
UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 1

SYSTEM CALLS FOR THE FILE SYSTEM:

It starts with system calls for accessing existing files, such as open, read, write, /seek,

and close, then presents system calls to create new files, namely, creat and mknod. It then

examines the system calls that manipulate the inode or that maneuver through the file system:

chdir, chroot, chown, chmod, stat, and fstat.

It investigates more advanced system calls: pipe and dup are important for the

implementation of pipes in the shell; mount and unmount extend the file system tree visible to

users; link and unlink change the structure of the file system hierarchy.

Then, it presents the notion of file system abstractions, allowing the support of various

file systems as long as they conform to standard interfaces. Figure 4.1 shows the relationship

between the system calls and the algorithms.

Figure 4.1: File System Calls and Relation to Other Algorithms

It classifies the system calls into several categories, although some system calls appear

in more than one category:

 System calls that return file descriptors for use in other system calls

 System calls that use the namei algorithm to parse a path name

 System calls that assign and free inodes, using algorithms ialloc and ifree

 System calls that set or change the attributes of a file

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 2

 System calls that do I/O to and from a process, using algorithms alloc, free, and

the buffer allocation algorithms

 System calls that change the structure of the file system

 System calls that allow a process to change its view of the file system tree

OPEN:

The open system call is the first step a process must take to access the data in a file. The

syntax for the open system call is

fd = open(pathname, flags, modes);

Where pathname is a file name, flags indicate the type of open (such as for reading or

writing), and modes give the file permissions if the file is being created.

The open system call returns an integer called the user file descriptor. Other file

operations, such as reading, writing, seeking, duplicating the file descriptor, setting file I/O

parameters, determining file status, and closing the file, use the file descriptor that the open

system call returns.

The kernel searches the file system for the file name parameter using algorithm namei

(Figure 4.2).

Figure 4.2: Algorithm for Opening a File

Suppose a process executes the following code, opening the file "/etc/passwd" twice,

once read-only and once write-only, and the file "local" once, for reading and writing.

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 3

fd1 = open("/etc/passwd", O_RDONLY);

fd2 = open("local", O_RDWR);

fd3 = open("/etc/passwd", O_WRONLY);

Figure 4.3 shows the relationship between the inode table, file table, and user file

descriptor data structures.

Figure 4.3: Data Structures after Open

READ:

The syntax of the read system call is:

number = read(fd, buffer, count);

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 4

Where fd is the file descriptor returned by open, buffer is the address of a data

structure in the user process that will contain the read data on successful completion of the

call, count is the number of bytes the user wants to read, and number is the number of bytes

actually read. Figure 4.4 depicts the algorithm read for reading a regular file.

Figure 4.4: Algorithm for Reading a File

WRITE:

The syntax for the write system call is:

number = write(fd, buffer, count);

Where the meaning of the variables fd, buffer, count, and number are the same as they

are for the read system call. The algorithm for writing a regular file is similar to that for reading

a regular file.

However, if the file does not contain a block that corresponds to the byte offset to be

written, the kernel allocates a new block using algorithm alloc and assigns the block number to

the correct position in the inode's table of contents.

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 5

If the byte offset is that of an indirect block, the kernel may have to allocate several

blocks for use as indirect blocks and data blocks.

FILE AND RECORD LOCKING:

The original UNIX system developed by Thompson and Ritchie did not have an internal

mechanism by which a process could insure exclusive access to a file. A locking mechanism was

considered unnecessary because, as Ritchie notes, "we are not faced with large, single-file

databases maintained by independent processes".

To make the UNIX system more attractive to commercial users with database

applications, System V now contains file and record locking mechanisms. File locking is the

capability to prevent other processes from reading or writing any part of an entire file, and

record locking is the capability to prevent other processes from reading or writing particular

records (parts of a file between particular byte offsets).

ADJUSTING THE POSITION OF FILE I/O- LSEEK:

The ordinary use of read and write system calls provides sequential access to a file, but

processes can use the lseek system call to position the I/O and allow random access to a file.

