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 The kernel contains a process table with an entry that describes the state of every 

active process in the system. The u area contains additional information that controls the 

operation of a process. The process table entry and the u area are part of the context of a 

process. The aspect of the process context that most visibly distinguishes it from the context of 

another process is, of course, the contents of its address space. 

PROCESS STATES AND TRANSITIONS: 

 The lifetime of a process can be conceptually divided into a set of states that describe 

the process. The following list contains the complete set of process states. 

1. The process is executing in user mode. 

2. The process is executing in kernel mode. 

3. The process is not executing but is ready to run as soon as the kernel schedules it. 

4. The process is sleeping and resides in main memory. 

5. The process is ready to run, but the swapper (process 0) must swap the process into 

main memory before the kernel can schedule it to execute. 

6. The process is sleeping, and the swapper has swapped the process to secondary storage 

to make room for other processes in main memory. 

7. The process is returning from the kernel to user mode, but the kernel preempts it and 

does a context switch to schedule another process. The distinction between this state 

and state 3 (“ready to run”) will be brought out shortly. 

8. &. The process is newly created and is in a transition state; the process exists, but it is 

not ready to run, nor is it sleeping. This state is the start state for all processes except 

process 0. 

9. The process executed the exit system call and is in the zombie state. The process no 

longer exists, but it leaves a record containing an exit code and some timing statistics for 

its parent process to collect. The zombie state is the final state of a process. 

 Figure 5.1 gives the complete process state transition diagram. The process enters the 

state model in the "created" state when the parent process executes the fork system call and 

eventually moves into a state where it is ready to run (3 or 5). For simplicity, assume the 

process enters the state “ready to run in memory”. 
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 The process scheduler will eventually pick the process to execute, and the process 

enters the state "kernel running," where it completes its part of the fork system call. When the 

process completes the system call, it may move to the state "user running," where it executes 

in user mode. After a period of time, the system clock may interrupt the processor, and the 

process enters state "kernel running" again.  

 When the clock interrupt handler finishes servicing the clock interrupt, the kernel may 

decide to schedule another process to execute, so the first process enters state "preempted" 

and the other process executes. The state “preempted” is really the same as the state "ready to 

run in memory" (the dotted line in the figure that connects the two states emphasizes their 

equivalence), but they are depicted separately to stress that a process executing in kernel mode 

can be preempted only when it is about to return to user mode. 

 

Figure 5.1: Process State Transition Diagram 
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 Consequently, the kernel could swap a process from the state "preempted" if 

necessary. Eventually, the scheduler will choose the process to execute, and it returns to the 

state "user running," executing in user mode again. 

 When a process executes a system call, it leaves the state "user running" and enters 

the state "kernel running." Suppose the system call requires I/O from the disk, and the process 

must wait for the I/O to complete. It enters the state "asleep in memory," putting itself to sleep 

until it is notified that the I/O has completed.  

 When the I/O later completes, the hardware interrupts the CPU, and the interrupt 

handler awakens the process, causing it to enter the state "ready to run in memory." 

 Suppose the system is executing many processes that do not fit simultaneously into 

main memory, and the swapper (process 0) swaps out the process to make room for another 

process that is in the state "ready to run swapped" When evicted from main memory, the 

process enters the state "ready to run swapped." 

 Eventually, the swapper chooses the process as the most suitable to swap into main 

memory, and the process reenters the state "ready to run in memory". The scheduler will 

eventually choose to run the process, and it enters the state "kernel running" and proceeds. 

When a process completes, it invokes the exit system call, thus entering the states "kernel 

running'' and, finally, the “zombie” state. 

 Two kernel data structures describe the state of a process: the process table entry and 

the u area. The process table contains fields that must always be accessible to the kernel, but 

the u area contains fields that need to be accessible only to the running process. Therefore, the 

kernel allocates space for the u area only when creating a process: It does not need u areas for 

process table entries that do not have processes. 

The fields in the process table are the following: 

 The state field identifies the process state. 

 The process table entry contains fields that allow the kernel to locate the process and its 

u area in main memory or in secondary storage. The kernel uses the information to do a 

context switch to the process when the process moves from state "ready to run in 

memory" to the state "kernel running" or from the state "preempted" to the state "user 

running." 

 Several user identifiers (UIDs) determine various process privileges.  

