
UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 1

KORN SHELL FEATURES:

The Korn shell, developed by David Korn at the AT&T Labs, is a dual-purpose utility. It

can be used interactively as an interpreter that reads, interprets, and executes user commands.

It can also be used as a programming language to write shell scripts.

Korn Shell Sessions: When we use the Korn shell interactively, we execute commands at

the shell prompt.

Standard Streams: We defined three Standard Streams – standard input (0), standard

output (1), and standard error (2) – available in all shells.

Redirection: The standard streams can be redirected from and to files. If we don’t use

redirection, standard output and standard error both go to the monitor.

Pipes: The pipe operator temporarily saves the output from one command in a buffer

that is being used at the same time as the input to the next command.

tee command: The tee command copies standard input to standard output and at the

same time copies it to one or more files. If the stream is coming from another command, such

as who, it can be piped to the tee command.

Combining Commands: We can combine commands in four ways: sequenced

commands, grouped commands, chained commands, and conditional commands.

Command Line Editing: The Korn shell supports command-line editing.

Quotes: There are three quote types that Korn shell supports: backslash, double quotes

and single quotes.

Command Substitution: Command Substitution is used to convert a command’s output

to a string that can be stored in another string or a variable. Although the Korn shell supports

two constructs for command substitution [‘command’ and $ (command)].

Job Control: Job control is used to control how and where a job is executed in the

foreground or background.

Aliases:

An alias is a means of creating a customized command by assigning a name or acronym

to a command. If the name we use is one of the standard shell commands, such as dir, then the

alias replaces the shell command. In the Korn shell, an alias is created by using the alias

command. It’s format is: alias name=command-definition

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 2

Where alias is the command keyword, name is the name of the alias name being

created, and command-definition is the code for the customized command.

Listing Aliases:

The Korn shell provides a method to list all aliases and to list a specific alias. Both use

the alias command. To list all aliases, we use the alias command with no arguments. To list a

specific command, we use the alias command with one argument, the name of the alias

command.

Removing Aliases:

Aliases are removed by using the unalias command. It has one argument, a list of aliases

to be removed. When it is used with the all option (-a), it deletes all aliases.

TWO SPECIAL FILES:

There are two special files in UNIX that can be used by any shell.

Trash File (/dev/null):

The trash file is a special file that is used for deleting data. Found under the device (dev)

directory, it has a very special characteristic: Its contents are always emptied immediately after

receiving data. In other words, no matter how much or how often data are written to it, they

are immediately deleted. Physically there is only one trash file in the system: It is owned by the

superuser.

Because it is a file, it can be used as both a source and destination. However, when used

as a source, the result is always end of the file because it is always empty. While the following

two commands are syntactically correct, the first has no effect because the string “Trash me”,

when sent to the trash file, is immediately deleted. The second has no effect because the file is

always empty, which means that there is nothing to display.

$ print “Trash me” > /dev/null

$ cat /dev/null

Terminal File (/dev/tty):

Although each terminal in UNIX is a named file, such as /dev/tty13 and /dev/tty31, there

is only one logical file, /dev/tty. This file is found under the device directory; it represents the

terminal of each user. This means that someone using terminal /dev/tty13 can refer to the

terminal using either the full terminal name (/dev/tty13) or the generic system name (/dev/tty).

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 3

VARIABLES:

The Korn shell allows you to store the values in variables. A shell variable is a location in

memory where values can be stored. In the Korn shell, all data are stored as strings. There are

two broad classifications of variables: user-defined and predefined.

User-Defined Variables:

As implied by their name, user defined variables are created by the user. Although the

user may choose any name, it should not be the same as one of the predefined variables. Each

variable must have a name. The name of the variable must start with an alphabetic or

underscore (_) character. It then can be followed by zero or more alphanumeric or underscore

characters.

Predefined Variables:

Predefined variables are either shell variables or environmental variables. The shell

variables are used to configure the shell. The environmental variables are used to configure the

environment.

Storing Values in Variables:

There are several ways that we can store a value in a variable, but the easiest method is

to use the assignment operator, =. The variable is coded first, on the left, followed by the

assignment operator and then the value to be stored. There can be no spaces before and after

the assignment operator; the variable, the operator, and the value must be coded in sequence

immediately next to each other as varA=7 Here varA is the variable that receives the data, and

7 is the value being stored in it.

