
UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 1 -

PROCESS:

When you execute a program on your UNIX system, the system creates a special

environment for that program. This environment contains everything needed for the system to

run the program as if no other program were running on the system.

Whenever you issue a command in UNIX, it creates, or starts, a new process. When you

tried out the ls command to list directory contents, you started a process. A process, in simple

terms, is an instance of a running program.

When you start a process (run a command), there are two ways you can run it −

 Foreground Processes

 Background Processes

FOREGROUND PROCESSES:

By default, every process that you start runs in the foreground. It gets its input from the

keyboard and sends its output to the screen.

Example: $ls ch*.doc

When a program is running in foreground and taking much time, we cannot run any

other commands (start any other processes) because prompt would not be available until

program finishes its processing and comes out.

BACKGROUND PROCESSES:

A background process runs without being connected to your keyboard. If the

background process requires any keyboard input, it waits.

The advantage of running a process in the background is that you can run other

commands; you do not have to wait until it completes to start another!

The simplest way to start a background process is to add an ampersand (&) at the end of

the command.

Example: $ls ch*.doc &

PROCESS IDENTIFIERS:

The process identifier – normally referred to as the process ID or just PID, is a number

used by most operating system kernels such as that of UNIX, Mac OS X or Microsoft Windows

— to uniquely identify an active process.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 2 -

This number may be used as a parameter in various function calls, allowing processes to

be manipulated, such as adjusting the process's priority or killing it altogether.

In Unix-like operating systems, new processes are created by the fork() system call. The

PID is returned to the parent enabling it to refer to the child in further function calls. The parent

may, for example, wait for the child to terminate with the waitpid() function, or terminate the

process with kill().

There are three IDs associated with every process, the ID of the process itself (the PID),

its parent process's ID (the PPID) and its process group ID (the PGID). Every UNIX process has a

unique PID in the range 0 to 30000.

There are two tasks with specially distinguished process IDs:

 swapper or sched has process ID 0 and is responsible for paging, and is actually part

of the kernel rather than a normal user-mode process.

 Process ID 1 is usually the init process primarily responsible for starting and shutting

down the system.

The operating system tracks processes through a five digit ID number known as the PID

or process ID. Each process in the system has a unique PID. PIDs eventually repeat because all

the possible numbers are used up and the next PID rolls or start over.

At any one time, no two processes with the same PID exist in the system because it is

the PID that UNIX uses to track each process. You can see this happen with the ls command.

Processes are created in UNIX in an especially simple manner. The fork system call

creates an exact copy of the original process. The forking process is called the parent process.

The new process is called the child process. The parent and child each have their own, private

memory images. If the parent subsequently changes any of its variables, the changes are not

visible to the child, and vice versa.

Open files are shared between parent and child. Example for creating a process:

pid = fork(); /* if the fork succeeds, pid > 0 in the parent */

if (pid < 0){

handle_error(); /* fork failed (e.g., memory or some table is full) */

} else if (pid > 0) {

/* parent code goes here. /*/

} else {

/* child code goes here. /*/

}

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 3 -

PROCESS STRUCTURE:

The kernel maintains a process structure for every running process. This structure

contains the information that the kernel needs to manage the process, such as various process

descriptors (process-id, process group-id, session-id, and so on), a list of open files, a memory

map and possibly other process attributes.

The exact information present in any process structure will vary from one

implementation to another, but all process structures include:

 Process id

 Parent Process id (pointer to parent’s process structure)

 Pointer to list of children of the process

 Process priority for scheduling, statistics about CPU usage and last priority

 Process State

 Signal information (Signals pending, signal mask etc…)

The process structure is located in kernel memory. Different versions of UNIX store it in

different ways. In BSD UNIX kernel maintains two lists of process structures called zombie list

and allproc list. Zombies are processes that have terminated but that cannot be destroyed.

Zombie processes have their structure on the zombie list. The allproc list contains those that

are not zombies.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 4 -

ZOMBIE PROCESS:

On UNIX and Unix-like computer operating systems, a zombie process or defunct

process is a process that has completed execution (via the exit system call) but still has an entry

in the process table: it is a process in the "Terminated state".

This occurs for child processes, where the entry is still needed to allow the parent

process to read its child's exit status: once the exit status is read via the wait system call, the

zombie's entry is removed from the process table and it is said to be acquired.

A child process always first becomes a zombie before being removed from the resource

table. In most cases, under normal system operation zombies are immediately waited on by

their parent and then acquired by the system – processes that stay zombies for a long time are

generally an error and cause a resource leak.

OVERVIEW OF ZOMBIE PROCESS:

When a process ends via exit, all of the memory and resources associated with it are

deallocated so they can be used by other processes. However, the process's entry in the

process table remains.

The parent can read the child's exit status by executing the wait system call, whereupon

the zombie is removed. The wait call may be executed in sequential code, but it is commonly

executed in a handler for the SIGCHLD signal, which the parent receives whenever a child has

died (terminated).

After the zombie is removed, its process identifier (PID) and entry in the process table

can then be reused. However, if a parent fails to call wait, the zombie will be left in the process

table, causing a resource leak.

Zombies can be identified in the output from the UNIX ps command by the presence of

a "Z" in the "STAT" column. Zombies that exist for more than a short period of time typically

indicates a bug in the parent program, or just an uncommon decision to not reap (acquire)

children.

If the parent program is no longer running, zombie processes typically indicate a bug in

the operating system.

To remove zombies from a system, the SIGCHLD signal can be sent to the parent

manually, using the kill command. If the parent process still refuses to reap the zombie, and if it

would be fine to terminate the parent process, the next step can be to remove the parent

process. When a process loses its parent, init becomes its new parent. “init” periodically

executes the wait system call to reap any zombies with init as parent.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 5 -

ORPHAN PROCESS:

An orphan process is a computer process whose parent process has finished or

terminated, though it remains running itself. In a Unix-like operating system any orphaned

process will be immediately adopted by the special init system process: the kernel sets the

parent to init. This operation is called re-parenting and occurs automatically.

Even though technically the process has the "init" process as its parent, it is still called

an orphan process since the process that originally created it no longer exists. In other systems

orphaned processes are immediately terminated by the kernel. A process can be orphaned

unintentionally, such as when the parent process terminates or crashes or a network

connection is disconnected.

The process group mechanism in most Unix-like operating systems can be used to help

protect against accidental orphaning, where in coordination with the user's shell will try to

terminate all the child processes with the "hangup" signal (SIGHUP), rather than letting them

continue to run as orphans. More precisely, as part of job control, when the shell exits, because

it is the "session leader" (its session id equals its process id), the corresponding login session

ends, and the shell sends SIGHUP to all its jobs (internal representation of process groups).

It is sometimes desirable to intentionally orphan a process, usually to allow a long-

running job to complete without further user attention, or to start an indefinitely running

service or agent; such processes (without an associated session) are known as daemons,

particularly if they are indefinitely running.

In multitasking computer operating systems, a daemon is a computer program that runs

as a background process, rather than being under the direct control of an interactive user.

Traditionally, the process names of a daemon end with the letter d, for clarification that the

process is, in fact, a daemon, and for differentiation between a daemon and a normal computer

program. For example, syslogd is the daemon that implements the system logging facility.

In a UNIX environment, the parent process of a daemon is often, but not always, the init

process. A daemon is usually either created by a process forking a child process and then

immediately exiting, thus causing init to adopt the child process, or by the init process directly

launching the daemon.

