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PATH PRODUCTS AND PATH EXPRESSION: 
 MOTIVATION: 
 Flow graphs are being an abstract representation of programs. 
 Any question about a program can be cast into an equivalent question about an 

appropriate flowgraph. 
 Most software development, testing and debugging tools use flow graphs analysis 

techniques. 
 PATH PRODUCTS: 
 Normally flow graphs used to denote only control flow connectivity. 
 The simplest weight we can give to a link is a name. 
 Using link names as weights, we then convert the graphical flow graph into an 

equivalent algebraic like expressions which denotes the set of all possible paths from 
entry to exit for the flow graph. 

 Every link of a graph can be given a name. 
 The link name will be denoted by lower case italic letters. 
 In tracing a path or path segment through a flow graph, you traverse a succession of 

link names. 
 The name of the path or path segment that corresponds to those links is expressed 

naturally by concatenating those link names. 
 For example, if you traverse links a,b,c and d along some path, the name for that 

path segment is abcd. This path name is also called a path product. Figure 5.1 shows 
some examples: 

  
Figure 5.1: Examples of paths. 
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 PATH EXPRESSION: 
 Consider a pair of nodes in a graph and the set of paths between those node. 
 Denote that set of paths by Upper case letter such as X,Y. From Figure 5.1c, the 

members of the path set can be listed as follows:  
ac, abc, abbc, abbbc, abbbbc............. 

 Alternatively, the same set of paths can be denoted by : 
ac+abc+abbc+abbbc+abbbbc+........... 

 The + sign is understood to mean "or" between the two nodes of interest, paths ac, 
or abc, or abbc, and so on can be taken. 

 Any expression that consists of path names and "OR"s and which denotes a set of 
paths between two nodes is called a "Path Expression.". 

 PATH PRODUCTS: 
 The name of a path that consists of two successive path segments is 

conveniently expressed by the concatenation or Path Product of the segment 
names. 

 For example, if X and Y are defined as X=abcde,Y=fghij,then the path 
corresponding to X followed by Y is denoted by 
  XY=abcdefghij 
Similarly, 
 YX=fghijabcde 
 aX=aabcde 
 Xa=abcdea 
 XaX=abcdeaabcde 

 If X and Y represent sets of paths or path expressions, their product represents 
the set of paths that can be obtained by following every element of X by any 
element of Y in all possible ways. For example, 
  X = abc + def + ghi 
  Y = uvw + z            
       Then, 
  XY = abcuvw + defuvw + ghiuvw + abcz + defz + ghiz 

 If a link or segment name is repeated, that fact is denoted by an exponent. The 
exponent's value denotes the number of repetitions: 
  a1 = a; a2 = aa; a3 = aaa; an = aaaa . . . n times. 
Similarly, if 
 X = abcde 

then 
  X1 = abcde 
  X2 = abcdeabcde = (abcde)2 
  X3 = abcdeabcdeabcde = (abcde)2abcde= abcde(abcde)2 = (abcde)3 

 The path product is not commutative (that is XY!=YX). 
 The path product is Associative.  

RULE 1: A(BC)=(AB)C=ABC 
where A,B,C are path names, set of path names or path expressions. 

 The zeroth power of a link name, path product, or path expression is also needed 
for completeness. It is denoted by the numeral "1" and denotes the "path" 
whose length is zero - that is, the path that doesn't have any links. 
 a0 = 1 
 X0 = 1 
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 PATH SUMS: 
 The "+" sign was used to denote the fact that path names were part of the same set of 

paths. 
 The "PATH SUM" denotes paths in parallel between nodes. 
 Links a and b in Figure 5.1a are parallel paths and are denoted by a + b. Similarly, links c 

and d are parallel paths between the next two nodes and are denoted by c + d. 
 The set of all paths between nodes 1 and 2 can be thought of as a set of parallel paths 

and denoted by eacf+eadf+ebcf+ebdf. 
 If X and Y are sets of paths that lie between the same pair of nodes, then X+Y denotes 

the UNION of those set of paths. For example, in Figure 5.2: 

  
Figure 5.2: Examples of path sums. 