 Process identifiers (PIDs) specify the relationship of processes to each other. These ID 

fields are set up when the process enters the state "created" in the fork system call. 
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 The process table entry contains an event descriptor when the process is in the "sleep" 

state. 

 Scheduling parameters allow the kernel to determine the order in which processes 

move to the states "kernel running" and "user running". 

 A signal field enumerates the signals sent to a process but not yet handled. 

 Various timers give process execution time and kernel resource utilization, used for 

process accounting and for the calculation of process scheduling priority. One field is a 

user-set timer used to send an alarm signal to a process. 

The u area contains the following fields that further characterize the process states. 

 A pointer to the process table identifies the entry that corresponds to the u area. 

 The real and effective user IDs determine various privileges allowed the process, such as 

file access rights. 

 Timer fields record the time the process spent executing in user mode and in kernel 

mode. 

 An array indicates how the process wishes to react to signals. 

 The control terminal field identifies the "login terminal" associated with the process, if 

one exists. 

 Error field records errors encountered during a system call. 

 A return value field contains the result of system calls. 

 I/O parameters describe the amount of data to transfer, the address of the source (or 

target) data array in user space, file offsets for I/O, and so on. 

 The current directory and current root describe the file system environment of the 

process. 

 The user file descriptor table records the files the process has open. 

 Limit fields restrict the size of a process and the size of a file it can write. 

 A permission modes field masks mode settings on files the process creats. 

LAYOUT OF SYSTEM MEMORY: 

Assume that the physical memory of a machine is addressable, starting at byte offset 0 

and going up to a byte offset equal to the amount of memory on the machine. 

As we know that a process on the UNIX system consists of three logical sections: text, 

data, and stack. 
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The text section contains the set of instructions the machine executes for the process; 

addresses in the text section include text addresses (for branch instructions or subroutine calls), 

data addresses (for access to global data variables), or stack addresses (for access to data 

structures local to a subroutine). 

If the machine were to treat the generated addresses as address locations in physical 

memory, it would be impossible for two processes to execute concurrently if their set of 

generated addresses overlapped.  

The compiler could generate addresses that did not overlap between programs, but 

such a procedure is impractical for general-purpose computers because the amount of memory 

on a machine is finite and the set of all programs that could be compiled is infinite. 

The compiler therefore generates addresses for a virtual address space with a given 

address range, and the machine's memory management unit translates the virtual addresses 

generated by the compiler into address locations in physical memory. The compiler does not 

have to know where in memory the kernel will later load the program for execution.  

In fact, several copies of a program can coexist in memory: All execute using the same 

virtual addresses but reference different physical addresses. The subsystems of the kernel and 

the hardware that cooperate to translate virtual to physical addresses comprise the memory 

management subsystem. 

Regions: The System V kernel divides the virtual address space of a process into logical 

regions. A region is a contiguous area of the virtual address space of a process that can be 

treated as a distinct object to be shared or protected.  

Thus text, data, and stack usually form separate regions of a process. Several processes 

can share a region. For instance, several processes may execute the same program, and it is 

natural that they share one copy of the text region. Similarly, several processes may cooperate 

to share a common shared-memory region. 

The kernel contains a region table and allocates an entry from the table for each active 

region in the system. 

Let us assume the region table contains the information to determine where its 

contents are located in physical memory. Each process contains a private per process region 

table, called a pregion for short. Pregion entries may exist in the process table, the u area, or in 

a separately allocated area of memory, dependent on the implementation, but for simplicity, 

assume that they are part of the process table entry. 
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Each pregion entry points to a region table entry and contains the starting virtual 

address of the region in the process. Shared regions may have different virtual addresses in 

each process. The pregion entry also contains a permission field that indicates the type of 

access allowed the process: read-only, read-write, or read-execute. 

The pregion and the region structure are analogous to the file table and the inode 

structure in the file system: Several processes can share parts of their address space via a 

region, much as they can share access to a file via an inode; each process accesses the region 

via a private pregion entry, much as it accesses the inode via private entries in its user file 

descriptor table and the kernel file table. 

Figure 5.2 depicts two processes, A and B, showing their regions, pregions, and the 

virtual addresses where the regions are connected. The processes share text region 'a' at virtual 

addresses 8K and 4K respectively. If process A reads memory location 8K and process B reads 

memory location 4K, they read the identical memory location in region 'a'. The data regions and 

stack regions of the two processes are private. 