The syntax for the system call is:

position = lseek(fd, offset, reference);

Where fd is the file descriptor identifying the file, offset is a byte offset, and reference

indicates whether offset should be considered from the beginning of the file, from the current

position of the read/write offset, or from the end of the file. The return value, position, is the

byte offset where the next read or write will start.

CLOSE:

A process closes an open file when it no longer wants to access it. The syntax for the

close system call is:

close(fd);

Where fd is the file descriptor for the open file. The kernel does the close operation by

manipulating the file descriptor and the corresponding file table and inode table entries. If the

reference count of the file table entry is greater than 1 because of dup or fork calls, then other

user file descriptors reference the file table entry, as will be seen; the kernel decrements the

count and the close completes.

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 6

When the close system call completes, the user file descriptor table entry is empty.

Attempts by the process to use that file descriptor result in an error until the file descriptor is

reassigned as a result of another system call.

FILE CREATION:

The open system call gives a process access to an existing file, but the creat system call

creates a new file in the system. The syntax for the creat system call is:

fd = creat(pathname, modes);

Where the variables pathname, modes, and fd mean the same as they do in the open

system call. If no such file previously existed, the kernel creates a new file with the specified

name and permission modes; if the file already existed, the kernel truncates the file (releases all

existing data blocks and sets the file size to 0) subject to suitable file access permissions. Figure

4.5 shows the algorithm for file creation.

Figure 4.5: Algorithm for Creating a File

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 7

CREATION OF SPECIAL FILES:

The system call mknod creates special files in the system, including named pipes, device

files, and directories. It is similar to creat in that the kernel allocates an inode for the file. The

syntax of the mknod system call is:

mknod(pathname, type and permissions, dev);

Where pathname is the name of the node to be created, type and permissions give the node

type (directory, for example) and access permissions for the new file to be created, and dev

specifies the major and minor device numbers for block and character special files.

Figure 4.6 depicts the algorithm mknod for making a new node.

Figure 4.6: Algorithm for Making New Node

CHANGE DIRECTORY AND CHANGE ROOT:

When the system is first booted, process 0 makes the file system root its current

directory during initialization. It executes the algorithm iget on the root inode, saves it in the u

area as its current directory, and releases the inode lock.

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 8

When a new process is created via the fork system call, the new process inherits the

current directory of the old process in its u area, and the kernel increments the inode reference

count accordingly.

The algorithm chdir (Figure 4.7) changes the current directory of a process.

Figure 4.7: Algorithm for Changing Current Directory

The syntax for the chdir system call is:

chdir(pathname);

Where pathname is the directory that becomes the new current directory of the

process. A process usually uses the global file system root for all path names starting with "/".

The kernel contains a global variable that points to the inode of the global root, allocated by

iget when the system is booted.

Processes can change their notion of the file system root via the chroot system call. This

is useful if a user wants to simulate the usual file system hierarchy and run processes there. Its

syntax is:

chroot (pathname);

Where pathname is the directory that the kernel subsequently treats as the process's root

directory. When executing the chroot system call, the kernel follows the same algorithm as for

changing the current directory.

CHANGE OWNER AND CHANGE MODE:

Changing the owner or mode (access permissions) of a file are operations on the inode.

The syntax of the calls is:

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 9

chown(pathname, owner, group)

chmod(pathname, mode)

To change the owner of a file, the kernel converts the file name to an inode using

algorithm namei.

The process owner must be super user or match that of the file owner (a process cannot

give away something that does not belong to it). The kernel then assigns the new owner and

group to the file, clears the set user and set group flags, and releases the inode via algorithm

iput.

After the change of ownership, the old owner loses "owner" access rights to the file. To

change the mode of a file, the kernel follows a similar procedure, changing the mode flags in

the inode instead of the owner numbers.

