PAGE
137

UNIT – 6 [Part – 1]
TESTING STRATEGIES

6.1 A Strategic Approach to Software Testing:

* Testing is a set of activities that can be planned in advance and conducted systematically
* For a software process a set of test case design techniques and testing methods are defined

* A number of testing methods are proposed

6.2 Testing Strategies – Generic Characteristics:

* To perform effective testing a software team should conduct effective formal technical reviews.

* Testing begins at the component level and works outward toward the integration of the entire computer based system

* Testing is conducted by the developer of the software and for large projects an independent test group
**

Note:

Testing VS Debugging:

* Testing and debugging are different activities, But debugging must be accommodated in any testing strategy

* A strategy must provide guidance for the practitioner and a set of mile stones for the manager

**

(1) Verification and Validation:
* Verification refers to set of activities that ensure that software correctly implements a specific function
Example:

Verification: Are we building the product right?

* Validation refers to a different set of activities that ensure that the software that has been built is traceable to customer requirements

Example:

Validation: Are we building the right product?

* Verification and validation includes a wide variety of SQA activities that encompass,

=> Formal Technical Reviews

=> Quality and Configuration audits

=> Performance Monitoring

=> Simulation

=> Feasibility Study

=> Documentation Review

=> Database Review

=> Analysis Algorithm

=> Development Testing

=> Usability Testing

=> Qualification Testing

=> Installation Testing

(2) Organizing for Software Testing:

* The software engineer is always responsible for testing the individual units (components) of the program

* In many cases the developer also conducts integration testing – a testing step that leads to the construction of the complete software architecture

* After the software architecture is complete an independent test group becomes involved

* The role of an Independent Test Group [ITG] is to remove the inherent problems associated with letting the builder test the thing that has been built
* The developer and the ITG work closely throughout a software project to ensure that through test will be conducted
* While testing is conducted the developer must available to correct errors that are uncovered

(3) Software testing strategy for conventional software architecture:

* A strategy for software testing may be viewed in the context of the spiral as shown below

* Unit testing begins at the vortex of the spiral and concentrates on unit [i.e. components] of the software as implemented in the source code

* Taking another turn by moving along the spiral to integrate testing which focus on design and the construction of software architecture

* Next turn we encounter validation testing which validate requirements established as part of software requirements analysis against software that has been constructed
* Finally we arrive at system testing, where the software and other system elements are tested as whole

6.3 Software Testing Steps:

(i) Unit Testing:

* Initially tests focus on each component individually ensuring that it functions properly as a unit

* Unit testing uses testing techniques heavily, to ensure complete coverage and maximum error detection in components control structure

* The components must be assembled (Or) Integrated into form complete software packages

 (ii) Integration Testing:
* It address the issues associated with the dual problems of verification and program construction

* Validation criteria [established during requirements analysis] must be evaluated

* Validation testing provides final assurance that software meets all functional, behavioral and performance requirements

* After the software has been integrated [constructed] a set of high – order tests are conducted
(iii) High Order Testing:

* It falls outside the boundary of the software engineering

* Once software is validated it must be combined with other system elements [ex: hardware, people, and software]

* System testing verifies that all elements mesh properly and that overall system function / performance is achieved
6.4 Strategic Issues:

* For a successful software testing strategy the following issues must be addressed

(1) Specify product requirements in a quantifiable manner long before testing commences
(2) State testing objectives explicitly

(3) Understand the users of the software and develop a profile for each user category

(4) Develop a tasting plan that emphasize “Rapid Cycle Testing”

(5) Build robust software that is designed to test itself

(6) Use effective formal technical reviews, as a filter prior to testing

(7) Conduct formal technical reviews to assess the test strategy and test cases
(8) Develop a continuous improvement approach for the testing process
6.5 Test Strategy for Conventional Software:

* Many strategies exists to test software so some of them are,

(i) A software team could wait, until the system is fully constructed and then conduct tests on the system to find errors

* This approach does not work for many cases

(ii) A software engineer could conduct tests on a daily basis whenever any part of the system is constructed

* This approach can be very effective. But most software developers hesitate to use it

(iii) Most software team choose a testing strategy that falls between the two extremes

It takes the incremental view of testing,

=> Beginning with the testing of individual program units

=> Moving to test designed to facilitate the integration of the units

=> Culminating with tests that exercise the constructed system

6.6 Unit Testing:
* It focuses verification on smallest unit of software design [i.e. Software component (Or) Module]

* It focuses on the internal processing logic and data structures with in the boundaries of component
Unit test Considerations:
* The test that occurs as part of unit tests are shown below
Interface:

* It is tested to ensure that;