Accessing Value of a Variable: To access the value of variable, the name of the variable

must be preceded by a dollar sign as shown below:

$ count=7

$ print $count is the number after 6 and before 8

Result:

7 is the number after 6 and before 8

Null Variables:

If we access a variable that is not set (no value is stored in it), we receive what is called a

null value (nothing). We can also explicitly store a null value in a variable by either assigning it a

null string (“”) or by assigning it nothing.

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 4

 Unsetting a Variable:

We can clear a variable by assigning a null value to it. Although this method works, it is

better to use the unset command.

$ x=1

$ print “(x contains:” $x”)”

(x contains: 1)

$ unset x

$ print “(x contains:” $x”)”

(x contains:)

Storing Filenames:

We can also store a filename in a variable. We can even use the wildcards. However, we

should be aware of how wildcards are handled by the shell. The shell stores the file name

including the wildcard in the variable without expanding it. When the value is used, the

expansion takes place.

Example:

$ ls

File1 File2 File3.bak

$ filename=”File*”

$ print “Filename contains: $filename” # show contents

Filename contains: File*

$ print $filename

File1 File2 File3.bak

$ filename=”File?”

$ print $filename

File1 File2

Storing File Contents:

We can also store the contents of a file in a variable for processing, such as parsing

words. Two steps are required to store the file:

1. Create a copy of the file on standard output using the cat utility.

2. Using command substitution, convert the standard output contents to a string.

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 5

The string can now be stored in a variable. The entire process is done in one command

line.

Example:

$ cat storeAsVar.txt

This is a file

used to show

the result of storing a file in a variable

$ x=$(cat storeAsVar.txt)

$ print $x

This is a file used to show the result of storing a file in a variable

Storing Commands in a Variable:

We can also store a command in a variable. For example, the list command can be

stored in a variable. We can then use the variable at the command prompt to execute its

contents. Storing commands in a variable works only with simple commands. If the command is

complex (for example, piping the results of the list command to more) a command variable will

not work.

Read-Only Variables:

Most programming languages provide a way for a programmer to define a named

constant. A named constant defines a value that cannot be changed. Although the Korn shell

does not have named constants, we can create the same effect by creating a variable, assigning

it a value, and then fixing its value with the readonly command. The command format is:

readonly variable-list

Example:

$ cHello=Hello

$ cBye=”Good Bye”

$ readonly cHello cBye

$ cHello=Howdy

cHello: is read only

$ cBye=TaTa

cBye: is read only

$ print cHello “ . . . “ $cBye

Hello . . . Good Bye

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 6

INPUT AND OUTPUT:

INPUT:

Reading data from a terminal or a file is done using the read command. The read

command reads a line and stores the words in variables. It must be terminated by a return, and

the input line must immediately follow the command. The read command format is shown

below:

read options variable1 . . . variablen

Options:

-r: ignore newline

-u: stream descriptor

Read Word by Word:

When the read command is executed, the shell reads a line from the standard input and

stores it in variables word by word. Words are characters separated by spaces or tabs. The first

word is stored in the first variable; the second is stored in the second variable, and so forth.

Another way of saying this is that the read command parses the input string (line) into words.

If there are more words than there are variables, all the extra words are placed in the

last variable. If there are fewer words then there are variables; the unmatched variables are set

to a null value. Any value in them before the read is lost.

Reading Line by Line:

The design for handling extra words provides an easy technique for storing a whole line

in one variable. We simply use the read command, giving it only one variable. When executed,

the whole line is in the variable.

Reading from a File:

The Korn shell allows scripts to read from a user file. This is done with the stream

descriptor option (-u). A stream descriptor is a numeric designator for a file. We have seen that

the standard streams are numbered 0, 1, and 2 for standard input, standard output and

standard error respectively.

OUTPUT:

The output statement in the Korn shell is the print command. Although the Korn shell

also supports the echo command (inherited from the Bourne shell), we use print because it is

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 7

faster and there is the possibility that echo may become depreciated in a future version of Korn

shell. The format of the print command is shown below:

print options argument1 . . . argumentn

Options:

-n : no new line

ENVIRONMENT VARIABLES:

The environmental variables control the user environment. The following table lists the

environmental variables. In Korn shell, environmental variables are in uppercase.

VARIABLE EXPLANATION

CDPATH
Contains the search path for cd command when the directory argument is a
relative path name.

COLUMNS Defines the width, in characters, of your terminal. The default is 80.