 

Figure 5.2: Processes and Regions 

The concept of the region is independent of the memory management policies 

implemented by the operating system. Memory management policy refers to the actions the 

kernel takes to insure that processes share main memory fairly. 

Pages and Page Tables: In a memory management architecture based on pages, the 

memory management hardware divides physical memory into a set of equal-sized blocks called 

pages.  
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Typical page sizes range from 512 bytes to 4K bytes and are defined by the hardware. 

Every addressable location in memory is contained in a page and, consequently, every memory 

location can be addressed by a (page number, byte offset in page) pair. 

When the kernel assigns physical pages of memory to a region, it need not assign the 

pages contiguously or in a particular order. The purpose of paged memory is to allow greater 

flexibility in assigning physical memory, analogous to the assignment of disk blocks to files in a 

file system; just as the kernel assigns blocks to a file to increase flexibility and to reduce the 

amount of unused space caused by block fragmentation, so it assigns pages of memory to a 

region. 

Layout of the Kernel: Although the kernel executes in the context of a process, the 

virtual memory mapping associated with the kernel is independent of all processes. The code 

and data for the kernel reside in the system permanently, and all processes share it.  

When the system is brought into service (booted), it loads the kernel code into memory 

and sets up the necessary tables and registers to map its virtual addresses into physical memory 

addresses (figure 5.3). The kernel page tables are analogous to the page tables associated with 

a process, and the mechanisms used to map kernel virtual addresses are similar to those used 

for user addresses. 

 

Figure 5.3: Mapping Virtual Addresses to Physical Addresses 
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In many machines, the virtual address space of a process is divided into several classes, 

including system and user, and each class has its own page tables. When executing in kernel 

mode, the system permits access to kernel addresses, but it prohibits such access when 

executing in user mode.  

Thus, when changing mode from user to kernel as a result of an interrupt or system call, 

the operating system collaborates with the hardware to permit kernel address references, and 

when changing mode back to user, the operating system and hardware prohibit such 

references. Other machines change the virtual address translation by loading special registers 

when executing in kernel mode. 

Figure 5.4 gives an example of the virtual addresses of the kernel and a process, where 

kernel virtual addresses range from 0 to 4M - 1 and user virtual addresses range from 4M up.  

There are two sets of memory management triples, one for kernel addresses and one 

for user addresses, and each triple point to a page table that contains the physical page 

numbers corresponding to the virtual page addresses.  

The system allows address references via the kernel register triples only when in kernel 

mode; hence, switching mode between kernel and user requires only that the system permit or 

deny address references via the kernel register triples. 

 

Figure 5.4: Changing the mode from User to Kernel 
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The U Area: Every process has a private u area, yet the kernel accesses it as if there 

were only one u area in the system, that of the running process.  

The kernel changes its virtual address translation map according to the executing 

process to access the correct u area.  

When compiling the operating system, the loader assigns the variable u, the name of 

the u area, a fixed virtual address.  

The value of the u area virtual address is known to other parts of the kernel, in 

particular, the module that does the context switch.  

The kernel knows where in its memory management tables the virtual address 

translation for the u area is done, and it can dynamically change the address mapping of the u 

area to another physical address. 

The two physical addresses represent the u areas of two processes, but the kernel 

accesses them via the same virtual address. 

A process can access its u area when it executes in kernel mode but not when it 

executes in user mode. Because the kernel can access only one u area at a time by its virtual 

address, the u area partially defines the context of the process that is running on the system.  

When the kernel schedules a process for execution, it finds the corresponding u area in 

physical memory and makes it accessible by its virtual address. 

Figure 5.5 shows a sample memory layout, where the first two register triples refer to 

kernel text and data (the addresses and pointers are not shown), and the third triple refers to 

the u area for process D.  

If the kernel wants to access the u area of process A, it copies the appropriate page 

table information for the u area into the third register triple.  

At any instant, the third kernel register triple refers to the u area of the currently 

running process, but the kernel can refer to the u area of another process by overwriting the 

entries for the u area page table address with a new address.  

The entries for register triples 1 and 2 do not change for the kernel, because all 

processes share kernel text and data. 
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Figure 5.5: Memory Map of U Area in the Kernel 

THE CONTEXT OF A PROCESS: 

The context of a process consists of the contents of its (user) address space and the 

contents of hardware registers and kernel data structures that relate to the process.  