FORK:

In computing, particularly in the context of the UNIX operating system, fork is an

operation whereby a process creates a copy of itself. It is usually a system call, implemented in

the kernel. Fork is the primary (and historically, only) method of process creation on Unix-like

operating systems.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 6 -

An existing process can create a new one by calling the fork function.

#include <unistd.h>

pid_t fork(void);

Returns: 0 in child, process ID of child in parent, 1 on error

The new process created by fork is called the child process. This function is called once

but returns twice. The only difference in the returns is that the return value in the child is 0,

whereas the return value in the parent is the process ID of the new child.

The reason the child's process ID is returned to the parent is that a process can have

more than one child, and there is no function that allows a process to obtain the process IDs of

its children. The reason fork returns 0 to the child is that a process can have only a single

parent, and the child can always call getppid to obtain the process ID of its parent. (Process ID 0

is reserved for use by the kernel, so it's not possible for 0 to be the process ID of a child.)

Both the child and the parent continue executing with the instruction that follows the

call to fork. The child is a copy of the parent. For example, the child gets a copy of the parent's

data space, heap, and stack. Note that this is a copy for the child; the parent and the child do

not share these portions of memory. The parent and the child share the text segment.

Example of fork function:

#include <stdio.h>

#include <process.h>

int glob = 6; /* external variable in initialized data */

char buf[] = "a write to stdout\n";

int main(void)

{

int var; /* automatic variable on the stack */

pid_t pid;

var = 88;

if (write(STDOUT_FILENO, buf, sizeof(buf)-1) != sizeof(buf)-1)

err_sys("write error");

printf("before fork\n"); /* we don't flush stdout */

if ((pid = fork()) < 0) {

err_sys("fork error");

} else if (pid == 0) { /* child */

glob++; /* modify variables */

var++;

} else {

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 7 -

sleep(2); /* parent */

}

printf("pid = %d, glob = %d, var = %d\n", getpid(), glob, var);

exit(0);

}

Output:

$./a.out

a write to stdout

before fork

pid = 430, glob = 7, var = 89 child's variables were changed

pid = 429, glob = 6, var = 88 parent's copy was not changed

$./a.out > temp.out

$ cat temp.out

a write to stdout

before fork

pid = 432, glob = 7, var = 89

before fork

pid = 431, glob = 6, var = 88

VFORK:

The function vfork has the same calling sequence and same return values as fork. But

the semantics of the two functions differ.

However, since vfork() was introduced, the implementation of fork() has improved

drastically, most notably with the introduction of `copy-on-write', where the copying of the

process address space is transparently faked by allowing both processes to refer to the same

physical memory until either of them modify it.

The vfork function is intended to create a new process when the purpose of the new

process is to exec a new program. The vfork function creates the new process, just like fork,

without copying the address space of the parent into the child, as the child won't reference that

address space; the child simply calls exec (or exit) right after the vfork.

Instead, while the child is running and until it calls either exec or exit, the child runs in

the address space of the parent. This optimization provides an efficiency gain on some paged

virtual-memory implementations of the UNIX System.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 8 -

Another difference between the two functions is that vfork guarantees that the child

runs first, until the child calls exec or exit. When the child calls either of these functions, the

parent resumes. (This can lead to deadlock if the child depends on further actions of the

parent before calling either of these two functions.)

Example of vfork function:

int glob = 6; /* external variable in initialized data */

int main(void)

{

int var; /* automatic variable on the stack */

pid_t pid;

var = 88;

printf("before vfork\n"); /* we don't flush stdio */

if ((pid = vfork()) < 0) {

err_sys("vfork error");

} else if (pid == 0) { /* child */

glob++; /* modify parent's variables */

var++;

_exit(0); /* child terminates */

}

/* Parent continues here. */

printf("pid = %d, glob = %d, var = %d\n", getpid(), glob, var);

exit(0);

}

Output:

$./a.out

before vfork

pid = 29039, glob = 7, var = 89

EXIT:

There are eight ways for a process to terminate. Normal termination occurs in 5 ways:

1. Return from main

2. Calling exit

3. Calling _exit or _Exit

4. Return of the last thread from its start routine

5. Calling pthread_exit from the last thread

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 9 -

Abnormal termination occurs in 3 ways:

6. Calling abort

7. Receipt of a signal

8. Response of the last thread to a cancellation request

1. Executing a return from the main function. This is equivalent to calling exit.

2. Calling the exit function.

3. Calling the _exit or _Exit function. _Exit provides a way for a process to terminate

without running exit handlers or signal handlers. Whether or not standard I/O

streams are flushed depends on the implementation.

a. On UNIX systems, _Exit and _exit are synonymous and do not flush standard

I/O streams. The _exit function is called by exit and handles the UNIX system-

specific details.

4. Executing a return from the start routine of the last thread in the process. The return

value of the thread is not used as the return value of the process, however. When

the last thread returns from its start routine, the process exits with a termination

status of 0.

5. Calling the pthread_exit function from the last thread in the process. As with the

previous case, the exit status of the process in this situation is always 0, regardless of

the argument passed to pthread_exit.

The three forms of abnormal termination are as follows:

6. Calling abort. This is a special case of the next item, as it generates the SIGABRT

signal.

7. When the process receives certain signals. The signal can be generated by the

process itself for example, by calling the abort function by some other process, or by

the kernel. Examples of signals generated by the kernel include the process

referencing a memory location not within its address space or trying to divide by 0.

8. The last thread responds to a cancellation request. By default, cancellation occurs in

a deferred manner: one thread requests that another be canceled, and sometime

later, the target thread terminates.

Regardless of how a process terminates, the same code in the kernel is eventually

executed. This kernel code closes all the open descriptors for the process, releases the memory

that it was using, and the like.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 10 -

For any of the preceding cases, we want the terminating process to be able to notify its

parent how it terminated. For the three exit functions (exit, _exit, and _Exit), this is done by

passing an exit status as the argument to the function.

In the case of an abnormal termination, however, the kernel, not the process, generates

a termination status to indicate the reason for the abnormal termination. In any case, the

parent of the process can obtain the termination status from either the wait or the waitpid

function.

WAIT AND WAITPID:

When a process terminates, either normally or abnormally, the kernel notifies the

parent by sending the SIGCHLD signal to the parent. Because the termination of a child is an

asynchronous event it can happen at any time while the parent is running this signal is the

asynchronous notification from the kernel to the parent.

The parent can choose to ignore this signal, or it can provide a function that is called

when the signal occurs: a signal handler. The default action for this signal is to be ignored. For

now, we need to be aware that a process that calls wait or waitpid can

 Block, if all of its children are still running

 Return immediately with the termination status of a child, if a child has terminated

and is waiting for its termination status to be fetched

 Return immediately with an error, if it doesn't have any child processes

If the process is calling wait because it received the SIGCHLD signal, we expect wait to

return immediately. But if we call it at any random point in time, it can block.

Syntax:

#include <sys/wait.h>

pid_t wait(int *statloc);

pid_t waitpid(pid_t pid, int *statloc, int options);

Both return: process ID if OK, or 1 on error. The differences between these two

functions are as follows:

 The wait function can block the caller until a child process terminates, whereas

waitpid has an option that prevents it from blocking.

