
UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 1 -

GENERAL REVIEW OF THE SYSTEM:

The UNIX system has become quite popular since its inception in 1969, running on

machines of varying processing power from microprocessors to mainframes and providing a

common execution environment across them. The system is divided into two parts. The first

part consists of programs and services that have made the UNIX system environment so

popular; it is the part readily apparent to users, including such programs as the shell, mail, text

processing packages, and source code control systems. The second part consists of the

operating system that supports these programs and services.

HISTORY

In 1965, Bell Telephone Laboratories joined an effort with the General Electric Company

and Project MAC of the Massachusetts Institute of Technology to develop a new operating

system called Multics. The goals of the Multics system were to provide simultaneous computer

access to a large community of users, to supply ample computation power and data storage,

and to allow users to share their data easily, if desired.

Many people who later took part in the early development of the UNIX system

participated in the Multics work at Bell Laboratories. Although a primitive version of the Multics

system was running on a GE 645 computer by 1969, it did not provide the general service

computing for which it was intended, nor was it clear when its development goals would be

met.

Consequently, Bell Laboratories ended its participation in the project. With the end of

their work on the Multics project, members of the Computing Science Research Center at Bell

Laboratories were left without a "convenient interactive computing service". In an attempt to

improve their programming environment, Ken Thompson, Dennis Ritchie, and others sketched

a paper design of a file system that later evolved into an early version of the UNIX file system.

Thompson wrote programs that simulated the behavior of the proposed file system and

of programs in a demand-paging environment, and he even encoded a simple kernel for the GE

645 computer. At the same time, he wrote a game program, "Space Travel," in Fortran for a

GECOS system (the Honeywell 635), but the program was unsatisfactory because it was difficult

to control the "space ship" and the program was expensive to run. Thompson later found a

little-used PDP-7 computer that provided good graphic display and cheap executing power.

Programming "Space Travel" for the PDP-7 enabled Thompson to learn about the

machine, but its environment for program development required cross-assembly of the

program on the GECOS machine and carrying paper tape for input to the PDP-7.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 2 -

To create a better development environment, Thompson and Ritchie implemented their

system design on the PDP-7, including an early version of the UNIX file system, the process

subsystem, and a small set of utility programs.

Eventually, the new system no longer needed the GECOS system as a development

environment but could support itself. The new system was given the name UNIX a pun on the

name Multics coined by another member of the Computing Science Research Center, Brian

Kernighan.

Several reasons have been suggested for the popularity and success of the UNIX system:

 The system is written in a high-level language, making it easy to read, understand,

change, and move to other machines.

 It has a simple user interface that has the power to provide the services that users want.

 It provides primitives that permit complex programs to be built from simpler programs.

 It uses a hierarchical file system that allows easy maintenance and efficient

implementation.

 It uses a hierarchical file system that allows easy maintenance and efficient

implementation.

 It provides a simple, consistent interface to peripheral devices.

 It is a multi-user, multiprocess system; each user can execute several processes

simultaneously.

 It hides the machine architecture from the user, making it easier to write programs that

run on different hardware implementations.

Although the operating system and many of the command programs are written in C, UNIX

systems support other languages, including FORTRAN, Basic, Pascal, Ada, COBOL, Lisp, and

Prolog. The UNIX system can support any language that has a compiler or interpreter and a

system interface that maps user requests for operating system services to the standard set of

requests used on UNIX systems.

SYSTEM STRUCTURE (Topic beyond Syllabus):

Figure 1.1 depicts the high-level architecture of the UNIX system. The hardware at the

center of the diagram provides the operating system with basic services. The operating system

interacts directly with the hardware, providing common services to programs and insulating

them from hardware idiosyncrasies.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 3 -

Viewing the system as a set of layers, the operating system is commonly called the

system kernel, or just the kernel, emphasizing its isolation from user programs. Because

programs are independent of the underlying hardware, it is easy to move them between UNIX

systems running on different hardware if the programs do not make assumptions about the

underlying hardware.

Figure 1.1 Architecture of UNIX System

For instance, programs that assume the size of a machine word are more difficult to

move to other machines than programs that do not make this assumption. Programs such as

the shell and editors (ed and vi) shown in the outer layers interact with the kernel by invoking a

well defined set of system calls.

The system calls instruct the kernel to do various operations for the calling program and

exchange data between the kernel and the program. Several programs shown in the figure are

in standard system configurations and are known as commands, but private user programs may

also exist in this layer as indicated by the program whose name is a.out, the standard name for

executable files produced by the C compiler.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 4 -

Other application programs can build on top of lower-level programs, hence the

existence of the outermost layer in the figure. For example, the standard C compiler, cc, is in

the outermost layer of the figure: it invokes a C preprocessor, two-pass compiler, assembler,

and loader Oink-editor), all separate lower-level programs.

ARCHITECTURE OF THE UNIX OPERATING SYSTEM:

Figure 1.2 gives a block diagram of the kernel, showing various modules and their

relationships to each other. In particular, it shows the file subsystem on the left and the process

control subsystem on the right, the two major components of the kernel. The diagram serves as

a useful logical view of the kernel, although in practice the kernel deviates from the model

because some modules interact with the internal operations of others.

Figure 1.2 Block Diagram of the System Kernel

Figure 1.2 shows three levels: user, kernel, and hardware. The system call and library

interface represent the border between user programs and the kernel depicted in Figure 1.1.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 5 -

System calls look like ordinary function calls in C programs, and libraries map these function

calls to the primitives needed to enter the operating system.

Assembly language programs may invoke system calls directly without a system call

library, however. Programs frequently use other libraries such as the standard I/O library to

provide a more sophisticated use of the system calls. The libraries are linked with the programs

at compile time.

The figure partitions the set of system calls into those that interact with the file

subsystem and those that interact with the process control subsystem.

The file subsystem manages files, allocating file space, administering free space,

controlling access to files, and retrieving data for users.