 The first set of parallel paths is denoted by X + Y + d and the second set by U + V + W + h 
+ i + j. The set of all paths in this flowgraph is f(X + Y + d)g(U + V + W + h + i + j)k 

The path is a set union operation, it is clearly Commutative and Associative. 
 RULE 2: X+Y=Y+X 
 RULE 3: (X+Y)+Z=X+(Y+Z)=X+Y+Z 
            

DISTRIBUTIVE LAWS: 
 The product and sum operations are distributive, and the ordinary rules of 

multiplication apply; that is 
RULE 4: A(B+C)=AB+AC and (B+C)D=BD+CD 

 Applying these rules to the below Figure 5.1a yields 
e(a+b)(c+d)f=e(ac+ad+bc+bd)f = eacf+eadf+ebcf+ebdf 

ABSORPTION RULE: 
 If X and Y denote the same set of paths, then the union of these sets is unchanged; 

consequently, 
RULE 5: X+X=X (Absorption Rule) 

 If a set consists of paths names and a member of that set is added to it, the "new" 
name, which is already in that set of names, contributes nothing and can be ignored. 

For example, 
  if X=a+aa+abc+abcd+def then 

 X+a = X+aa = X+abc = X+abcd = X+def = X 
 It follows that any arbitrary sum of identical path expressions reduces to the same path 

expression. 
LOOPS: 

o Loops can be understood as an infinite set of parallel paths. Say that the loop consists of 
a single link b. then the set of all paths through that loop point is 
b0+b1+b2+b3+b4+b5+.............. 



SOFTWARE TESTING UNIT-V Paths, Path products and Regular expressions 
  

jkmaterials Page 4 

 

  
Figure 5.3: Examples of path loops. 

o This potentially infinite sum is denoted by b* for an individual link and by X* when X is a 
path expression. 

  
Figure 5.4: Another example of path loops. 

o The path expression for the above figure is denoted by the notation: 
ab*c=ac+abc+abbc+abbbc+................  

o Evidently, 
aa*=a*a=a+ and XX*=X*X=X+ 

o It is more convenient to denote the fact that a loop cannot be taken more than a 
certain, say n, number of times. 

o A bar is used under the exponent to denote the fact as follows: 
Xn = X0+X1+X2+X3+X4+X5+..................+Xn 

RULES 6 - 16: 
The following rules can be derived from the previous rules: 

RULE 6: Xn + Xm = Xn if n>m 
RULE 6: Xn + Xm = Xm if m>n 
RULE 7: XnXm = Xn+m 
RULE 8: XnX* = X*Xn = X* 
RULE 9: XnX+ = X+Xn = X+ 
RULE 10: X*X+ = X+X* = X+ 
RULE 11: 1 + 1 = 1 
RULE 12: 1X = X1 = X  

Following or preceding a set of paths by a path of zero length does not change the set. 
RULE 13: 1n = 1n = 1* = 1+ = 1 

No matter how often you traverse a path of zero length,It is a path of zero length. 
RULE 14: 1++1 = 1*=1 

The null set of paths is denoted by the numeral 0. it obeys the following rules: 
RULE 15: X+0=0+X=X 
RULE 16: 0X=X0=0 

If you block the paths of a graph for or aft by a graph that has no paths , there wont be any 
paths. 
 
REDUCTION PROCEDURE: 
REDUCTION PROCEDURE ALGORITHM: 

 This section presents a reduction procedure for converting a flowgraph whose links are 
labeled with names into a path expression that denotes the set of all entry/exit paths in 
that flowgraph. The procedure is a node-by-node removal algorithm. 

 The steps in Reduction Algorithm are as follows: 
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1. Combine all serial links by multiplying their path expressions. 
2. Combine all parallel links by adding their path expressions. 
3. Remove all self-loops (from any node to itself) by replacing them with a 

link of the form X*, where X is the path expression of the link in that 
loop.  

STEPS 4 - 8 ARE IN THE ALGORIHTM'S LOOP: 
4. Select any node for removal other than the initial or final node. Replace it 

with a set of equivalent links whose path expressions correspond to all 
the ways you can form a product of the set of inlinks with the set of 
outlinks of that node. 

5. Combine any remaining serial links by multiplying their path expressions. 
6. Combine all parallel links by adding their path expressions. 
7. Remove all self-loops as in step 3. 
8. Does the graph consist of a single link between the entry node and the 

exit node? If yes, then the path expression for that link is a path 
expression for the original flowgraph; otherwise, return to step 4. 

 A flowgraph can have many equivalent path expressions between a given pair of nodes; 
that is, there are many different ways to generate the set of all paths between two 
nodes without affecting the content of that set. 

 The appearance of the path expression depends, in general, on the order in which nodes 
are removed. 