=> Information properly flows into and out of the program unit under test

Local Data structures:
* These are examined to ensure that

=> Data stored temporarily maintains its integrity during all steps in an algorithm execution

Independent Paths:
* All basis paths through the control structures are examined to ensure that

=> All statements in a module have been executed at least once
Boundary Conditions:

* These are tested to ensure that

=> the module operates properly at boundaries established to limit (Or)
 restrict processing
* And finally all error handling paths are tested

=>Tests of dataflow across a module interface are required before any

 other test is initiated

* Selective testing of execution path is an essential task during the unit testing

* Test cases should be designed to uncover errors due to

=> Erroneous Computation

=> Incorrect Comparisons

=> Improper Control flow

Common errors in computations are:

(1) Misunderstood (Or) incorrect arithmetic precedence

(2) Mixed mode operations

(3) Incorrect initialization

(4) Precision inaccuracy

(5) Incorrect symbolic representation of an expression
Test cases should uncover errors, such as
(1) Comparison of different data types

(2) Incorrect logical operators (Or) Precedence

(3) Expectation of equality, when precision error makes equality unlikely

(4) Incorrect comparisons of variables

(5) Improper (Or) non-existent loop termination

(6) Failure to exit, when divergent iteration is encountered

(7) Improperly modified loop variables
6.7 Boundary Testing:
* It is one of the most important unit testing tasks

* Software often fails at its boundaries [ex: error often occurs when nth element of an n-dimensional array is processed
* When error handling is evaluated, the potential error that should be tested are:

(1) Error description is unintelligible

(2) Error noted does not correspond to error encountered

(3) Error condition causes operating system intervention prior to error

 handling

(4) Exception condition processing is incorrect

(5) Error description does not provide enough information to assist in thee

 location of the cause of the error

Unit Test Procedures:
* The design of unit test can be performed before coding begins (Or) after code has been generated

Driver:
* In most applications a driver is nothing more than a “main program”

* It accepts;

=> Test Cases data

=> Passes these data to the component [to be tested]

=> Print relevant results

Stub (Or) Dummy Programs:

* It replaces modules that are called by the component to be tested

* Stub uses

=> the subordinate module’s interface

=> do minimal data manipulation

=> provides verification of entry

=> returns control to the module undergoing testing

* Both drivers and stubs are software that must be written but that is not delivered with the final software product
* If drivers and stubs are kept simple, actual overhead is relatively low else high

* Unit testing is simplified when a component with high cohesion is designed

6.8 Integration Testing:

* Once all the modules have been unit tested [i.e. all modules work properly we have doubt about

=> they will work, when put them together?

* The answer for this is going to integration testing
Interfacing:
* It is the mechanism of putting all the modules together

* The problems that occur during interfacing are

=> Data can be lost across an interface

=> One module can have an inadvertent adverse affect on another

=> Sub functions, when combined may not produce the desired major

 Function

=> Individually acceptable imprecision may be magnified to unacceptable

 levels

=> Global data structures can present problems

Integration Testing – Definition:

* It is a systematic technique for constructing the software architecture, while at the same time conducting tests to uncover errors associated with interfacing

* The objective is to take unit tested components and build a program structure that has been dictated by design

Incremental Integration:

* In this case, the program is constructed and tested in small increments

* Here the errors are easier to isolate and correct

* Interfaces are tested completely and a systematic test approach can be applied

* Different types of incremental integration are available

Incremental Integration – Types:

(1) Top – Down Integration:

*
 This testing is an incremental approach to construction of the software architecture
* The modules are integrated by moving downward through the control hierarchy begin with main control module [Main program]

* The subordinate module to main control module are integrated either in a Depth first (Or) Breadth first manner

Depth First Integration:

* It integrates all components on a major control path of the program structure

* Selection of major path depends on application specific characteristics
* For example, selecting the left hand path components M1, M2, M5 would be integrated first and next M8
* Then the central and right hand control paths are built

Breadth First integration:

* It incorporates all components directly subordinate at each level, moving thee structure horizontally

* In the above figure components M2, M3 and M4 would be Integrated first and next M5, M6 and so on..