Processes interact with the file subsystem via a specific set of system calls, such as open

(to open a file for reading or writing), close, read, write, stat (query the attributes of a file),

chown (change the record of who owns the file), and chmod (change the access permissions of

a file).

The file subsystem accesses file data using a buffering mechanism that regulates data

flow between the kernel and secondary storage devices. The buffering mechanism interacts

with block I/O device drivers to initiate data transfer to and from the kernel. Device drivers are

the kernel modules that control the operation of peripheral devices. Block I/O devices are

random access storage devices; alternatively, their device drivers make them appear to be

random access storage devices to the rest of the system.

For example, a tape driver may allow the kernel to treat a tape unit as a random access

storage device. The file subsystem also interacts directly with "raw" I/O device drivers without

the intervention of a buffering mechanism. Raw devices, sometimes called character devices,

include all devices that are not block devices.

The process control subsystem is responsible for process synchronization, inter process

communication, memory management, and process scheduling. The file subsystem and the

process control subsystem interact when loading a file into memory for execution where the

process subsystem reads executable files into memory before executing them.

Some of the system calls for controlling processes are: fork (create a new process), exec

(overlay the image of a program onto the running process), exit (finish executing a process),

wait (synchronize process execution with the exit of a previously forked process), brk (control

the size of memory allocated to a process), and signal (control process response to

extraordinary events).

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 6 -

The memory management module controls the allocation of memory. If at any time the

system does not have enough physical memory for all processes, the kernel moves them

between main memory and secondary memory so that all processes get a fair chance to

execute.

The scheduler module allocates the CPU to processes. It schedules them to run in turn

until they voluntarily relinquish the CPU while awaiting a resource or until the kernel preempts

them when their recent run time exceeds a time quantum. The scheduler then chooses the

highest priority eligible process to run; the original process will run again when it is the highest

priority eligible process available.

USER PERSPECTIVE:

This will briefly review high-level features of the UNIX system such as the file system,

the processing environment, and building block primitives (for example, pipes).

The File System:

The UNIX file system is characterized by

 A hierarchical structure,

 Consistent treatment of file data,

 The ability to create and delete files,

 Dynamic growth of files,

 The protection of file data,

 The treatment of peripheral devices (such as terminals and tape units) as files.

The file system is organized as a tree with a single root node called root (written as “/");

every non-leaf node of the file system structure is a directory of files, and files at the leaf nodes

of the tree are either directories, regular files, or special device files.

The name of a file is given by a path name that describes how to locate the file in the file

system hierarchy.

A path name is a sequence of component names separated by slash characters; a

component is a sequence of characters that designates a file name that is uniquely contained in

the previous (directory) component.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 7 -

A full path name starts with a slash character and specifies a file that can be found by

starting at the file system root and traversing the file tree, following the branches that lead to

successive component names of the path name.

Thus, the path names “/etc/passwd”, “/bin/who”, and “/usr/src/cmd/who.c” designate

files in the tree shown in Figure 1.3, but “/bin/passwd” and “/usr/src/date.c” do not.

A path name does not have to :start from root but can be designated relative to the

current directory of an executing process, by omitting the initial slash in the path name.

Thus, starting from directory “/dev”, the path name “tty01” designates the file whose

full path name is “/dev/ttyo1”.

Figure 1.3 Sample File System Tree

Programs in the UNIX system have no knowledge of the internal format in which the

kernel stores file data, treating the data as an unformatted stream of bytes. Programs may

interpret the byte stream as they wish, but the interpretation bas no bearing on how the

operating system stores the data. Thus, the syntax of accessing the data in a file is defined by

the system and is identical for all programs, but the semantics of the data are imposed by the

program.

Directories are like regular files in this respect; the system treats the data in a directory

as a byte stream, but the data contains the names of the files in the directory in a predictable

format so that the operating system and programs such as Is (list the names and attributes of

files) can discover the files in a directory.

Permission to access a file is controlled by access permissions associated with the file.

Access permissions can be set independently to control read, write, and execute permission for

three classes of users: the file owner, a file group, and everyone else. Users may create files if

directory access permissions allow it. The newly created files are leaf nodes of the file system

directory structure.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 8 -

To the user, the UNIX system treats devices as if they were files. Devices, designated by

special device files, occupy node positions in the file system directory structure.

Programs access devices with the same syntax they use when accessing regular files; the

semantics of reading and writing devices are to a large degree the same as reading and writing

regular files.

Devices are protected in the same way that regular files are protected: by proper setting

of their (file) access permissions.

Processing Environment:

A program is an executable file, and a process is an instance of the program in

execution. Many processes can execute simultaneously on UNIX systems (this feature is

sometimes called multiprogramming or multitasking) with no logical limit to their number, and

many instances of a program (such as copy) can exist simultaneously in the system.

Various system calls allow processes to create new processes, terminate processes,

synchronize stages of process execution, and control reaction to various events. Subject to their

use of system calls, processes execute independently of each other.

For example, a process executing the program in Figure 1.4 executes the fork system call

to create a new process. The new process, called the child process, gets a 0 return value from

fork and invokes execl to execute the program copy.

Figure 1.4 Programs that Creates a New Process to Copy Files

Building Block Primitives:

The philosophy of the UNIX system is to provide operating system primitives that enable

users to write small, modular programs that can be used as building blocks to build more

complex programs. One such primitive visible to shell users is the capability to redirect I/O.

Processes conventionally have access to three files: they read from their standard input

file, write to their standard output file, and write error messages to their standard error file.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 9 -

Processes executing at a terminal typically use the terminal for these three files, but

each may be "redirected" independently.

For instance, the command line Is lists all files in the current directory on the standard

output. But the command line ls > output redirects the standard output to the file called

"output" in the current directory.

The second building block primitive is the pipe, a mechanism that allows a stream of

data to be passed between reader and writer processes.

Processes can redirect their standard output to a pipe to be read by other processes

that have redirected their standard input to come from the pipe. The data that the first

processes write into the pipe is the input for the second processes.

