
OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 1

Java Is a Strongly Typed Language:

It is important to state at the outset that Java is a strongly typed language.

Indeed, part of Java’s safety and robustness comes from this fact. Let’s see what this

means. First, every variable has a type, every expression has a type, and every type is

strictly defined.

Second, all assignments, whether explicit or via parameter passing in method

calls, are checked for type compatibility. There are no automatic coercions or

conversions of conflicting types as in some languages.

The Java compiler checks all expressions and parameters to ensure that the types

are compatible. Any type mismatches are errors that must be corrected before the

compiler will finish compiling the class.

The Primitive Types:

Java defines eight primitive types of data: byte, short, int, long, char, float,

double, and boolean. The primitive types are also commonly referred to as simple

types, and both terms will be used in this book. These can be put in four groups:

 Integers This group includes byte, short, int, and long, which are for

whole-value designed numbers.

 Floating-point numbers This group includes float and double, which

represent numbers with fractional precision.

 Characters This group includes char, which represents symbols in a

character set, like letters and numbers.

 Boolean This group includes boolean, which is a special type for

representing true/false values.

You can use these types as-is, or to construct arrays or your own class types.

Thus, they form the basis for all other types of data that you can create. The primitive

types represent single values—not complex objects.

Although Java is otherwise completely object-oriented, the primitive types are

not. They are analogous to the simple types found in most other non–object-oriented

languages. The reason for this is efficiency. Making the primitive types into objects

would have degraded performance too much.

The primitive types are defined to have an explicit range and mathematical

behavior. Languages such as C and C++ allow the size of an integer to vary based upon

the dictates of the execution environment.

However, Java is different. Because of Java’s portability requirement, all data

types have a strictly defined range. For example, an int is always 32 bits, regardless of

the particular platform.

This allows programs to be written that are guaranteed to run without porting on

any machine architecture. While strictly specifying the size of an integer may cause a

small loss of performance in some environments, it is necessary in order to achieve

portability.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 2

Data Types:

1. Integers:

Java defines four integer types: byte, short, int, and long. All of these are

signed, positive and negative values. Java does not support unsigned, positive-only

integers. Many other computer languages support both signed and unsigned integers.

However, Java’s designers felt that unsigned integers were unnecessary.

Specifically, they felt that the concept of unsigned was used mostly to specify the

behavior of the high-order bit, which defines the sign of an integer value.

Java manages the meaning of the high order bit differently, by adding a special

―unsigned right shift‖ operator. Thus, the need for an unsigned integer type was

eliminated. The width of an integer type should not be thought of as the amount of

storage it consumes, but rather as the behavior it defines for variables and expressions

of that type.

The Java run-time environment is free to use whatever size it wants, as long as

the types behave as you declared them. The width and ranges of these integer types

vary widely, as shown in this table:

Name Width Range

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647

short 16 –32,768 to 32,767

byte 8 –128 to 127

Let’s look at each type of integer:

byte:

The smallest integer type is byte. This is a signed 8-bit type that has a range

from –128 to127. Variables of type byte are especially useful when you’re working with

a stream of data from a network or file. They are also useful when you’re working with

raw binary data that may not be directly compatible with Java’s other built-in types.

Byte variables are declared by use of the byte keyword. For example, the

following declares two byte variables called b and c:

byte b, c;

short:

short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is

probably the least used Java type. Here are some examples of short variable

declarations:

short s;

short t;

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 3

int:

The most commonly used integer type is int. It is a signed 32-bit type that has a

range from –2,147,483,648 to 2,147,483,647. In addition to other uses, variables of

type int are commonly employed to control loops and to index arrays.

Although you might think that using a byte or short would be more efficient than

using an int in situations in which the larger range of an int is not needed, this may not

be the case. The reason is that when byte and short values are used in an expression,

they are promoted to int when the expression is evaluated. Therefore, int is often the

best choice when an integer is needed.

long:

long is a signed 64-bit type and is useful for those occasions where an int type is

not large enough to hold the desired value. The range of a long is quite large. This

makes it useful when big, whole numbers are needed.

// Compute distance light travels using long variables.

class Light {

public static void main(String args[]) {

int lightspeed;

long days;

long seconds;

long distance;

// approximate speed of light in miles per second

lightspeed = 186000;

days = 1000; // specify number of days here

seconds = days * 24 * 60 * 60; // convert to seconds

distance = lightspeed * seconds; // compute distance

System.out.print("In " + days);

System.out.print(" days light will travel about ");

System.out.println(distance + " miles.");

}

}

This program generates the following output:

In 1000 days light will travel about 16070400000000 miles.

Note: Clearly, the result could not have been held in an int variable.

Floating-Point Types:

Floating-point numbers, also known as real numbers, are used when evaluating

expressions that require fractional precision. For example, calculations such as square

root, or transcendentals such as sine and cosine, result in a value whose precision

requires a floating-point type. Java implements the standard (IEEE–754) set of floating-

point types and operators.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 4

There are two kinds of floating-point types, float and double, which represent

single- and double-precision numbers, respectively. Their width and ranges are shown

here:

float:

The type float specifies a single-precision value that uses 32 bits of storage.

Single precision is faster on some processors and takes half as much space as double

precision, but will become imprecise when the values are either very large or very small.

Variables of type float are useful when you need a fractional component, but don’t

require a large degree of precision.

For example, float can be useful when representing dollars and cents. Here are

some example float variable declarations:

float hightemp, lowtemp;

double:

Double precision, as denoted by the double keyword, uses 64 bits to store a

value. Double precision is actually faster than single precision on some modern

processors that have been optimized for high-speed mathematical calculations. All

transcendental math functions, such as sin(), cos(), and sqrt(), return double

values. When you need to maintain accuracy over many iterative calculations, or are

manipulating large-valued numbers, double is the best choice.