EDITOR Pathname of the command-line editor.

ENV Pathname of the environment file.

HISTFILE Pathname for the history file.

HISTSIZE Maximum number of saved commands in the history file.

HOME Pathname for the home directory.

LINES Defines the height, in lines, of your terminal display. The default is 24.

LOGNAME Contains the user’s login name from the /etc/passwd file

MAIL Absolute pathname for the user’s mailbox.

MAILCHECK Interval between tests for new mail. The default is 600 seconds.

OLDPWD Absolute pathname of the working directory before the last cd command.

PATH Searches path for commands.

PS1 Primary prompt, such as $ and %.

PS2
Secondary prompt. Used when complete command not entered on first line. the
default is >.

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 8

STARTUP SCRIPTS:

Each shell uses one or more scripts to initialize the environment when a session is

started. The Korn shell uses three startup files. They are 1) System profile file 2) Personal profile

file and 3) Environment file.

SYSTEM PROFILE FILE:

The system-level profile file is a one which is stored in the /etc directory. Maintained by

the system administrator, it contains general commands and variable settings that are applied

to every user of the system at login time. The system profile file is generally quite large and

contains many advanced commands.

The system profile is a read-only file; its permissions are set so that only system

administrator can change it.

PERSONAL PROFILE FILE:

The personal profile, ~/.profile , contains commands that are used to customize the

startup shell. It is an optional file that is run immediately after the system profile file. Although

it is a user file, it is often created by the system administrator to customize a new user’s shell. If

you make changes to it, we highly recommend that you make a backup copy first so that it may

be restored easily if necessary.

ENVIRONMENT FILE:

The Korn shell allows users to create a command file containing commands that they

want to be executed to personalize their environment. It is most useful when the Korn shell is

started as a child of a non-Korn login shell. Because we can use any name for it, the absolute

pathname of the environment file must be stored in the ENV variable. The shell then locates it

by looking at the ENV variable.

COMMAND HISTORY:

The Korn shell provides an extensive command history capability consisting of a

combination of commands, environmental variables and files. A major feature of the design is

the ability to recall a command and reexecute it without typing it again.

HISTORY FILE:

Every command that we type is kept in a history file stored in our home directory. By

default, the filename is ~/ .sh_history. It can be renamed, provided that we store its pathname

in the HISTFILE environmental variable.

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 9

The size of the file (i.e. the number of commands that it can store) is 128 unless

changed. The HISTSIZE variable can be used to change it when we need to make it larger or

smaller.

HISTORY COMMAND:

The formal command for listing, editing, and executing commands from the history file

is the fc command. However, the Korn shell contains a preset alias, history, that is easier to use

and more flexible. Executed without any options, the history command lists the last 16

commands.

REDO COMMAND (r):

Any command in the history file can be reexecuted using the redo command (r).

SUBSTITUTION IN REDO COMMAND:

When we redo a command, we can change part of the command.

COMMAND EXECUTION PROCESS

To understand the behavior of the shell, it helps to understand how Korn executes a

command. Command execution is carried out in six sequential steps:

EXECUTION STEPS:

The six execution steps are recursive. This means that when the shell performs the third

step, command substitution, the six steps are followed for the command inside the dollar

parentheses.

Command Parsing: The shell first parses the command into words. In this step, it uses

whitespace as delimiters between the words. It also replaces sequences of two or more spaces

or tabs with a single space.

Variable Evaluation: After completely parsing the command, the shell looks for variable

names (unquoted words beginning with a dollar sign). When a variable name is found, its value

replaces the variable name.

Command Substitution: The shell then looks for a command substitution. If found, the

command is executed and its output string replaces the command, the dollar sign, and the

parenthesis.

Redirection: At this point, the shell checks the command for redirected files. Each

redirected file is verified by opening it.

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 10

Wildcard Expansion: When filenames contain wildcards, the shell expands and replaces

them with their matching filenames. This step creates a file list.

Path Determination: In this last step, the shell uses the PATH variable to locate the

directory containing the command code. The command is now ready for execution.

KORN SHELL PROGRAMMING:

Basic Script Concepts:

A shell script is a text file that contains executable commands. Although we can execute

virtually any command at the shell prompt, long sets of commands that are going to be

executed more than once should be executed using a script file.

Script Components:

Every script has three parts: the interpreter designator line, comments and shell

commands.

