]
REQUIREMENTS ENGINEERING PROCESS

Definition:

* The requirements engineering process includes the set of activities that lead to the production of the requirements definition and requirements specification

* In addition it includes reports on the feasibility of the system and a software specification

There are four principal stages in this process:
3.1 Feasibility Study:

* An estimate is made of whether the identified user need may be satisfied using current software and hardware technology
* The study will decide the proposed system will be cost-effective and if it can be developed given existing budgetary constraint

* The result should inform the decision of whether to go ahead with a more detailed analysis

* A feasibility study should be relatively cheap and quick

3.2 Requirements Analysis:
* Deriving the system requirements through

=> Observation of existing system

=> Discussions with potential users and procedures

=> Task analysis etc..

* This help the analyst understand the system to be specified

* System prototypes also developed to understand the requirements
3.3 Requirements Definition:

* It is the activity of translating the information gathered during the analysis activity into a document that defines a set of requirements

* This document must be written, so that it can be understood by the end-user and the system customer

3.4 Requirements Specification:

* A detailed and precise description of the system requirements is set up that act as a basis for contract between client and software developer

* The creation of this document is carried out in parallel; with high level design

* During the creation of this document errors in requirement definition are discovered

* It must be modified to correct these problems

3.5 Requirement Elicitation:

* It is a process of ask review with customer, the user and others to ask about

=> What the objective for the system?

=> What is to be accomplished?

=> How the system fits into the needs of the business?

=> How the system (Or) Product is to be used on a day – to – day basic?

* Requirement Elicitation is difficult because

(1) Problems of Scope:

* The boundary of the system is ill – defined

* The customer / users specify unnecessary technical details that may confuse rather than clarify overall system objectives

(2) Problems of Understanding:

=> The customer is not completely sure of what is needed?

=> Have a poor understanding capabilities and limitations of their

 Computing environment

=> Don’t have a full understanding of problem domain

=> Have trouble to communicate with system engineer

=> Specify requirements that are ambiguous (Or) un testable

(3) Problems of Volatility:
* The requirements may change over time, to over come these problems, requirements engineers must approach the requirements gathering activity in an organized manner

3.6 Requirements Validation:

* It examines the specification to ensure that all software requirements have been stated unambiguously

* All the inconsistencies, omissions and errors have been detected and corrected

* The work products conform to the standards established for the process, the project and the product

* The review team validates requirements validation check list

Requirements validation checklist:

* It is often useful to examine each requirement against a set of checklist questions

=> Are requirements stated clearly?

=> Can requirements be misinterpreted?

=> Is the source [e.g. person, a document] of the requirement is identified?

=> Is the requirement bounded in quantitative terms?

=> What other requirements relate to this requirement?

3.7 Requirement Management:
* It is a set of activities that help the project team to identify, control and track requirements

* The changes to the requirements at any time is also identified

* Many of requirements management activities are identical to software configuration techniques [SCM]

Steps followed in Requirement Management:

(1) Begins with identification

(2) Each requirement is assigned a unique identifier

(3) Traceability tables are developed [i.e. It relates to one (Or) more aspect of the system (Or) its environment]
Possible Traceability table:

(1) Features traceability table:

* It shows how requirements relate to important customer observable system (or) product features

(2) Source Traceability table:

* Identifies the source of each requirement

(3) Dependency traceability table:

* Indicates how requirements are related to one another

(4) Subsystem traceability table:

* Categorizes requirements by the subsystem(s) that they govern

(5) Interface Traceability table:

* It shows how requirements relate to both internal and external system interfaces

* The traceability tables are maintained as a part of requirement database

* So they can be quickly searched to understand, how a change in one requirement will affect different aspects of the system to be built

	
	A01
	A02
	.
	.
	.
	Aii

	R01
	
	
	
	
	
	

	R02
	
	
	
	
	
	

	.
	
	
	
	
	
	

	.
	
	
	
	
	
	

	Rnn
	
	
	
	
	
	

UNIT – 3 [Part – II]

SYSTEM MODELS

3.8 Data-Flow Model:

* The data flow models are used to show how data flows through a sequence of processing steps

* The data is transformed at each step, before moving on to the next processing steps

* These processing steps are represented using data flow diagrams [DFD]

Data Flow Diagrams [DFD]:

* The DFD takes an Input – Process – Output view of a software [i.e. The data object flow into the software are transformed by processing elements and resultant data objects flow out of the software]

*The data objects are represented by Labeled arrows
* Transformations represented by Circles [also called bubbles]

* The DFD is represented in a hierarchical fashion [i.e. the first data flow model called level 0 DFD (Or) context diagram represent the system as a whole]

* Subsequent data flow diagrams refine the context diagram providing increasing detail with each subsequent level

Guidelines to draw data flow diagrams:

(1) The level 0 DFD should describe the software / system as a single bubble

(2) Primary input and output should be carefully noted

(3) Refinement should begin by isolating candidate processes, data objects and data stores to be represented at next level

(4) All arrows and bubbles should be labeled with meaningful names

(5) Information flow continuity must be maintained from level to level

(6) One bubble at a time should be refined

Example: Safe Home security System

* In level – 0 DFD the primary eternal entities [boxes] produce information for use by the system and consume information’s generated by the system
* The labeled arrows represent data objects

* For example user commands and data includes:

=> all configuration commands

=> all activation / deactivation commands

=> all miscellaneous interactions

=> all data that are entered to qualify

* Here the double line represented data stores

3.9 Control flow Model:
* A large class of applications are driven by events rather than data

* However a large class of application produce control information rather than reports (Or) displays

* It process information with heavy concern for time and performance

* Such application require the use of control flow model

3.10 Behavioral Model:

* It indicates how software will respond to external events or stimuli

* To create the model the analyzer must perform the following steps:

=> Evaluate all use-cases to fully understand the sequence of interaction

 within the system

=> Identify events that drive the interaction sequence and understand how
 events relate to specific classes

=> Create a sequence for each use-case

=> Build a state diagram for the system

=> Review the behavioral model to verify accuracy and consistency

Behavioral Model – Representation:

* The behavioral model can be represented in two ways:

=> State diagrams

=> Sequence Diagrams

(i) State diagrams:

* One type of behavioral representation called state diagram in UML indicates active states, for each class and the events that cause changes between these active states

* In the above fig. the labels shown for each arrow represent the event that trigger the transition
* Validate password() accesses a password object and performs a digit – by – digit comparison to validate the entered password

(ii) Sequence diagram:

* It includes how events cause transition from object to object

* A sequence diagram is a representation of how events cause flow from one object to another as a function of time
* It represents key classes and the events that cause behaviors to flow from class to class

3.11 Object Models:
* In object models, the system requirements are expressed as objects, designing using an object – oriented approach and developing the system in an object oriented programming languages

* Object models should not include details of the individual objects in a system, but identifies common attributes and the services (Or) operations which are provided by each object

* Various types of object models can be produced showing;

=> how object classes are related to each other?

=> how objects are aggregated to form other objects

=> how objects use the services provided by other objects

* There have been various notations used to represent object models

<Attributes> => This section lists the attributes of that object class
<Services> => This section shows the operations associated with the object

 These operations may modify attributes values and may be activated

 from other object classes

* In object model identifying the classes of an object is important task

* After identifying classes are organized into a taxonomy [i.e. it is a classification scheme which shows how an object class is related]

* Object Models developed during requirements analysis simplify the transition to object oriented design and programming

3.12 Structured Methods:
* Structured methods are sets of notations and guidelines for software design

* The structured methods involves producing large amount of diagrammatic design documentation

* Structured methods have been applied successfully in many large projects

* They can deliver significant cost reductions because they use standard notations and ensure that the standard design documentation is produced

* A mathematical model always lead to the same result, irrespective of who applies the method

* Similarly structured methods suggests that designers should normally generates similar designs from the same specification

Structured Methods usually includes some (Or) all of the following:

(1) A Process Model:

* This defines the activities in the method

* The process model usually presents activities as a sequence

* Examples of activities are:

=> Data Flow analysis

=> Control Scenario identification etc…

(2) System Modeling Notations:

* This notations may be diagrammatic, form based (Or) linguistic

* Examples of diagram types are:

=> Data – Flow diagrams

=> Entity Relation diagrams

=> Object Structure diagrams

(3) Rules applied to the system model:

* Rules may hold with in a

=> Single Model [for example, every entity in a diagram must have a

 name]

=> Across Model [for example, input and output items in a data flow

 diagram must be documented using entity Relation model]
(4) Design Guidelines:

* These are not enforceable rules but are intended to avoid poor design

* An example might be;

=> An object normally has no more than five sub – objects

(5) Report Templates:
* These define how the information collected during the analysis should be presented

* Structured methods often support one (Or) all of the following models of a system

=> Data – Flow Model

=> Entity – Relational Model

=> Object – Oriented Model
Feasibility

Study

Requirements Analysis

Feasibility

Report

System Models

Requirements

Document

Requirements Definition

Requirements Specification

Definition of Requirements

Specification of Requirements

Specific aspect of the system (Or) its environment

Requirements

Generic Traceability Table

Control

Panel

Sensors

Safe home

Software

Control

Panel

Display

Alarm

Telephone Line

Level - 0 DFD

User commands

& Data

Sensor

Status

Display

Information

Alarm Type

Telephone

number tones

Control

Panel

Interact with User

Process Password

Configure system

Activate / Deactivate System

Display Messages & Status

Configuration Information

Control

Panel

Display

Monitor Sensors

Sensors

Alarm

Telephone Line

Level - 1 DFD

User commands

& Data

Password

Configure

Request

Start / Stop

Configuration data

Configuration data

A/D Msg

Display

Information

Valid Id message

Sensor

Status

Sensor

Information

Alarm Type

Telephone

Number Tones

Reading

Comparing

Do: Validate password

Locked

Selecting

Key hit

Password entered

Password = incorrect

No. of tries < Max. tries

Timer > Locked Time

Timer < Locked Time

No. of tries > Max tries

Password = Correct

Activation Successful

Home Owner

Control Panel

System

Sensors

Reading

Comparing

Locked

Selecting

A

A

System

Ready

Password entered

Request Lookup

Result

Password = Correct

Request Activation

Activation Successful

Activation Successful

Timer > Locked Time

	<Class Name>

	<Attributes>

	<Services>

Library User

Name

Address

Phone

Registration

Register

De - Register

Reader

Affiliation

Borrower

Item on Loan

Maximum Loans

Borrower

Item on Loan

Maximum Loans

Borrower

Item on Loan

Maximum Loans