Steps followed in Integration Process:

Step 1: The main control module is used as test driver and stubs are substituted for all components directly subordinate to the main control module

Step 2: Depending on the integration approach selected [i.e. breadth first (Or) depth first] subordinate stubs are replaced one at a time with actual components

Step 3: Test are conducted as each component is integrated

Step 4: On completion of each set of tasks another stub is replaced with the real component

Step 5: Regression Testing may be conducted to ensure that new errors have not been introduced

* The process continues from Step – 2 until the entire program structure is built
Advantages:

(1) The top-Down integration strategy verifies major control (Or) decision points early in the test process

(2) Early demonstration of functional capability is a confidence builder for both the developer and the customer

(3) This method is relatively Uncomplicated but in practice logistical problems can arise

(2) Bottom – Up Integration:
* In this case begin construction and testing with components at the lowest levels in the program structure

* Because components are integrated from the bottom up, processing required for the components subordinate to a given level is always available

* Here the need for the stub is eliminated

Steps followed in the Bottom – Up Integration:

Step 1: Low level components are combined into Clusters [also called builds] that perform a specific software function

Step 2: A driver [a control program for testing] is written to coordinate test case input and output

Step 3: The cluster is tested
Step 4: Drivers are removed and Clusters are combined moving upward in the program structure

 Example:
* In the below figure components are combined to form Clusters 1, 2, and 3

* Each of the Clusters is tested using a driver
* Components in Clusters 1 and 2 are subordinate to Ma

* Drivers D1 and D2 are removed and Clusters are interfaced directly to Ma

* Similarly driver D3 for cluster – 3 is removed and integrates with Mb

* Both Ma and Mb are integrated with component Mc

6.9 Regression Testing:
* It is the Re-execution of some subset of tests that have already been conducted to ensure that changes have not propagated unintended side effects

* i.e. Whenever software is corrected some aspect of the software configuration [the program its documentation (Or) the data that support it] is changed

* Regression testing is the activity that helps to ensure that changes [due to testing (Or) for other reasons] do not introduce other errors
* Regression testing may be conducted manually by re - executing a subset of all test cases (Or) using automated capture / play back tools
* Capture / play back tools enable the software engineer to capture test cases and results for subsequent playback and comparison

* The regression test suite contains three classes of test cases:

(i) A representative sample of tests that will exercise all software functions

(ii) Additional tests that focus on software functions that are likely to be

 affected by the change

(iii) Tests that focus on the software components that have been changed

6.10 Smoke Testing:

* It is an integration testing approach that is commonly used when software products are being developed

* It is designed as a patching mechanism for time critical projects, allowing the software team to assess its project on a frequent basis

Activities included in the smoke testing:

(1) Software components that have been translated into code are integrated into a “Cluster”

* A Cluster includes all data files, libraries, reusable modules and engineered components that are required to implement one (Or) more product functions

(2) A series of tests is designed to find out errors that will keep the cluster from properly performing its function

(3) The clusters is integrated with other clusters and the entire product is smoke tested daily
* The integration approach may be top – down (Or) bottom - up

Critical Module:

* It is a measure which contains one (Or) more of the following characteristics:

(i) Addresses several software requirements

(ii) Has a high level of control [resides relatively high in program

 structure]

(iii) is complex (Or) error prone

(iv) Has definite performance requirements

* The critical module should be tested as early as possible
* Usually the regression tests should focus on critical module functions

Integration Test Documentation:

* An over plan for integration of software and a description of specific tasks are documented in a test specification

* This document contains a

=> Test Plan

=> Test Procedure

=> Work product of the software process

* Here testing is divided into phases and Clusters that addresses specific functional and behavioral characteristics of the software

6.11 Validation Testing:

* At the validation (Or) System level testing focuses on

=> User – visible actions

=> User recognizable output from the system

* The validation testing succeeds only when software functions in a manner that can be reasonably expected by the customer

* The reasonable expectations are defined in the Software Requirements Specifications

* The specification contains a section called validation criteria which forms the basis for a validation testing approach

Validation Test Criteria:

* Software validation is achieved through a series of tests

* A test plan outlines the classes of tests to be conducted

* The test procedures defines specific test cases

* Both test plan and procedures are designed to ensure:

=> all functional requirements are satisfied

=> all behavioral characteristics are achieved

=> all performance requirements are attained

=> documentation is correct

=> usability and other requirements are met

* After validation test one of the two possible conditions exists:

(i) The function (Or) performance characteristics conforms to specification

 and is accepted

(ii) Derivation from specification is uncovered and a deficiency list is

 created.

 Derivation (Or) error discovered at this stage can rarely be corrected

 prior to scheduled delivery

Configuration Review (Or) Audit:

* It is the important element of the validation process

* The importance of the review is to ensure that

=> all elements of the software configuration have been properly

 developed (Or) cataloged

=> have a necessary detail to support phases of the software life cycle

6.12 Alpha and Beta testing:

* When custom software is built for one customer a series of acceptance tests are conducted to enable the customer to validate all requirements

* The acceptance test conducted by the end – user rather than software engineers

* If software is developed as a product to be used by many customers it is impractical to perform acceptance test with each one

* So most software product builders use a process called alpha (Or) beta testing

(i) Alpha testing:

* It is conducted at the developers’ site by End – Users

* The software is used in a natural setting

* The developer is present along with the End – Users

* The developer records errors and usage problems

* Alpha Tests are conducted in a controlled environment

(ii) Beta testing:

* It is conducted at End – User sites

* here the developer is not present
* The beta test is a “Live” application of the software in an environment, that cannot be controlled by the developer

* The end – User records all problems that are encountered during beta testing

* This error reports are send to the developer at regular interval

* Based on the error report the software engineer makes modifications and then prepare for release of the software product to entire customer base

6.13 System Testing:

* It is a series of different tests whose primary purpose is to fully exercise the computer based system

* Each test has a different purpose all work to verify that system elements have been properly integrated and perform allocated functions

Types:

(i) Recovery Testing

(ii) Security Testing

(iii) Stress Testing

(iv) Performance Testing

(v) Sensitivity Testing
(1) Recovery Testing:
* It is a system test that forces the software to fail in a variety of ways and verifies that recovery is properly performed

* if recovery is automatic [i.e. performed by system itself] then

=> Reinitialization

=> Check pointing mechanisms

=> Data recovery & Restart are evaluated for correctness

* If recovery requires human intervention the Mean Time to Repair [MTTR] is evaluated to determine whether it is with in acceptable limits

(2) Security Testing:

* It verifies that protection mechanism built into a system will in fact protect it from improper penetration

* During security testing the tester plays the role of the individual who desires to penetrate the system

* Given enough time and resources good security testing will ultimately penetrate a system

* The role of the system designer is to make penetration cost more than the value of the information that will be obtained

(3) Stress Testing:
* Stress testing executes a system in a manner that demands resources in abnormal quality, frequency (Or) volume

Example:

(i) special test may be designed that generate the interrupts per seconds when one (Or) two is the average rate
(ii) Input data rates may be increased by an order of magnitude to determine how input functions will respond
(iii) Test cases that require maximum memory (Or) other resources are executed

(iv) Test cases that may cause memory management problems are designed
(4) Performance Testing:
* It is designed to test the Run tike performance of software within the context of an integrated system

* Performance testing occurs throughout all steps in the testing process

* Performance tests are often coupled with stress testing and usually require both hardware and software requirements

(5) Sensitivity Testing:
* It is an variation of stress testing

* For example in most mathematical algorithm a small range of data contained with in the bounds of valid data may cause extreme and erroneous processing

* Sensitivity testing attempts to uncover data combinations within valid inputs classes that may cause instability (Or) improper processing
6.14 The Art of Debugging:

* Debugging is not a testing but always occurs as a consequence of testing
* That is when a test case uncovers an error debugging is an action that results in the removal of the error
The Debugging Process

* The debugging process begins with the execution of a test case
* The results are assessed and a lack of correspondence between expected and actual performance is encountered

* Debugging attempts to match symptom with there by leading to error correction

* Debugging will always have one of two outcomes

(i) The cause will be found and corrected

(ii) The cause will not be found

Why is debugging so difficult?

(1) The symptom and the cause may be geographically remote [i.e. the symptom may appear in one part of a program, while the cause may actually be located at a site that is far moved]
(2) The symptom may disappear [temporarily] when another error is corrected

(3) The symptom may actually be caused by non errors [e.g. round off inaccuracies]

(4) The symptom may be caused by human error that is not easily traced

(5) The symptom may be a result of timing problems rather than processing problems

(6) It may be difficult to accurately reproduce input conditions [e.g. a real time application in which input ordering is indeterminate]

(7) The symptom may be intermittent. This is particularly common in embedded systems that couple hardware and software in extricable
(8) The symptom may be due to causes that are distributed across a number of tasks running on different processors

*As the consequences of an error increases the amount of pressure to find the causes also increases

* This pressure forces the software developer to fix one error while at the same time introducing two more
6.15 Debugging Strategies:

* In general three debugging strategies have been proposed

(i) Brute Force

(ii) Back Tracking

(iii) Cause Elimination

(1) Brute Force:
* It is the most common and least efficient method for isolating the cause of a software error

* We apply this method only when all else fails

* Here the philosophy used may be “ Let the computer finds the error”

* For this

=> the memory dumps are taken

=> the run time traces are invoked

=> the program is loaded with output statements

* the mass of the information produced may ultimately lead to success, but leads to wasted effort and time

(2) Back Tracking:
* It is the most common approach that can be used successfully in small programs

* Beginning at the site where a symptom has been uncovered the source code is traced backward [manually] until the site of the cause is found

* If the number of the source lines increases the number of potential backward paths may become unmanageable large
(3) Cause Elimination:
* This is done by using Induction (Or) Deduction

* It introduces the concept of binary partitioning

* A cause hypothesis is devised and the data related to the error occurrence are used to prove (Or) disprove the hypothesis