// Compute the area of a circle.

class Area {

public static void main(String args[]) {

double pi, r, a;

r = 10.8; // radius of circle

pi = 3.1416; // pi, approximately

a = pi * r * r; // compute area

System.out.println("Area of circle is " + a);

}

}

Characters:

In Java, the data type used to store characters is char. However, C/C++

programmers beware: char in Java is not the same as char in C or C++. In C/C++,

char is 8 bits wide. This is not the case in Java.

Instead, Java uses Unicode to represent characters. Unicode defines a fully

international character set that can represent all of the characters found in all human

languages.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 5

It is a unification of dozens of character sets, such as Latin, Greek, Arabic,

Cyrillic, Hebrew, Katakana, Hangul, and many more. At the time of Java's creation,

Unicode required16 bits. Thus, in Java char is a 16-bit type. The range of a char is 0 to

65,536.

There are nonegative chars. The standard set of characters known as ASCII still

ranges from 0 to 127 as always, and the extended 8-bit character set, ISO-Latin-1,

ranges from 0 to 255.Here is a program that demonstrates char variables:

// Demonstrate char data type.

class CharDemo {

public static void main(String args[]) {

char ch1, ch2;

ch1 = 88; // code for X

ch2 = 'Y';

System.out.print("ch1 and ch2: ");

System.out.println(ch1 + " " + ch2);

}

}

This program displays the following output:

ch1 and ch2: X Y

Notice that ch1 is assigned the value 88, which is the ASCII (and Unicode) value

that corresponds to the letter X. As mentioned, the ASCII character set occupies the first

127values in the Unicode character set. For this reason, all the ―old tricks‖ that you may

have used with characters in other languages will work in Java, too.

Although char is designed to hold Unicode characters, it can also be used as an

integer type on which you can perform arithmetic operations. For example, you can add

two

characters together, or increment the value of a character variable. Consider the

following program:

// char variables behave like integers.

class CharDemo2 {

public static void main(String args[]) {

char ch1;

ch1 = 'X';

System.out.println("ch1 contains " + ch1);

ch1++; // increment ch1

System.out.println("ch1 is now " + ch1);

}

}

The output generated by this program is shown here:

ch1 contains X

ch1 is now Y

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 6

In the program, ch1 is first given the value X. Next, ch1 is incremented. This

results in ch1containing Y, the next character in the ASCII (and Unicode) sequence.

NOTE In the formal specification for Java, char is referred to as an integral type, which means that

it is in the same general category as int, short, long, and byte. However, because its principal use

is for representing Unicode characters, char is commonly considered to be in a category of its own.

Booleans:

Java has a primitive type, called boolean, for logical values. It can have only one

of two possible values, true or false. This is the type returned by all relational

operators, as in the case of a < b. boolean is also the type required by the conditional

expressions that govern the control statements such as if and for. Here is a program

that demonstrates the boolean type:

// Demonstrate boolean values.

class BoolTest {

public static void main(String args[]) {

boolean b;

b = false;

System.out.println("b is " + b);

b = true;

System.out.println("b is " + b);

// a boolean value can control the if statement

if(b) System.out.println("This is executed.");

b = false;

if(b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value

System.out.println("10 > 9 is " + (10 > 9));

}

}

The output generated by this program is shown here:

b is false

b is true

This is executed.

10 > 9 is true

There are three interesting things to notice about this program. First, as you can

see, when a boolean value is output by println(), "true" or "false" is displayed.

Second, the value of a boolean variable is sufficient, by itself, to control the if

statement. There is no need to write an if statement like this:

if(b == true) …

Third, the outcome of a relational operator, such as <, is a boolean value. This is

why the expression 10>9 displays the value "true." Further, the extra set of

parentheses around 10>9is necessary because the + operator has a higher precedence

than the >.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 7

Variables:

The variable is the basic unit of storage in a Java program. A variable is defined

by the combination of an identifier, a type, and an optional initializer. In addition, all

variables have a scope, which defines their visibility, and a lifetime.

Declaring a Variable:

In Java, all variables must be declared before they can be used. The basic form of

a variable declaration is shown here:

type identifier [= value][, identifier [= value] …];

Here, type is one of Java’s atomic types, or the name of a class or interface. The

identifier is the name of the variable. You can initialize the variable by specifying an

equal sign and a value. Keep in mind that the initialization expression must result in a

value of the same (or compatible)type as that specified for the variable.

To declare more than one variable of the specified type, use a comma-separated

list. Here are several examples of variable declarations of various types. Note that some

include an initialization.

int a, b, c; // declares three ints, a, b, and c.

int d = 3, e, f = 5; // declares three more ints, initializingd and f.

byte z = 22; // initializes z.

double pi = 3.14159; // declares an approximation of pi.

char x = 'x'; // the variable x has the value 'x'.

The identifiers that you choose have nothing intrinsic in their names that indicate

their type. Java allows any properly formed identifier to have any declared type.

Dynamic Initialization:

Although the preceding examples have used only constants as initializers, Java

allows

variables to be initialized dynamically, using any expression valid at the time the

variable is declared. For example, here is a short program that computes the length of

the hypotenuse of aright triangle given the lengths of its two opposing sides:

// Demonstrate dynamic initialization.

class DynInit {

public static void main(String args[]) {

double a = 3.0, b = 4.0;

// c is dynamically initialized

double c = Math.sqrt(a * a + b * b);

System.out.println("Hypotenuse is " + c);

}

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 8

Here, three local variables—a, b, and c—are declared. The first two, a and b, are

initialized by constants. However, c is initialized dynamically to the length of the

hypotenuse (using the Pythagorean theorem).

The program uses another of Java’s built-in methods, sqrt(),which is a member

of the Math class, to compute the square root of its argument. The key point here is

that the initialization expression may use any element valid at the time of the

initialization, including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables:

So far, all of the variables used have been declared at the start of the main()

method. However, Java allows variables to be declared within any block. A block is

begun with an opening curly brace and ended by a closing curly brace. A block defines a

scope. Thus, each time you start a new block, you are creating a new scope. A scope

determines what objects are visible to other parts of your program. It also determines

the lifetime of those objects.

