
UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 1 -

THE I/O SUBSYSTEM:

The I/O subsystem allows a process to communicate with peripheral devices such as

disks, tape drives, terminals, printers, and networks, and the kernel modules that control

devices are known as device drivers. There is usually a one-to-one correspondence between

device drivers and device types.

Systems may contain one disk driver to control all disk drives, one terminal driver to

control all terminals, and one tape driver to control all tape drives. Installations that have

devices from more than one manufacturer, for example, two brands of tape drives – may treat

the devices as two different device types and have two separate drivers, because such devices

may require different command sequences to operate properly.

A device driver controls many physical devices of a given type. For example, one

terminal driver may control all terminals connected to the system. The driver distinguishes

among the many devices it controls: Output intended for one terminal must not be sent to

another.

DRIVER INTERFACES:

The UNIX system contains two types of devices, block devices and raw or character

devices. Block devices, such as disks and tapes, look like random access storage devices to the

rest of the system; character devices include all other devices such as terminals and network

media. Block devices may have a character device interface, too.

The user interface to devices goes through the file system. Every device has a name that

looks like a file name and is accessed like a file. The device special file has an inode and

occupies a node in the directory hierarchy of the file system. The device file is distinguished

from other files by the file type stored in its inode, either "block" or "character special,"

corresponding to the device it represents.

If a device has both a block and character interface, it is represented by two device files:

its block device special file and its character device special file. System calls for regular files,

such as open, close, read, and write, have an appropriate meaning for devices.

The ioctl system call provides an interface that allows processes to control character

devices, but it is not applicable to regular files. However, each device driver need not support

every system call interface.

For example, the trace driver allows users to read records written by other drivers, but it

does not allow users to write it.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 2 -

System Configuration:

System configuration is the procedure by which administrators specify parameters that

are installation dependent. Some parameters specify the sizes of kernel tables, such as the

process table, inode table, and file table, and the number of buffers to be allocated for the

buffer pool. Other parameters specify device configuration, telling the kernel which devices are

included in the installation and their "address." There are three stages at which device

configuration can be specified:

First: administrators can hard-code configuration data into files that are compiled and

linked when building the kernel code. The configuration data is typically specified in a simple

format, and a configuration program converts it into a file suitable for compilation.

Second: administrators can supply configuration information after the system is already

running; the kernel updates internal configuration tables dynamically.

Third: self-identifying devices permit the kernel to recognize which devices are installed.

The kernel reads hardware switches to configure itself.

The kernel to driver interface is described by the block device switch table and the

character device switch table (Figure 8.1). Each device type has entries in the table that direct

the kernel to the appropriate driver interfaces for the system calls.

The hardware to driver interface consists of machine-dependent control registers or I/O

instructions for manipulating devices and interrupt vector: When a device interrupt occurs, the

system identifies the interrupting device and calls the appropriate interrupt handler.

Administrators set up device special files with the mknod command, supplying file type

(block or character) and major and minor numbers. The mknod command invokes the mknod

system call to create the device file. For example, in the command line

mknod /dev/tty13 c 2 13

"/dev/tty13" is the file name of the device, c specifies that it is a character special file (b

specifies a block special file), 2 is the major number, and 13 is the minor number. The major

number indicates a device type that corresponds to the appropriate entry in the block or

character device switch tables, and the minor number indicates a unit of the device.

System Calls and Driver Interface:

It describes the interface between the kernel and device drivers. For system calls that

use file descriptors, the kernel follows pointers from the user file descriptor to the kernel file

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 3 -

table and inode, where it examines the file type and accesses the block or character device

switch table, as appropriate.

It extracts the major and minor numbers from the inode, uses the major number as an

index into the appropriate table, and calls the driver function according to the system call being

made, passing the minor number as a parameter.

An important difference between system calls for devices and regular files is that the

inode of a special file is not locked while the kernel executes the driver. Drivers frequently

sleep, waiting for hardware connections or for the arrival of data, so the kernel cannot

determine how long a process will sleep. If the inode was locked, other processes that access

the inode (via the stat system call, for example) would sleep indefinitely because another

process is asleep in the driver.

Figure 8.1: Driver Entry Points

The device driver interprets the parameters of the system call as appropriate for the

device. A driver maintains data structures that describe the state of each unit that it controls;

driver functions and interrupt handlers execute according to the state of the driver and the

action being done.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 4 -

Open:

The kernel follows the same procedure for opening a device as it does for opening

regular files allocating an in-core inode, incrementing its reference count, and assigning a file

table entry and user file descriptor. The kernel eventually returns the user file descriptor to the

calling process, so that opening a device looks like opening a regular file. However, it invokes

the device-specific open procedure before returning to user mode (Figure 8.2).

Figure 8.2: Algorithm for Opening a Device

For a block device, it invokes the open procedure encoded in the block device switch

table, and for a character device, it invokes the open procedure in the character device switch

table. If a device is both a block and a character device, the kernel will invoke the appropriate

open procedure depending on the particular device file the user opened: The two open

procedures may even be identical, depending on the driver.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 5 -

The device-specific open procedure establishes a connection between the calling

process and the opened device and initializes private driver data structures.

Close:

A process severs its connection to an open device by closing it. However, the kernel

invokes the device-specific close procedure only for the last close of the device that is, only if no

other processes have the device open, because the device close procedure terminates

hardware connections; clearly this must wait until no processes are accessing the device.

Because the kernel invokes the device open procedure during every open system call but

invokes the device close procedure only once, the device driver is never sure how many

processes are still using the device.

Figure 8.3: Algorithm for Closing a Device

The algorithm for closing a device is similar to the algorithm for closing a regular file

(Figure 8.3). However, before the kernel releases the inode it does operations specific to device

files.

1. It searches the file table to make sure that no other processes still have the device open.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 6 -

2. For a character device, the kernel invokes the device close procedure and returns to

user mode. For a block device, the kernel searches the mount table to make sure that

the device does not contain a mounted file system. If there is a mounted file system

from the block device, the kernel cannot invoke the device close procedure, because it is

not the last close of the device.