The second processes could also redirect their output, and so on, depending on

programming need. Again, the processes need not know what type of file their standard output

is; they work regardless of whether their standard output is a regular file, a pipe, or a device.

When using the smaller programs as building blocks for a larger, more complex

program, the programmer uses the pipe primitive and redirection of I/O to integrate the piece

parts.

Indeed, the system tacitly encourages such programming style so that new programs

can work with existing programs. For example, the program grep searches a set of files

(parameters to grep) for a given pattern:

grep main a.c b.c c.c

searches the three files a.c, b.c, and c.c for lines containing the string "main" and prints

the lines that it finds onto standard output. Sample output may be:

a.c: main(argc, argv)

c.c: /* here is the main loop in the program */

c.c: main()

The program we with the option -1 counts the number of lines in the standard input file.

The command line grep main a.c b.c c.c | wc -l counts the number of lines in the files that

contain the string "main"; the output from grep is "piped" directly into the wc command. For

the previous sample output from grep, the output from the piped command is 3. The use of

pipes frequently makes it unnecessary to create temporary files.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 10 -

THE BUFFER CACHE:

The kernel maintains files on mass storage devices such as disks, and it allows processes

to store new information or to recall previously stored information.

When a process wants to access data from a file, the kernel brings the data into main

memory where the process can examine it, alter it, and request that the data be saved in the

file system again.

The kernel could read and write directly to and from the disk for all file system accesses,

but system response time and throughput would be poor because of the slow disk transfer rate.

The kernel therefore attempts to minimize the frequency of disk access by keeping a

pool of internal data buffers, called the buffer cache, which contains the data in recently used

disk blocks.

The position of the buffer cache module in the kernel architecture is in between the file

subsystem and (block) device drivers.

When reading data from the disk, the kernel attempts to read from the buffer cache. If

the data is already in the cache, the kernel does not have to read from the disk.

If the data is not in the cache, the kernel reads the data from the disk and caches it,

using an algorithm that tries to save as much good data in the cache as possible.

Similarly, data being written to disk is cached so that it will be there if the kernel later

tries to read it.

The kernel also attempts to minimize the frequency of disk write operations by

determining whether the data must really be stored on disk or whether it is transient data that

will soon be overwritten.

Higher-level kernel algorithms instruct the buffer cache module to pre-cache data or to

delay-write data to maximize the caching effect.

BUFFER HEADERS:

During system initialization, the kernel allocates space for a number of buffers,

configurable according to memory size and system performance constraints.

A buffer consists of two parts: a memory array that contains data from the disk and a

buffer header that identifies the buffer.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 11 -

The data in a buffer corresponds to the data in a logical disk block on a file system, and

the kernel identifies the buffer contents by examining identifier fields in the buffer header.

The buffer is the in-memory copy of the disk block; the contents of the disk block map

into the buffer, but the mapping is temporary until the kernel decides to map another disk

block into the buffer. A disk block can never map into more than one buffer at a time.

If two buffers were to contain data for one disk block, the kernel would not know which

buffer contained the current data and could write incorrect data back to disk.

For example, suppose a disk block maps into two buffers, A and B. If the kernel writes

data first into buffer A and then into buffer B, the disk block should contain the contents of

buffer B if all write operations completely fill the buffer.

However, if the kernel reverses the order when it copies the buffers to disk, the disk

block will contain incorrect data.

The buffer header (Figure 1.5) contains a device number field and a block number field

specifies the file system and the block number of the data on disk and uniquely identify the

buffer.

Note: The buffer cache is a software structure that should not be confused with

hardware caches that speed memory references.

The device number is the logical file system number, not a physical device (disk) unit

number.

The buffer header also contains a pointer to a data array for the buffer, whose size must

be at least as big as the size of a disk block, and a status field that summarizes the current

status of the buffer.

The status of a buffer is a combination of the following conditions:

 The buffer is currently locked

 The buffer contains valid data

 The kernel must write the buffer contents to disk before reassigning the buffer; this

condition is known as "delayed-write"

 The kernel is currently reading or writing the contents of the buffer to disk

 A process is currently waiting for the buffer to become free

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 12 -

The buffer header also contains two sets of pointers, used by the buffer allocation

algorithms to maintain the overall structure of the buffer pool.

Figure 1.5 Buffer Headers

STRUCTURE OF THE BUFFER POOL:

The kernel caches data in the buffer pool according to a least recently used algorithm:

after it allocates a buffer to a disk block, it cannot use the buffer for another block until all

other buffers have been used more recently.

The kernel maintains a free list of buffers that preserves the least recently used order.

The free list is a doubly linked circular list of buffers with a dummy buffer header that marks its

beginning and end (Figure 1.6).

Figure 1.6 Free Lists of Buffers

Every buffer is put on the free list when the system is booted. The kernel takes a buffer

from the head of the free list when it wants any free buffer, but it can take a buffer from the

middle of the free list if it identifies a particular block in the buffer pool.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 13 -

In both cases, it removes the buffer from the free list. When the kernel returns a buffer

to the buffer pool, it usually attaches the buffer to the tail of the free list, occasionally to the

head of the free list (for error cases), but never to the middle.

As the kernel removes buffers from the free list, a buffer with valid data moves closer

and closer to head of the free list (Figure 1.6). Hence, the buffers that are closer to the head of

the free list have not been used as recently as those that are further from the head of the free

list.

When the kernel accesses a disk block, it searches for a buffer with the appropriate

device-block number combination. Rather than search the entire buffer pool, it organizes the

buffers into separate queues, hashed as a function of the device and block number.

The kernel links the buffers on a hash queue into a circular, doubly linked list, similar to

the structure of the free list. The number of buffers on a hash queue varies during the lifetime

of the system.

Figure 1.7 shows buffers on their hash queues: the headers of the hash queues are on

the left side of the figure, and the squares on each row are buffers on a hash queue. Thus,

squares marked 28, 4, and 64 represent buffers on the hash queue for "blkno 0 mod 4" (block

number 0 modulo 4).