 The waitpid function doesn't wait for the child that terminates first; it has a number

of options that control which process it waits for.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 11 -

If a child has already terminated and is a zombie, wait returns immediately with that

child's status. Otherwise, it blocks the caller until a child terminates. If the caller blocks and has

multiple children, wait returns when one terminates. We can always tell which child

terminated, because the process ID is returned by the function.

For both functions, the argument statloc is a pointer to an integer. If this argument is

not a null pointer, the termination status of the terminated process is stored in the location

pointed to by the argument. If we don't care about the termination status, we simply pass a null

pointer as this argument.

EXEC:

When a process calls one of the exec functions, that process is completely replaced by

the new program, and the new program starts executing at its main function. The process ID

does not change across an exec, because a new process is not created; exec merely replaces the

current process its text, data, heap, and stack segments with a brand new program from disk.

There are six different exec functions, but we'll often simply refer to "the exec function,"

which means that we could use any of the six functions. These six functions round out the UNIX

System process control primitives. With fork, we can create new processes; and with the exec

functions, we can initiate new programs. The exit function and the wait functions handle

termination and waiting for termination. These are the only process control primitives we need.

#include <unistd.h>

int execl(const char *pathname, const char *arg0, ... /* (char *)0 */);

int execv(const char *pathname, char *const argv []);

int execle(const char *pathname, const char *arg0,... /*(char *)0, char *const envp[] */);

int execve(const char *pathname, char *const argv[], char *const envp []);

int execlp(const char *filename, const char *arg0, ... /* (char *)0 */);

int execvp(const char *filename, char *const argv []);

All six return: 1 on error, no return on success

The arguments for these six exec functions are difficult to remember. The letters in the

function names help somewhat. The letter p means that the function takes a filename

argument and uses the PATH environment variable to find the executable file. The letter l

means that the function takes a list of arguments and is mutually exclusive with the letter v,

which means that it takes an argv[] vector. Finally, the letter e means that the function takes an

envp[] array instead of using the current environment.

The first difference in these functions is that the first four take a pathname argument,

whereas the last two take a filename argument. When a filename argument is specified

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 12 -

 If filename contains a slash, it is taken as a pathname.

 Otherwise, the executable file is searched for in the directories specified by the

PATH environment variable.

The PATH variable contains a list of directories, called path prefixes that are separated

by colons. For example, the name=value environment string specifies four directories to search.

The last path prefix specifies the current directory. (A zero-length prefix also means the current

directory. It can be specified as a colon at the beginning of the value, two colons in a row, or a

colon at the end of the value.)

PATH=/bin:/usr/bin:/usr/local/bin/:.

If either execlp or execvp finds an executable file using one of the path prefixes, but the

file isn't a machine executable that was generated by the link editor, the function assumes that

the file is a shell script and tries to invoke /bin/sh with the filename as input to the shell.

The next difference concerns the passing of the argument list (l stands for list and v

stands for vector).

The functions execl, execlp, and execle require each of the command-line arguments to

the new program to be specified as separate arguments. We mark the end of the arguments

with a null pointer.

For the other three functions (execv, execvp, and execve), we have to build an array of

pointers to the arguments, and the address of this array is the argument to these three

functions.

The final difference is the passing of the environment list to the new program. The two

functions whose names end in an e (execle and execve) allow us to pass a pointer to an array of

pointers to the environment strings. The other four functions, however, use the environ

variable in the calling process to copy the existing environment for the new program.

We've mentioned that the process ID does not change after an exec, but the new

program inherits additional properties from the calling process:

 Process ID and parent process ID

 Real user ID and real group ID

 Supplementary group IDs

 Process group ID

 Session ID

 Controlling terminal

 Time left until alarm clock

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 13 -

 Current working directory

 Root directory

 File mode creation mask

 File locks

 Process signal mask

 Pending signals

 Resource limits

 Values for tms_utime, tms_stime, tms_cutime, and tms_cstime

SIGNALS:

Signals are a technique used to notify a process that some condition has occurred. For

example, if a process divides by zero, the signal whose name is SIGFPE (floating-point

exception) is sent to the process. The process has three choices for dealing with the signal.

1. Ignore the signal. This option isn't recommended for signals that denote a hardware

exception, such as dividing by zero or referencing memory outside the address space of the

process, as the results are undefined.

2. Let the default action occur. For a divide-by-zero condition, the default is to terminate

the process.

3. Provide a function that is called when the signal occurs (this is called "catching" the

signal). By providing a function of our own, we'll know when the signal occurs and we can

handle it as we wish.

Many conditions generate signals. Two terminal keys, called the interrupt key often the

DELETE key or Control-C and the quit key often Control-backslash are used to interrupt the

currently running process. Another way to generate a signal is by calling the kill function.

We can call this function from a process to send a signal to another process. Naturally,

there are limitations: we have to be the owner of the other process (or the superuser) to be

able to send it a signal.

SIGNAL FUNCTION:

The simplest interface to the signal features of the UNIX System is the signal function.

#include <signal.h>

void (*signal(int signo, void (*func)(int)))(int);

Returns: previous nature of signal if OK, SIG_ERR on error

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 14 -

The signo argument is just the name of the signal (like SIGPWR  power fail/restart,

SIGQUIT  terminal quit character, SIGSEGV  invalid memory reference, etc…). The value of

func is (a) the constant SIG_IGN (telling the system to ignore the signal), (b) the constant

SIG_DFL (Default value), or (c) the address of a function to be called when the signal occurs.

UNRELIABLE SIGNALS:

In earlier versions of the UNIX System, signals were unreliable. By this we mean that

signals could get lost: a signal could occur and the process would never know about it. Also, a

process had little control over a signal: a process could catch the signal or ignore it. Sometimes,

we would like to tell the kernel to block a signal: don't ignore it, just remember if it occurs, and

tell us later when we're ready.

One problem with these early versions is that the action for a signal was reset to its

default each time the signal occurred.

Another problem with these earlier systems is that the process was unable to turn a

signal off when it didn't want the signal to occur. All the process could do was ignore the signal.

There are times when we would like to tell the system "prevent the following signals from

occurring, but remember if they do occur."

INTERRUPTED SYSTEM CALLS

A characteristic of earlier UNIX systems is that if a process caught a signal while the

process was blocked in a "slow" system call, the system call was interrupted. The system call

returned an error and errno was set to EINTR. This was done under the assumption that since a

signal occurred and the process caught it, there is a good chance that something has happened

that should wake up the blocked system call.

Here, we have to differentiate between a system call and a function. It is a system call

within the kernel that is interrupted when a signal is caught.

To support this feature, the system calls are divided into two categories: the "slow"

system calls and all the others. The slow system calls are those that can block forever. Included

in this category are:

 Reads that can block the caller forever if data isn't present with certain file types

(pipes, terminal devices, and network devices)

 Writes that can block the caller forever if the data can't be accepted immediately by

these same file types

 Opens that block until some condition occurs on certain file types (such as an open

of a terminal device that waits until an attached modem answers the phone)

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 15 -

 The pause function (which by definition puts the calling process to sleep until a

signal is caught) and the wait function

 Certain ioctl operations

 Some of the interprocess communication functions

The notable exception to these slow system calls is anything related to disk I/O.

Although a read or a write of a disk file can block the caller temporarily (while the disk driver

queues the request and then the request is executed), unless a hardware error occurs, the I/O

operation always returns and unblocks the caller quickly.

One condition that is handled by interrupted system calls, for example, is when a

process initiates a read from a terminal device and the user at the terminal walks away from

the terminal for an extended period. In this example, the process could be blocked for hours or

days and would remain so unless the system was taken down.