CROSS-TERM STEP (STEP 4): 
 The cross - term step is the fundamental step of the reduction algorithm. 
 It removes a node, thereby reducing the number of nodes by one. 
 Successive applications of this step eventually get you down to one entry and one exit 

node. The following diagram shows the situation at an arbitrary node that has been 
selected for removal: 

  
 From the above diagram, one can infer 

(a + b)(c + d + e) = ac + ad + + ae + bc + bd + be 
           

LOOP REMOVAL OPERATIONS: 
 There are two ways of looking at the loop-removal operation: 

  
 In the first way, we remove the self-loop and then multiply all outgoing links by Z*. 
 In the second way, we split the node into two equivalent nodes, call them A and A' and 

put in a link between them whose path expression is Z*. Then we remove node A' using 
steps 4 and 5 to yield outgoing links whose path expressions are Z*X and Z*Y. 
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A REDUCTION PROCEDURE - EXAMPLE: 
 Let us see by applying this algorithm to the following graph where we remove several 

nodes in order; that is 

  
Figure 5.5: Example Flowgraph for demonstrating reduction procedure. 

 Remove node 10 by applying step 4 and combine by step 5 to yield 

  
 Remove node 9 by applying step4 and 5 to yield 

  
 Remove node 7 by steps 4 and 5, as follows: 

  
 Remove node 8 by steps 4 and 5, to obtain: 

  
PARALLEL TERM (STEP 6):  Removal of node 8 above led to a pair of parallel links between 
nodes 4 and 5. combine them to create a path expression for an equivalent link whose path 
expression is c+gkh; that is 
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LOOP TERM (STEP 7): 
Removing node 4 leads to a loop term. The graph has now been replaced with the following 
equivalent simpler graph: 

  
 Continue the process by applying the loop-removal step as follows: 

  
 Removing node 5 produces: 

  
 Remove the loop at node 6 to yield: 

  
 Remove node 3 to yield: 

  
 Removing the loop and then node 6 result in the following expression: 

a(bgjf)*b(c+gkh)d((ilhd)*imf(bjgf)*b(c+gkh)d)*(ilhd)*e 
 

 You can practice by applying the algorithm on the following flowgraphs and generate 
their respective path expressions: 
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Figure 5.6: Some graphs and their path expressions. 

APPLICATIONS: 
 The purpose of the node removal algorithm is to present one very generalized concept- 

the path expression and way of getting it. 
 Every application follows this common pattern: 

1. Convert the program or graph into a path expression. 
2. Identify a property of interest and derive an appropriate set of "arithmetic" 

rules that characterizes the property. 
3. Replace the link names by the link weights for the property of interest. The 

path expression has now been converted to an expression in some algebra, 
such as ordinary algebra, regular expressions, or boolean algebra. This 
algebraic expression summarizes the property of interest over the set of all 
paths. 

4. Simplify or evaluate the resulting "algebraic" expression to answer the 
question you asked. 

HOW MANY PATHS IN A FLOWGRAPH ? 
 The question is not simple. Here are some ways you could ask it: 

1. What is the maximum number of different paths possible? 
2. What is the fewest number of paths possible? 
3. How many different paths are there really? 
4. What is the average number of paths? 

 Determining the actual number of different paths is an inherently difficult problem 
because there could be unachievable paths resulting from correlated and dependent 
predicates. 

o If we know both of these numbers (maximum and minimum number of possible 
paths) we have a good idea of how complete our testing is. 

o Asking for "the average number of paths" is meaningless. 
MAXIMUM PATH COUNT ARITHMETIC: 

 Label each link with a link weight that corresponds to the number of paths that link 
represents. 

 Also mark each loop with the maximum number of times that loop can be taken. If the 
answer is infinite, you might as well stop the analysis because it is clear that the 
maximum number of paths will be infinite. 
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 There are three cases of interest: parallel links, serial links, and loops. 

  
 This arithmetic is an ordinary algebra. The weight is the number of paths in each set. 

EXAMPLE: 
The following is a reasonably well-structured program. 

  
 Each link represents a single link and consequently is given a weight of "1" to start. Lets 

say the outer loop will be taken exactly four times and inner Loop Can be taken zero or 
three times Its path expression, with a little work, is: 

Path expression: a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh 
 A: The flow graph should be annotated by replacing the link name with the maximum of 

paths through that link (1) and also note the number of times for looping. 
 B: Combine the first pair of parallel loops outside the loop and also the pair in the outer 

loop. 
 C: Multiply the things out and remove nodes to clear the clutter. 