Figure 1.7 Buffers on Hash Queues

The dotted lines between the buffers represent the forward and back pointers for the

hash queue. Each buffer always exists on a hash queue, but there is no significance to its

position on the queue.

As stated above, no two buffers may simultaneously contain the contents of the same

disk block; therefore, every disk block in the buffer pool exists on one and only one hash queue

and only once on that queue. However, a buffer may be on the free list as well if its status is

free.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 14 -

SCENARIOS FOR RETRIEVAL OF A BUFFER:

High-level kernel algorithms in the file subsystem invoke the algorithms for managing

the buffer cache. The high-level algorithms determine the logical device number and block

number that they wish to access when they attempt to retrieve a block.

For example, if a process wants to read data from a file, the kernel determines which file

system contains the file and which block in the file system contains the data. When about to

read data from a particular disk block, the kernel checks whether the block is in the buffer pool

and, if it is not there, assigns it a free buffer.

When about to write data to a particular disk block, the kernel checks whether the block

is in the buffer pool, and if not, assigns a free buffer for that block.

There are five typical scenarios the kernel may follow in getblk to allocate a buffer for a

disk block:

1. The kernel finds the block on its hash queue, and its buffer is free.

2. The kernel cannot find the block on the hash queue, so it allocates a buffer from the

free list.

3. The kernel cannot find the block on the hash queue and, in attempting to allocate a

buffer from the free list, finds a buffer on the free list that has been marked

"delayed write". The kernel must write the "delayed write" buffer to disk and

allocate another buffer.

4. The kernel cannot find the block on the hash queue, and the free list of buffers is

empty.

5. The kernel finds the block on the hash queue, but its buffer is currently busy.

Figure 1.8 depicts the first scenario, where the kernel searches for block 4 on the hash

queue marked "blkno 0 mod 4." Finding the buffer, the kernel removes it from the free list,

leaving blocks 5 and 28 adjacent on the free list.

In the second scenario in algorithm getblk, the kernel searches the hash queue that

should contain the block but fails to find it there. Since the block cannot be on another hash

queue because it cannot "hash" elsewhere, it is not in the buffer cache.

So the kernel removes the first buffer from the free list instead; that buffer had been

allocated to another disk block and is also on a hash queue.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 15 -

If the buffer has not been marked for a delayed write, the kernel marks the buffer busy,

removes it from the hash queue where it currently resides, reassigns the buffer header's device

and block number to that of the disk block for which the process is searching, and places the

buffer on the correct hash queue.

Figure 1.8 Scenario 1 in Finding a Buffer: Buffer on Hash Queue

The kernel uses the buffer but has no record that the buffer formerly contained data for

another disk block. A process searching for the old disk block will not find it in the pool and will

have to allocate a new buffer for it from the free list.

In the third scenario in algorithm getblk, the kernel also has to allocate a buffer from the

free list. However, it discovers that the buffer it removes from the free list has been marked for

"delayed write," so it must write the contents of the buffer to disk before using the buffer.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 16 -

The kernel starts an asynchronous write to disk and tries to allocate another buffer from

the free list. When the asynchronous write completes, the kernel releases the buffer and places

it at the head of the free list. The buffer had started at the end of the free list and had traveled

to the head of the free list.

READING AND WRITING DISK BLOCKS:

To read a disk block (Figure 1.9), a process uses algorithm getblk to search for it in the

buffer cache. If it is in the cache, the kernel can return it immediately without physically reading

the block from the disk.

Figure 1.9 Algorithm for Reading Disk Block

If it is not in the cache, the kernel calls the disk driver to "schedule" a read request and

goes to sleep awaiting the event that the I/O completes. The disk driver notifies the disk

controller hardware that it wants to read data, and the disk controller later transmits the data

to the buffer.

Finally, the disk controller interrupts the processor when the I/O is complete, and the

disk interrupt handler awakens the sleeping process; the contents of the disk block are now in

the buffer. The modules that requested the particular block now have the data; when they no

longer need the buffer they release it so that other processes can access it.

The algorithm for writing the contents of a buffer to a disk block is similar (Figure 1.10).

The kernel informs the disk driver that it has a buffer whose contents should be output, and the

disk driver schedules the block for I/O.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 17 -

Figure 1.10 Algorithm for Writing a Disk Block

If the write is synchronous, the calling process goes to sleep awaiting I/O completion

and releases the buffer when it awakens. If the write is asynchronous, the kernel starts the disk

write but does not wait for the write to complete. The kernel will release the buffer when the

I/O completes.

A delayed write is different from an asynchronous write. When doing an asynchronous

write, the kernel starts the disk operation immediately but does not wait for its completion. For

a "delayed write," the kernel puts off the physical write to disk as long as possible; then,

recalling the third scenario in algorithm getblk, it marks the buffer "old" and writes the block to

disk asynchronously.

ADVANTAGES AND DISADVANTAGES OF THE BUFFER CACHE:

Use of the buffer cache has several advantages and, unfortunately, some disadvantages:

 The use of buffers allows uniform disk access, because the kernel does not need to know

the reason for the I/O. Instead, it copies data to and from buffers, regardless of whether the

data is part of a file, an inode, or a super block.

 The system places no data alignment restrictions on user processes doing I/O, because the

kernel aligns data internally.

o Hardware implementations frequently require a particular alignment of data for disk

l/0, such as aligning the data on a two-byte boundary or on a four-byte boundary in

memory. Without a buffer mechanism, programmers would have to make sure that

their data buffers were correctly aligned.

 Use of the buffer cache can reduce the amount of disk traffic, thereby increasing overall

system throughput and decreasing response time.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 18 -

o Processes reading from the file system may find data blocks in the cache and avoid

the need for disk I/O.

o The kernel frequently uses "delayed write" to avoid unnecessary disk writes, leaving

the block in the buffer cache and hoping for a cache hit on the block.

 The buffer algorithms help insure file system integrity, because they maintain a common,

single image of disk blocks contained in the cache. If two processes simultaneously attempt

to manipulate one disk block, the buffer algorithms (getblk for example) serialize their

access, preventing data corruption.