Formally, the context of a process is the union of its user-level context, register context, 

and system-level context. The user-level context consists of the process text, data, user stack, 

and shared memory that occupy the virtual address space of the process.  

Parts of the virtual address space of a process that periodically do not reside in main 

memory because of swapping or paging still constitute a part of the user-level context. 

The register context consists of the following components. 

 The program counter specifies the address of the next instruction the CPU will execute; 

the address is a virtual address in kernel or in user memory space. 

 The processor status register (PS) specifies the hardware status of the machine as it 

relates to the process. 

 The stack pointer contains the current address of the next entry in the kernel or user 

stack, determined by the mode of execution. 

 The general-purpose registers contain data generated by the process during its 

execution. 

The system-level context of a process has a "static part" (first three items of the 

following list) and a "dynamic part'' (last two items).  

A process has one static part of the system-level context throughout its lifetime, but it 

can have a variable number of dynamic parts.  
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The dynamic part of the system-level context should be viewed as a stack of context 

layers that the kernel pushes and pops on occurrence of various events. The system-level 

context consists of the following components. 

 The process table entry of a process defines the state of a process, and contains control 

information that is always accessible to the kernel. 

 The u area of a process contains process control information that need be accessed only 

in the context of the process. 

 Pregion entries, region tables and page tables define the mapping from virtual to 

physical addresses and therefore define the text, data, stack, and other regions of a 

process. 

 The kernel stack contains the stack frames of kernel procedures as a process executes in 

kernel mode. Although all processes execute the identical kernel code, they have a 

private copy of the kernel stack that specifies their particular invocation of the kernel 

functions. 

 The dynamic part of the system-level context of a process consists of a set of layers, 

visualized as a last-in-first-out stack. Each system-level context layer contains the 

necessary information to recover the previous layer, including the register context of 

the previous level. 

The kernel pushes a context layer when an interrupt occurs, when a process makes a 

system call, or when a process does a context switch. It pops a context layer when the kernel 

returns from handling an interrupt, when a process returns to user mode after the kernel 

completes execution of a system call, or when a process does a context switch. 

Figure 5.6 depicts the components that form the context of a process. The left side of 

the figure shows the static portion of the context. It consists of the user level context, 

containing the process text (instructions), data, stack, and shared memory (if the process has 

any), and the static part of the system-level context, containing the process table entry, the u 

area, and the pregion entries (the virtual address mapping information for the user-level 

context).  

The right side of the figure shows the dynamic portion of the context. It consists of 

several stack frames, where each frame contains the saved register context of the previous 

layer, and the kernel stack as the kernel executes in that layer.  

System context layer 0 is a dummy layer that represents the user-level context; growth 

of the stack here is in the user address space, and the kernel stack is null.  
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The arrow pointing from the static part of the system-level context to the top layer of 

the dynamic portion of the context represents the logical information stored in the process 

table entry to enable the kernel to recover the current context layer of the process. 

 

Figure 5.6: Components of the Context of a Process 

A process runs within its context or, more precisely, within its current context layer. The 

number of context layers is bounded by the number of interrupt levels the machine supports. 

SAVING THE CONTEXT OF A PROCESS: 

 The kernel saves the context of a process whenever it pushes a new system context 

layer. In particular, this happens when the system receives an interrupt, when a process 

executes a system call, or when the kernel does a context switch. 

Interrupts and Exceptions: 

The system is responsible for handling interrupts, whether they result from hardware 

(such as from the clock or from peripheral devices), from a programmed interrupt (execution of 

instructions designed to cause "software interrupts"), or from exceptions (such as page faults).  

If the CPU is executing at a lower processor execution level than the level of the 

interrupt, it accepts the interrupt before decoding the next instruction and raises the processor 

execution level, so that no other interrupts of that level (or lower) can happen while it handles 

the current interrupt, preserving the integrity of kernel data structures. 
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The kernel handles the interrupt with the following sequence of operations: 

o It saves the current register context of the executing process and creates 

(pushes) a new context layer. 

o It determines the "source" or cause of the interrupt, identifying the type of 

interrupt (such as clock or disk) and the unit number of the interrupt, if 

applicable (such as which disk drive caused the interrupt).  