KILL and RAISE:

The kill function sends a signal to a process or a group of processes. The raise function

allows a process to send a signal to itself.

#include <signal.h>

int kill(pid_t pid, int signo);

int raise(int signo);

Both return: 0 if OK, 1 on error

The call raise(signo); is equivalent to the call kill(getpid(), signo);

There are four different conditions for the pid argument to kill.

PID Value Description of Kill Based on PID Value

>0 The signal is sent to the process whose process ID is pid.

==0 The signal is sent to all processes whose process group
ID equals the process group ID of the sender and for
which the sender has permission to send the signal.

<0 The signal is sent to all processes whose process group
ID equals the absolute value of pid and for which the
sender has permission to send the signal.

==1 The signal is sent to all processes on the system for
which the sender has permission to send the signal.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 16 -

ALARM and PAUSE:

The alarm function allows us to set a timer that will expire at a specified time in the

future. When the timer expires, the SIGALRM signal is generated. If we ignore or don't catch

this signal, its default action is to terminate the process.

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

Returns: 0 or number of seconds until previously set alarm

The seconds value is the number of clock seconds in the future when the signal should

be generated. Be aware that when that time occurs, the signal is generated by the kernel, but

there could be additional time before the process gets control to handle the signal, because of

processor scheduling delays.

If, when we call alarm, a previously registered alarm clock for the process has not yet

expired, the number of seconds left for that alarm clock is returned as the value of this

function. That previously registered alarm clock is replaced by the new value.

If a previously registered alarm clock for the process has not yet expired and if the

seconds value is 0, the previous alarm clock is canceled. The number of seconds left for that

previous alarm clock is still returned as the value of the function.

Although the default action for SIGALRM is to terminate the process, most processes

that use an alarm clock catch this signal. If the process then wants to terminate, it can perform

whatever cleanup is required before terminating.

If we intend to catch SIGALRM, we need to be careful to install its signal handler before

calling alarm. If we call alarm first and are sent SIGALRM before we can install the signal

handler, our process will terminate.

The pause function suspends the calling process until a signal is caught.

#include <unistd.h>

int pause(void);

Returns: 1 with errno set to EINTR.

The only time pause returns is if a signal handler is executed and that handler returns. In

that case, pause returns 1 with errno set to EINTR.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 17 -

ABORT:

The abort function causes abnormal program termination. This function sends the

SIGABRT signal to the caller.

#include <stdlib.h>

void abort(void);

This function never returns.

This function sends the SIGABRT signal to the caller.

SYSTEM:

It is convenient to execute a command string from within a program. For example,

assume that we want to put a time-and-date stamp into a certain file.

#include <stdlib.h>

int system(const char *cmdstring);

If cmdstring is a null pointer, system returns nonzero only if a command processor is

available. This feature determines whether the system function is supported on a given

operating system. Under the UNIX System, system is always available.

Returns:

Because system is implemented by calling fork, exec, and waitpid, there are three types

of return values.

1. If either the fork fails or waitpid returns an error other than EINTR, system returns 1

with errno set to indicate the error.

2. If the exec fails, implying that the shell can't be executed, the return value is as if the

shell had executed exit(127).

3. Otherwise, all three functions fork, exec, and waitpid succeed, and the return value

from system is the termination status of the shell, in the format specified for

waitpid.

SLEEP:

This function causes the calling process to be suspended until either

1. The amount of wall clock time specified by seconds has elapsed.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 18 -

2. A signal is caught by the process and the signal handler returns.

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

Returns: 0 or number of unslept seconds

As with an alarm signal, the actual return may be at a time later than requested,

because of other system activity. In case 1, the return value is 0. When sleep returns early,

because of some signal being caught (case 2), the return value is the number of unslept seconds

(the requested time minus the actual time slept).

JOB CONTROL SIGNALS:

Job control is a feature added to BSD around 1980. This feature allows us to start

multiple jobs (groups of processes) from a single terminal and to control which jobs can access

the terminal and which jobs are to run in the background. Job control requires three forms of

support:

1. A shell that supports job control

2. The terminal driver in the kernel must support job control

3. The kernel must support certain job-control signals

A job is simply a collection of processes, often a pipeline of processes.

For example, vi main.c starts a job consisting of one process in the foreground.

The commands

pr *.c | lpr &

ls all &

start two jobs in the background. All the processes invoked by these background jobs

are in the background.

Some of the job control signals are:

 SIGCHLD Child process has stopped or terminated.

 SIGCONT Continue process, if stopped.

 SIGSTOP Stop signal (can't be caught or ignored).

 SIGTSTP Interactive stop signal.

 SIGTTIN Read from controlling terminal by member of a background process group.

 SIGTTOU Write to controlling terminal by member of a background process group.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 19 -

Except for SIGCHLD, most application programs don't handle these signals: interactive

shells usually do all the work required to handle these signals.

When we type the suspend character (usually Control-Z), SIGTSTP is sent to all processes

in the foreground process group. When we tell the shell to resume a job in the foreground or

background, the shell sends all the processes in the job the SIGCONT signal.

Similarly, if SIGTTIN or SIGTTOU is delivered to a process, the process is stopped by

default, and the job-control shell recognizes this and notifies us.

DATA MANAGEMENT:

Data management comprises all the disciplines related to managing data as a valuable

resource. Data management refers to several levels of managing data like managing your

resource allocation, then of dealing with files that are accessed by many users more or less

simultaneously and lastly at one tool provided in most UNIX systems for overcoming the

limitations of data files.

We can summarize these in three different ways for managing data:

 Dynamic memory management: what to do and what UNIX won't let you do.

 File locking: cooperative locking, locking regions of shared files and avoiding deadlocks.

 The dbm database: a database library featured in UNIX.

MANAGING MEMORY:

On all computer systems memory is a scarce resource. No matter how much memory is

available, it never seems to be enough. It wasn't so long ago that being able to address even a

single megabyte of memory was considered more than anyone would ever need, but now sixty

four times that is considered a bare minimum for a single−user personal computer, and many

systems have much more.

From the earliest versions of the operating system, UNIX has had a very clean approach

to managing memory. UNIX applications are never permitted to access physical memory

directly.

UNIX has always provided processes with its own memory area. Almost all versions of

UNIX also provide memory protection, which guarantees that incorrect (or malicious) programs

don't overwrite the memory of other processes or the operating system.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 20 -

In general, the memory allocated to one process can be neither read nor written to by

any other process. Almost all versions of UNIX use hardware facilities to enforce this private use

of memory.

SIMPLE MEMORY ALLOCATION:

MALLOC:

We allocate memory using the malloc call in the standard C library. It allocates a

specified number of bytes of memory. The initial value of the memory is undefined.

Syntax:

#include <stdlib.h>

void *malloc(size_t size);

Return: non-null pointer if OK, NULL on error

Example:

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#define A_MEGABYTE (1024 * 1024)

int main()

{

char *some_memory;

int megabyte = A_MEGABYTE;

int exit_code = EXIT_FAILURE;

some_memory = (char *)malloc(megabyte);

if (some_memory != NULL) {

sprintf(some_memory, "Hello World\n");

printf("%s", some_memory);

exit_code = EXIT_SUCCESS;

}

exit(exit_code);

}

When we run this program, it outputs:

$ memory1

Hello World

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 21 -

How It Works: This program asks the malloc library to give it a pointer to a megabyte of

memory. We check to ensure that malloc was successful and then use some of the memory to

show that it exists.