3. The kernel releases the inode of the device file.

Read and Write:

The kernel algorithms for read and write of a device are similar to those for a regular

file. If the process is reading or writing a character device, kernel invokes the device drivers

read or write procedure.

Ioctl:

The ioctl system call is a generalization of the terminal-specific stty (set terminal

settings) and gtty (get terminal settings) system calls available in earlier versions of the UNIX

system. It provides a general, catch-all entry point for device specific commands, allowing a

process to set hardware options associated with a device and software options associated with

the driver.

The specific actions specified by the ioctl call vary per device and are defined by the

device driver. Programs that use ioctl must know what type of file they are dealing with,

because they are device specific. This is an exception to the general rule that the system does

not differentiate between different file types.

The syntax of the system call is

ioctl (fd, command, arg);

Where fd is the file descriptor returned by a prior open system call, command is a

request of the driver to do a particular action, and arg is a parameter (possibly a pointer to a

structure) for the command.

Commands are driver specific; hence, each driver interprets commands according to

internal specifications, and the format of the data structure arg depends on the command.

Drivers can read the data structure arg from user space according to predefined formats, or

they can write device settings into user address space at arg.

Other File System Related Calls:

File system calls such as stat and chmod work for devices as they do for regular files;

they manipulate the inode without accessing the driver.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 7 -

Even the lseek system call works for devices. For example, if a process /seeks to a

particular byte offset on a tape, the kernel updates the file table offset but does no driver-

specific operations. When the process later reads or writes, the kernel moves the file table

offset to the u area, as is done for regular files. and the device physically seeks to the correct

offset indicated in the u area.

DISK DRIVERS:

The disk driver translates a file system address, consisting of a logical device number

and block number, to a particular sector on the disk. The driver gets the address in one of two

ways: Either the strategy procedure uses a buffer from the buffer pool and the buffer header

contains the device and block number, or the read and write procedures are passed the logical

(minor) device number as a parameter; they convert the byte offset saved in the u area to the

appropriate block address.

The disk driver uses the device number to identify the physical drive and particular

section to be used, maintaining internal tables to find the sector that marks the beginning of a

disk section. Finally, it adds the block number of the file system to the start sector number to

identify the sector used for the I/O transmission.

Historically, the sizes and lengths of disk sections have been fixed according to the disk

type. For instance, the DEC RP07 disk is partitioned into the sections shown in Figure 8.4.

Suppose the files “/dev/dsk0”, “/dev/dsk1”, “/dev/dsk2” and “/dev/dsk3” correspond to

sections 0 through 3 of an RP07 disk and have minor numbers 0 through 3.

Figure 8.4: Disk Sections for RP07 Disk

Assume the size of a logical file system block is the same as that of a disk block. If the

kernel attempts to access block 940 in the file system contained in "/dev/dsk3", the disk driver

converts the request to access block 336940 (section 3 starts at block 336000; 336000 + 940 -

336940) on the disk.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 8 -

The sizes of disk sections vary, and administrators configure file systems in sections of

the appropriate size: Large file systems go into large sections, and so on. Sections may overlap

on disk. For example, Sections 0 and 1 in the RP07 disk are disjoint, but together they cover

blocks 0 to 1008000, the entire disk. Section 7 also covers the entire disk.

The overlap of sections does not matter, provided that the file systems contained in the

sections are configured such that they do not overlap. It is advantageous to have one section

include the entire disk, since the entire volume can thus be quickly copied.

The use of fixed sections restricts the flexibility of disk configuration. The hard-coded

knowledge of disk sections should not be put into the disk driver but should be placed in a

configurable volume table of contents on the disk. However, it is difficult to find a generic

position on all disks for the volume table of contents and retain compatibility with previous

versions of the system.

Current implementations of System V expect the boot block of the first file system on a

disk to occupy the first sector of the volume, although that is the most logical place for a

volume table of contents. Nevertheless, the disk driver could contain hard-coded information

on where the volume table of contents is stored for that particular disk, allowing variable sized

disk sections.

Because of the high level of disk traffic typical of UNIX systems, the disk driver must

maximize data throughput to get the best system performance. Most modem disk controllers

take care of disk job scheduling, positioning the disk arm, and transferring data between the

disk and the CPU; otherwise, the disk driver must do these tasks.

TERMINAL DRIVERS:

Terminal drivers have the same function as other drivers: to control the transmission of

data to and from terminals. However, terminals are special, because they are the user's

interface to the system. To accommodate interactive use of the UNIX system, terminal drivers

contain an internal interface to line discipline modules, which interpret input and output.

In canonical mode, the line discipline converts raw data sequences typed at the

keyboard to a canonical form (what the user really meant) before sending the data to a

receiving process; the line discipline also converts raw output sequences written by a process to

a format that the user expects. In raw mode, the line discipline passes data between processes

and the terminal without such conversions.

For example, programmers are notoriously fast but error-prone typists. Terminals

provide an "erase" key (or such a key can be so designated) such that the user can logically

erase part of the typed sequence and enter corrections.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 9 -

The terminal sends the entire sequence to the machine, including the erase characters.

In canonical mode, the line discipline buffers the data into lines (the sequence of characters

until a carriage-return character) and processes erase characters internally before sending the

revised sequence to the reading process.

The functions of a line discipline are

 To parse input strings into lines

 To process erase characters

 To process a "kill" character that invalidates all characters typed so far on the

current line

 To echo (write) received characters to the terminal

 To expand output such as tab characters to a sequence of blank spaces

 To generate signals to processes for terminal hang-ups, line breaks, or in response to

a user hitting the delete key

 To allow a raw mode that does not interpret special characters such as erase, kill or

carriage return.

The support of raw mode implies the use of an asynchronous terminal, because

processes can read characters as they are typed instead of waiting until a user hits a carriage

return or "enter" key.

Ritchie notes that the original terminal line disciplines used during system development

in the early 1970s were in the shell and editor programs, not in the kernel. However, because

their function is needed by many programs, their proper place is in the kernel.

Although the line discipline performs a function that places it logically between the

terminal driver and the rest of the kernel, the kernel does not invoke the line discipline directly

but only through the terminal driver.