 When the system receives an interrupt, it gets a number from the 

machine that it uses as an offset into a table, commonly called an 

interrupt vector. 

o The kernel invokes the interrupt handler. The kernel stack for the new context 

layer is logically distinct from the kernel stack of the previous context layer. 

o The interrupt handler (example for the table of interrupt handler is in figure 5.7) 

completes it work and returns.  

 The kernel executes a machine-specific sequence of instructions that 

restores the register context and kernel stack of the previous context 

layer as they existed at the time of the interrupt and then resumes 

execution of the restored context layer.  

 The behavior of the process may be affected by the interrupt handler, 

since the interrupt handler may have altered global kernel data 

structures and awakened sleeping processes. 

 
Figure 5.7: Sample Interrupt Vector 

Figure 5.8 summarizes how the kernel handles interrupts. Some machines do part of the 

sequence of operations in hardware or microcode to get better performance than if all 

operations were done by software, but there are tradeoff's, based on how much of the context 

layer must be saved and the speed of the hardware instructions doing the save. The specific 

operations required in a UNIX system implementation are therefore machine dependent. 
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Figure 5.8: Algorithm for Handling Interrupts 

Example of interrupt is represented in figure 5.9 as follows: 

 
Figure 5.9: Example of Interrupts 

Context Switch: 

Referring to the process state diagram in Figure 5.1, we see that the kernel permits a 

context switch under four circumstances: when a process puts itself to sleep, when it exits, 

when it returns from a system call to user mode but is not the most eligible process to run, or 

when it returns to user mode after the kernel completes handling an interrupt but is not the 

most eligible process to run. 



UNIT-V  STRUCTURE OF PROCESSES  III-II R09 - 2014-15   

 

 

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept.  UNIX INTERNALS ~ 15 ~ 

MANIPULATION OF THE PROCESS ADDRESS SPACE: 

The region table entry contains the information necessary to describe a region. In 

particular, it contains the following entries: 

 A pointer to the inode of the file whose contents were originally loaded into a region 

 The region type (text, shared memory, private data or stack) 

 The size of the region 

 The location of the region in physical memory 

 The status of a region, which may be a combination of  

o locked 

o in demand 

o in the process of being loaded into memory 

o valid, loaded into memory 

 The reference count, giving the number of processes that reference the region. 

The operations that manipulate regions are to lock a region, unlock a region, allocate a 

region, attach a region to the memory space of a process, change the size of a region, load a 

region from a file into the memory space of a process, free a region, detach a region from the 

memory space of a process, and duplicate the contents of a region. 

For example, the exec system call, which overlays the user address space with the 

contents of an executable file, detaches old regions, frees them if they were not shared, 

allocates new regions, attaches them, and loads them with the contents of the file. 

Locking and Unlocking a Region:  

The kernel has operations to lock and unlock a region, independent of the operations to 

allocate and free a region, just as the file system has lock-unlock and allocate-release 

operations for inodes (algorithms iget and iput).  

Thus the kernel can lock and allocate a region and later unlock it without having to free 

the region. Similarly, if it wants to manipulate an allocated region, it can lock the region to 

prevent access by other processes and later unlock it. 
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Allocating a Region: 

The kernel allocates a new region (algorithm allocreg, Figure 5.10) during fork, exec, and 

shmget (shared memory) system calls. The kernel contains a region table whose entries appear 

either on a free linked list or on an active linked list. 

When it allocates a region table entry, the kernel removes the first available entry from 

the free list, places it on the active list, locks the region, and marks its type (shared or private). 

With few exceptions, every process is associated with an executable file as a result of a prior 

exec call, and allocreg sets the inode field in the region table entry to point to the inode of the 

executable file.  

The inode identifies the region to the kernel so that other processes can share the 

region if desired. The kernel increments the inode reference counts to prevent other processes 

from removing its contents when unlinking it; allocreg returns a locked, allocated region. 

Algorithm allocreg /*allocate a region data structure*/ 

Input: (1) inode pointer 

(2) Region type 

Output: locked region  

{ 

remove region from linked list of free regions; 

assign region type; 

assign region inode pointer; 

if (inode pointer not null) 

increment inode reference count; 

place region on linked list of active regions; 

return(locked region); 

} 

Figure 5.10: Algorithm for Allocating a Region 

Attaching a Region to a Process: 

The kernel attaches a region during the fork, exec, and shmat system calls to connect it 

to the address space of a process (algorithm attachreg, Figure 5.11). 
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Algorithm attachreg /*attach a region to a process*/ 

Input: (1) pointer to (locked) region being attached 

(2) process to which region is being attached 

(3) virtual address in process where region will be attached 

(4) region type 

Output: per process region table entry 

{ 

allocate per process region table entry for process; 

initialize per process region table entry: 

set pointer to region being attached; 

set type field; 

set virtual address field; 

check legality of virtual address. region size; 

increment region reference count; 

increment process size according to attached region; 

initialize new hardware register triple for process; 

return(per process region table entry); 

} 

Figure 5.11: Algorithm for Attachreg 

The region may be a newly allocated region or an existing region that the process will 

share with other processes.  