Many other computer languages define two general categories of scopes: global

and local. However, these traditional scopes do not fit well with Java’s strict, object-

oriented model. While it is possible to create what amounts to being a global scope, it is

by far the exception, not the rule.

In Java, the two major scopes are those defined by a class and those defined by a

method. Even this distinction is somewhat artificial. However, since the class scope has

several unique properties and attributes that do not apply to the scope defined by a

method, this distinction makes some sense.

Because of the differences, a discussion of class scope (and variables declared

within it) is deferred, when classes are described. For now, we will only examine the

scopes defined by or within a method. The scope defined by a method begins with its

opening curly brace. However, if that method has parameters, they too are included

within the method’s scope.

As a general rule, variables declared inside a scope are not visible (that is,

accessible)to code that is defined outside that scope. Thus, when you declare a variable

within a scope, you are localizing that variable and protecting it from unauthorized

access and/or modification.

Indeed, the scope rules provide the foundation for encapsulation. Scopes can be

nested. For example, each time you create a block of code, you are creating a new,

nested scope. When this occurs, the outer scope encloses the inner scope. This means

that objects declared in the outer scope will be visible to code within the inner scope.

However, the reverse is not true. Objects declared within the inner scope will not

be visible outside it. To understand the effect of nested scopes, consider the following

program:

// Demonstrate block scope.

class Scope {

public static void main(String args[]) {

int x; // known to all code within main

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 9

x = 10;

if(x == 10) { // start new scope

int y = 20; // known only to this block

// x and y both known here.

System.out.println("x and y: " + x + " " + y);

x = y * 2;

}

// y = 100; // Error! y not known here

// x is still known here.

System.out.println("x is " + x);

}

}

As the comments indicate, the variable x is declared at the start of main()’s

scope and inaccessible to all subsequent code within main(). Within the if block, y is

declared. Since a block defines a scope, y is only visible to other code within its block.

This is why outside of its block, the line y = 100; is commented out.

If you remove the leading comment symbol, a compile-time error will occur,

because y is not visible outside of its block. Within the if block, x can be used because

code within a block (that is, a nested scope) has access to variables declared by an

enclosing scope.

Within a block, variables can be declared at any point, but are valid only after

they are declared. Thus, if you define a variable at the start of a method, it is available

to all of the code within that method. Conversely, if you declare a variable at the end of

a block, it is effectively useless, because no code will have access to it. For example, this

fragment is invalid because count cannot be used prior to its declaration:

// This fragment is wrong!

count = 100; // oops! cannot use count before it is declared!

int count;

Here is another important point to remember: variables are created when their

scope is entered, and destroyed when their scope is left. This means that a variable will

not hold its value once it has gone out of scope. Therefore, variables declared within a

method will not hold their values between calls to that method.

Also, a variable declared within a block will lose its value when the block is left.

Thus, the lifetime of a variable is confined to its scope. If a variable declaration includes

an initializer, then that variable will be reinitialized each time the block in which it is

declared is entered. For example, consider the next program:

// Demonstrate lifetime of a variable.

class LifeTime {

public static void main(String args[]) {

int x;

for(x = 0; x < 3; x++) {

int y = -1; // y is initialized each time block is entered

System.out.println("y is: " + y); // this always prints -1

y = 100;

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 10

System.out.println("y is now: " + y);

}

}

}

The output generated by this program is shown here:

y is: -1

y is now: 100

y is: -1

y is now: 100

y is: -1

y is now: 100

As you can see, y is reinitialized to –1 each time the inner for loop is entered.

Even thought is subsequently assigned the value 100, this value is lost. One last point:

Although blocks can be nested, you cannot declare a variable to have the same name as

one in an outer scope. For example, the following program is illegal:

// This program will not compile

class ScopeErr {

public static void main(String args[]) {

int bar = 1;

{ // creates a new scope

int bar = 2; // Compile-time error – bar already defined!

}

} }

Type Conversion (Boxing and Unboxing/Wrapping and Unwrapping)and

Casting:

If you have previous programming experience, then you already know that it is

fairly common to assign a value of one type to a variable of another type. If the two

types are compatible, then Java will perform the conversion automatically. For example,

it is always possible to assign an int value to a long variable.

However, not all types are compatible, and thus, not all type conversions are

implicitly allowed. For instance, there is no automatic conversion defined from double to

byte. Fortunately, it is still possible to obtain a conversion between incompatible types.

To do so, you must use a cast, which performs an explicit conversion between

incompatible types.

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type

conversion will take place if the following two conditions are met:

• The two types are compatible.

• The destination type is larger than the source type.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 11

When these two conditions are met, a widening conversion takes place. For

example, the int type is always large enough to hold all valid byte values, so no explicit

cast statement is required.

For widening conversions, the numeric types, including integer and floating-point

types, are compatible with each other. However, there are no automatic conversions

from the numeric types to char or boolean. Also, char and boolean are not compatible

with each other. Java also performs an automatic type conversion when storing a literal

integer constant into variables of type byte, short, long, or char.

Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all needs.

For example, what if you want to assign an int value to a byte variable? This conversion

will not be performed automatically, because a byte is smaller than an int. This kind of

conversion is sometimes called a narrowing conversion, since you are explicitly making

the value narrower so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A

cast is simply an explicit type conversion. It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to. For

example, the following fragment casts an int to a byte. If the integer’s value is larger

than the range of a byte, it will be reduced modulo (the remainder of an integer division

by the) byte’s range.

int a;

byte b;

// …

b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to

an integer type: truncation. As you know, integers do not have fractional components.

Thus, when a floating-point value is assigned to an integer type, the fractional

component is lost.