When you run the program, you should see Hello World printed out, showing that

malloc did indeed return the megabyte of usable memory. We don't check that all of the

megabyte is present; we have to put some trust in the malloc code!

CALLOC:

The calloc allocates space for a specified number of objects of a specified size. The space

is initialized to all 0 bits.

Syntax:

#include <stdlib.h>

void *calloc(size_t number_of_elements, size_t element_size);

Although calloc allocates memory that can be freed with free, it has rather different

parameters. It allocates memory for an array of structures and requires the number of

elements and the size of each element as its parameters. The allocated memory is filled with

zeros and if calloc is successful, a pointer to the first element is returned.

Like malloc, subsequent calls are not guaranteed to return contiguous space, so you

can't enlarge an array created by calloc by simply calling calloc again and expecting the second

call to return memory appended to that returned by the first call.

REALLOC:

The realloc increases or decreases the size of a previously allocated area. When the size

increases, it may involve moving the previously allocated area somewhere else, to provide the

additional room at the end. Also, when the size increases, the initial value of the space between

the old contents and the end of the new area is indeterminate.

Syntax:

#include <stdlib.h>

void *realloc(void *existing_memory, size_t new_size);

The realloc function changes the size of a block of memory that has been previously

allocated. It's passed a pointer to some memory previously allocated by malloc, calloc or realloc

and resizes it up or down as requested.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 22 -

The realloc function may have to move data about to achieve this, so it's important to

ensure that once memory has been realloced, you always use the new pointer and never try to

access the memory using pointers set up before realloc was called.

Another problem to watch out for is that realloc returns a null pointer if it was unable to

resize the memory. This means that, in some applications, you should avoid writing code like

this:

my_ptr = malloc(BLOCK_SIZE);

....

my_ptr = realloc(my_ptr, BLOCK_SIZE * 10);

If realloc fails, it will return a null pointer, my_ptr will point to null and the original

memory allocated with malloc can no longer be accessed via my_ptr.

It may, therefore, be to your advantage to request the new memory first with malloc

and then copy data from the old block to the new block using memcpy before freeing the old

block. On error, this would allow the application to retain access to the data stored in the

original block of memory, perhaps while arranging a clean termination of the program.

FREE:

Up to now, we've been simply allocating memory and then hoping that when the

program ends, the memory we've used hasn't been lost. Fortunately, the UNIX memory

management system is quite capable of ensuring that memory is returned to the system when

a program ends. However, most programs don't simply want to allocate some memory, use it

for a short period, then exit. A much more common use is dynamically using memory as

required.

Programs that use memory on a dynamic basis should always release unused memory

back to the malloc memory manager using the free call. This allows separate blocks to be

remerged and allows the malloc library to look after memory, rather than the application

managing it.

If a running program (process) uses and then frees memory, that free memory remains

allocated to the process. However, if it's not being used, the UNIX memory manager will be able

to page it out from physical memory to swap space, where it has little impact on the use of

resources.

Syntax:

#include <stdlib.h>

void free(void *ptr_to memory);

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 23 -

A call to free should only be made with a pointer to memory allocated by a call to

malloc, calloc or realloc.

Example:

#include <stdlib.h>

#define ONE_K (1024)

int main()

{

char *some_memory;

int exit_code = EXIT_FAILURE;

some_memory = (char *)malloc(ONE_K);

if (some_memory != NULL) {

free(some_memory);

exit_code = EXIT_SUCCESS;

}

exit(exit_code);

}

How It Works:

This program simply shows how to call free with a pointer to some previously allocated

memory. Important to remember that once you've called free on a block of memory, it no

longer belongs to the process. It's not being managed by the malloc library. Never try to read or

write memory after calling free on it.

FILE LOCKING:

File locking is a very important part of multiuser, multitasking operating systems.

Programs frequently need to share data, usually through files, and it's very important that

those programs have some way of establishing control of a file. The file can then be updated in

a safe fashion, or a second program can stop itself from trying to read a file that is in a transient

state whilst another program is writing to it.

UNIX has several features that we can use for file locking. The simplest method is a

technique to create lock files in an atomic way, so that nothing else can happen while the lock is

being created. This gives a program a method of creating files that are guaranteed to be unique

and could not have been simultaneously created by a different program.

The second method is more advanced and allows programs to lock parts of a file for

exclusive access.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 24 -

CREATING LOCK FILES:

Many applications just need to be able to create a lock file for a resource. Other

programs can then check the file to see whether they are permitted to access the resource.

Usually, these lock files are in a special place with a name that relates to the resource being

controlled.

For example, when a modem is in use, Linux creates a lock file in the /usr/spool/uucp

directory. On many UNIX systems, this directory is used to indicate the availability of serial

ports:

$ ls /usr/spool/uucp

LCK..ttyS1

Remember that lock files act only as indicators; programs need to cooperate to use

them. They are termed advisory, as opposed to mandatory, locks. To create a file to use as a

lock indicator, we use the open system call defined in fcntl.h with the O_CREAT and O_EXCL

flags set. This allows us to both checks that the file doesn't already exist and then create it in a

single, atomic, operation.

Example:

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <fcntl.h>

#include <errno.h>

int main()

{

int file_desc;

int save_errno;

file_desc = open("/tmp/LCK.test", O_RDWR | O_CREAT | O_EXCL, 0444);

if (file_desc == −1) {

save_errno = errno;

printf("Open failed with error %d\n", save_errno);

}

else {

printf("Open succeeded\n");

}

exit(EXIT_SUCCESS);

}

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 25 -

The first time we run the program, the output is,

$ lock1

Open succeeded

But the next time we try, we get:

$ lock1

Open failed with error 17

How it works:

The program calls open to create a file called /tmp/LCK.test, using the O_CREAT and

O_EXCL flags. The first time we run the program, the file didn't exist, so the open call was

successful. Subsequent invocations of the program fail, because the file already exists. To get

the program to succeed again we'll have to remove the lock file.

On Linux systems at least, error 17 refers to EEXIST, an error that is used to indicate that

a file already exists. Error numbers are defined in the header file errno.h or files included by it.

In this case, the definition reads:

#define EEXIST 17 /* File exists */

This is an appropriate error for an open(O_CREAT | O_EXCL) failure.

If a program simply needs a resource exclusively for a short period of its execution,

often termed a critical section, it should create the lock file before entering the critical section

and use unlink to delete it afterwards, when it exits the critical section.

LOCKING REGIONS:

Creating lock files is fine for controlling exclusive access to resources such as serial ports,

but isn't so good for access to large shared files. Suppose there exists a large file which is

written by one program, but updated by many different programs simultaneously.

This might occur if a program is logging some data that is obtained continuously over a

long period and is being processed by several other programs. The processing programs can't

wait for the logging program to finish−it runs continuously−so they need some way of

cooperating to provide simultaneous access to the same file.

We can do this by locking regions of the file, so that a particular section of the file is

locked, but other programs may access other parts of the file. UNIX has (at least) two ways to

do this (locking region): using the fcntl system call or the lockf call.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 26 -

#include<fcntl.h>

int fcntl(int fildes, int command, ...);

fcntl operates on open file descriptors and, depending on the command parameter, can

perform different tasks. The three that we're interested in for file locking are:

 F_GETLK

 F_SETLK

 F_SETLKW  if a conflicting lock is held on the file, then wait for that lock to be

released.