STAT AND FSTAT:

The system calls stat and fstat allow processes to query the status of files, returning

information such as the file type, file owner, access permissions, file size, number of links, inode

number, and file access times. The syntax for the system calls is:

stat(pathname, statbuffer);

fstat(fd, statbuffer);

Where pathname i s a file name, fd is a file descriptor returned by a previous open call,

and statbuffer is the address of a data structure in the user process that will contain the status

information of the file on completion of the call. The system calls simply write the fields of the

inode into statbuffer.

PIPES:

Pipes allow transfer of data between processes in a first-in-first-out manner (FIFO), and they

also allow synchronization of process execution. Their implementation allows processes to

communicate even though they do not know what processes are on the other end of the pipe.

The traditional implementation of pipes uses the file system for data storage. There are

two kinds of pipes: named pipes and, for lack of a better term, unnamed pipes, which are

identical except for the way that a process initially accesses them. Processes use the open

system call for named pipes, but the pipe system call to create an unnamed pipe.

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 10

Afterwards, processes use the regular system calls for files, such as read, write, and

close when manipulating pipes. Only related processes, descendants of a process that issued

the pipe call, can share access to unnamed pipes.

In Figure 4.8 for example, if process B creates a pipe and then spawns processes D and

E, the three processes share access to the pipe, but processes A and C do not.

However, all processes can access a named pipe regardless of their relationship, subject

to the usual file permissions.

Figure 4.8: Process Tree and Sharing Pipes

Because unnamed pipes are more common, they will be presented first. The Pipe System Call:

The syntax for creation of a pipe is

pipe(fdptr);

Where fdptr is the pointer to an integer array that will contain the two file descriptors

for reading and writing the pipe; Figure 4.9 shows the algorithm for creating unnamed pipes.

The kernel assigns an inode for a pipe from a file system designated the pipe device

using algorithm ialloc. A pipe device is just a file system from which the kernel can assign inodes

and data blocks for pipes.

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 11

Figure 4.9: Algorithm for Creation of (Unnamed) Pipes

Opening a Named Pipe: A named pipe is a file whose semantics are the same as those of an

unnamed pipe, except that it has a directory entry and is accessed by a path name.

Processes open named pipes in the same way that they open regular files and, hence,

processes that are not closely related can communicate. Named pipes permanently exist in the

file system hierarchy (subject to their removal by the unlink system call), but unnamed pipes

are transient: When all processes finish using the pipe, the kernel reclaims its inode.

The algorithm for opening a named pipe is identical to the algorithm for opening a

regular file. However, before completing the system call, the kernel increments the read or

write counts in the inode, indicating the number of processes that have the named pipe open

for reading or writing.

Reading and Writing Pipes:

A pipe should be viewed as if processes write into one end of the pipe and read from

the other end. As mentioned above, processes access data from a pipe in FIFO manner,

meaning that the order that data is written into a pipe is the order that it is read from the pipe.

The number of processes reading from a pipe does not necessarily equal the number of

processes writing the pipe. The kernel accesses the data for a pipe exactly as it accesses data

for a regular file: It stores data on the pipe device and assigns blocks to the pipe as needed

during write calls.

The difference between storage allocation for a pipe and a regular file is that a pipe uses

only the direct blocks of the inode for greater efficiency, although this places a limit on how

much data a pipe can hold at a time.

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 12

The kernel manipulates the direct blocks of the inode as a circular queue, maintaining read and

write pointers internally to preserve the FIFO order (Figure 4.10).

Figure 4.10: Logical View of Reading and Writing a Pipe

Closing Pipes: When closing a pipe, a process follows the same procedure it would follow for

closing a regular file, except that the kernel does special processing before releasing the pipe's

inode.

The kernel decrement the number of pipe readers or writers, according to the type of

the file descriptor. If the count of writer processes drops to 0 and there are processes asleep

waiting to read data from the pipe, the kernel awakens them, and they return from their read

calls without reading any data If the count of reader processes drops to 0 and there are

processes asleep waiting to write data to the pipe, the kernel awakens them and sends them a

signal to indicate an error condition.