Figure 8.5 shows the logical flow of data through the terminal driver and line discipline

and the corresponding flow of control through the terminal driver.

Users can specify what line discipline should be used via an ioctl system call, but it is

difficult to implement a scheme such that one device uses several line disciplines

simultaneously, where each line discipline module successively calls the next module to process

the data in turn.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 10 -

Figure 8.5: Call Sequence and Data Flow through Line Discipline

Clists:

Line disciplines manipulate data on clists. A clist, or character list, is a variable length

linked list of cblocks with a count of the number of characters on the list. A cblock contains a

pointer to the next cblock on the linked list, a small character array to contain data, and a set of

offsets indicating the position of the valid data in the cblock (Figure 8.6).

Figure 8.6: A Cblock

The start offset indicates the first location of valid data in the array, and the end offset

indicates the first location of non-valid data. The kernel maintains a linked list of free cblocks

and has six operations on clists and cblocks.

1. It has an operation to assign a cblock from the free list to a driver.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 11 -

2. It also has an operation to return a cblock to the free list.

3. The kernel can retrieve the first character from a clist: It removes the first character

from the first cblock on the clist and adjusts the clist character count and the indices

into the cblock so that subsequent operations will not retrieve the same character. If

a retrieval operation consumes the last character of a cblock, the kernel places the

empty cblock on the free list and adjusts the clist pointers. If a clist contains no

characters when a retrieval operation is done, the kernel returns the null character.

4. The kernel can place a character onto the end of a clist by finding the last cblock on

the clist, putting the character onto it, and adjusting the offset values. If the cblock is

full, the kernel allocates a new cblock, links it onto the end of the clist, and places

the character into the new cblock.

5. The kernel can remove a group of characters from the beginning of a clist one cblock

at a time, the operation being equivalent to removing all the characters in the cblock

one at a time.

6. The kernel can place a cblock of characters onto the end of a clist.

Clists provide a simple buffer mechanism, useful for the small volume of data

transmission typical of slow devices such as terminals. They allow manipulation of data one

character at a time or in groups of cblocks.

The Terminal Driver in Canonical Mode:

The data structures for terminal drivers have three clists associated with them: a clist to

store data for output to the terminal, a clist to store”raw” input data provided by the terminal

interrupt handler as the user typed it in, and a clist to store “cooked” input data, after the line

discipline converts special characters in the raw clist, such as the erase and kill characters.

When a process writes a terminal (Figure 8.7), the terminal driver invokes the line

discipline. The line discipline loops, reading output characters from user address space and

placing them onto the output clist, until it exhausts the data.

The line discipline processes output characters, expanding tab characters to a series of

space characters, for example. If the number of characters on the output clist becomes greater

than a high-water mark, the line discipline calls driver procedures to transmit the data on the

output clist to the terminal and puts the writing process to sleep.

When the amount of data on the output clist drops below a low-water mark, the

interrupt handler awakens all processes asleep on the event the terminal can accept more data.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 12 -

The line discipline finishes its loop, having copied all the output data from user space to

the output clist, and calls driver procedures to transmit the data to the terminal.

Figure 8.7: Algorithm for Writing Data to a Terminal

If multiple processes write to a terminal, they follow the given procedure

independently. The output could be garbled; that is, data written by the processes may be

interleaved on the terminal. This could happen because a process may write the terminal using

several write system calls.

The kernel could switch context while the process is in user mode between successive

write system calls, and newly scheduled processes could write the terminal while the original

process sleeps.

Output data could also be garbled at a terminal because a writing process may sleep in

the middle of a write system call while waiting for previous output data to drain from the

system.

The kernel could schedule other processes that write the terminal before the original

process is rescheduled. Because of this case, the kernel does not guarantee that the contents of

the data buffer to be output by a write system call appear contiguously on the terminal.

Reading data from a terminal in canonical mode is a more complex operation. The read

system call specifies the number of bytes the process wants to read, but the line discipline

satisfies the read on receipt of a carriage return even though the character count is not

satisfied.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 13 -

This is practical, since it is impossible for a process to predict how many characters the

user will enter at the keyboard, and it does not make sense to wait for the user to type a large

number of characters. Figure 8.8 shows the algorithm for reading a terminal.

Figure 8.8: Algorithm for Reading a Terminal

When the user types an "end of file" character (ASCII control-d), the line discipline

satisfies terminal reads of the input string up to, but not including, the end of file character. It

returns no data (return value 0) for the read system call that encounters only the end of file on

the clists; the calling process is responsible for recognizing that it has read the end of file and

that it should no longer read the terminal.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 14 -

The Terminal Driver in Raw Mode:

Users set terminal parameters such as erase and kill characters and retrieve the values

of current settings with the ioctl system call. Similarly, they control whether the terminal

echoes its input, set the terminal baud rate (the rate of bit transfers), flush input and output

character queues, or manually start up or stop character output.

The terminal driver data structure saves various control settings, and the line discipline

receives the parameters of the ioctl call and sets or gets the relevant fields in the terminal data

structure. When a process sets terminal parameters, it does so for all processes using the

terminal. The terminal settings are not automatically reset when the process that changed the

settings exits.

Processes can also put the terminal into raw mode, where the line discipline transmits

characters exactly as the user typed them: No input processing is done at all. Still, the kernel

must know when to satisfy user read calls, since the carriage return is treated as an ordinary

input character. It satisfies read system calls after a minimum number of characters are input at

the terminal, or after waiting a fixed time from the receipt of any characters from the terminal.

Terminal Polling:

It is sometimes convenient to poll a device, that is, to read it if there is data present but

to continue regular processing otherwise. The BSD system has a select system call that allows

device polling. The syntax of the call is

select(nfds, rfds, wfds, efds, timeout)

Where nfds gives the number of file descriptors being selected, and rfds, wfds and efds

point to bit masks that ”select” open file descriptors. That is, the bit 1 << fd (1 shifted left by the

value of the file descriptor} is set if a user wants to select that file descriptor. Timeout indicates

bow long select should sleep, waiting for data to arrive, for example; if data arrives for any file

descriptors and the timeout value has not expired, select returns, indicating in the bit masks

which file descriptors were selected.