For example, if the value 1.23 is assigned to an integer, the resulting value will

simply be 1.The 0.23 will have been truncated. Of course, if the size of the whole

number component is too large to fit into the target integer type, then that value will be

reduced modulo the target type’s range.

The following program demonstrates some type conversions that require casts:

// Demonstrate casts.

class Conversion {

public static void main(String args[]) {

byte b;

int i = 257;

double d = 323.142;

System.out.println("\nConversion of int to byte.");

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 12

b = (byte) i;

System.out.println("i and b " + i + " " + b);

System.out.println("\n Conversion of double to int.");

i = (int) d;

System.out.println("d and i " + d + " " + i);

System.out.println("\n Conversion of double to byte.");

b = (byte) d;

System.out.println("d and b " + d + " " + b);

}

}

This program generates the following output:

Conversion of int to byte.

i and b 257 1

Conversion of double to int.

d and i 323.142 323

Conversion of double to byte.

d and b 323.142 67

Let’s look at each conversion. When the value 257 is cast into a byte variable,

the result is the remainder of the division of 257 by 256 (the range of a byte), which is

1 in this case. When the d is converted to an int, its fractional component is lost. When

d is converted to a byte, its fractional component is lost, and the value is reduced

modulo 256, which in this case is 67.

Boxing (or Autoboxing) and Unboxing:

Autoboxing is the automatic conversion that the Java compiler makes between

the primitive types and their corresponding object wrapper classes. For example,

converting an int to an Integer, a double to a Double, and so on; if the conversion goes

the other way, this is called unboxing.

Here is the simplest example of autoboxing:

Character ch = 'a';

Boxing Example:

class BoxingExample1{

 public static void main(String args[]){

 int a=50; char b='h';

 Integer a2=new Integer(a);//Boxing

 Character a3=new Character(b);//Boxing

 System.out.println(a2+" "+a3);

 }

}

Output:

50 h

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 13

Unboxing Example:

class UnboxingExample1{

 public static void main(String args[]){

 Integer i=new Integer(50);

 int a=i;

 Character c = new Character('A');

 char s=c;

 System.out.println(a);

 System.out.println(s);

 }

}

Output:

50

A

Advantage of Autoboxing and Unboxing:

No need of conversion between primitives and Wrappers manually so less coding

is required.

Wrapping and Unwrapping:

A Wrapper class is a class whose object wraps or contains a primitive data types.

Need of Wrapper Classes:

1. They convert primitive data types into objects. Objects are needed if we wish to

modify the arguments passed into a method (because primitive types are passed

by value).

2. The classes in java.util package handles only objects and hence wrapper classes

help in this case also.

3. Data structures in the Collection framework, such as ArrayList and Vector, store

only objects (reference types) and not primitive types.

4. An object is needed to support synchronization in multithreading.

Primitive Data types and their Corresponding Wrapper class

https://media.geeksforgeeks.org/wp-content/uploads/Wrapper-Class.png

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 14

Wrapper class Example: Primitive to Wrapper

//Java program to convert primitive into objects

//Autoboxing example of int to Integer

public class WrapperExample1{

public static void main(String args[]){

//Converting int into Integer

int a=20;

Integer i=Integer.valueOf(a);//converting int into Integer explicitly

Integer j=a;//autoboxing, now compiler will write Integer.valueOf(a) internally

System.out.println(a+" "+i+" "+j);

}}

Output:

20 20 20

Wrapper class Example: Wrapper to Primitive

//Java program to convert object into primitives

//Unboxing example of Integer to int

public class WrapperExample2{

public static void main(String args[]){

//Converting Integer to int

Integer a=new Integer(3);

int i=a.intValue();//converting Integer to int explicitly

int j=a;//unboxing, now compiler will write a.intValue() internally

System.out.println(a+" "+i+" "+j);

}}

Output:

3 3 3

Arrays:

An array is a group of like-typed variables that are referred to by a common

name. Arrays of any type can be created and may have one or more dimensions. A

specific element in an array is accessed by its index. Arrays offer a convenient means of

grouping related information.

NOTE If you are familiar with C/C++, be careful. Arrays in Java work differently

than they do in those languages.

One-Dimensional Arrays:

A one-dimensional array is, essentially, a list of like-typed variables. To create an

array, you first must create an array variable of the desired type. The general form of a

one-dimensional array declaration is

type var-name[];

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 15

Here, type declares the element type (also called the base type) of the array. The

element type determines the data type of each element that comprises the array. Thus,

the element type for the array determines what type of data the array will hold. For

example, the following declares an array named month_days with the type ―array of

int‖:

int month_days[];

Although this declaration establishes the fact that month_days is an array

variable, no array actually exists. To link month_days with an actual, physical array of

integers, you must allocate one using new and assign it to month_days. new is a

special operator that allocates memory.

The general form of new as it applies to one-dimensional arrays appears as

follows:

array-var = new type [size];

Here, type specifies the type of data being allocated, size specifies the number of

elements in the array, and array-var is the array variable that is linked to the array. That

is, to use new to allocate an array, you must specify the type and number of elements

to allocate. The elements in the array allocated by new will automatically be initialized

to zero (for numeric types), false(for boolean), or null (for reference types).

This example allocates a 12-element array of integers and links them to

month_days:

month_days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers.

Further, all elements in the array will be initialized to zero. Thus, in Java all arrays are

dynamically allocated.