The kernel allocates a free pregion entry, sets its type field to text, data, shared 

memory, or stack, and records the virtual address where the region will exist in the process 

address space.  

The process must not exceed the system-imposed limit for the highest virtual address, 

and the virtual addresses of the new region must not overlap the addresses of existing regions.  

For example, if the system restricts the highest virtual address of a process to 8 

megabytes, it would be illegal to attach a 1 megabyte-size region to virtual address 7.SM. If it is 

legal to attach the region, the kernel increments the size field in the process table entry 

according to the region size, and increments the region reference count. 
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Attachreg then initializes a new set of memory management register triples for the 

process: If the region is not already attached to another process, the kernel allocates page 

tables for it in a subsequent call to growreg; otherwise, it uses the existing page tables. Finally, 

attachreg returns a pointer to the pregion entry for the newly attached region. 

Changing the Size of a Region: 

A process may expand or contract its virtual address space with the sbrk system call. 

Similarly, the stack of a process automatically expands (that is, the process does not make an 

explicit system call) according to the depth of nested procedure calls. Internally, the kernel 

invokes the algorithm growreg to change the size of a region (Figure 5.12).  

Algorithm growreg /*change the size of a region*/ 

Input:  (1) pointer to per process region table entry 

(2) Change in size of region (may be positive or negative) 

Output: none 

{ 

if (region size increasing) 

{ 

check legality of new region size; 

allocate auxiliary tables (page tables); 

if (not system supporting demand paging) 

{ 

allocate physical memory; 

initialize auxiliary tables, as necessary; 

} 

} 

else /*region size decreasing*/ 

{ 

free physical memory, as appropriate; 

free auxiliary tables, as appropriate; 

} 

do (other) initialization of auxiliary tables, as necessary; 

set size field in process table; 

} 

Figure 5.12: Example of Attaching to an Existing Text Region 

When a region expands, the kernel makes sure that the virtual addresses of the 

expanded region do not overlap those of another region and that the growth of the region does 
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not cause the process size to become greater than the maximum allowed virtual memory 

space.  

The kernel never invokes growreg to increase the size of a shared region that is already 

attached to several processes; therefore, it does not have to worry about increasing the size of 

a region for one process and causing another process to grow beyond the system limit for 

process size.  

The two cases where the kernel uses growreg on an existing region are sbrk on the data 

region of a process and automatic growth of the user stack. Both regions are private. Text 

regions and shared memory regions cannot grow after they are initialized. 

The kernel now allocates page tables (or extends existing page tables) to accommodate 

the larger region and allocates physical memory on systems that do not support demand 

paging.  

Loading a Region: 

In a system that supports demand paging, the kernel can “map" a file into the process 

address space during the exec system call, arranging to read individual physical pages later on 

demand.  

If the kernel does not support demand paging, it must copy the executable file into 

memory, loading the process regions at virtual addresses specified in the executable file.  

It may attach a region at a different virtual address from where it loads the contents of 

the file, creating a gap in the page table. 

To load a file into a region, loadreg (Figure 5.13) accounts for the gap between the 

virtual address where the region is attached to the process and the starting virtual address of 

the region data and expands the region according to the amount of memory the region 

requires.  

Then it places the region in the state "being loaded into memory" and reads the region 

data into memory from the file, using an internal variation of the read system call algorithm. 