  
For the Inner Loop:  
 

 D:Calculate the total weight of inner loop, which can execute a min. of 0 times and max. 
of 3 times. So, it inner loop can be evaluated as follows:  
 

o 13 = 10 + 11 + 12 + 13 = 1 + 1 + 1 + 1 = 4 
o E: Multiply the link weights inside the loop: 1 X 4 = 4 
o F: Evaluate the loop by multiplying the link wieghts: 2 X 4 = 8. 
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o G: Simpifying the loop further results in the total maximum number of paths in 
the flowgraph: 
 

2 X 84 X 2 = 32,768. 
 

  

 Alternatively, you could have substituted a "1" for each link in the path expression and 
then simplified, as follows:  
 
a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh 
= 1(1 + 1)1(1(1 x 1)31 x 1 x 1(1 + 1)1)41(1 x 1)31 x 1 x 1 
= 2(131 x (2))413 
= 2(4 x 2)4 x 4  
= 2 x 84 x 4 = 32,768 

 This is the same result we got graphically. 

 Actually, the outer loop should be taken exactly four times. That doesn't mean it will be 
taken zero or four times. Consequently, there is a superfluous "4" on the outlink in the 
last step. Therefore the maximum number of different paths is 8192 rather than 32,768. 

STRUCTURED FLOWGRAPH: 

 Structured code can be defined in several different ways that do not involve ad-hoc 
rules such as not using GOTOs. 

 A structured flowgraph is one that can be reduced to a single link by successive 
application of the transformations of Figure 5.7. 
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Figure 5.7: Structured Flowgraph Transformations. 

 
 

 The node-by-node reduction procedure can also be used as a test for structured code. 

 Flow graphs that DO NOT contain one or more of the graphs shown below (Figure 5.8) 
as subgraphs are structured. 

1. Jumping into loops 
2. Jumping out of loops 
3. Branching into decisions 
4. Branching out of decisions 

  
Figure 5.8: Un-structured sub-graphs. 
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LOWER PATH COUNT ARITHMETIC: 

 A lower bound on the number of paths in a routine can be approximated for structured 
flow graphs. 

 The arithmetic is as follows: 

  

 The values of the weights are the number of members in a set of paths. 
 
 
 
 
 
EXAMPLE: 

 Applying the arithmetic to the earlier example gives us the identical steps unitl step 3 (C) 
as below: 

  

  
 From Step 4, the it would be different from the previous example: 
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 If you observe the original graph, it takes at least two paths to cover and that it can be 

done in two paths. 
 If you have fewer paths in your test plan than this minimum you probably haven't 

covered. It's another check. 
 
CALCULATING THE PROBABILITY: 

 Path selection should be biased toward the low - rather than the high-probability paths. 
 This raises an interesting question:  

What is the probability of being at a certain point in a routine? 
 
This question can be answered under suitable assumptions, primarily that all probabilities 
involved are independent, which is to say that all decisions are independent and uncorrelated. 

 We use the same algorithm as before : node-by-node removal of uninteresting nodes. 
 Weights, Notations and Arithmetic: 

o Probabilities can come into the act only at decisions (including decisions 
associated with loops). 

o Annotate each outlink with a weight equal to the probability of going in that 
direction. 

o Evidently, the sum of the outlink probabilities must equal 1 
o For a simple loop, if the loop will be taken a mean of N times, the looping 

probability is N/(N + 1) and the probability of not looping is 1/(N + 1). 
o A link that is not part of a decision node has a probability of 1. 
o The arithmetic rules are those of ordinary arithmetic. 
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o In this table, in case of a loop, PA is the probability of the link leaving the loop 

and PL is the probability of looping. 
o The rules are those of ordinary probability theory. 
o If you can do something either from column A with a probability of PA or from 

column B with a probability PB, then the probability that you do either is PA + PB. 
o For the series case, if you must do both things, and their probabilities are 

independent (as assumed), then the probability that you do both is the product 
of their probabilities. 

o For example, a loop node has a looping probability of PL and a probability of not 
looping of PA, which is obviously equal to I - PL. 

  
o Following the above rule, all we've done is replace the outgoing probability with 1 - so 

why the complicated rule? After a few steps in which you've removed nodes, combined 
parallel terms, removed loops and the like, you might find something like this: 

  
because PL + PA + PB + PC = 1, 1 - PL = PA + PB + PC, and 

  
which is what we've postulated for any decision. In other words, division by 1 - PL renormalizes 
the outlink probabilities so that their sum equals unity after the loop is removed. 
 