*A list of all possible causes is developed and tests are conducted to eliminate each

* If initial tests indicate that a particular cause hypothesis shows promise data are refined in an attempt to isolate the bug

6.16 White Box Testing:

* It is also called Glass – Box - Testing

* Using white box testing, the software engineer can derive test cases that

(1) Guarantee that all independent paths with in a module have been examined at least once

(2) Exercise all logical decision on their true and false sides

(3) Execute all loops at their boundaries and with in their operational bounds

(4) Exercise internal data structures to ensure their validity

6.17 Black – Box Testing:

* It is also called Behavioral Testing

* Black box testing is not an alternate to white box testing; rather it is a complementary approach that is likely to uncover a different class of errors than white-box testing methods

* Black box testing attempts to find errors in the following categories

(1) Incorrect (Or) Missing Functions

(2) Interface errors

(3) Errors in data structures (Or) external data base access

(4) Behaviors (Or) Performance errors

(5) Initialization and termination errors

* By applying black box testing techniques, we can derive a set of test cases that satisfy the following criteria:

(i) Test cases that reduce by a count, that is greater than one the number of additional test cases that must be designed to achieve reasonable testing

(ii) Tests cases that tell us something about the presence (Or) absence of classes of errors rather than an error associated only with the specific test at hand
UNIT – 6 [Part – II]
PRODUCT METRICS

6.18 Introduction:

* Product metrics help software engineers gain insight into the design and construction of the software they build

* Unlike process and project metrics that apply to the project as a whole, product metrics focus on specific attributes of software engineering work product

* The work product is the product metrics that are computed from data collected from the analysis and design models, source code and test cases

Although product metrics for computer software are often not absolute they provide us with a systematic way to assess quality based on a set of clearly defined rules
* In this chapter we are going to focus on the measures that can be used to assess the quality of the product as it is being engineered

6.19 Software Quality:

* How can you say the quality of the software is good (Or) bad?

* The software quality is defined based on the following three criteria:

(i) Software requirements are the foundation from which quality is

 measured

 * Lack of conformance to requirements is lack of quality

(ii) Specified standards define a set of development criteria that guide the

 manner in which software is engineered

 * If a criteria are not followed lack of quality will almost surely result

(iii) There is a set of implicit requirements that often goes unmentioned

 [eg. The desire for ease of use]

 * If software conforms to its explicit requirements but fails to meet

 implicit requirements software quality is suspect
* The factors that affect software quality can be categorized in two broad groups:

(i) Factors that can be directly measured [eg.defects uncovered during

 testing]

(ii) Factors that can be measured only indirectly [e.g. Usability (Or)

 Maintainability]

6.20 MC Call’s Quality Factors:

(1) Correctness:
* The extent to which a program satisfies its specification and fulfills the customer’s mission objectives

(2) Reliability:

* The extent to which a program can be expected to perform its intended function with required precision

(3) Efficiency:
* The amount of computing resource and code required by a program to perform its functions

(4) Integrity:

* The extent to which access to software (Or) data by unauthorized persons can be controlled

(5) Usability:

* The effort required to learn, operate, prepare input for and interpret output of a program

(6) Maintainability:

* The effort required to locate and fix an error in a program

(7) Flexibility:

* The effort required to modify an operational program
(8) Testability:

* The effort required to test a program to ensure that it performs its intended functions

(9) Portability:

* The effort required to transfer the program from one hardware and/or Software system environment to another

(10) Reusability:

* The extent to which a program (Or) part of the program can be reused in another program / applications

(11) Interoperablity:

* The effort required to couple one system to another

In this quality factors mechanism the metrics may be in the form of check list that is used to grade specific attributes of the software

6.21 ISO – 9126 Quality Factors:

* The ISO 9126 quality standards was developed to identify quality attributes for software

* The standard identifies Six key quality attributes

(1) Functionality: The degree to which the software satisfies stated needs as indicated by the following sub – attributes

=> Suitability

=> Accuracy

=> Interoperability

=> Compliance

=> Security

(2) Reliability: The amount of time that the software is available for use as indicated by the following

=> Maturity

=> Fault Tolerance

=> Recoverability

(3) Usability: The degree to which the software is easy to use as indicated by following sub attributes

=> Understandability

=> Learn ability

=> Operability

(4) Efficiency: The degree to which the software makes optimal use of the system resources as indicated in the following sub attributes

=> Time Behavior

=> Resource Behavior

(5) Maintainability: The ease with which repair may be made to the software as indicated by following sub attributes

=> Analyzability

=> Changeability

=> Stability

=> Testability

(6) Portability: The ease with which the software can be transposed from one environment to another as indicated by the following sub attribute