DUP:

The dup system call copies a file descriptor into the first free slot of the user file

descriptor table, returning the new file descriptor to the user. It works for all file types. The

syntax of the system call is

newfd = dup(fd);

Where fd is the file descriptor being duped and newfd is the new file descriptor that

references the file. Because dup duplicates the file descriptor, it increments the count of the

corresponding file table entry, which now has one more file descriptor entry that points to it.

Dup is perhaps an inelegant system call, because it assumes that the user knows that

the system will return the lowest-numbered free entry in the user file descriptor table.

However, it serves an important purpose in building sophisticated programs from simpler,

building-block programs, as exemplified in the construction of shell pipelines.

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 13

MOUNTING AND UNMOUNTING FILE SYSTEMS:

A physical disk unit consists of several logical sections, partitioned by the disk driver, and

each section has a device file name. Processes can access data in a section by opening the

appropriate device file name and then reading and writing the "file" treating it as a sequence of

disk blocks.

The mount system call connects the file system in a specified section of a disk to the

existing file system hierarchy, and the umount system call disconnects a file system from the

hierarchy. The mount system call thus allows users to access data in a disk section as a file

system instead of a sequence of disk blocks.

The syntax for the mount system call is

mount(special pathname, directory pathname, options);

Where special pathname is the name of the device special file of the disk section

containing the file system to be mounted, directory pathname is the directory in the existing

hierarchy where the file system will be mounted (called the mount point), and options indicate

whether the file system should be mounted "read-only".

The kernel has a mount table with entries for every mounted file system. Each mount table

entry contains:

 a device number that identifies the mounted file system (this is the logical file system

number mentioned previously);

 a pointer to a buffer containing the file system super block;

 a pointer to the root inode of the mounted file system;

 a pointer to the inode of the directory that is the mount point

Association of the mount point inode and the root inode of the mounted file system, set up

during the mount system call, and allows the kernel to traverse the file system hierarchy

gracefully, without special user knowledge.

Crossing Mount Points in File Path Names:

The two cases for crossing a mount point are: crossing from the mounted-on file system

to the mounted file system (in the direction from the global system root towards a leaf node)

and crossing from the mounted file system to the mounted-on file system.

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 14

Unmounting a File System:

The syntax for the umount system call is

umount(special filename);

Where special filename indicates the file system to be unmounted; when unmounting a

file system the kernel accesses the inode of the device to be unmounted, retrieves the device

number for the special file, releases the inode (algorithm iput), and finds the mount table entry

whose device number equals that of the special file.

Before the kernel actually unmounts a file system, it makes sure that no files on that file

system are still in use by searching the inode table for all files whose device number equals that

of the file system being unmounted.

Active files have a positive reference count and include files that are the current

directory of some process, files with shared text that are currently being executed and open

files that have not been closed.

If any files from the file system are active, the umount call fails: if it were to succeed, the

active files would be inaccessible. The buffer pool may still contain "delayed write" blocks that

were not written to disk, so the kernel flushes them from the buffer pool.

The kernel removes shared text entries that are in the region table but not operational

writes out all recently modified super blocks to disk, and updates the disk copy of all inodes

that need updating.

LINK:

The link system call links a file to a new name in the file system directory structure,

creating a new directory entry for an existing inode. The syntax for the link system call is

link(source file name, target file name);

Where source file name is the name of an existing file and target file name is the new

(additional) name the file will have after completion of the link call.

The file system contains a path name for each link the file has, and processes can access

the file by any of the path names.

The kernel does not know which name was the original file name, so no file name is

treated specially.

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 15

UNLINK:

The unlink system call removes a directory entry for a file. The syntax for the unlink call

is

unlink (pathname);

Where pathname identifies the name of the file to be unlinked from the directory

hierarchy; if a process unlinks a given file, no file is accessible by that name until another

directory entry with that name is created.