When we use these, the third argument must be a pointer to a struct flock, so the

prototype is effectively:

int fcntl(int fildes, int command, struct flock *flock_structure);

The flock (file lock) structure is implementation−dependent, but will contain at least the

following members:

 short l_type;

 short l_whence;

 off_t l_start;

 off_t l_len;

 pid_t l_pid;

The l_type member takes one of several values, also defined in fcntl.h these are:

Value Description

F_RDLCK A shared (or 'read') lock. Many different processes can have a shared lock on the
same (or overlapping) regions of the file. If any process has a shared lock then, no
process will be able to get an exclusive lock on that region. In order to obtain a
shared lock, the file must have been opened with read or read/write access

F_UNLCK Unlock. Used for clearing locks

F_WRLCK An exclusive (or 'write') lock. Only a single process may have an exclusive lock on
any particular region of a file. Once a process has such a lock, no other process
will be able to get any sort of lock on the region. To obtain an exclusive lock, the
file must have been opened with write or read/write access

The l_whence, l_start and l_len members define a region, a contiguous set of bytes, in a

file. The l_whence must be one of SEEK_SET, SEEK_CUR, SEEK_END (from unistd.h), which

correspond to the start, current position and end of a file, respectively. It defines the offset to

which l_start, the first byte in the region, is relative.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 27 -

Normally, this would be SEEK_SET, so l_start is counted from the beginning of the file.

The l_len parameter defines the number of bytes in the region. The l_pid parameter is used for

reporting the process holding a lock.

Each byte in a file can have only a single type of lock on it at any one time and may be

locked for shared access, locked for exclusive access or unlocked.

The F_GETLK Command:

The first command is F_GETLK. This gets locking information about the file that fildes

(the first parameter) has open. It doesn't attempt to lock the file. The calling process passes

information about the type of lock it might wish to create and fcntl used with the F_GETLK

command returns any information that would prevent the lock occurring.

The values used in the flock structure are:

VALUE DESCRIPTION
l_type Either F_RDLCK for a shared (read−only) lock or F_WRLCK for an exclusive

(write) lock

l_whence One of SEEK_SET, SEEK_CUR, SEEK_END LCK

l_len The number of bytes in the file region of interest

l_start The start byte of the file region of interest

l_pid The identifier of the process with the lock

A process may use the F_GETLK call to determine the current state of locks on a region

of a file. It should set up the flock structure to indicate the type of lock it may require and

define the region it's interested in.

The fcntl call returns a value other than −1 if it's successful. If the file already has locks

that would prevent a lock request succeeding, it overwrites the flock structure with the relevant

information. If the lock would succeed, the flock structure is unchanged. If the F_GETLK call is

unable to obtain the information it returns −1 to indicate failure.

If the F_GETLK call is successful (i.e. it returns a value other than −1), the calling

application must check the contents of the flock structure to determine whether it was

modified. Since the l_pid value is set to the locking process (if one was found), this is a

convenient field to check to determine if the flock structure has been changed.

The F_SETLK Command:

This command attempts to lock or unlock part of the file referenced by fildes. The values

used in the flock structure (and different from those used by F_GETLK) are:

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 28 -

VALUE DESCRIPTION

l_type Either F_RDLCK for a read−only or shared lock; F_WRLCK for an l_type. Either
F_RDLCK for a read only, or shared, lock; F_WRLCK for an exclusive, or write,
exclusive or write lock; and F_UNLCK to unlock a region

l_pid Unused

If the lock is successful, fcntl returns a value other than −1; on failure −1 is returned. The

function will always return immediately.

The F_SETLKW Command:

This is the same as the F_SETLK command above, except that if it can't obtain the lock,

the call will wait until it can. Once this call has started waiting, it will only return when the lock

can be obtained or a signal occurs.

USE OF READ AND WRITE WITH LOCKING

When you're using locking on regions of a file, it's very important to use the lower level

read and write calls to access the data in the file, rather than the higher level fread and fwrite.

This is because fread and fwrite perform buffering of data read or written inside the library, so

executing an fread call to read the first 100 bytes of a file may (in fact, almost certainly will)

read more than 100 bytes and buffer the additional data inside the library.

If the program then uses fread to read the next 100 bytes, it will actually read data

already buffered inside the library and not cause a low level read to pull more data from the

file.

To see why this is a problem, consider two programs that wish to update the same file.

Let's suppose the file consists of 200 bytes of data, all zeros. The first program starts first and

obtains a write lock on the first 100 bytes of the file.

It then uses fread to read in those 100 bytes. However fread will read ahead by up to

BUFSIZ bytes at a time, so it actually reads the entire file into memory, but only passes the first

100 bytes back to the program.

The second program then starts. It obtains a write lock on the second 100 bytes of the

program. This is successful, since the first program only locked the first 100 bytes. The second

program writes twos to bytes 100 to 199, closes the file, and unlocks it and exits.

The first program then locks the second 100 bytes of the file and calls fread to read

them in. Because that data was buffered, what the program actually sees is 100 bytes of zeros,

not the 100 twos that actually exist in the file. This problem doesn't occur when we're using

read and write.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 29 -

To try out locking, we need two programs, one to do the locking and one to test. The

first program does the locking.

Try It Out − Locking a File with fcntl:

1. Start with the includes and variable declarations: (lock3.c)

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <fcntl.h>

const char *test_file = "/tmp/test_lock";

int main()

{

int file_desc;

int byte_count;

char *byte_to_write = "A";

struct flock region_1;

struct flock region_2;

int res;

2. Open a file descriptor:

file_desc = open(test_file, O_RDWR | O_CREAT, 0666);

if (!file_desc) {

fprintf(stderr, "Unable to open %s for read/write\n", test_file);

exit(EXIT_FAILURE);

}

3. Put some data in the file:

for(byte_count = 0; byte_count < 100; byte_count++) {

(void)write(file_desc, byte_to_write, 1); }

4. Set up region 1 with a shared lock, from bytes 10 to 30:

region_1.l_type = F_RDLCK;

region_1.l_whence = SEEK_SET;

region_1.l_start = 10;

region_1.l_len = 20;

5. Set up region 2 with an exclusive lock, from bytes 40 to 50:

region_2.l_type = F_WRLCK;

region_2.l_whence = SEEK_SET;

region_2.l_start = 40;

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 30 -

region_2.l_len = 10;

6. Now lock the file...

printf("Process %d locking file\n", getpid());

res = fcntl(file_desc, F_SETLK, ®ion_1);

if (res == −1) fprintf(stderr, "Failed to lock region 1\n");

res = fcntl(file_desc, F_SETLK, ®ion_2);

if (res == −1) fprintf(stderr, "Failed to lock region 2\n");

7. ...and wait for a while.

sleep(60);

printf("Process %d closing file\n", getpid());

close(file_desc);

exit(EXIT_SUCCESS);

}

Try It Out − Testing Locks on a File: (lock4.c)

Let's write a program that tests the different sorts of lock that we could need on

different regions of a file.