Once you have allocated an array, you can access a specific element in the array

by

specifying its index within square brackets. All array indexes start at zero. For

example,

this statement assigns the value 28 to the second element of month_days:

month_days[1] = 28;

The next line displays the value stored at index 3:

System.out.println(month_days[3]);

Putting together all the pieces, here is a program that creates an array of the

number of days in each month:

// Demonstrate a one-dimensional array.

class Array {

public static void main(String args[]) {

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 16

int month_days[];

month_days = new int[12];

month_days[0] = 31;

month_days[1] = 28;

month_days[2] = 31;

month_days[3] = 30;

month_days[4] = 31;

month_days[5] = 30;

month_days[6] = 31;

month_days[7] = 31;

month_days[8] = 30;

month_days[9] = 31;

month_days[10] = 30;

month_days[11] = 31;

System.out.println("April has " + month_days[3] + " days.");

}

}

When you run this program, it prints the number of days in April. As mentioned,

Java array indexes start with zero, so the number of days in April is month_days[3] or

30.It is possible to combine the declaration of the array variable with the allocation of

the array itself, as shown here:

int month_days[] = new int[12];

This is the way that you will normally see it done in professionally written Java

programs. Arrays can be initialized when they are declared. The process is much the

same as that used to initialize the simple types.

An array initializer is a list of comma-separated expressions surrounded by curly

braces. The commas separate the values of the array elements. The array will

automatically be created large enough to hold the number of elements you specify in the

array initializer. There is no need to use new.

For example, to store the number of days in each month, the following code

creates an initialized array of integers:

// An improved version of the previous program.

class AutoArray {

public static void main(String args[]) {

int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,30, 31 };

System.out.println("April has " + month_days[3] + " days.");

}

}

When you run this program, you see the same output as that generated by the

previous version.

Java strictly checks to make sure you do not accidentally try to store or reference

values outside of the range of the array. The Java run-time system will check to be sure

that all array indexes are in the correct range.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 17

For example, the run-time system will check the value of each index into

month_days to make sure that it is between 0 and 11 inclusive.

If you try to access elements outside the range of the array (negative numbers or

numbers greater than the length of the array), you will cause a run-time error. Here is

one more example that uses a one-dimensional array. It finds the average of a set of

numbers.

// Average an array of values.

class Average {

public static void main(String args[]) {

double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};

double result = 0;

int i;

for(i=0; i<5; i++)

result = result + nums[i];

System.out.println("Average is " + result / 5);

}

}

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. These, as you

might expect, look and act like regular multidimensional arrays. However, as you will

see, there are a couple of subtle differences. To declare a multidimensional array

variable, specify each additional index using another set of square brackets. For

example, the following declares a two-dimensional array variable called twoD:

int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally, this matrix is

implemented as an array of arrays of int. conceptually; this array will look like the one

shown in Figure below:

Figure:A conceptual view of a 4 by 5, two-dimensional array

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 18

The following program numbers each element in the array from left to right, top

to bottom, and then displays these values:

// Demonstrate a two-dimensional array.

class TwoDArray {

public static void main(String args[]) {

int twoD[][]= new int[4][5];

int i, j, k = 0;

for(i=0; i<4; i++)

for(j=0; j<5; j++) {

twoD[i][j] = k;

k++;

}

for(i=0; i<4; i++) {

for(j=0; j<5; j++)

System.out.print(twoD[i][j] + " ");

System.out.println();

}

}

}

This program generates the following output:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

When you allocate memory for a multidimensional array, you need only specify

the memory for the first (leftmost) dimension. You can allocate the remaining

dimensions separately. For example, this following code allocates memory for the first

dimension of twoD when it is declared. It allocates the second dimension manually.

int twoD[][] = new int[4][];

twoD[0] = new int[5];

twoD[1] = new int[5];

twoD[2] = new int[5];

twoD[3] = new int[5];

While there is no advantage to individually allocating the second dimension arrays

in this situation, there may be in others. For example, when you allocate dimensions

manually, you do not need to allocate the same number of elements for each dimension.

As stated earlier, since multidimensional arrays are actually arrays of arrays, the

length of each array is under your control. For example, the following program creates a

two-dimensional array in which the sizes of the second dimension are unequal:

// Manually allocate differing size second dimensions.

class TwoDAgain {

public static void main(String args[]) {

int twoD[][] = new int[4][];

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 19

twoD[0] = new int[1];

twoD[1] = new int[2];

twoD[2] = new int[3];

twoD[3] = new int[4];

int i, j, k = 0;

for(i=0; i<4; i++)

for(j=0; j<i+1; j++) {

twoD[i][j] = k;

k++;

}

for(i=0; i<4; i++) {

for(j=0; j<i+1; j++)

System.out.print(twoD[i][j] + " ");

System.out.println();

}

}

}

This program generates the following output:

0

1 2

3 4 5

6 7 8 9

The array created by this program looks like this:

The use of uneven (or irregular) multidimensional arrays may not be appropriate

for many applications, because it runs contrary to what people expect to find when a

multidimensional array is encountered. However, irregular arrays can be used effectively

in some situations.

For example, if you need a very large two-dimensional array that is sparsely

populated (that is, one in which not all of the elements will be used), then an irregular

array might be a perfect solution.

It is possible to initialize multidimensional arrays. To do so, simply enclose each

dimension’s initializer within its own set of curly braces. The following program creates a

matrix where each element contains the product of the row and column indexes. Also

notice that you can use expressions as well as literal values inside of array initializers.

// Initialize a two-dimensional array.

class Matrix {

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 20

public static void main(String args[]) {

double m[][] = {

{ 0*0, 1*0, 2*0, 3*0 },

{ 0*1, 1*1, 2*1, 3*1 },

{ 0*2, 1*2, 2*2, 3*2 },

{ 0*3, 1*3, 2*3, 3*3 }

};

int i, j;

for(i=0; i<4; i++) {

for(j=0; j<4; j++)

System.out.print(m[i][j] + " ");

System.out.println();

}

}

}

When you run this program, you will get the following output:

0.0 0.0 0.0 0.0

0.0 1.0 2.0 3.0

0.0 2.0 4.0 6.0

0.0 3.0 6.0 9.0

As you can see, each row in the array is initialized as specified in the initialization

lists.