Interpreter Designator Line: One of the UNIX shells runs the script, reading it and calling

the command specified by each line in turn. The first line of the script is the designator line; it

tells UNIX the path to the appropriate shell interpreter. The designator line begins with a pound

sign and a bang (#!). If the designator line is omitted, UNIX will use the interpreter for the

current shell, which may not be correct.

Comments: Comments are documentation we add in a script to help us understand it.

The interpreter doesn’t use them at all; it simply skips over them.

Comments are identified with the pound sign token (#). The Korn shell supports only line

comments. This means that we can only comment one line at a time, c comment cannot extend

beyond the end of the line.

Commands: The most important part of a script is its commands. We can use any of the

commands available in UNIX. However, they will not be executed until we execute the script;

they are not executed immediately as they are when we use them interactively. When the

script is executed, each command is executed in order from the first to the last.

Command Separators  Shell use two tokens to separate commands; semicolons and

newlines.

Blank Lines  Command separators can be repeated. When the script detects multiple

separators, it considers them just one. This means that we can insert multiple blank lines in a

script to make it more readable.

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 11

Combined Commands  We can combine commands in a script just as we did in the

interactive sessions. This means that we can chain commands using pipes, group commands or

conditional commands.

MAKING SCRIPTS EXECUTABLE:

We can make a script executable only by the user (ourselves), our group, or everybody.

Because we have to test a new script, we always give ourselves execute permission. Whether or

not we want others to execute it depends on many factors.

EXECUTING THE SCRIPT:

After the script has been made executable, it is a command and can be executed just

like any other command. There are two methods of executing it; as an independent command

or as an argument to a subshell command.

Independent Command:

We do not need to be in the Korn shell to execute a Korn shell script as long as the

interpreter designator line is included as the first line of the script. When it is, UNIX uses the

appropriate interpreter as called out by the designator line.

To execute the script as an independent command, we simply use its name as in the

following example:

$ script_name

Child Shell Execution:

To ensure that the script is properly executes, we can create a child shell and execute it

in the new shell. This is done by specifying the shell before the script name as in the following

example:

$ ksh script_name

EXPRESSIONS:

Expressions are a sequence of operators and operands that reduces to a single value.

The operators can be either mathematical operator, such as add and subtract, that compute a

value; relational operators, such as greater than and less than, that determine a relationship

between two values and return true or false; file test operators that report status of a file; or

logical operators that combine logical values and return true or false. We use mathematical

expressions to compute a value and other expressions to make decisions.

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 12

Mathematical expressions

Mathematical expressions in the Korn shell use integer operands and mathematical

operators to compute a value.

Mathematical operators

Mathematical operators are used to compute a numeric value. The Korn shell supports

the standards add, subtract, multiply and divide operators plus a special operator for modulus.

let command:

The Korn shell uses either the expr command or the let command to evaluate

expressions and store the result in another variable. The expr command is inherited from the

Bourne shell; the let command is new.

Example:

$ let y=x+16

In this example, note that we don’t use a dollar sign with the variables. The let

command doesn’t need the dollar sign; its syntax expects variables or constants.

The Korn shell has an alternate operator, a set of double parentheses, that may be used

instead of let command.

Example:

$ ((y = x + 16))

Relational expressions:

It compares two values and returns a logical value such as true or false. The logical value

depends on the values being compared and the operator being used.

Relational operators:

The relational operators are listed in table given below:

Numeric Interpretation Meaning String Interpretation

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

== Equal =

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 13

Numeric Interpretation Meaning String Interpretation

!= Not equal !=

 String length not zero -n

 String length zero -z

The sting equal and not equal logical operators support patterns for the second (right)

operand. The patterns supported are listed in the table below:

Pattern Interpretation

string Must exactly match the first operand.

? Matches zero or one single character.

[. . .] Matches one single character in the set.

* Repeats pattern zero or more times.

?(pat1|pat2|. . .) Matches zero or one of any of the patterns.

Relational Test Command:

In the Korn shell we can use wither the test command inherited from the Bourne shell

or one of the two test operators, ((. . .)) or [[. . .]].

Which operator is used depends on the data. Integer data require the double

parenthesis as shown in the example: i.e. ((x < y))

For string expressions, the Korn shell requires the double bracket operator. Although

the integer operator parentheses do not require the variable dollar sign, the double brackets

operator does. The next example demonstrates this format:

[[$x != $y]]

File Expressions:

File expressions use file operators and test command to check the status of a file. A file’s

status includes characteristics such as open, readable, writable, or executable.