Algorithm loadreg /*load a portion of a file into a region*/ 

Input: (1) pointer to per process region table entry 

(2) virtual address to load region 

(3) inode pointer of file for loading region 



UNIT-V  STRUCTURE OF PROCESSES  III-II R09 - 2014-15   

 

 

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept.  UNIX INTERNALS ~ 20 ~ 

(4) byte offset in file for start of region 

(5) byte count for amount of data to load 

Output: none 

( 

increase region size according to eventual size of region 

(algorithm growreg); 

mark region state: being loaded into memory; 

unlock region; 

set up u area parameters for reading file: 

target virtual address where data is read to, 

start offset t value for reading file, 

count of bytes to read from file; 

read file into region (internal variant of read algorithm); 

lock region; 

mark region state: completely loaded into memory; 

awaken all processes waiting for region to be loaded; 

} 

Figure 5.13: Algorithm for Loadreg  

If the kernel is loading a text region that can be shared by several processes, It is 

possible that another process could find the region and attempt to use it before its contents 

were fully loaded, because the first process could sleep while reading the file. 

Freeing a Region: 

When a region is no longer attached to any processes, the kernel can free the region 

and return it to the list of free regions (Figure 5.14).  

If the region is associated with an inode, the kernel releases the inode using algorithm 

iput, corresponding to the increment of the inode reference count in allocreg.  
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Algorithm freereg /*free an allocated region*/ 

Input: pointer to a (locked) region 

Output: none 

{ 

if (region reference count non zero) 

{ 

/*some process still using region*/ 

release region lock; 

if (region has an associated inode) 

release inode lock; 

return; 

} 

if (region has associated inode) 

release inode (algorithm iput); 

free physical memory still associated with region; 

free auxiliary tables associated with region; 

clear region fields; 

place region on region free list; 

unlock region; 

} 

Figure 5.14: Algorithm for Freeing a Region 

The kernel releases physical resources associated with the region, such as page tables 

and memory pages. 

Detaching a Region from a Process: 

The kernel detaches regions in the exec, exit, and shmdt (detach shared memory) 

system calls.  

It updates the pregion entry and severs the connection to physical memory by 

invalidating the associated memory management register triple (algorithm detachreg, Figure 

5.15).  
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Algorithm detachreg /*detach a region from a process*/ 

Input: pointer to per process region table entry 

Output: none 

{ 

get auxiliary memory management tables for process, 

release as appropriate; 

decrement process size; 

decrement region reference count; 

if (region reference count is 0 and region not sticky bit) 

free region (algorithm freereg); 

else /*either reference count non-0 or region sticky bit on*/ 

{ 

free inode lock, if applicable (inode associated with 

region); 

free region lock; 

} 

} 

Figure 5.15: Algorithm Detachreg 

The address translation mechanisms thus invalidated apply specifically to the process, 

not to the region (as in algorithm freereg). The kernel decrements the region reference count 

and the size field in the process table entry according to the size of the region.  

If the region reference count drops to 0 and if there is no reason to leave the region 

intact, the kernel frees the region using algorithm freereg. Otherwise, it releases the region and 

inode locks, which had been locked to prevent race conditions but leaves the region and its 

resources allocated. 

Duplicating a Region: 

The fork system call requires that the kernel duplicate the regions of a process. If a 

region is shared (shared text or shared memory), however, the kernel need not physically copy 

the region; instead, it increments the region reference count, allowing the parent and child 

processes to share the region.  
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If the region is not shared and the kernel must physically copy the region, it allocates a 

new region table entry, page table, and physical memory for the region. In Figure 5.16 for 

example, process A forked process B and duplicated its regions. The text region of process A is 

shared, so process B can share it with process. A. But the data and stack regions of process A 

are private, so process B duplicates them by copying their contents to newly allocated regions. 

Even for private regions, a physical copy of the region is not always necessary 

 

Figure 5.16: Duplicating a Region 

Figure 5.17 shows the algorithm for dupreg. 

 

Figure 5.17: Algorithm for Dupreg 
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SLEEP: 

The algorithms for sleep, which changes the process state from "kernel running" to 

"asleep in memory," and wakeup, which changes the process state from "asleep" to "ready to 

run" in memory or swapped. 

 

Figure 5.18: Typical Context Layers of a Sleeping Process 

When a process goes to sleep, it typically does so during execution of a system call: The 

process enters the kernel (context layer I) when it executes an operating system trap and goes 

to sleep awaiting a resource. When the process goes to sleep, it does a context switch, pushing 

its current context layer and executing in kernel context layer 2 (Figure 5.18). 

Processes also go to sleep when they incur page faults as a result of accessing virtual 

addresses that are not physically loaded; they sleep while the kernel reads in the contents of 

the pages. 