Alternative Array Declaration Syntax

There is a second form that may be used to declare an array:

type[] var-name;

Here, the square brackets follow the type specifier, and not the name of the array

variable.

For example, the following two declarations are equivalent:

int al[] = new int[3];

int[] a2 = new int[3];

The following declarations are also equivalent:

char twod1[][] = new char[3][4];

char[][] twod2 = new char[3][4];

This alternative declaration form offers convenience when declaring several

arrays at the same time. For example,

int[] nums, nums2, nums3; // create three arrays

creates three array variables of type int. It is the same as writing

int nums[], nums2[], nums3[]; // create three arrays

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 21

The alternative declaration form is also useful when specifying an array as a

return type for a method.

Operators:

Java provides a rich operator environment. Most of its operators can be divided

into the following four groups: arithmetic, bitwise, relational, and logical. Java also

defines some additional operators that handle certain special situations.

Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that

they are used in algebra. The following table lists the arithmetic operators:

The operands of the arithmetic operators must be of a numeric type. You cannot

use them on boolean types, but you can use them on char types, since the char type

in Java is, essentially, a subset of int.

The Basic Arithmetic Operators

The basic arithmetic operations—addition, subtraction, multiplication, and

division—all behave as you would expect for all numeric types. The unary minus operator

negates its single operand.

The unary plus operator simply returns the value of its operand. Remember that

when the division operator is applied to an integer type, there will be no fractional

component attached to the result.

The following simple example program demonstrates the arithmetic operators. It

also illustrates the difference between floating-point division and integer division.

// Demonstrate the basic arithmetic operators.

class BasicMath {

public static void main(String args[]) {

// arithmetic using integers

System.out.println("Integer Arithmetic");

int a = 1 + 1;

int b = a * 3;

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 22

int c = b / 4;

int d = c - a;

int e = -d;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

System.out.println("e = " + e);

// arithmetic using doubles

System.out.println("\nFloating Point Arithmetic");

double da = 1 + 1;

double db = da * 3;

double dc = db / 4;

double dd = dc - a;

double de = -dd;

System.out.println("da = " + da);

System.out.println("db = " + db);

System.out.println("dc = " + dc);

System.out.println("dd = " + dd);

System.out.println("de = " + de);

}

}

When you run this program, you will see the following output:

Integer Arithmetic

a = 2

b = 6

c = 1

d = -1

e = 1

Floating Point Arithmetic

da = 2.0

db = 6.0

dc = 1.5

dd = -0.5

de = 0.5

The Modulus Operator

The modulus operator, %, returns the remainder of a division operation. It can

be applied to floating-point types as well as integer types. The following example

program demonstrates the %:

// Demonstrate the % operator.

class Modulus {

public static void main(String args[]) {

int x = 42;

double y = 42.25;

System.out.println("x mod 10 = " + x % 10);

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 23

System.out.println("y mod 10 = " + y % 10);

}

}

When you run this program, you will get the following output:

x mod 10 = 2

y mod 10 = 2.25

Arithmetic Compound Assignment Operators

Java provides special operators that can be used to combine an arithmetic

operation with an assignment. As you probably know, statements like the following are

quite common in programming:

a = a + 4;

In Java, you can rewrite this statement as shown here:

a += 4;

This version uses the += compound assignment operator. Both statements

perform the same action: they increase the value of a by 4.Here is another example,

a = a % 2;

which can be expressed as

a %= 2;

In this case, the %= obtains the remainder of a /2 and puts that result back into

a. There are compound assignment operators for all of the arithmetic, binary operators.

Thus, any statement of the form

var = var op expression;

can be rewritten as var op= expression;

The compound assignment operators provide two benefits. First, they save you a

bit of typing, because they are ―shorthand‖ for their equivalent long forms. Second, in

some cases they are more efficient than are their equivalent long forms.

For these reasons, you will often see the compound assignment operators used in

professionally written Java programs. Here is a sample program that shows several op=

assignments in action:

// Demonstrate several assignment operators.

class OpEquals {

public static void main(String args[]) {

int a = 1;

int b = 2;

int c = 3;

a += 5;

b *= 4;

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 24

c += a * b;

c %= 6;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

}

}

The output of this program is shown here:

a = 6

b = 8

c = 3

Increment and Decrement

The ++ and the – – are Java’s increment and decrement operators. The

increment operator increases its operand by one. The decrement operator decreases its

operand by one. For example, this statement: x = x + 1; can be rewritten like this

by use of the increment operator: x++;

Similarly, this statement: x = x - 1; is equivalent to x--;

These operators are unique in that they can appear both in postfix form, where

they follow the operand as just shown, and prefix form, where they precede the

operand. In the foregoing examples, there is no difference between the prefix and

postfix forms.

However, when the increment and/or decrement operators are part of a larger

expression, then a subtle, yet powerful, difference between these two forms appears. In

the prefix form, the operand is incremented or decremented before the value is obtained

for use in the expression. In postfix form, the previous value is obtained for use in the

expression, and then the operand is modified. For example:

x = 42;

y = ++x;

In this case, y is set to 43 as you would expect, because the increment occurs

before x is assigned to y. Thus, the line y = ++x; is the equivalent of these two

statements:

x = x + 1;

y = x;

However, when written like this,

x = 42;

y = x++;

the value of x is obtained before the increment operator is executed, so the value

of y is 42.Of course, in both cases x is set to 43. Here, the line y = x++; is the

equivalent of these two statements: y = x; x = x + 1;

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 25

The following program demonstrates the increment operator.

// Demonstrate ++.

class IncDec {

public static void main(String args[]) {

int a = 1;

int b = 2;

int c;

int d;

c = ++b;

d = a++;

c++;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

}

}

The output of this program follows:

a = 2

b = 3

c = 4

d = 1

The Bitwise Operators

Java defines several bitwise operators that can be applied to the integer types:

long, int, short, char, and byte. These operators act upon the individual bits of their

operands. They are summarized in the following table:

Since the bitwise operators manipulate the bits within an integer: it is important

to understand what effects such manipulations may have on a value.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 26

Specifically, it is useful to know how Java stores integer values and how it

represents negative numbers. So, before continuing, let’s briefly review these two topics.