Establishment of a Control Terminal:

The control terminal is the terminal on which a user logs into the system, and it controls

processes that the user initiates from the terminal. When a process opens a terminal, the

terminal driver opens the line discipline.

If the process is a process group leader as the result of a prior setpgrp system call and if

the process does not have an associated control terminal, the line discipline makes the opened

terminal the control terminal.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 15 -

It stores the major and minor device number of the terminal device file in the u area,

and it stores the process group number of the opening process in the terminal driver data

structure.

The control terminal plays an important role in handling signals. When a user presses

the delete, break, rubout (erase), or quit keys, the interrupt handler invokes the line discipline,

which sends the appropriate signal to all processes in the control process group. Similarly, if the

user hangs up, the terminal interrupt handler receives a hangup indication from the hardware,

and the Line discipline sends a hangup signal to all processes in the process group.

Indirect Terminal Driver:

Processes frequently have a need to read or write data directly to the control terminal,

even though the standard input and output may have been redirected to other files. For

example, a shell script can send urgent mess ages directly to the terminal, although its standard

output and standard error files may have been redirected elsewhere. UNIX systems provide

"indirect" terminal access via the device file "/dev/tty", which designates the control terminal

for every process that has one. Users logged onto separate terminals can access "/dev/tty", but

they access different terminals.

There are two common implementations for the kernel to find the control terminal from

the file name "/dev/tty". First, the kernel can define a special device number for the indirect

terminal file with a special entry in the character device switch table.

When invoking the indirect terminal, the driver for the indirect terminal gets the major

and minor number of the control terminal from the u area and invokes the real terminal driver

through the character device switch table.

The second implementation commonly used to find the control terminal from the name

"/dev/tty" tests if the major number is that of the indirect terminal before calling the driver

open routine. If so, it releases the inode for "/dev/tty", allocates the inode for the control

terminal, resets the file table entry to point to the control terminal inode, and calls the open

routine of the terminal driver. The file descriptor returned when opening "/dev/tty" refers

directly to the control terminal and its regular driver.

Logging In:

Process 1, init, executes an infinite loop, reading the file "/etc/inittab" for instructions

about what to do when entering system states such as "single user" or "multi-user." In multi-

user state, a primary responsibility of init is to allow users to log into terminals (Figure 8.9).

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 16 -

Figure 8.9: Algorithm for Logging In

It spawns processes called getty (for get terminal or get "tty") and keeps track of which

getty process opens which terminal; each getty process resets its process group using the

setpgrp system call, opens a particular terminal line, and usually sleeps in the open until the

machine senses a hardware connection for the terminal.

When the open returns getty execs the login program; which requires users to identify

themselves by login name and password. If the user logs in successfully, login finally execs the

shell and the user starts working. This invocation of the shell is called the login shell.

The shell process has the same process ID as the original getty process, and the login

shell is therefore a process group leader. If a user does not log in successfully, login exits after a

suitable time limit, closing the opened terminal line, and init spawns another getty for the line.

Init pauses until it receives a death of child signal. On waking up, it finds out if the

zombie process had been a login shell and, if so, spawns another getty process to open the

terminal in place of the one that died.

STREAMS:

A stream is a full-duplex connection between a process and a device driver. It consists of

a set of linearly linked queue pairs, one member of each pair for input and the other for output.

When a process writes data to a stream, the kernel sends the data down the output queues;

when a device driver receives input data, it sends the data up the input queues to a reading

process.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 17 -

The queues pass messages to neighboring queues according to a well-defined interface.

Each queue pair is associated with an instance of a kernel module, such as a driver, line

discipline, or protocol and the modules manipulate data passed through its queues.

Each queue is a data structure that contains the following elements:

 An open procedure, called during an open system call

 A close procedure, called during a close system call

 A "put" procedure, called to pass a message into the queue

 A "service" procedure, called when a queue is scheduled to execute

 A pointer to the next queue in the stream

 A pointer to a list of messages awaiting service

 A pointer to a private data structure that maintains the state of the queue

 Flags and high- and low-water marks, used for flow control, scheduling, and

maintaining the queue state.

The kernel allocates queue pairs, which are adjacent in memory; hence, a queue can

easily find the other member of the pair.

A device with a streams driver is a character device; it has a special field in the character

device switch table that points to a streams initialization structure, containing the addresses of

routines and high- and low-water marks.

When the kernel executes the open system call and discovers that the device file is

character special, it examines the new field in the character device switch table. If there is no

entry there, the driver is not a streams driver, and the kernel follows the usual procedure for

character devices.

However, for the first open of a streams driver, the kernel allocates two pairs of queues,

one for the stream-head and the other for the driver. The stream-head module is identical for

all instances of open streams: It has generic put and service procedures and is the interface to

higher-level kernel modules that implement the read, write, and ioctl system calls.

The kernel initializes the driver queue structure, assigning queue pointers and copying

addresses of driver routines from a per-driver initialization structure, and invokes the driver

open procedure. The driver open procedure does the usual initialization but also saves

information to recall the queue with which it is associated.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 18 -

Finally, the kernel assigns a special pointer in the in-core inode to indicate the stream-

head (Figure 8.10).

Figure 8.10: A Stream after Open

When another process opens the device, the kernel finds the previously allocated

stream via the inode pointer and invokes the open procedure of all modules on the stream.

Modules communicate by passing messages to neighboring modules on a stream.

A message consists of a linked list of message block headers; each block header points

to the start and end location of the block's data. There are two types of messages - control and

data - identified by a type indicator in the message header.

Control messages may result from ioctl system calls or from special conditions, such as a

terminal hang-up, and data messages may result from write system calls or the arrival of data

from a device.

When a process writes a stream, the kernel copies the data from user space into

message blocks allocated by the stream-head. The stream-head module invokes the put

procedure of the next queue module, which may process the message, pass it immediately to

the next queue, or enqueue it for later processing.