 Reduction of disk traffic is important for good throughput and response time, but the cache

strategy also introduces several disadvantages.

o Since the kernel does not immediately write data to the disk for a delayed write, the

system is vulnerable to crashes that leave disk data in an incorrect state.

 Use of the buffer cache requires an extra data copy when reading and writing to and from

user processes.

o A process writing data copies the data into the kernel, and the kernel copies the

data to disk; a process reading data has the data read from disk into the kernel and

from the kernel to the user process.

o When transmitting large amounts of data, the extra copy slows down performance,

but when transmitting small amounts of data, it improves performance because the

kernel buffers the data (using algorithms getblk and delayed write) until it is

economical to transmit to or from the disk.

UTILITIES:

GENERAL PURPOSE UTILITIES:

1. cal - Displays a calendar

2. date - print or set the system date and time

3. bc - An arbitrary precision calculator language

4. echo - Display a line of text.

5. printf - Format and print data

6. passwd - update user's authentication tokens

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 19 -

7. who - Show who is logged on

8. w - Show who is logged on and what they are doing

cal: Displays a calendar

Syntax

cal [−smjy13] [[[day] month] year]

Description: View calendar of specific month or year.

Options:

−1 Display single month output. (This is the default.)

−3 Display previous/current/next month output

−s Display Sunday as the first day of the week

−m Display Monday as the first day of the week

−j Display Julian dates (days one-based, numbered from January 1).

−y Display a calendar for the current year.

Eg: $cal

July 2016

Su mo tu we th fr sa

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

date: Print or set the system date and time

Syntax:

date [OPTION]... [+FORMAT]

date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]]

Description: Display the current time in the given FORMAT, or set the system date.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 20 -

Options:

-d, --date=STRING

 display time described by STRING, not `now'

-f, --file=DATEFILE

 like --date once for each line of DATEFILE

-r, --reference=FILE

 display the last modification time of FILE

-s, --set=STRING

 set time described by STRING

-u, --utc, --universal

 print or set Coordinated Universal Time

Formats

%d day of month (e.g, 01)

%m month (01..12)

%Y year

%F full date; same as %Y-%m-%d

%H hour (00..23)

%M minute (00..59)

%S second (00..60)

%T time; same as %H:%M:%S

Eg: $date

Tue Jul 19 18:37:07 IST 2016

bc: An arbitrary precision calculator language

Syntax:

bc [-hlwsqv] [long-options] [file ...]

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 21 -

Description:

Options:

-l, --mathlib

 Define the standard math library.

-w, --warn

 Give warnings for extensions to POSIX bc.

-s, --standard

 Process exactly the POSIX bc language.

-q, --quiet

 Do not print the normal GNU bc welcome.

Eg: $bc –q

 Var=100

 Var

 100

 20<10

 0

echo: Display a line of text.

Syntax:

echo [SHORT-OPTION]... [STRING]...

echo LONG-OPTION

Description: Echo the STRING(s) to standard output.

Options:

-n do not output the trailing newline

-e enable interpretation of backslash escapes

-E disable interpretation of backslash escapes (default)

Escape Sequence

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 22 -

If -e is in effect, the following sequences are recognized:

 \\ backslash

 \a alert (BEL)

 \b backspace

 \n new line

 \r carriage return

 \t horizontal tab

 \v vertical tab

Eg: $echo “Unix is precious”

 Unix is precious

who: Show who is logged on

Syntax:

who [OPTION]... [FILE | ARG1 ARG2]

Description: Print information about users who are currently logged in.

Options:

-a, --all

 same as -b -d --login -p -r -t -T -u

-b, --boot

 time of last system boot

-H, --heading

 print line of column headings

-l, --login

 print system login processes

Eg: $who

 14121a05c4 tty 2016-07-19 12:30 (:0)

 14121a05c7 pts/0 2016-07-19 12:32 (:0.0)

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 23 -

w: Show who is logged on and what they are doing

Syntax:

w - [husfV] [user]

Description: The command w on many Unix-like operating systems provides a quick summary

of every user logged into a computer, what each user is currently doing.

Options:

-h Don’t print the header.

-u Ignores the username while figuring out the current process and CPU times.

-s Use the short format. Don’t print the login time, JCPU or PCPU times.

Eg: $w

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

Panther tty1 :0 12:30 33:28 60:53s 0.09s pam:gdm

passwd: update user's authentication tokens

Syntax:

passwd [-k] [-l] [-u [-f]] [-d] [-n mindays] [-x maxdays] [-w warndays] [-i inactivedays] [-S] [--

stdin] [username]

Description: The passwd utility is used to update user's authentication token(s)

Options:

-k The option -k, is used to indicate that the update should only be for expired authentication

tokens (passwords); the user wishes to keep their non-expired tokens as before.

-l This option is used to lock the specified account and it is available to root only. The locking

is performed by rendering the encrypted password into an invalid string (by prefixing the

encrypted string with an !).

Eg: $passwd

 changing password for user eleiss.

printf: Format and print data

Syntax:

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 24 -

printf FORMAT [ARGUMENT]...

printf OPTION

Description: Print ARGUMENT(s) according to FORMAT, or execute according to OPTION

Options:

--help Display help and exit

Eg: $ printf ”unix\v is\v precious\n”

 unix

is

 precious

FILE HANDLING UTILITIES:

1. pwd - print name of current/working/present directory

2. cd - Change the current directory

3. mkdir - make directories

4. rmdir - remove empty directories

5. ls - list directory contents

6. cat - concatenate files and print on the standard output

7. cp - copy files and directories

8. rm - remove files or directories

9. mv - move (rename) files

10. wc - print newline, word, and byte counts for each file

11. cmp - compare two files

12. comm - compare two sorted files line by line

13. diff - find differences between two files

pwd: Print name of current/working/present directory

Syntax: pwd [OPTION]...