All of the integer types are represented by binary numbers of varying bit widths.

For example, the byte value for 42 in binary is 00101010, where each position

represents a power of two, starting with 20 at the rightmost bit. The next bit position to

the left would be21, or 2, continuing toward the left with 22, or 4, then 8, 16, 32, and so

on.

So 42 has 1 bits set at positions 1, 3, and 5 (counting from 0 at the right); thus,

42 is the sum of 21 + 23 + 25,which is 2 + 8 + 32.All of the integer types (except char)

are signed integers. This means that they can represent negative values as well as

positive ones.

Java uses an encoding known as two’s complement, which means that negative

numbers are represented by inverting (changing 1’sto 0’s and vice versa) all of the bits

in a value, then adding 1 to the result. For example, –42is represented by inverting all of

the bits in 42, or 00101010, which yields 11010101, then adding 1, which results in

11010110, or –42.

To decode a negative number, first invert all of the bits, then add 1. For example,

–42, or 11010110 inverted, yields 00101001, or 41, so when you add 1 you get 42.

The reason Java (and most other computer languages) uses two’s complement is

easy to see when you consider the issue of zero crossing. Assuming a byte value, zero is

represented by 00000000.

In one’s complement, simply inverting all of the bits creates 11111111, which

creates negative zero. The trouble is that negative zero is invalid in integer math. This

problem is solved by using two’s complement to represent negative values. When using

two’s complement, 1 is added to the complement, producing 100000000.

This produces a 1bit too far to the left to fit back into the byte value, resulting in

the desired behavior, where–0 is the same as 0, and 11111111 is the encoding for –1.

Although we used a byte value in the preceding example, the same basic principle

applies to Java’s entire integer types.

Because Java uses two’s complement to store negative numbers—and because all

integers are signed values in Java—applying the bitwise operators can easily produce

unexpected results.

For example, turning on the high-order bit will cause the resulting value to be

interpreted as a negative number, whether this is what you intended or not. To avoid

unpleasant surprises, just remember that the high-order bit determines the sign of an

integer no matter how that high-order bit gets set.

The Bitwise Logical Operators

The bitwise logical operators are &, |, ^, and ~. The following table shows the

outcome of each operation. In the discussion that follows, keep in mind that the bitwise

operators are applied to each individual bit within each operand.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 27

The Bitwise NOT

Also called the bitwise complement, the unary NOT operator, ~, inverts all of the

bits of its operand. For example, the number 42, this has the following bit pattern:

00101010

Becomes

11010101

After the NOT operator is applied.

The Bitwise AND

The AND operator, &, produces a 1 bit if both operands are also 1. A zero is

produced in all other cases. Here is an example:

00101010 42

&00001111 15

00001010 10

The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operands is

a 1, then the resultant bit is a 1, as shown here:

00101010 42

| 00001111 15

00101111 47

The Bitwise XOR

The XOR operator, ^, combines bits such that if exactly one operand is 1, then

the result is 1. Otherwise, the result is zero. The following example shows the effect of

the ^. This example also demonstrates a useful attribute of the XOR operation. Notice

how the bit pattern of 42 is inverted wherever the second operand has a 1 bit. Wherever

the second operand has a 0 bit, the first operand is unchanged. You will find this

property useful when performing some types of bit manipulations.

00101010 42

^ 00001111 15

00100101 37

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 28

Using the Bitwise Logical Operators

The following program demonstrates the bitwise logical operators:

// Demonstrate the bitwise logical operators.

class BitLogic {

public static void main(String args[]) {

String binary[] = {

"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111",

"1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"

};

int a = 3; // 0 + 2 + 1 or 0011 in binary

int b = 6; // 4 + 2 + 0 or 0110 in binary

int c = a | b;

int d = a & b;

int e = a ^ b;

int f = (~a & b)|(a & ~b);

int g = ~a & 0x0f;

System.out.println(" a = " + binary[a]);

System.out.println(" b = " + binary[b]);

System.out.println(" a|b = " + binary[c]);

System.out.println(" a&b = " + binary[d]);

System.out.println(" a^b = " + binary[e]);

System.out.println("~a&b|a&~b = " + binary[f]);

System.out.println(" ~a = " + binary[g]);

}

}

In this example, a and b have bit patterns that present all four possibilities for

two binary digits: 0-0, 0-1, 1-0, and 1-1. You can see how the | and &operate on each

bit by the results in c and d. The values assigned to e and f are the same and illustrate

how the ^ works.

The string array named binary holds the human-readable, binary representation

of the numbers 0 through 15. In this example, the array is indexed to show the binary

representation of each result.

The array is constructed such that the correct string representation of a binary

value n is stored in binary[n]. The value of ~a is ANDed with 0x0f (0000 1111 in

binary) in order to reduce its value to less than 16, so it can be printed by use of the

binary array. Here is the output from this program:

a = 0011

b = 0110

a|b = 0111

a&b = 0010

a^b = 0101

~a&b|a&~b = 0101

~a = 1100

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 29

The Left Shift

The left shift operator, <<, shifts all of the bits in a value to the left a specified

number of times. It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That

is, the<<moves all of the bits in the specified value to the left by the number of bit

positions specified by num.

For each shift left, the high-order bit is shifted out (and lost), and a zero is

brought in on the right. This means that when a left shift is applied to an int operand,

bits are lost once they are shifted past bit position 31. If the operand is a long, then bits

are lost after bit position 63.