Figure 8.11: Streams Messages

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 19 -

In the latter case, the module links the message block headers on a linked list, forming a

two way linked list (Figure 8.11). Then it sets a flag in its queue data structure to indicate that it

has data to process, and schedules itself for servicing. The module places the queue on a linked

list of queues requesting service and invokes a scheduling mechanism; that scheduler calls the

service procedures of each queue on the list.

Analysis of Streams:

Ritchie mentions that he tried to implement streams only with put procedures or only

with service procedures. However, the service procedure is necessary for flow control, since

modules must sometimes enqueue data if neighboring modules cannot receive any more data

temporarily. The put procedure interface is also necessary, because data must sometimes be

delivered to a neighboring module right away.

It would also have been preferable to implement each module as a separate process,

but use of a large number of modules could cause the process table to overflow. They are

implemented with a special scheduling mechanism – software interrupt - independent of the

normal process scheduler. Therefore, modules cannot go to sleep, because they would be

putting an arbitrary process to sleep (the one that was interrupted).

Several anomalies exist in the implementation of streams.

 Process accounting is difficult under streams, because modules do not necessarily

run in the context of the process that is using the stream.

 Users can put a terminal driver into raw mode, such that read calls return after a short time

if no data is available. It is difficult to implement this feature with streams, unless special-

case code is introduced at the stream-head level.

 Streams are linear connections and do not easily allow multiplexing in the kernel.

In spite of these anomalies, streams hold great promise for improving the design of

driver modules.

INTERPROCESS COMMUNICATION:

Inter process communication mechanisms allow arbitrary processes to exchange data

and synchronize execution. We have several forms of inter process communication, such as

pipes, named pipes, and signals.

Pipes (unnamed) suffer from the drawback that they are known only to processes which

are descendants of the process that invoked the pipe system call: Unrelated processes cannot

communicate via pipes.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 20 -

Although named pipes allow unrelated processes to communicate, they cannot

generally be used across a network nor do they readily lend themselves to setting up multiple

communications paths for different sets of communicating processes: it is impossible to

multiplex a named pipe to provide private channels for pairs of communicating processes.

Arbitrary processes can also communicate by sending signals via the kill system call, but

the “message” consists only of the signal number.

PROCESS TRACING:

The UNIX system provides a primitive form of inter process communication for tracing

processes, useful for debugging. A debugger process, such as sdb, spawns a process to be

traced and controls its execution with the ptrace system call, setting and clearing break points,

and reading and writing data in its virtual address space. The syntax for ptrace system call:

ptrace(cmd, pid, addr, data);

Process tracing thus consists of synchronization of the debugger process and the traced

process and controlling the execution of the traced process. The pseudo-code in Figure 8.12

shows the typical structure of a debugger program. The debugger spawns a child process, which

invokes the ptrace system call and, as a result, the kernel sets a trace bit in the child process

table entry; the child now execs the program being traced.

Figure 8.12: Structure of Debugging Process

Where cmd specifies various commands such as reading data, writing data, resuming

execution and so on, pid is the process ID of the traced process, addr is the virtual address to be

read or written in the child process, and data is an integer value to be written.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 21 -

When executing the ptrace system call, the kernel verifies that the debugger has a child

whose ID is pid and that the child is in the traced state and then uses a global trace data

structure to transfer data between the two processes.

It locks the trace data structure to prevent other tracing processes from overwriting it,

copies cmd, addr, and data into the data structure, wakes up the child process and puts it into

the "ready-to-run" state, then sleeps until the child responds.

When the child resumes execution (in kernel mode), it does the appropriate trace

command, writes its reply into the trace data structure, then awakens the debugger. Depending

on the command type, the child may reenter the trace state and wait for a new command or

return from handling signals and resume execution.

When the debugger resumes execution, the kernel saves the "return value" supplied by

the traced process, unlocks the trace data structure, and returns to the user. If the debugger

process is not sleeping in the wait system call when the child enters the trace state, it will not

discover its traced child until it calls wait, at which time it returns immediately and proceeds.

The use of ptrace for process tracing is primitive and suffers several drawbacks:

 The kernel must do four context switches to transfer a word of data between a

debugger and a traced process. The overhead is necessary, because a debugger bas

no other way to gain access to the virtual address space of a traced process, but

process tracing is consequently slow.

 The kernel switches context in the debugger in the ptrace call until the traced

process replies to a query.

 The Kernel switches context to and from the traced process.

 And the kernel switches context back to the debugger process with the

answer to the ptrace call.

 A debugger process can trace several child processes simultaneously, although this

feature is rarely used in practice. More critically, a debugger can only trace child

processes: If a traced child forks, the debugger has no control over the grandchild, a

severe handicap when debugging sophisticated programs.

 A debugger cannot trace a process that is already executing if the debugged process

had not called ptrace to let the kernel know that it consents to be traced. This is

inconvenient, because a process that needs debugging must be killed and restarted

in trace mode.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 22 -

 It is impossible to trace setuid pr{)grams, because users could violate security by

writing their address space via ptrace and doing illegal operations.

SYSTEM V IPC:

The UNIX System V IPC package consists of three mechanisms:

1. Messages allow processes to send formatted data streams to arbitrary processes,

2. Shared memory allows processes to share parts of their virtual address space.

3. Semaphores allow processes to synchronize execution.

Implemented as a unit, they share common properties.

 Each mechanism contains a table whose entries describe all instances of the

mechanism.

 Each entry contains a numeric key, which is its user-chosen name.

 Each mechanism contains a "get" system call to create a new entry or to retrieve

an existing one, and the parameters to the calls include a key and flags. The

kernel searches the proper table for an entry named by the key.

 Processes can call the "get" system calls with the key IPC_PRIVATE to

assure the return of an unused entry.

 They can set the IPC_CREAT bit in the flag field to create a new entry if

one by the given key does not already exist.

 And they can force an error notification by setting the IPC_EXCL and

IPC_CREAT flags, if an entry already exists for the key.

 The "get" system calls return a kernel-chosen descriptor for use in the

other system calls and are thus analogous to the file system creat and

open calls.