Description: Print the full filename of the current working directory.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 25 -

Options:

-L, --logical

 use PWD from environment, even if it contains symlinks

-P, --physical

 avoid all symlinks

Eg: $pwd

/home/eleiss

cd: Change the current directory

Syntax: cd [-L|-P] [dir]

Description: The cd command, also known as chdir (change directory), is a command-line OS

shell command used to change the current working directory in operating systems such as

UNIX.

Options:

-P option to the set built-in command

-L option forces symbolic links to be followed

Eg: $cd /etc

 $pwd

 /etc

mkdir: make directories

Syntax: mkdir [OPTION]... DIRECTORY...

Description: Create the DIRECTORY(ies), if they do not already exist.

Options:

-m, --mode=MODE

 set file mode (as in chmod), not a=rwx - umask

-p, --parents

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 26 -

 no error if existing, make parent directories as needed

-v, --verbose

 print a message for each created directory

Eg: mkdir -v linux

 Mkdir: created directory ‘linux’

rmdir: remove empty directories

Syntax: rmdir [OPTION]... DIRECTORY...

Description: Remove the DIRECTORY(ies), if they are empty.

Options:

--ignore-fail-on-non-empty

 ignore each failure that is solely because a directory is non-empty

-p, --parents

 remove DIRECTORY and its ancestors; e.g., ‘rmdir -p a/b/c’ is similar to ‘rmdir a/b/c a/b

a’

Eg: rmdir friends

Rmdir: failed to removes ‘friends’:directory not empty

ls: list directory contents

Syntax: ls [OPTION]... [FILE]...

Description: List information about the FILEs (the current directory by default). Sort entries

alphabetically if none of -cftuvSUX nor --sort.

Options:

-a, --all

 do not ignore entries starting with .

-A, --almost-all

 do not list implied . and ..

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 27 -

-c with -lt: sort by, and show, ctime (time of last modification of file status information) with

-l: show ctime and sort by name otherwise: sort by ctime

-C list entries by columns

Eg: ls

City country friends fruits linux states tree

cat: Concatenate files and print on the standard output

Syntax: cat [OPTION]... [FILE]...

Description: Concatenate FILE(s), or standard input, to standard output.

Options:

-b, --number-nonblank

 number nonempty output lines

-E, --show-ends

 display $ at end of each line

-s, --squeeze-blank

 suppress repeated empty output lines

-T, --show-tabs

 display TAB characters as ^I

-v, --show-nonprinting

 use ^ and M- notation, except for LFD and TAB

Eg: cat india

 India is a great country. Jai Hind.

cp: Copy files and directories

Syntax: cp [OPTION]... [-T] SOURCE DEST

cp [OPTION]... SOURCE... DIRECTORY

cp [OPTION]... -t DIRECTORY SOURCE...

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 28 -

Description: Copy SOURCE to DEST, or multiple SOURCE(s) to DIRECTORY.

Options:

-a, --archive

 same as -dR --preserve=all

-d same as --no-dereference --preserve=links

-i, --interactive

 prompt before overwrite (overrides a previous -n option)

-H follow command-line symbolic links in SOURCE

-l, --link

 link files instead of copying

-p same as --preserve=mode, ownership, timestamps

-R, -r, --recursive

 copy directories recursively

Eg: cp –v /etc/passwd.

‘/etc/passwd\’->’./paswd\’

rm: Remove files or directories

Syntax: rm [OPTION]... FILE...

Description: rm removes each specified file. By default, it does not remove directories.

Options:

-f, --force

 ignore nonexistent files, never prompt

-i prompt before every removal

-I prompt once before removing more than three files, or when removing recursively. Less

intrusive than -i, while still giving protection against most mistakes

-r, -R, --recursive

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 29 -

 remove directories and their contents recursively

-v, --verbose

 explain what is being done

Eg: rm –v divya/file1

 Removed’divya/file1’

mv: Move or Rename files

Syntax: mv [OPTION]... [-T] SOURCE DEST

mv [OPTION]... SOURCE... DIRECTORY

mv [OPTION]... -t DIRECTORY SOURCE...

Description: Rename SOURCE to DEST, or move SOURCE(s) to DIRECTORY.

Options:

-f, --force

 do not prompt before overwriting

-i, --interactive

 prompt before overwrite

-t, --target-directory=DIRECTORY

 move all SOURCE arguments into DIRECTORY

-T, --no-target-directory

 treat DEST as a normal file

-u, --update

 move only when the SOURCE file is newer than the destination file or when the destination

file is missing

Eg: mv -v /tmp/shell_scripting.

‘/tmp/shell_scripting’->’./shell_scripting’

wc: print newline, word, and byte counts for each file

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 30 -

Syntax: wc [OPTION]... [FILE]...

wc [OPTION]... --files0-from=F

Description: Print newline, word, and byte counts for each FILE, and a total line if more than

one FILE is specified. With no FILE, or when FILE is -, read standard input.

Options:

-c, --bytes

 print the byte counts

-m, --chars

 print the character counts

-l, --lines

 print the newline counts

-L, --max-line-length

 print the length of the longest line

-w, --words

 print the word counts

Eg: wc eleiss

 3 30 223 eleiss

cmp: Compare two files

Syntax: cmp [-l | -s] file1 file2 [skip1 [skip2]]

Description: cmp is used to compare two files byte by byte. If a difference is found, it reports

the byte and line number where the first difference is found. If no differences are found, by

default, cmp returns no output.

Options:

-l Print the byte number (decimal) and the differing byte values (octal) for each difference.

-s Print nothing for differing files; return exit status only.

Exit Status

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 31 -

0 The files are identical.

1 The files are different; this includes the case where one file is identical to the first part of

the other. In the latter case, if the -s option has not been specified, cmp writes to standard

output that EOF was reached in the shorter file (before any differences were found).

>1 An error occurred.

Eg: $cmp file1 file2

file1:this is file1, file2:this is file 1

$echo $?