1. As usual, begin with the includes and declarations:

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <fcntl.h>

const char *test_file = "/tmp/test_lock";

#define SIZE_TO_TRY 5

void show_lock_info(struct flock *to_show);

int main()

{

int file_desc;

int res;

struct flock region_to_test;

int start_byte;

2. Open a file descriptor:

file_desc = open(test_file, O_RDWR | O_CREAT, 0666);

if (!file_desc) {

fprintf(stderr, "Unable to open %s for read/write", test_file);

exit(EXIT_FAILURE);

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 31 -

}

for (start_byte = 0; start_byte < 99; start_byte += SIZE_TO_TRY) {

3. Set up the region we wish to test:

region_to_test.l_type = F_WRLCK;

region_to_test.l_whence = SEEK_SET;

region_to_test.l_start = start_byte;

region_to_test.l_len = SIZE_TO_TRY;

region_to_test.l_pid = −1;

printf("Testing F_WRLCK on region from %d to %d\n", start_byte, start_byte +

SIZE_TO_TRY);

4. Now test the lock on the file:

res = fcntl(file_desc, F_GETLK, ®ion_to_test);

if (res == −1) {

fprintf(stderr, "F_GETLK failed\n");

exit(EXIT_FAILURE);

}

if (region_to_test.l_pid != −1) {

printf("Lock would fail. F_GETLK returned:\n");

show_lock_info(®ion_to_test);

}

else {

printf("F_WRLCK − Lock would succeed\n");

}

5. Now repeat the test with a shared (read) lock. Set up the region we wish to test

again:

region_to_test.l_type = F_RDLCK;

region_to_test.l_whence = SEEK_SET;

region_to_test.l_start = start_byte;

region_to_test.l_len = SIZE_TO_TRY;

region_to_test.l_pid = −1;

printf("Testing F_RDLCK on region from %d to %d\n",

start_byte, start_byte + SIZE_TO_TRY);

6. Test the lock on the file again:

res = fcntl(file_desc, F_GETLK, ®ion_to_test);

if (res == −1) {

fprintf(stderr, "F_GETLK failed\n");

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 32 -

exit(EXIT_FAILURE);

}

if (region_to_test.l_pid != −1) {

printf("Lock would fail. F_GETLK returned:\n");

show_lock_info(®ion_to_test);

}

else {

printf("F_RDLCK − Lock would succeed\n");

}

}

close(file_desc);

exit(EXIT_SUCCESS);

}

void show_lock_info(struct flock *to_show) {

printf("\tl_type %d, ", to_show−>l_type);

printf("l_whence %d, ", to_show−>l_whence);

printf("l_start %d, ", (int)to_show−>l_start);

printf("l_len %d, ", (int)to_show−>l_len);

printf("l_pid %d\n", to_show−>l_pid);

}

To test out locking, we first need to run the lock3 program, then run the lock4 program

to test the locked file. We do this by executing the lock3 program in the background, with the

command:

$ lock3 &

$ process 1534 locking file

The command prompt returns, since lock3 is running in the background and we then

immediately run the lock4 program with the command:

$ lock4

The output we get, with some omissions for shortness, is:

Testing F_WRLOCK on region from 0 to 5

F_WRLCK − Lock would succeed

Testing F_RDLOCK on region from 0 to 5

F_RDLCK − Lock would succeed

...

Testing F_WRLOCK on region from 10 to 15

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 33 -

Lock would fail. F_GETLK returned:

l_type 0, l_whence 0, l_start 10, l_len 20, l_pid 1534

Testing F_RDLOCK on region from 10 to 15

F_RDLCK − Lock would succeed

Testing F_WRLOCK on region from 15 to 20

Lock would fail. F_GETLK returned:

l_type 0, l_whence 0, l_start 10, l_len 20, l_pid 1534

Testing F_RDLOCK on region from 15 to 20

F_RDLCK − Lock would succeed

...

Testing F_WRLOCK on region from 25 to 30

Lock would fail. F_GETLK returned:

l_type 0, l_whence 0, l_start 10, l_len 20, l_pid 1534

Testing F_RDLOCK on region from 25 to 30

F_RDLCK − Lock would succeed

...

Testing F_WRLOCK on region from 40 to 45

Lock would fail. F_GETLK returned:

l_type 1, l_whence 0, l_start 40, l_len 10, l_pid 1534

Testing F_RDLOCK on region from 40 to 45

Lock would fail. F_GETLK returned:

l_type 1, l_whence 0, l_start 40, l_len 10, l_pid 1534

...

Testing F_RDLOCK on region from 95 to 100

F_RDLCK − Lock would succeed

COMPETING LOCKS:

Now that we've seen how to test for existing locks on a file, let's see what happens

when two programs compete for locks on the same section of the file. We'll use our lock3

program for locking the file in the first place and a new program to try to lock it again. To

complete the example, we'll also add some calls for unlocking.

Here's a program, lock5.c, that tries to lock regions of a file that are already locked,

rather than testing the lock status of different parts of the file.

Try It Out − Competing Locks

1. After the #includes and declarations, open a file descriptor:

#include <unistd.h>

#include <stdlib.h>

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 34 -

#include <stdio.h>

#include <fcntl.h>

const char *test_file = "/tmp/test_lock";

int main()

{

int file_desc;

struct flock region_to_lock;

int res;

file_desc = open(test_file, O_RDWR | O_CREAT, 0666);

if (!file_desc) {

fprintf(stderr, "Unable to open %s for read/write\n", test_file);

exit(EXIT_FAILURE);

}

2. The remainder of the program is spent specifying different regions of the file and

trying different locking operations on them:

region_to_lock.l_type = F_RDLCK;

region_to_lock.l_whence = SEEK_SET;

region_to_lock.l_start = 10;

region_to_lock.l_len = 5;

printf("Process %d, trying F_RDLCK, region %d to %d\n", getpid(),

(int)region_to_lock.l_start, (int)(region_to_lock.l_start + region_to_lock.l_len));

res = fcntl(file_desc, F_SETLK, ®ion_to_lock);

if (res == −1) {

printf("Process %d − failed to lock region\n", getpid());

} else {

printf("Process %d − obtained lock region\n", getpid());

}

region_to_lock.l_type = F_UNLCK;

region_to_lock.l_whence = SEEK_SET;

region_to_lock.l_start = 10;

region_to_lock.l_len = 5;

printf("Process %d, trying F_UNLCK, region %d to %d\n", getpid(),

(int)region_to_lock.l_start, (int)(region_to_lock.l_start + res = fcntl(file_desc, F_SETLK,

®ion_to_lock);

if (res == −1) {

printf("Process %d − failed to unlock region\n", getpid());

} else {

printf("Process %d − unlocked region\n", getpid());

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 35 -

}

region_to_lock.l_type = F_UNLCK;

region_to_lock.l_whence = SEEK_SET;

region_to_lock.l_start = 0;

region_to_lock.l_len = 50;

printf("Process %d, trying F_UNLCK, region %d to %d\n", getpid(),

(int)region_to_lock.l_start, (int)(region_to_lock.l_start + res = fcntl(file_desc, F_SETLK,

®ion_to_lock);

if (res == −1) {

printf("Process %d − failed to unlock region\n", getpid());

} else {

printf("Process %d − unlocked region\n", getpid());

}

region_to_lock.l_type = F_WRLCK;

region_to_lock.l_whence = SEEK_SET;

region_to_lock.l_start = 16;

region_to_lock.l_len = 5;

printf("Process %d, trying F_WRLCK, region %d to %d\n", getpid(),

(int)region_to_lock.l_start, (int)(region_to_lock.l_start + res = fcntl(file_desc, F_SETLK,

®ion_to_lock);

if (res == −1) {

printf("Process %d − failed to lock region\n", getpid());