=> Adaptability

=> Install ability

=> Conformance

=> Replace ability

6.22 Metrics for Analysis Model:

(1) Function - Based Metrics:
* The functionality delivered by a system can be effectively measured by means of Function Point metrics [FP]

* Using historical data the FP can be used to

=> Estimate the cost (Or) effort required to design, code and test the
 software

=> Predict the number of errors that will be encountered during testing

=> Forecast the number of components and / Or the number of projected

 source lines in the implemented system

* FP are delivered using an empirical relationship based on countable (direct) measures of the software information domain and assessments of software complexity

* Information domain values are defined in the following manner:
(i) Number of External Inputs [EIS]:

* Each external input originates from a user (Or) transmitted from another application

* Each EIS provides,

=> Distinct application oriented data (Or)

=> Control Information

* Inputs sometimes used to update Internal Logical Files [ILFs]

(ii) Number of External Outputs [EOS]:

* Each external output is derived within the application and provides information to the user

* Here external output refers to

=> Reports

=> Screens

=> Error messages

* Individual data items within a report are not counted separately

(iii) Number of External Inquires [EQS]

* It is an online input that results in the generation of some immediate software response in the form of an on-line output
(iv) Number of Internal Logical Files [ILFs]
* Each internal logical file is a logical grouping of data that resides within the applications’ boundary and is maintained via external inputs
(v) Number of External Interface Files [EIFs]

* each external file is a Logical grouping of data, that resides external to the application, But provides data that may be use to the application

* Once the above data are collected the below table is completed and complexity associated with each count is evaluated
* Organization that use Function point method develop criteria for determining, whether a particular entry is simple, complex (Or) average

* To compute functional point the following relationship is used

FP = Count Total * [0.65 + 0.01 * ∑ (Fi)]

Where count total is the sum of all FP entries
* The Fi [i =1 to 14] are value adjustment factors [VAF] based on responses to the following questions

(1) Does the system require reliable backup and recovery?
(2) Are specialized data communication required to)Or) from the application

(3) Are there distributed processing functions?

(4) Is performance critical?

(5) Will the system run in an existing heavily utilized operational environment
(6) Does the system require on-line data entry?
(7) Does the on-line data entry require the input transaction to be built over multiple screens (Or) operations?

(8) Are the ILF’s updated online?

 (9) Are the inputs, Outputs, files (Or) inquires complex?

(10) Is the internal processing complex?

(11) Is the code designed to be reusable?

(12) Are conversion and installation included in the design?

(13) Is the system designed for multiple installations in different organization?

(14) Is the application designed to facilitate change and for ease of use by the user?

* Each question is answered using a scale ranges from 0 [not important (Or) applicable] to 5 [absolutely essential]

Example:

Information Domain Values:
(i) External Inputs => 3 [Password, Panic Button, activate / deactivate]

(ii) External Inquires => 2 [Zone and Sensor Inquiry]

(iii) ILF => 1 [System Configuration File]

(iv) External Inputs => 2 [Messages and Sensor status]

(v) EIFs => 4 [Test sensor, zero setting, activate / deactivate and alarm alert]

FP = Count Total * [0.65 + 0.01 * ∑ (Fi)]

Where,

Count Total => the sum of all FP entries obtained

∑Fi => 46 [a moderately complex product]

FP = 50 * [0.65 + (0.01 * 46) = 56
* Based on projected FP value, derived from the analysis model the project team can estimate the overall implementation size of same home user interaction function
* The historical data can help software engineers to check the completeness of their reviews and testing activities

6.23 Metrics for Specification Quality:
* A list of characteristics that can be used to check the quality of the analysis model and corresponding requirement specification are:

=> Completeness

=> Correctness

=> Understandability

=> Verifiability

=> Internal and External Consistency

=> Achievability

=> Concision

=> Traceability

=> Modifiability

=> Precision

=> Reusability

* Each of characteristics can be represented using one (Or) more metrics

* For example, assume that there are Nr requirements in a specification, such that

Ny = Nf + Nnf

Where,

Nf => Number of functional requirements

Nnf => Number of non functional requirements [e.g. Performance]

* To determine specificity [Lack of ambiguity]:

Q1 = Nui / Nr

* This is based on the reviewer’s interpretation of each requirement

Where,

Nui => Number of requirements for which all reviewers had identical

 Interpretations

* If the value of the Q is closer to 1, then the ambiguity of the specification is lower
* To determine completeness of functional requirements:

Q2 = Nu / [Ni * Ns]

Where,

Nu => Number of unique function requirements

Ni => Number of input defined

Ns => Number of states specified

Q2 => It measures the percentage of necessary functions that have been specified

 for a system
Degree to which requirements have been validated:

Q3 = Nc / [Nc + Nnv]

Where,

Nc => Number of requirements that have been validated as correct

Nnv => Number of requirements that have not yet been validated

6.24 Metrics for the design model:

Introduction:

* Design metrics for the computer software like all other software metrics are not perfect

* Arguments continues on the manner in which they should be applied

* Many experts argue that experimentation is required before design measures are used

* Also the design without measurement is an unacceptable alternative

(1) Architectural Design Metrics:

* It focus on characteristics of the program architecture with an emphasis on

=> the architectural structure

=> the effectiveness of the modules (Or)

=> Components with in the architecture

* These metrics are “Black box” in nature [i.e. they do not require any knowledge of the inner workings of a particular software component]

Software Design Complexity Measures:

(i) Structural Complexity

(ii) Data Complexity

(iii) System Complexity

* The structural Complexity of a module I, for an hierarchical architecture is defined as;

S (i) = F 2 out (i)

Where,

Fout (i) => The fan – Out of module i

* Data complexity: It provides an indication of the complexity in the internal interface for a module i
* It is defined as

D(i) = v(i) / [Fout (i) + 1]

Where,
V(i) => Number of input and output variables that are passed to and from module i

**
Note:

(1) Fan-Out: It is defined as the number of modules immediately subordinate to module I, that is the number of modules that are directly invoked by module i

(2) Fan-Out: It is defined as the number of modules that directly invoke module i

**
System complexity – It is defined as the sum of structural and data complexity
* It is specified as

C(i) = S(i) + D(i)

* As each of these complexity value increases architect overall complexity also increases

(2) Metrics for Object Oriented Design:
(i) Size: It is defined in terms of Four views:

(a) Population: It is measured by taking a static count of object oriented entities such as Classes (Or) Operations

(b) Volume: This measures are identical to population measures but are collected dynamically at a given instant of time

(c) Length: It is a measure of a chain of interconnected design elements [the depth of inheritance tree]

(d) Functionality: It provide an indirect indication of the value delivered to the customer by an object oriented application

(ii) Complexity: These are examined by, how classes of an object oriented design are interrelated to one another

(iii) Coupling: It is the physical connections between elements of the OO design [e.g. number of message passed between objects]
(iv) Sufficiency: The degree to which a design component possess features in its abstraction from current application

(v) Completeness: It implies the degree to which the abstraction (Or) design components can be reused

(vi) Cohesion: The cohesiveness of a class is determined by examining the degree to which the set of properties it possess is part of the problem (Or) design domain

(vii) Primitiveness: It is the degree to which an operation is atomic - that is the operation cannot be constructed out of sequence of other operation contained with in a class

(viii) Similarity: The degree to which two (Or) More classes are similar in terms of their

=> Structure

=> Function

=> Behavior

=> Purpose is indicated by this measure

(ix) Volatility: It measures the likelihood that a change will occur

(3) Class Oriented Metrics – The MOOD Metrics suite:

(i) Method Inheritance Factor [MIF]:

* It is the degree to which the class architecture of an OO system makes use of inheritance for both methods [operations] and attributes is defined as:

MIF = ∑Mi {Ci} / ∑Ma {Ci}
Where, the summation occurs over I = 1 to Tc

Tc => Total number of classes in the architecture

Ci => Class within the architecture

Ma {Ci} = Md {Ci} + Mi {Ci}

Where,

Ma {Ci} => Number of methods that can be invoked in association with Ci

Md {Ci} => Number of methods declared in the class Ci

Mi {Ci} => Number of methods inherited in Ci

(ii) Coupling Factor [Cf]:

CF = ∑ i ∑ j is_client (Ci, Cj) / (Tc2 – Tc)
Where, the summation occurs over

i = 1 to Tc

j = 1 to Tc

is_client => 1, if and only iff a relationship exists between the client class cc [cc ≠

 cs]

= 0,otherwise

(4) Component Level – Design Metrics:

* It focus on internal characteristics of a software component and includes measure of the “Three Cs” i.e.