 For each IPC mechanism, the kernel uses the following formula to find the index

into the table of data structures from the descriptor: index - descriptor modulo

(number of entries in table)

 Each IPC entry has a permissions structure that includes the user ID and group ID

of the process that created the entry, a user and group ID set by the "control"

system call (below), and a set of read-write-execute permissions for user, group,

and others, similar to the file permission modes.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 23 -

 Each entry contains other status information, such as the process ID of the last

process to update the entry (send a message, receive a message, attach shared

memory, and so on), and the time of last access or update.

 Each mechanism contains a "control" system call to query status of an entry, to

set status information, or to remove the entry from the system. When a process

queries the status of an entry, the kernel verifies that the process has read

permission and then copies data from the table entry to the user address.

Messages:

There are four system calls for messages: msgget returns (and possibly creates) a

message descriptor that designates a message queue for use in other system calls, msgctl has

options to set and return parameters associated with a message descriptor and an option to

remove descriptors, msgsnd sends a message, and msgrcv receives a message.

The syntax of the msgget system call is: msgqid = msgget(key, flag); where msgqid is

the descriptor returned by the call.

The kernel stores messages on a linked list (queue) per descriptor, and it uses msgqid as

an index into an array of message queue headers. In addition to the general IPC permissions

field the queue structure contains the following fields:

• Pointers to the first and last messages on a linked list;

• The number of messages and the total number of data bytes on the linked list;

• The maximum number of bytes of data that can be on the linked list;

• The process IDs of the last processes to send and receive messages;

• Time stamps of the last msgsnd, msgrcv, and msgctl operations.

When a user calls msgget to create a new descriptor, the kernel searches the array of

message queues to see if one exists with the given key. If there is no entry for the specified key,

the kernel allocates a new queue structure, initializes it, and returns an identifier to the user.

Otherwise, it checks permissions and returns.

A process uses the msgsnd system call to send a message: msgsnd(msgqid, msg, count,

flag); where msgqid is the descriptor of a message queue typically returned by a msgget call,

msg is a pointer to a structure consisting of a user-chosen integer type and a character array,

count gives the size of the data array, and flag specifies the action the kernel should take if it

runs out of internal buffer space.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 24 -

The kernel checks (Figure 8.13) that the sending process bas write permission for the

message descriptor, that the message length does not exceed the system limit, that the

message queue does not contain too many bytes, and that the message type is a positive

integer. If all tests succeed, the kernel allocates space for the message from a message map and

copies the data from user space.

The kernel allocates a message header and puts it on the end of the linked list of

message headers for the message queue. It records the message type and size in the message

header, sets the message header to point to the message data, and updates various statistics

fields (number of messages and bytes on queue, time stamps and process ID of sender) in the

queue header. The kernel then awakens processes that were asleep, waiting for messages to

arrive on the queue.

Figure 8.13: Algorithm for Msgsnd

If the number of bytes on the queue exceeds the queue's limit, the process sleeps until

other messages are removed from the queue. If the process specified not to wait (flag

IPC_NOWAIT), however, it returns immediately with an error indication.

A process receives messages by

count = msgrcv(id, msg, maxcount, type, flag);

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 25 -

Where id is the message descriptor, msg is the address of a user structure to contain the

received message, maxcount is the size of the data array in msg, type specifies the message

type the user wants to read, and flag specifies what the kernel should do if no messages are on

the queue. The return value, count, is the number of bytes returned to the user.

The kernel checks (figure 8.14) that the user has the necessary access rights to the

message queue. If the requested message type is 0, the kernel finds the first message on the

linked list.

Figure 8.14: Algorithm for Receiving a Message

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 26 -

If its size is less than or equal to the size requested by the user, the kernel copies the

message data to the user data structure and adjusts its internal structures appropriately: it

decrements the count of messages on the queue and the number of data bytes on the queue,

sets the receive time and receiving process ID, adjusts the linked list, and frees the kernel space

that had stored the message data.

If the process ignores size constraints, however (bit MSG_NOERROR is set in flag), the

kernel truncates the message, returns the requested number of bytes, and removes the entire

message from the list.

A process can receive messages of a particular type by setting the type parameter

appropriately. If it is a positive integer, the kernel returns the first message of the given type. If

it is negative, the kernel finds the lowest type of all messages on the queue, provided it is less

than or equal to the absolute value of type, and returns the first message of that type.

A process can query the status of a message descriptor, set its status, and remove a

message descriptor with the msgctl system call. The syntax of the call is msgctl(id, cmd,

mstatbuf); where id identifies the message descriptor, cmd specifies the type of command, and

mstatbuf is the address of a user data structure that will contain control parameters or the

results of a query.

Shared Memory:

Processes can communicate directly with each other by sharing parts of their virtual

address space and then reading and writing the data stored in the shared memory. The system

calls for manipulating shared memory are similar to the system calls for messages.

The shmget system call creates a new region of shared memory or returns an existing

one, the shmat system call logically attaches a region to the virtual address space of a process,

the shmdt system call detaches a region from the virtual address space of a process, and the

shmctl system call manipulates various parameters associated with the shared memory.

Processes read and write shared memory using the same machine instructions they use

to read and write regular memory. After attaching shared memory, it becomes part of the

virtual address space of a process, accessible in the same way other virtual addresses are; no

system calls are needed to access data in shared memory.

The syntax of the shmget system call is shmid = shmget(key, size, flag); where size is the

number of bytes in the region. The kernel searches the shared memory table for the given key:

if it finds an entry and the permission modes are acceptable, it returns the descriptor for the

entry.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 27 -

If it does not find an entry and the user had set the IPC_CREAT flag to create a new

region, the kernel verifies that the size is between system-wide minimum and maximum values

and then allocates a region data structure using algorithm allocreg.

A process attaches a shared memory region to its virtual address space with the shmat

system call: virtaddr = shmat(id, addr, flags); where id, returned by a previous shmget system

call, identifies the shared memory region, addr is the virtual address where the user wants to

attach the shared memory, and flags specify whether the region is read-only and whether the

kernel should round off the user-specified address.

The return value, virtaddr, is the virtual address where the kernel attached the region,

not necessarily the value requested by the process.

When executing the shmat system call, the kernel verifies that the process has the

necessary permissions to access the region (Figure 8.15). It examines the address the user

specifies: If 0, the kernel chooses a convenient virtual address.