} else {

printf("Process %d − obtained lock on region\n", getpid());

}

region_to_lock.l_type = F_RDLCK;

region_to_lock.l_whence = SEEK_SET;

region_to_lock.l_start = 40;

region_to_lock.l_len = 10;

printf("Process %d, trying F_RDLCK, region %d to %d\n", getpid(),

(int)region_to_lock.l_start, (int)(region_to_lock.l_start + res = fcntl(file_desc, F_SETLK,

®ion_to_lock);

if (res == −1) {

printf("Process %d − failed to lock region\n", getpid());

} else {

printf("Process %d − obtained lock on region\n", getpid());

}

region_to_lock.l_type = F_WRLCK;

region_to_lock.l_whence = SEEK_SET;

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 36 -

region_to_lock.l_start = 16;

region_to_lock.l_len = 5;

printf("Process %d, trying F_WRLCK with wait, region %d to %d\n", getpid(),

(int)region_to_lock.l_start, (int)(region_to_lock.l_start + res = fcntl(file_desc, F_SETLKW,

®ion_to_lock);

if (res == −1) {

printf("Process %d − failed to lock region\n", getpid());

} else {

printf("Process %d − obtained lock on region\n", getpid());

}

printf("Process %d ending\n", getpid());

close(file_desc);

exit(EXIT_SUCCESS);

}

If we first run our lock3 program in the background, then immediately run this new

program, the output we get is:

Process 227 locking file

Process 228, trying F_RDLCK, region 10 to 15

Process 228 − obtained lock on region

Process 228, trying F_UNLCK, region 10 to 15

Process 228 − unlocked region

Process 228, trying F_UNLCK, region 0 to 50

Process 228 − unlocked region

Process 228, trying F_WRLCK, region 16 to 21

Process 228 − failed to lock on region

Process 228, trying F_RDLCK, region 40 to 50

Process 228 − failed to lock on region

Process 228, trying F_WRLCK with wait, region 16 to 21

Process 227 closing file

Process 228 − obtained lock on region

Process 228 ending

How It Works:

Firstly, the program attempts to lock a region from bytes 10 to 15 with a shared lock.

This region is already locked with a shared lock, but simultaneous shared locks are allowed and

the lock is successful.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 37 -

It then unlocks (its own) shared lock on the region, which is also successful. The program

then attempts to unlock the first 50 bytes of the file, even though it doesn't have any locks set.

This is also successful because, even though this program had no locks in the first place, the

final result of the unlock request is that there are no locks held by this program in the first 50

bytes.

Next, the program attempts to lock the region from bytes 16 to 21, with an exclusive

lock. This region is also already locked with a shared lock so, this time, the new lock fails,

because an exclusive lock could not be created.

After that, the program attempts a shared lock on the region from bytes 40 to 50. This

region is already locked with an exclusive lock, so, again, the lock fails.

Finally, the program again attempts to obtain an exclusive lock on the region from bytes

16 to 21, but, this time, it uses the F_SETLCKW command to wait until it can obtain a lock.

There is then a long pause in the output, until the lock3 program, which had already locked the

region, closes the file, thus releasing all the locks it had acquired. The lock5 program resumes

execution, successfully locking the region, before it also exits.

OTHER LOCK COMMANDS:

There is a second method of locking files: the lockf function. This also operates using file

descriptors. It has the prototype:

#include <unistd.h>

int lockf(int fildes, int function, off_t size_to_lock);

It can take the following function values:

 F_ULOCK  Unlock

 F_LOCK  Lock exclusively

 F_TLOCK  Test and lock exclusively

 F_TEST  Test for locks by other processes

The size_to_lock parameter is the number of bytes to operate on, from the current

offset in the file. lockf has a simpler interface than the fcntl interface, principally because it has

rather less functionality and flexibility. To use the function, you must seek to the start of the

region you wish to lock, and then call it with the number of bytes to lock.

Like the fcntl method of file locking, all locks are only advisory; they won't actually

prevent reading from or writing to the file. It's the responsibility of programs to check for locks.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 38 -

The effect of mixing fcntl locks and lockf locks is undefined, so you must decide which

type of locking you wish to use and stick to it.

ADVISORY VERSUS MANDATORY LOCKING:

Advisory locking requires cooperation from the participating processes. Suppose process

“A” acquires a WRITE lock, and it started writing into the file, and process “B”, without trying to

acquire a lock, it can open the file and write into it. Here process “B” is the non-cooperating

process.

If process “B”, tries to acquire a lock, then it means this process is co-operating to

ensure the “serialization”. Advisory locking will work, only if the participating process is

cooperative. Advisory locking sometimes also called as “unenforced” locking. With an advisory

lock system, processes can still read and write from a file while it's locked.

Advisory locking returns a result indicating whether the lock was obtained or not:

processes can ignore the result and do the I/O anyway. You cannot use both mandatory and

advisory file locking on the same file at the same time. The mode of a file at the time it is

opened determines whether locks on a file are treated as mandatory or advisory.

Mandatory locking doesn’t require cooperation from the participating processes.

Mandatory locking causes the kernel to check every open, read, and write to verify that the

calling process isn’t violating a lock on the given file.

Mandatory locking causes the kernel to check every open, read, and write to verify that

the calling process isn't violating a lock on the file being accessed. Mandatory locking is

sometimes called enforcement-mode locking.

Cautions about Mandatory Locking:

1. Mandatory locking works only for local files. It is not supported when accessing files

through NFS.

2. Mandatory locking protects only the segments of a file that are locked. The

remainder of the file can be accessed according to normal file permissions.

Advisory locking is more efficient because a record lock check does not have to be

performed for every I/O request.

Selecting Advisory or Mandatory Locking:

For mandatory locks, the file must be a regular file with the set-group-ID bit on and the

group execute permission off. If either condition fails, all record locks are advisory.

UNIT-IV PROCESS, SIGNALS AND FILE LOCKING III-I R14 - 14BT50502

Department of CSE UNIX INTERNALS - 39 -

DEADLOCKS:

No discussion of locking would be complete without a mention of the dangers of

deadlocks. Suppose two programs wish to update the same file. They both need to update byte

one and byte two at the same time.

Program A chooses to update byte two, then byte one. Program B tries to update byte

one first, then byte two. Both programs start at the same time. Program A locks byte two and

program B locks byte one.

Program A tries for a lock on byte one; since this is already locked by program B,

program A waits. Program B tries for a lock on byte two. Since this is locked by program A, it too

waits.

This situation, when neither program is able to proceed, is called a deadlock or deadly

embrace. Most commercial databases detect deadlocks and break them; the UNIX kernel

doesn't.

Some external intervention, perhaps forcibly terminating one of the programs, is

required to sort out the resulting mess.

Programmers must be cautious of this situation. When you have multiple programs

waiting for locks, you need to be very careful to consider if a deadlock could occur. In this

example it's quite easy to avoid: both programs should simply lock the bytes they require in the

same order, or use a larger region to lock.

DEADLOCK HANDLING:

The UNIX locking facilities provide deadlock detection/avoidance. Deadlocks can happen

only when the system is about to put a record locking function to sleep. A search is made to

determine whether process A will wait for a lock that B holds while B is waiting for a lock that A

holds. If a potential deadlock is detected, the locking function fails and sets errno to indicate

deadlock. Processes setting locks using F_SETLK do not cause a deadlock because they do not

wait when the lock cannot be granted immediately.