0

comm: Compare two sorted files line by line

Syntax: comm [OPTION]... FILE1 FILE2

Description: Compare sorted files FILE1 and FILE2 line by line. With no options, produce

three-column output. Column one contains lines unique to FILE1, column two contains lines

unique to FILE2, and column three contains lines common to both files.

Options:

-1 suppress column 1 (lines unique to FILE1)

-2 suppress column 2 (lines unique to FILE2)

-3 suppress column 3 (lines that appear in both files)

Eg: cat team-A

 arpit

 jimmy

Cat team_B

 digvijay

 hardik

 $ comm team_A team_B

 arpit digvijay

 jimmy hardik

diff: Find differences between two files

Syntax: diff [options] from-file to-file

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 32 -

Options:

-a Treat all files as text and compare them line-by-line, even if they do not seem to be text.

-b Ignore changes in amount of white space.

-B Ignore changes that just insert or delete blank lines.

-i Ignore changes in case; consider upper- and lower-case letters equivalent.

-r When comparing directories, recursively compare any subdirectories found.

Eg: diff source.txt dest.txt

 1,10c1,5

 <hello

 >world

SECURITY BY FILE PERMISSIONS:

Every file in UNIX has the following attributes −

 Owner permissions: The owner's permissions determine what actions the owner of the

file can perform on the file.

 Group permissions: The group's permissions determine what actions a user, who is a

member of the group that a file belongs to, can perform on the file.

 Other (world) permissions: The permissions for others indicate what action all other

users can perform on the file.

 To access a file or directory in UNIX every type of user has some modes of conditions

those are:

1. READ(r) - Grants the capability to read ie. view the contents of the file.

2. EXECUTE (x) - Grants the capability to modify, or remove the content of the

file.

3. WRITE (w) - User with execute permissions can run a file as a program.

 The first three characters (2-4) represent the permissions for the file's owner. For

example -rwxr-xr-- represents that owner has read (r), write (w) and execute (x)

permission.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 33 -

 The second group of three characters (5-7) consists of the permissions for the group to

which the file belongs. For example -rwxr-xr--represents that group has read (r) and

execute (x) permission but no write permission.

 The last group of three characters (8-10) represents the permissions for everyone else.

For example -rwxr-xr-- represents that other world has read (r) only permission.

Viewing Permissions in the File Listing:

A quick and easy way to list a file's permissions are with the long listing (-l) option of the

ls command. For example, to view the permissions of file.txt, you could use the command:

ls -l file.txt

OUTPUT:: -rwxrw-r-- 1 hope hopestaff 123 Feb 03 15:36 file.txt

Here first column represents different access mode i.e. permission associated with a file

or directory. Here's what each part of this information means:

- The first character represents the file type: "-" for a regular file, "d" for a

directory, "l" for a symbolic link.

rwx The next three characters represent the permissions for the file's owner: in this

case, the owner may read from, write to, and/or execute the file.

rw- The next three characters represent the permissions for members of the group

that the file belongs to. In this case, any member of the file's owning group may

read from or write to the file. The final dash is a placeholder; group members do

not have permission to execute this file.

r-- The permissions for "others" (everyone else). Others may only read this file.

1 The number of hard links to this file.

hope The file's owner.

hopestaff The group to whom the file belongs.

123 The size of the file in blocks.

Feb 03 15:36 The file's mtime (date and time when the file was last modified).

file.txt The name of the file.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 34 -

Changing Permissions:

To change file or directory permissions, you use the chmod (change

mode) command. There are two ways to use chmod: symbolic mode and absolute mode. In

general, chmod commands take the form: chmod options permissions filename

chmod syntax:

chmod [option] … MODE [MODE] … FILE …

chmod [option] … OCTAL MODE FILE….

chmod [option] .. reference =RFILE FILE…

If no options are specified, chmod modifies the permissions of the file specified by

filename to the permissions specified by permissions.

There are two ways to represent these permissions: with symbols (alphanumeric characters), or

with octal numbers (the digits 0 through 7).

Let's say you are the owner of a file named myfile, and you want to set its permissions so

that:

1. the user can read, write, and execute it;

2. members of your group can read and execute it; and

3. others may only read it.

This command will do the trick:

chmod u=rwx,g=rx,o=r myfile

This is an example of using symbolic permissions notation. The letters u, g, and o stand

for "user", "group", and "other". The equals sign ("=") means "set the permissions exactly like

this," and the letters "r", "w", and "x" stand for "read", "write", and "execute",

respectively. Here is the equivalent command using octal permissions notation:

chmod 754 myfile

Here the digits 7, 5, and 4 each individually represent the permissions for the user, group, and

others, in that order. Each digit is a combination of the numbers 4, 2, 1, and0:

 4 stands for "read",

 2 stands for "write",

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 35 -

 1 stands for "execute", and

 0 stands for "no permission."

So 7 is the combination of permissions 4+2+1 (read, write, and execute), 5 is 4+0+1(read, no

write, and execute), and 4 is 4+0+0 (read, no write, and no execute).

Using chmod in Symbolic Mode

The easiest way for a beginner to modify file or directory permissions is to use the

symbolic mode. With symbolic permissions you can add, delete, or specify the permission set

you want by using the operators in the following table.

Chmod operator Description

+ Adds the designated permission(s) to a file or

directory.

- Removes the designated permission(s) from a file or

directory.

= Sets the designated permission(s).

Here's an example using testfile. Running ls -1 on testfile shows that the file's

permissions are as follows −

$ls -l testfile

-rwxrwxr-- 1 amrood users 1024 Nov 2 00:10 testfile

Then each example chmod command from the preceding table is run on testfile,

followed by ls -l so you can see the permission changes −

$chmod o+wx testfile

$ls -l testfile

-rwxrwxrwx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod u-x testfile

$ls -l testfile

-rw-rwxrwx 1 amrood users 1024 Nov 2 00:10 testfile

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 36 -

$chmod g=rx testfile

$ls -l testfile

-rw-r-xrwx 1 amrood users 1024 Nov 2 00:10 testfile

Here's how you could combine these commands on a single line:

$chmod o+wx,u-x,g=rx testfile

$ls -l testfile

-rw-r-xrwx 1 amrood users 1024 Nov 2 00:10 testfile

Changing Owners and Groups

While creating an account on Unix, it assigns a owner ID and a group ID to each user. All

the permissions mentioned above are also assigned based on Owner and Groups. Two

commands are available to change the owner and the group of files:

 chown − The chown command stands for "change owner" and is used to change the

owner of a file.

 chgrp − The chgrp command stands for "change group" and is used to change the group

of a file.