File Operators:

There are several operators that can be used in a file test command to check a files

status. They are particularly useful in shell scripts when we need to know the type or status of

file. The following table lists the file operators and what file attributes they test.

Operator Explanation

-r file True if file exists and is readable

-l file True if file exists and is a symbolic link.

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 14

Operator Explanation

-w file True if file exists and is writable.

-x file True if file exists and is executable.

-f file True if file exists and is a regular file.

-d file True if file exists and is a directory.

-s file True if file exists and has a size greater than zero.

file1 –nt file2 True if file1 is newer than file2.

file1 –ot file2 True if file1 is older than file2.

Test File Command:

Although we could use the test command inherited from the Bourne shell, in the Korn

shell we recommend the Korn shell double bracket operator to test the status of the file.

Logical Expressions:

Logical expressions evaluate to either true or false. They use a set of three logical

operators: not (!), and (&&), or (||).

DECISION MAKING & REPETITION:

DECISION MAKING:

The Korn shell has two different statements that allow us to select between two or

more alternatives. The first, the if-then-else statement, examines the data and chooses

between two alternatives. For this reason this is sometimes referred to as a two-way selection.

The second, the case statement, selects one of several paths by matching patterns to different

strings.

if-then-else

Every language has some variation of the if-then-else statement. The only difference

between them is what keywords are required by the syntax. For example, the C language does

not use then. In fact, it is an error to use it. In all languages however, something is tested. Most

typically data values are tested.

In the Korn shell, the exit value from a command is used as the test. The shell evaluates

the exit status from the command following fi . When the exit status is 0, the then set of

commands is executed. When the exit status is 1, the else set of commands is executed.

Case syntax: The case statement contains the string that is evaluated. It ends with an

end case token, which is esac (case spelled backward). Between the start and end case

statements is the pattern list.

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 15

For every pattern that needs to be tested, a separate patter is defined in the pattern list.

The pattern ends with a closing parenthesis. Associated with each pattern is one or more

commands. The commands follow the normal rules for commands with the addition that the

last command must end in two semicolons. The last action in the pattern list is usually the

wildcard asterisk, making it the default if none of the other cases match.

REPETITION:

The real power of computers is their ability to repeat an operation or a series of

operations many times. This repetition, known as looping, is one of the basic programming

concepts.

A loop is an action or a series of actions repeated under the control of loop criteria

written by the programmer. Each loop tests the criteria. If the criteria tests valid, the loop

continues; if it tests invalid, the loop terminates.

Command-Controlled and List-Controlled Loops:

Loops in Korn shell can be grouped into two general categories: command-controlled

loops and list-controlled loops.

Command-Controlled loops:

In a command controlled loop, the execution of a command determines whether the

loop body executes or not. There are two command-controlled loops in the Korn shell : the

while loop and the until loop.

Syntax for while:

while command

do

 action

done

The until loop works just like while loop, except that it loops as long as the exit status of

the command is false. In this sense, it is the complement of the while loop. The syntax of until

loop is:

until command

do

 action

done

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 16

List-Controlled loops:

In a list-controlled loop, there is a control list. The number of elements in the list

controls the number of iterations. If the control list contains five elements, the body of the loop

is executed five times; if the control list contains ten elements, the body of the loop is executed

ten times.

The for-in loop is the first list-controlled loop in the Korn shell. The list can be any type

of string; for example it can be words, lines, sentences, or a file.

for-in loop Syntax:

for variable in list

do

 action

done

Example:

for I in 1 2 3 4 5

do

 print $I hello

done

The select loop is the second Korn shell list-controlled loop. The select loop is a special

loop designed to create menus. A menu is a list of options displayed on the monitor. The user

selects one of the menu options, which is then processed by the script. The format of the select

loop is similar to for-in loop. It begins with the keyword select followed by a variable and a list

of strings:

$ select variable in list

Example:

select choice in month year quit

do

case $choice in

 month) cal; ;

 year) yr-$(date “+%Y”)

 cal $yr; ;

quit) print “Hope you found your date”

 exit; ;

*) print “sorry, I don’t understand your answer”

esac

done

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 17

SPECIAL PARAMETERS AND VARIABLES

The Korn shell provides both special parameters and special variables for our use.