EXAMPLE: 

 Here is a complicated bit of logic. We want to know the probability associated with 
cases A, B, and C. 
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 Let us do this in three parts, starting with case A. Note that the sum of the probabilities 

at each decision node is equal to 1. Start by throwing away anything that isn't on the 
way to case A, and then apply the reduction procedure. To avoid clutter, we usually 
leave out probabilities equal to 1.  

CASE A: 
 

  
 

 
 
 
 
 
 



SOFTWARE TESTING UNIT-V Paths, Path products and Regular expressions 
  

jkmaterials Page 16 

 

Case B is simpler: 
 

  
 

Case C is similar and should yield a probability of 1 - 0.125 - 0.158 = 0.717: 

  

 This checks. It's a good idea when doing this sort of thing to calculate all the 
probabilities and to verify that the sum of the routine's exit probabilities does equal 1. 

 If it doesn't, then you've made calculation error or, more likely, you've left out some 
branching probability. 

 How about path probabilities? That's easy. Just trace the path of interest and multiply 
the probabilities as you go. 

 Alternatively, write down the path name and do the indicated arithmetic operation. 

 Say that a path consisted of links a, b, c, d, e, and the associated probabilities were .2, .5, 
1., .01, and I respectively. Path abcbcbcdeabddea would have a probability of 5 x 10-10. 

 Long paths are usually improbable. 
MEAN PROCESSING TIME OF A ROUTINE: 

 Given the execution time of all statements or instructions for every link in a flowgraph 
and the probability for each direction for all decisions are to find the mean processing 
time for the routine as a whole. 
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 The model has two weights associated with every link: the processing time for that link, 
denoted by T, and the probability of that link P. 

 The arithmetic rules for calculating the mean time: 

  
EXAMPLE: 

1. Start with the original flow graph annotated with probabilities and processing time. 

  
2. Combine the parallel links of the outer loop. The result is just the mean of the 

processing times for the links because there aren't any other links leaving the first node. 
Also combine the pair of links at the beginning of the flowgraph.. 

  
Combine as many serial links as you can. 

  
Use the cross-term step to eliminate a node and to create the inner self - loop. 

  
Finally, you can get the mean processing time, by using the arithmetic rules as follows: 
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PUSH/POP, GET/RETURN: 
 This model can be used to answer several different questions that can turn up in 

debugging. 
 It can also help decide which test cases to design. 
 The question is:  

Given a pair of complementary operations such as PUSH (the stack) and POP (the stack), 
considering the set of all possible paths through the routine, what is the net effect of the 
routine? PUSH or POP? How many times? Under what conditions? 

 Here are some other examples of complementary operations to which this model 
applies: 

 GET/RETURN a resource block. 
 OPEN/CLOSE a file. 
 START/STOP a device or process. 

EXAMPLE 1 (PUSH / POP): 
 Here is the Push/Pop Arithmetic: 

  
 The numeral 1 is used to indicate that nothing of interest (neither PUSH nor POP) occurs 

on a given link. 
 "H" denotes PUSH and "P" denotes POP. The operations are commutative, associative, 

and distributive. 
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 Consider the following flowgraph: 

  
P(P + 1)1{P(HH)n1HP1(P + H)1}n2P(HH)n1HPH 

Simplifying by using the arithmetic tables, 
=(P2 + P){P(HH)n1(P + H)}n1(HH)n1 
=(P2 + P){H2n1(P2 + 1)}n2H2n1 

 Below Table 5.9 shows several combinations of values for the two looping terms - M1 is 
the number of times the inner loop will be taken and M2 the number of times the outer 
loop will be taken. 
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Figure 5.9: Result of the PUSH / POP Graph Analysis. 
 These expressions state that the stack will be popped only if the inner loop is not taken. 
 The stack will be left alone only if the inner loop is iterated once, but it may also be 

pushed. 
 For all other values of the inner loop, the stack will only be pushed. 

EXAMPLE 2 (GET / RETURN): 
 Exactly the same arithmetic tables used for previous example are used for GET / 

RETURN a buffer block or resource, or, in fact, for any pair of complementary operations 
in which the total number of operations in either direction is cumulative. 

 The arithmetic tables for GET/RETURN are: 

  
"G" denotes GET and "R" denotes RETURN. 

 Consider the following flowgraph: 

  
G(G + R)G(GR)*GGR*R 
= G(G + R)G3R*R 
= (G + R)G3R* 
= (G4 + G2)R* 

 This expression specifies the conditions under which the resources will be balanced on 
leaving the routine. 

 If the upper branch is taken at the first decision, the second loop must be taken four 
times. 