In the following code fragment, for example,

unlink("myfile");

fd = open("myfile", O_RDONLY);

The open call should fail, because the current directory no longer contains a file called

myfile. If the file being unlinked is the last link of the file, the kernel eventually frees its data

blocks. However, if the file had several links, it is still accessible by its other names.

File System Consistency:

The kernel orders its writes to disk to minimize file system corruption in event of system

failure. For instance, when it removes a file name from its parent directory, it writes the

directory synchronously to the disk - before it destroys the contents of the file and frees the

inode.

If the system were to crash before the file contents were removed, damage to the file

system would be minimal.

Race Conditions:

Race conditions abound in the unlink system call, particularly when unlinking

directories. The rmdir command removes a directory after verifying that the directory contains

no files (it reads the directory and checks that all directory entries have inode value 0).

But since rmdir runs at user level, the actions of verifying that a directory is empty and

removing the directory are not atomic; the system could do a context switch between

execution of the read and unlink system calls.

Hence, another process could creat a file in the directory after rmdir determined that

the directory was empty. Users can prevent this situation only by use of file and record locking.

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 16

FILE SYSTEM ABSTRACTIONS:

Weinberger introduced file system types to support his network file system. File system

types allow the kernel to support multiple file systems simultaneously, such as network file

systems or even file systems of other operating systems. Processes use the usual UNIX system

calls to access files, and the kernel maps a generic set of file operations into operations specific

to each file system type.

The inode is the interface between the abstract file system and the specific file system.

A generic in-core inode contains data that is independent of particular file systems, and points

to a file-system-specific inode that contains file-system-specific data.

The file-system-specific inode contains information such as access permissions and block

layout, but the generic inode contains the device number, inode number, tile type, size, owner,

and reference count. Other data that is file-system-specific includes the super block and

directory structures.

Figure 4.11 depicts the generic in-core inode table and two tables of file-system-specific

inodes, one for System V file system structures and the other for a remote (network) inode.

Figure 4.11: Inodes for File System Types

The latter inode presumably contains enough information to identify a file on a remote

system. A file system may not have an inode-like structure; but the file-system-specific code

manufactures an object that satisfies UNIX file system semantics and allocates its "inode" when

the kernel allocates a generic inode.

UNIT-IV SYSTEMS CALLS FOR THE FILE SYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS 17

Each file system type has a structure that contains the addresses of functions that

perform abstract operations. When the kernel wants to access a file, it makes an indirect

function call, based on the file system type and the operation.

Some abstract operations are to open a file, close it, read or write data, return an inode

for a file name component (like namei and iget), release an inode (like iput), update an inode,

check access permissions, set file attributes (permissions), and mount and unmount file

systems.

FILE SYSTEM MAINTENANCE:

The kernel maintains consistency of the file system during normal operation. However,

extraordinary circumstances such as a power failure may cause a system crash that leaves a file

system in an inconsistent state: most of the data in the file system is acceptable for use, but

some inconsistencies exist.

The command fsck checks for such inconsistencies and repairs the file system if

necessary. It accesses the file system by its block or raw interface and bypasses the regular file

access methods.

A disk block may belong to more than one inode or to the list of free blocks and an

inode.

When a file system is originally set up, all disk blocks are on the free list. When a disk

block is assigned for use, the kernel removes it from the free list and assigns it to an inode.

The kernel may not reassign the disk block to another inode until the disk block has

been returned to the free list. Therefore, a disk block is either on the free list or assigned to a

single inode.

Consider the possibilities if the kernel freed a disk block in a file, returning the block

number to the in-core copy of the super block, and allocated the disk block to a new file.

If the kernel wrote the inode and blocks of the new file to disk but crashed before

updating the inode of the old file to disk, the two inodes would address the same disk block

number.

Similarly, if the kernel wrote the super block and its free list to disk and crashed before

writing the old inode out, the disk block would appear on the free list and in the old inode.