SPECIAL PARAMETERS:

Besides having positional parameters numbered 1 to 9, the Korn shell script can have

four other special parameters: one that contains the script filename, one that contains the

number of arguments entered by the user, and two that combine all other parameters.

Script Name ($0):

The script name parameter ($0) holds the name of the script. This is often useful when a

script calls other script. The script name parameter can be passed to the called script so that it

knows who called it. As another use, when a script needs to issue an error message, it can

include its name as part of the message. Having the script name in the message clearly

identifies which script had a problem.

Number of Arguments ($#):

A second special parameter holds the number of arguments passed to the script. Scripts

can use this parameter, referred to as $#, programmatically in several ways.

All Parameters ($* and $@):

Two special parameters combine the nine positional parameters in to one string. They

can be used with or without quotes.

SPECIAL VARIABLES:

Internal Field Separator (IFS):

The IFS variable holds the tokens used by the shell commands to parse the string into

substrings such as words. The default tokens are the three white space tokens: the space, tab

and newline.

One common use of the internal field separators parses a read string into separate

words. It receives a login id as an argument and then searches the password file (/etc/passwd)

for the matching id. When it finds, it prints the login id and the user name.

Special Parameter and Variable Summary:

Parameter or Variable Description

$# Number of arguments to a script

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 18

Parameter or Variable Description

$0 Script Name

$* All parameters

$@ All parameters

$? Exit status variable

IFS Internal field separator

CHANGING POSITIONAL PARAMETERS:

The positional parameters can be changed within the script only by using the set

command; values cannot be directly assigned to them. This means that to assign values to the

script positional parameters, we must use set. The set command parses an input string and

places each separate part of the string into a different positional parameter (up to nine).

If the IFS is set to the default, set parses to words. We can set the IFS to any desired

token and use set to parse the data accordingly.

Shift Command:

One very useful command in shell scripting is the shift command. The shift command

moves the values in the parameters toward the beginning of the parameter list. To understand

the shift command, think of the parameters as a list rather than as individual variables. When

we shift, we move each parameter to the left in the list. If we shift three positions, therefore,

the fourth parameter will be in the first position, the fifth will be in the second position, and so

forth until all parameters have been moved three positions to the left. The parameters at the

end of the set become null.

ARGUMENT VALIDATION:

Good programs are designed to be fail-safe. This means that anything that can be

validated should be confirmed before it is used. We discuss various techniques used to validate

user-supplied arguments:

Number of Arguments Validation:

The first code in a script that contains parameters should validate the number of

arguments. Some scripts use a fixed number of arguments; other scripts use a variable number

of arguments.

Even when the number of arguments is variable, there is usually a minimum number

that is required. Both fixed-and variable- numbered arguments are validated by using the

number of arguments parameter ($#).

UNIT-IV Interactive Korn shell and
Korn shell Programming

www.jkmaterials.yolasite.com www.jkdirectory.yolasite.com
Page 19

Minimum Number of Arguments:

When a script expects a variable number of arguments and there is a minimum number

required, we should verify that the minimum number has been entered.

Type of Argument Validation:

After the exact or minimum number of arguments is validated, the script should verify

that each arguments type is correct. While all arguments are passed as strings, the string

contents can be a number, a filename, or any other verifiable type.

Numeric Validation:

The value of numeric parameters is virtually unlimited; some scripts simply need

number. Scripts that extract a range of lines from a file are of this nature. Other scripts may

require that the number be in a range.

File Type Validation:

If an argument is an input file, we can verify that the file exists and that it has read

permission. If the file is an output file, there is no need to verify it because UNIX will create it if

it doesn’t exist.

DEBUGGING SCRIPTS:

Whenever we write a script we test it. Often multiple tests are necessary. Sometimes

the tests don’t deliver the expected results. In these cases, we need to debug the script. There

are two Korn shell options that we can use to help debug script: the verbosity (verbose)

option and the execute trace (xtrace) option.

The verbose option prints each statement that is syntactically correct and displays an

error message if it is wrong. Script output, if any is generated.

The xtrace option prints each command, preceded by a plus (+) sign, before it is

executed. It also replaces the value of each variable accessed in the statement. For example, in

the statement y=$x, the $x is replaced with actual variable value at the time the statement is

executed.

SCRIPT EXAMPLES:

Cat  cat command purpose is explained with script Copy  cp command purpose is

explained with script. Refer Pg. No.-601 UNIX and Shell Programming by Behrouz A. Forouzan,

Richard F. Gilberg