 If the lower branch is taken at the first decision, the second loop must be taken twice. 
 For any other values, the routine will not balance. Therefore, the first loop does not 

have to be instrumented to verify this behavior because its impact should be nil. 
LIMITATIONS AND SOLUTIONS: 

 The main limitation to these applications is the problem of unachievable paths. 

 The node-by-node reduction procedure, and most graph-theory-based algorithms work 
well when all paths are possible, but may provide misleading results when some paths 
are unachievable. 

 The approach to handling unachievable paths (for any application) is to partition the 
graph into subgraphs so that all paths in each of the subgraphs are achievable. 

 The resulting subgraphs may overlap, because one path may be common to several 
different subgraphs. 

 Each predicate's truth-functional value potentially splits the graph into two subgraphs. 
For n predicates, there could be as many as 2n subgraphs. 

REGULAR EXPRESSIONS AND FLOW ANOMALY DETECTION: 
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THE PROBLEM: 
 The generic flow-anomaly detection problem (note: not just data-flow anomalies, but 

any flow anomaly) is that of looking for a specific sequence of options considering all 
possible paths through a routine. 

 Let the operations be SET and RESET, denoted by s and r respectively, and we want to 
know if there is a SET followed immediately a SET or a RESET followed immediately by a 
RESET (an ss or an rr sequence). 

Some more application examples: 

 A file can be opened (o), closed (c), read (r), or written (w). If the file is read or written 
to after it's been closed, the sequence is nonsensical. Therefore, cr and cware 
anomalous. Similarly, if the file is read before it's been written, just after opening, we 
may have a bug. Therefore, or is also anomalous. Furthermore, oo andcc, though not 
actual bugs, are a waste of time and therefore should also be examined. 

 A tape transport can do a rewind (d), fast-forward (f), read (r), write (w), stop (p), and 
skip (k). There are rules concerning the use of the transport; for example, you cannot go 
from rewind to fast-forward without an intervening stop or from rewind or fast-forward 
to read or write without an intervening stop. The following sequences are 
anomalous: df, dr, dw, fd, and fr. Does the flowgraph lead to anomalous sequences on 
any path? If so, what sequences and under what circumstances? 

 The data-flow anomalies discussed in Unit 4 requires us to detect the dd, dk, kk, 
and ku sequences. Are there paths with anomalous data flows?  

THE METHOD: 

 Annotate each link in the graph with the appropriate operator or the null operator 1. 
 Simplify things to the extent possible, using the fact that a + a = a and 12 = 1. 
 You now have a regular expression that denotes all the possible sequences of operators 

in that graph. You can now examine that regular expression for the sequences of 
interest. 

EXAMPLE: Let A, B, C, be nonempty sets of character sequences whose smallest string is at least 
one character long. Let T be a two-character string of characters. Then if T is a substring of (i.e., 
if T appears within) ABnC, then T will appear in AB2C. (HUANG's Theorem) 

As an example, let  
 
A = pp 
B = srr 
C = rp 
T = ss 

The theorem states that ss will appear in pp(srr)nrp if it appears in pp(srr)2rp. 
However, let 
A = p + pp + ps 
B = psr + ps(r + ps) 
C = rp 
T = P4 

Is it obvious that there is a p4 sequence in ABnC? The theorem states that we have only to look 
at (p + pp + ps)[psr + ps(r + ps)]2rp 
Multiplying out the expression and simplifying shows that there is no p4 sequence. 

 Incidentally, the above observation is an informal proof of the wisdom of looping twice 
discussed in Unit 2. Because data-flow anomalies are represented by two-character 
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sequences, it follows the above theorem that looping twice is what you need to do to 
find such anomalies. 

LIMITATIONS: 
 Huang's theorem can be easily generalized to cover sequences of greater length than 

two characters. Beyond three characters, though, things get complex and this method 
has probably reached its utilitarian limit for manual application. 

 There are some nice theorems for finding sequences that occur at the beginnings and 
ends of strings but no nice algorithms for finding strings buried in an expression. 

 Static flow analysis methods can't determine whether a path is or is not achievable. 
Unless the flow analysis includes symbolic execution or similar techniques, the impact of 
unachievable paths will not be included in the analysis. 

 The flow-anomaly application, for example, doesn't tell us that there will be a flow 
anomaly - it tells us that if the path is achievable, then there will be a flow anomaly. 
Such analytical problems go away, of course, if you take the trouble to design routines 
for which all paths are achievable. 

 
 

 