Changing Ownership:

The chown command changes the ownership of a file. The basic syntax is as follows −

$ chown user filelist

The value of user can be either the name of a user on the system or the user id (uid) of a

user on the system.

Following example −

$ chown amrood testfile

Changes the owner of the given file to the user amrood

NOTE: The super user, root, has the unrestricted capability to change the ownership of a

any file but normal users can change only the owner of files they own.

Changing Group Ownership:

The chrgp command changes the group ownership of a file. The basic syntax is as follows −

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 37 -

$ chgrp group filelist

The value of group can be the name of a group on the system or the group ID (GID) of a

group on the system.

Following example −

$ chgrp special testfile

$

Changes the group of the given file to special group

PROCESS UTILITIES:

ps: Report a snapshot of the current processes

SYNOPSIS: ps [options]

DESCRIPTION

ps displays information about a selection of the active processes. Ps reports

the statuses of current processes in a system.

Options:-

-d:- Select all processes except session leaders.

-A:- Select all processes. Identical to -e.

-N:- Select all processes except those that fulfill the specified conditions. (negates the

selection) Identical to --deselect.

KILL:-

Name:-kill - terminate a process

Synopsis:- kill [-s signal|-p][--] pid...

 kill -l [signal]

Description:-The command kill sends the specified signal to the specified process or process

group. If no signal is specified, the TERM signal is sent. The TERM signal will kill processes which

do not catch this signal. For other processes, it may be necessary to use the KILL (9) signal, since

this signal cannot be caught.

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 38 -

Options:-

-p:-Specify that kill should only print the process id (pid) of the named processes, and not send

any signals.

-l:-Print a list of signal names. These are found in /usr/include/linux/signal.h

-a:-Do not restrict the command name-to-pid conversion to processes with the same uid as the

present process.

DISK UTILITIES:

df:

It displays the amount of disk space available on the file system containing each file

name argument. With no file name, available space on all currently mounted file systems is

shown. More on using df to display the amount of disk space available.

df [-k] [-P|-t] [-del] [file...]

Options:-

-k :Use 1024-byte units, instead of the default 512-byte units, when writing space figures.

-P :Use a standard, portable, output format

-t :If XSI compliant, show allocated space as well

-h :Display in KB, MB, or GB

du:

du (abbreviated from disk usage) is a standard Unix program used to estimate file space

usage—space used under a particular directory or files on a file system.

Options:-

-a, In addition to the default output, include information for each non-directory entry

-d #, the depth at which summing should occur. -d 0 sums at the current level, -d 1 sums at the

subdirectory, -d 2 at sub-subdirectories, etc.

-H, calculate disk usage for link references specified on the command line

-k, show sizes as multiples of 1024 bytes, not 512-byte

-s, report only the sum of the usage in the current directory, not for each file

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 39 -

Example:

Sum of directories (-s) in kilobytes (-k):

$du -sk *

152304 directoryOne

1856548 directoryTwo

Network Commands:-

Def: A network consists of several computers connected together. The network can

be as simple as a few computers connected in your home or office, or as complicated as a

large university network or even the entire Internet. The network commands also

include information on tools for network configuration, file transfer and working with remote

machines.

Networking Commands Example in Unix and Linux:-

• finding host/domain name and IP address - hostname

• test network connection – ping

• getting network configuration – ifconfig

• Network connections, routing tables, interface statistics – netstat

• query DNS lookup name – nslookup

• communicate with another hostname – telnet

• outing steps that packets take to get to network host – traceroute

• view user information – finger

• checking status of destination host - telnet

hostname

hostname with no options displays the machine's hostname.

hostname–d displays the domain name the machine belongs to.

hostname –f displays the fully qualified host and domain name.

hostname –i displays the IP address for the current machine.

ping

It sends packets of information to the user-defined source. If the packets are received, the

destination device sends packets back. Ping can be used for two purposes

1. To ensure that a network connection can be established

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 40 -

2. Timing information as to the speed of the connection.

If you do ping www.yahoo.com it will display its IP address. Use ctrl+C to stop the test.

ifconfig: View network configuration, it displays the current network adapter configuration. It is

handy to determine if you are getting transmit (TX) or receive (RX) errors.

Netstat:

Most useful and very versatile for finding a connection to and from the host

netstat -g can find out all the multicast groups (network) subscribed by this host by issuing.

netstat -nap | grep port will display process id of application which is using that port.

netstat -a or netstat –all will display all connections including TCP and UDP .

netstat --tcp or netstat –t will display only TCP connection.

netstat --udp or netstat –u will display only UDP connection.

netstat -g will display all multicast network subscribed by this host.

nslookup:

If you know the IP address it will display hostname. To find all the IP addresses for a

given domain name, the command nslookup is used. You must have a connection to the

internet for this utility to be useful, e.g.

$ nslookup blogger.com

You can also use the nslookup to convert hostname to IP Address and from IP Address

from the hostname.

traceroute:

A handy utility to view the number of hops and response time to get to a remote system

or website is traceroute. Again you need an internet connection to make use of this tool.

Finger:

View user information, displays a user’s login name, real name, terminal name and write

status. This is pretty old Unix command and rarely used nowadays.

telnet:

Connects destination host via the telnet protocol, if telnet connection establishes on any

port means connectivity between two hosts is working fine.

$ telnet hostname port

UNIT-I INTRODUCTION TO UNIX AND UTILITIES III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 41 -

…will telnet hostname with the port specified. Normally it is used to see whether the host is

alive and the network connection is fine or not.