Figure 8.15: Algorithm for Attaching Shared Memory

The shared memory must not overlap other regions in the process virtual address space;

hence it must be chosen judiciously (meaning: with care) so that other regions do not grow into

the shared memory.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 28 -

A process detaches a shared memory region from its virtual address space by

shmdt(addr); where addr is the virtual address returned by a prior shmat call.

A process uses the shmctl system call to query status and set parameters for the shared

memory region: shmctl(id, cmd, shmstatbuf); where id identifies the shared memory table

entry, cmd specifies the type of operation, and shmstatbuf is the address of a user-level data

structure that contains the status information of the shared memory table entry when querying

or setting its status.

The kernel treats the commands for querying status and changing owner and

permissions similar to the implementation for messages. When removing a shared memory

region, the kernel frees the entry and looks at the region table entry: If no process has the

region attached to its virtual address space, it frees the region table entry and all its resources,

using algorithm freereg.

If the region is still attached to some processes (its reference count is greater than 0),

the kernel just clears the flag that indicates the region should not be freed when the last

process detaches the region. Processes that are using the shared memory may continue doing

so, but no new processes can attach it.

Semaphores:

The semaphore system calls allow processes to synchronize execution by doing a set of

operations atomically on a set of semaphores. Before the implementation of semaphores, a

process would create a lock file with the creat system call if it wanted to lock a resource: The

creat fails if the file already exists, and the process would assume that another process had the

resource locked.

The major disadvantages of this approach are that the process does not know when to

try again, and lock files may inadvertently be left behind when the system crashes or is

rebooted.

Dijkstra published the Dekker algorithm that describes an implementation of

semaphores, integer-valued objects that have two atomic operations defined for them: P and V.

The P operation decrements the value of a semaphore if its value is greater than 0, and

the V operation increments its value; because the operations are atomic, at most one P or V

operation can succeed on a semaphore at any time.

The semaphore system calls in System V are a generalization of Dijkstra's P and V

operations, in that several operations can be done simultaneously and the increment and

decrement operations can be by values greater than 1.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 29 -

The kernel does all the operations atomically; no other processes adjust the semaphore

values until all operations are done. If the kernel cannot do all the operations, it does not do

any; the process sleeps until it can do all the operations.

A semaphore in UNIX System V consists of the following elements:

• The value of the semaphore,

• The process ID of the last process to manipulate the semaphore,

• The number of processes waiting for the semaphore value to increase,

• The number of processes waiting for the semaphore value to equal 0.

The semaphore system calls are semget to create and gain access to a set of

semaphores, semctl to do various control operations on the set, and semop to manipulate the

values of semaphores.

The semget system call creates an array of semaphores:

id = semget(key, count, flag);

Where key, flag and id are similar to those parameters for messages and shared

memory. The kernel allocates an entry those points to an array of semaphore structures with

count elements (Figure 8.16).

Figure 8.16: Data Structures for Semaphores

The entry also specifies the number of semaphores in the array, the time of the last

semop call, and the time of the last semctl call.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 30 -

Processes manipulate semaphores with the semop system call: oldval = semop(id,

oplist, count); where id is the descriptor returned by semget, oplist is a pointer to an array of

semaphore operations, and count is the size of the array. The return value, oldval, is the value

of the last semaphore operated on in the set before the operation was done. The format of

each element of oplist is:

 The semaphore number identifying the semaphore array entry being operated on

 The operation

 Flags

The kernel reads the array of semaphore operations, oplist, from the user address space

and verifies that the semaphore numbers are legal and that the process has the necessary

permissions to read or change the semaphores (Figure 8.17).

Figure 8.17: Algorithm for Semaphore Operation

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 31 -

The kernel changes the value of a semaphore according to the value of the operation.

 If positive, it increments the value of the semaphore and awakens all processes that

are waiting for the value of the semaphore to increase.

 If the semaphore operation is 0, the kernel checks the semaphore value: If 0, it

continues with the other operations in the array; otherwise, it increments the

number of processes asleep, waiting for the semaphore value to be 0, and goes to

sleep.

 If the semaphore operation is negative and its absolute value is less than or equal to

the value of the semaphore, the kernel adds the operation value (a negative

number) to the semaphore value.

 If the result is 0, the kernel awakens all processes asleep, waiting for the semaphore

value to be 0. If the value of the semaphore is less than the absolute value of the

semaphore operation, the kernel puts the process to sleep on the event that the

value of the semaphore increases.

Figure 8.17: Algorithm for Semaphore Operation (continued)

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 32 -

Whenever a process sleeps in the middle of a semaphore operation, it sleeps at an

interruptible priority; hence, it wakes up on receipt of a signal.

NETWORK COMMUNICATIONS:

Programs such as mail, remote file transfer, and remote login that wish to communicate

with other machines have historically used ad hoc methods to establish connections and to

exchange data. For example, standard mail programs save the text of a user's mail messages in

a particular file, such as "/usr/mail/mjb" for user "mjb".

When a person sends mail to another user on the same machine, the mail program

appends the mail to the addressee's file, using lock files and temporary files to preserve

consistency. When a person reads mail, the mail program opens the person's mail file and reads

the messages.

To send mail to a user on another machine, the mail program must ultimately find the

appropriate mail file on the other machine. Since it cannot manipulate files there directly, a

process on the other machine must act as an agent for the local mail process; hence the local

process needs a way to communicate with its remote agent across machine boundaries. The

local process is called the client of the remote server process.

Because the UNIX system creates new processes via the fork system call, the server

process must exist before the client process attempts to establish a connection. It would be

inconsistent with the design of the system if the remote kernel were to create a new process

when a connection request comes across the network.

Instead, some process, usually init, creates a server process that reads a

communications channel until it receives a request for service and then follows some protocol

to complete the setup of the connection. Client and server programs typically choose the

network media and protocols according to information in application data bases, or the data

may be hard-coded into the programs.

Network communications have posed a problem for UNIX systems, because messages

must frequently include data and control portions. The control portion may contain addressing

information to specify the destination of a message. Addressing information is structured

according to the type of network and protocol being used.