=> Module Cohesion

=> Coupling

=> Complexity

(i) Cohesion Metrics: It define a collection of metrics that provide an indication of the cohesiveness of a module
* It can be defined in terms of Five Concepts and measures:
(a) Data Slice – It is a backward walkthrough that looks a data values that affect the state of the module when walk began

(b) Data Tokens – The variable defined for the module can be defined as data tokens

(c) Glue Tokens – This set of data tokens lies on one (Or) more data slice

(d) Super Glue Tokens – These data tokens are common to every data slice in a module
(e) Stickiness – The relative stickiness of glue token is directly proportional to the number of data slices that it binds
(ii) Coupling Metrics: It provides an indication of the “Connectedness” on a module to other modules, global data and outside environment]

* A metric for module coupling that includes

=> Data and control flow coupling

=> Global Coupling

=> Environmental Coupling

* The measure required to compute data and control flow coupling are

di => Number of input data parameters

ci => Number of input control parameter

d0 => Number of output data parameter

c0 => Number of output control parameter

* For global coupling,

gd = Number of global variables used as data

gc = Number of global variables used as control

* For environmental Coupling

w = Number of modules called [Fan-Out]

 r = Number of modules calling the module under consideration [Fan-In]

* Using these measures module coupling indicator Mc is defined as

Mc = K / M

Where,

K => Constant

M = di + (a * ci) + d0 + [b * c0] + gd + [c * gc] + w + r

* Coupling Metric C = 1 – Mc
* The values for K, a, b, c must be deriver empirically

(5) Metrics for source code:

* Halstead assigned quantitative laws to the development of computer software using a set of primitive’s measures which can be derived after code is generated

* The primitive measures are

n1= Number of distant operators that appear in a program

n2 =Number of distant operands that appear in a program

N1 = Total number of operator occurrences

N2 = Total number of operand Occurrences

* These primitives are used to develop expression for the

=> Overall program length

=> Potential minimum volume for an algorithm

=> the actual volume [number bits required to specify a program]

=> Program level [a measure of software complexity]

=> Development effort

=> Development time etc..

* Halsted shows that Length N can be estimated

N = n1 log2 n1 + n2 log2 n2

* The program volume may be defined by

V = N log2 (n1 + n2}

(6) Metrics for testing:

(i) Halstead metrics applied to testing:

* Using the definitions for program volume V and program level PL, Halstead effort e can be computed as

PL = 1 / [(n1 / 2) * (N2 / n2)]

E = V / PL

* The overall testing effort to be allocated to a module K, can be estimated using

Percentage of testing effect (K) = e(K) / ∑e(i)
Where,

=> e(k) is computed for module K using PL

=> Summation in denominator is the sum of halstead effort across all modules of

 the system

(7) Metrics for Maintenance:

* IEEE suggests a “Software Maturity Index” that provides an indication of the stability of a software product
* The measure may be

MT => Number of modules in current release

FC => Number of modules in current release that have been changed

Fd => Number of modules from the preceding release that were deleted

 in the current release

Fa => Number of modules in current release that have been added
* Therefore Software Maturity Index

SMI = [MT – (Fa + Fc + Fd)] / MT
High – Order

Tests

Testing Strategy

System Testing

Unit Testing

Validation Testing

Integration Testing

Integration Test

Unit Test

Requirements

Design

Code

Testing “direction”

Module

` ` ` ` ` `

` ` ` ` ` `

` ` ` ` ` `

Test cases

Interface

Local Data Structure

Boundary Conditions

Independent Paths

Error Handling Paths

Driver

Module to be tested

Stub

Stub

Test Cases

* Interface

* Local Data Structures

* Boundary Conditions

* Independent Paths

* Error handling Paths

Results

M1

M3

M4

M2

M7

M6

M5

M8

Mc

Ma

Mb

D2

D1

D3

Cluster - 1

Cluster - 2

Cluster - 3

Bottom up Integration

Test Cases

Execution of Test cases

Results

Debugging

Suspected

Causes

Additional

 Tests

Identified

 Causes

Corrections

Progression

 Tests

Product Transition

Product Revision

Product Operation

Portability

Reusability

Interoperability

Maintainability

Flexibility

Testability

Correctness

Usability

Reliability

Integrity

Efficiency

					 Weighting Factor

Information Domain 		Count		Simple		Average	Complex

Value	

External Input [EIs]				 x 3 4 6 	

External Output [EOs] x 4 5 7

External Inquires [EQs] x 3 4 6

Internal Logical x 7 10 15

Files [ILFs]

External Interface x 5 7 10

Files [EIFs]

		Count Total

Computing Function Points

System Configuration Data

Alarm

alert

Password

Sensors

Monitoring and response Subsystem

Activate /

Deactivate

Activate / Deactivate

Sensor status

Panic Button

Sensor Inquiry

User

Messages

Zone Inquiry

Safe Home User Interaction Function

Password

Zone setting

USERS

Test

Sensors

User

					 Weighting Factor

Information Domain 		Count		Simple		Average	Complex

Value	

External Input [EIs]				 x 3 4 6 	

External Output [EOs] x 4 5 7

External Inquires [EQs] x 3 4 6

Internal Logical x 7 10 15

Files [ILFs]

External Interface x 5 7 10

Files [EIFs]

		Count Total

Computing Function Points

3

2

2

1

4

9

8

6

7

20

50