Sleep Events and Addresses: 

Processes are said to sleep on an event, meaning that they are in the sleep state until 

the event occurs, at which time they wake up and enter a "ready-to-run" state (in memory or 

swapped out). Although the system uses the abstraction of sleeping on an event, the 

implementation maps the set of events into a set of (kernel) virtual addresses.  

The addresses that represent the events are coded into the kernel, and their only 

significance is that the kernel expects an event to map into a particular address.  
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The abstraction of the event does not distinguish how many processes are awaiting the 

event, nor does the implementation. As a result, two anomalies arise. First, when an event 

occurs and a wakeup call is issued for processes that are sleeping on the event, they all wake up 

and move from a sleep state to a ready-to-run state.  

The kernel does not wake up one process at a time, even though they may contend for a 

single locked structure, and many may go back to sleep after a brief visit to the kernel running 

state. 

Figure 5.19 shows several processes sleeping on events. The second anomaly in the 

implementation is that several events may map into one address. In Figure 5.19, for example, 

the events "waiting for the buffer" to become free and "awaiting I/O completion" map into the 

address of the buffer ("addr A"). When I/O for the buffer completes, the kernel wakes up all 

processes sleeping on both events.  

Since a process waiting for I/O keeps the buffer locked, other processes waiting for the 

buffer to become free will go back to sleep if the buffer is still locked when they execute. It 

would be more efficient if there would be a one-to-one mapping of events to addresses.  

In practice, however, performance is not hurt, because the mapping of multiple events 

into one address is rare and because the running process usually frees the locked resource 

before the other processes are scheduled to run. Stylistically, however, it would make the 

kernel a little easier to understand if the mapping were one-to-one. 

 

Figure 5.19: Processes Sleeping on Events and Events Mapping into Addresses 
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Algorithms for Sleep and Wakeup: 

 

Figure 5.20: Sleep Algorithm 

 



UNIT-V  STRUCTURE OF PROCESSES  III-II R09 - 2014-15   

 

 

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept.  UNIX INTERNALS ~ 27 ~ 

Figure 5.20 shows the algorithm for sleep. The kernel first raises the process or 

execution level to block out all interrupts so that there can be no race conditions when it 

manipulates the sleep queues, and it saves the old processor execution level so that it can be 

restored when the process later wakes up. 

It marks the process state “asleep," saves the sleep address and priority in the process 

table, and puts it onto a hashed queue of sleeping processes. In the simple case (sleep cannot 

be interrupted), the process does a context switch and is safely asleep.  

When a sleeping process wakes up, the kernel later schedules it to run: The process 

returns from its context switch in the sleep algorithm, restores the processor execution level to 

the value it had when the process entered the algorithm, and returns. 

 

Figure 5.21: Algorithm for Wakeup 

To wake up sleeping processes, the kernel executes the wakeup algorithm (Figure 5.21), 

either during the usual system call algorithms or when handling an interrupt.  

For instance, the algorithm iput releases a locked inode and awakens all processes 

waiting for the lock to become free.  

Similarly, the disk interrupt handler awakens a process waiting for I/O completion. The 

kernel raises the processor execution level in wakeup to block out interrupts.  
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Then for every process sleeping on the input sleep address, it marks the process state 

field “ready to run”, removes the process from the linked list of sleeping processes, places it on 

a linked list of processes eligible for scheduling, and clears the field in the process table that 

marked its sleep address. 

I f a process that woke up was not loaded in memory, the kernel awakens the swapper 

process to swap the process into memory (assuming the system is one that does not support 

demand paging); otherwise, if the awakened process is more eligible to run than the currently 

executing process, the kernel sets a scheduler flag so that it will go through the process 

scheduling algorithm when the process returns to user mode. 

Finally, the kernel restores the processor execution level. It cannot be stressed enough: 

wakeup does not cause a process to be scheduled immediately; it only makes the process 

eligible for scheduling. 

To distinguish the types of sleep states, the kernel sets the scheduling priority of the 

sleeping process when it enters the sleep state, based on the sleep priority parameter. That is, 

it invokes the sleep algorithm with a priority value, based on its knowledge that the sleep event 

is sure to occur or not.  

If the priority is above a threshold value, the process will not wake up prematurely on 

receipt of a signal but will sleep until the event it is waiting for happens. But if the priority value 

is below the threshold value, the process will awaken immediately on receipt of the signal. 

 

 