Hence, processes need to know what type of network they are talking to, going against

the principle that users do not have to be aware of a file type, because all devices look like files.

Traditional methods for implementing network communications consequently rely heavily on

the ioctl system call to specify control information, but usage is not uniform across network

types.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 33 -

This has the unfortunate side effect that programs designed for one network may not be

able to work for other networks. There has been considerable effort to improve network

interfaces for UNIX systems. The streams implementation in the latest releases of System V

provides an elegant mechanism for network support, because protocol modules can be

combined flexibly by pushing them onto open streams and their use is consistent at user level.

SOCKETS:

Network Communications shows how processes on different machines can

communicate, but the methods by which they establish communications are likely to differ,

depending on protocols and media. Furthermore, the methods may not allow processes to

communicate with other processes on the same machine, because they assume the existence

of a server process that sleeps in a driver open or read system call. To provide common

methods for inter process communication and to allow use of sophisticated network protocols,

the BSD system provides a mechanism known as sockets.

Now we will see some user-level aspects of sockets.

Figure 8.18: Sockets Model

The kernel structure consists of three parts: the socket layer, the protocol layer, and the

device layer (Figure 8.18). The socket layer provides the interface between the system calls and

the lower layers, the protocol layer contains the protocol modules used for communication

(TCP and IP in the figure), and the device layer contains the device drivers that control the

network devices.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 34 -

Legal combinations of protocols and drivers are specified when configuring the system,

a method that is not as flexible as pushing streams modules. Processes communicate using the

client-server model: a server process listens to a socket, one end point of a two-way

communications path, and client processes communicate to the server process over another

socket, the other end point of the communications path, which may be on another machine.

The kernel maintains internal connections and routes data from client to server.

Sockets that share common communications properties, such as naming conventions

and protocol address formats, are grouped into domains. The 4.2 BSD system supports the

"UNIX system domain" for processes communicating on one machine and the "Internet

domain" for processes communicating across a network using the DARPA (Defense Advanced

Research Project Agency) communications protocols.

Each socket has a type - a virtual circuit (stream socket in the Berkeley terminology) or

datagram. A virtual circuit allows sequenced, reliable delivery of data. Datagram’s do not

guarantee sequenced, reliable, or unduplicated delivery, but they are less expensive than

virtual circuit, because they do not require expensive setup operations; hence, they are useful

for some types of communication.

The socket mechanism contains several system calls. The socket system call establishes

the end point of a communications link.

sd = socket(format, type, protocol);

Format specifies the communications domain (the UNIX system domain or the Internet

domain), type indicates the type of communication over the socket (virtual circuit or datagram),

and protocol indicates a particular protocol to control the communication. Processes use the

socket descriptor sd in other system calls. The close system call closes sockets.

The bind system call associates a name with the socket descriptor:

bind(sd, address, length);

sd is the socket descriptor, and address points to a structure that specifies an identifier

specific to the communications domain and protocol specified in the socket system call. Length

is the length of the address structure; without this parameter, the kernel would not know how

long the address is because it can vary across domains and protocols.

The connect system call requests that the kernel make a connection to an existing

socket: connect(sd, address, length); where the semantics of the parameters are the same as

for bind, but address is the address of the target socket that will form the other end of the

communications line.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 35 -

Both sockets must use the same communications domain and protocol, and the kernel

arranges that the communications links are set up correctly. If the type of the socket is a

datagram, the connect call informs the kernel of the address to be used on subsequent send

calls over the socket; no connections are made at the time of the call.

When a server process arranges to accept connections over a virtual circuit, the kernel

must queue incoming requests until it can service them. The listen system call specifies the

maximum queue length:

listen(sd, qlength)

where sd is the socket descriptor and qlength is the maximum number of outstanding

requests.

The accept call receives incoming requests for a connection to a server process:

nsd = accept (sd, address, addrlen);

Where sd is the socket descriptor, address points to a user data array that the kernel fills

with the return address of the connecting client, and addrlen indicates the size of the user

array. When accept returns, the kernel overwrites the contents of addrlen with a number that

indicates the amount of space taken up by the address.

Accept returns a new socket descriptor nsd, different from the socket descriptor sd. A

server can continue listening to the advertised socket while communicating with a client

process over a separate communications channel (Figure 8.19).

Figure 8.19: A Server Accepting a Call

The send and recv system calls transmit data over a connected socket:

count = send(sd, msg, length, flags);

Where sd is the socket descriptor, msg is a pointer to the data being sent, length is its

length, and count is the number of bytes actually sent.

UNIT-VIII I/O SUBSYSTEM III-II R09 - 2014-15

T.M. JAYA KRISHNA, M.Tech Assistant Professor CSE Dept. UNIX INTERNALS - 36 -

The flags parameter may be set to the value SOF _OOB to send data "out-of-band,"

meaning that data being sent is not considered part of the regular sequence of data exchange

between the communicating processes.

A "remote login" program, for instance, may send an "out of band" message to simulate

a user hitting the delete key at a terminal.

The syntax of the recv system calls is:

count = recv(sd, buf, length, flags) ;

Where buf is the data array for incoming data, length is the expected length, and count

is the number of bytes copied to the user program. Flags can be set to ''peek" at an incoming

message and examine its contents without removing it from the queue, or to receive "out of

band" data. The datagram versions of these system calls, sendto and recvfrom, have additional

parameters for addresses.

Processes can use read and write system calls on stream sockets instead of send and

recv after the connection is set up. Thus, servers can take care of network-specific protocol

negotiation and spawn processes that use read and write calls only, as if they are using regular

files.

The shutdown system call closes a socket connection:

shutdown(sd, mode)

Where mode indicates whether the sending side, the receiving side, or both sides no

longer allow data transmission; it informs the underlying protocols to close down the network

communications, but the socket descriptors are still intact. The close system call frees the

socket descriptor.

The getsockname system call gets the name of a socket bound by a previous bind call:

getsockname(sd, name, length);

The getsockopt and setsockopt calls retrieve and set various options associated with the

socket, according to the communications domain and protocol of the socket.