The Right Shift

The right shift operator, >>, shifts all of the bits in a value to the right a specified

number of times. Its general form is shown here:

value >> num

Here, num specifies the number of positions to right-shift the value in value. That

is, the >>moves all of the bits in the specified value to the right the number of bit

positions specified by num.

The following code fragment shifts the value 32 to the right by two positions,

resulting in a being set to 8:

int a = 32;

a = a >> 2; // a now contains 8

When a value has bits that are ―shifted off,‖ those bits are lost.

The Unsigned Right Shift

As you have just seen, the >>operator automatically fills the high-order bit with

its previous contents each time a shift occurs. This preserves the sign of the value.

However, some times this is undesirable.

For example, if you are shifting something that does not represent a numeric

value, you may not want sign extension to take place. This situation is common when

you are working with pixel-based values and graphics.

In these cases, you will generally want to shift a zero into the high-order bit no

matter what its initial value was. This is known as an unsigned shift. To accomplish this,

you will use Java’s unsigned, shift right operator, >>>, which always shifts zeros into

the high-order bit.

The following code fragment demonstrates the >>>. Here, a is set to –1, which

sets all32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits

with zeros, ignoring normal sign extension. This sets a to 255.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 30

int a = -1;

a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 –1 in binary as an int

>>>24

00000000 00000000 00000000 11111111 255 in binary as an int

The >>>operator is often not as useful as you might like, since it is only

meaningful for 32- and 64-bit values. Remember, smaller values are automatically

promoted to int in expressions.

This means that sign-extension occurs and that the shift will take place on a32-bit

rather than on an 8- or 16-bit value. That is, one might expect an unsigned right shifton

a byte value to zero-fill beginning at bit 7. But this is not the case, since it is a 32-bit

value that is actually being shifted.

Bitwise Operator Compound Assignments

All of the binary bitwise operators have a compound form similar to that of the

algebraic operators, which combines the assignment with the bitwise operation. For

example, the following two statements, which shift the value in a right by four bits, are

equivalent:

a = a >> 4;

a >>= 4;

Likewise, the following two statements, which result in a being assigned the

bitwise expression a OR b, are equivalent:

a = a | b;

a |= b;

The following program creates a few integer variables and then uses compound

bitwise operator assignments to manipulate the variables:

class OpBitEquals {

public static void main(String args[]) {

int a = 1;

int b = 2;

int c = 3;

a |= 4;

b >>= 1;

c <<= 1;

a ^= c;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

}

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 31

The output of this program is shown here:

a = 3

b = 1

c = 6

Relational Operators

The relational operators determine the relationship that one operand has to the

other. Specifically, they determine equality and ordering. The relational operators are

shown here:

The outcome of these operations is a boolean value. The relational operators are

most frequently used in the expressions that control the if statement and the various

loop statements.

Any type in Java, including integers, floating-point numbers, characters, and

Booleans can be compared using the equality test, ==, and the inequality test, !=.

Notice that in Java equality is denoted with two equal signs, not one. (Remember: a

single equal sign is the assignment operator.) Only numeric types can be compared

using the ordering operators.

That is, only integer, floating-point, and character operands may be compared to

see which is greater or less than the other. As stated, the result produced by a relational

operator is a boolean value. For example, the following code fragment is perfectly valid:

int a = 4;

int b = 1;

boolean c = a < b;

In this case, the result of a<b (which is false) is stored in c.If you are coming

from a C/C++ background, please note the following. In C/C++,these types of

statements are very common:

int done;

//...

if(!done)... // Valid in C/C++

if(done)... // but not in Java.

In Java, these statements must be written like this:

if(done == 0)... // This is Java-style.

if(done != 0)...

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 32

The reason is that Java does not define true and false in the same way as C/C++.

In C/C++, true is any nonzero value and false is zero. In Java, true and false are

nonnumeric values that do not relate to zero or non zero. Therefore, to test for zero or

nonzero, you must explicitly employ one or more of the relational operators.

Boolean Logical Operators

The Boolean logical operators shown here operate only on boolean operands. All

of the binary logical operators combine two boolean values to form a resultant boolean

value.

The logical Boolean operators, &, |, and ^, operate on boolean values in the

same way that they operate on the bits of an integer. The logical ! operator inverts the

Boolean state:!true == false and !false == true. The following table shows the effect

of each logical operation:

Here is an example:

// Demonstrate the boolean logical operators.

class BoolLogic {

public static void main(String args[]) {

boolean a = true;

boolean b = false;

boolean c = a | b;

boolean d = a & b;

boolean e = a ^ b;

boolean f = (!a & b) | (a & !b);

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 33

boolean g = !a;

System.out.println(" a = " + a);

System.out.println(" b = " + b);

System.out.println(" a|b = " + c);

System.out.println(" a&b = " + d);

System.out.println(" a^b = " + e);

System.out.println("!a&b|a&!b = " + f);

System.out.println(" !a = " + g);

}

}

Output:

a = true

b = false

a|b = true

a&b = false

a^b = true

!a&b|a&!b = true

!a = false

Short-Circuit Logical Operators

Java provides two interesting Boolean operators not found in some other

computer languages. These are secondary versions of the Boolean AND and OR

operators, and are commonly known as short-circuit logical operators. As you can see

from the preceding table, the OR operator results in true when A is true, no matter

what B is. Similarly, the AND operator results in false when A is false, no matter what

B is.

If you use the || and &&forms, rather than the | and &forms of these operators,

Java will not bother to evaluate the righthand operand when the outcome of the

expression can be determined by the left operand alone. This is very useful when the

right-hand operand depends on the value of the left one in order to function properly.

For example, the following code fragment shows how you can take advantage of

short-circuit logical evaluation to be sure that a division operation will be valid before

evaluating it:

if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a

run-time exception when denom is zero. If this line of code were written using the

single &version of AND, both sides would be evaluated, causing a run-time exception

when denom is zero.

It is standard practice to use the short-circuit forms of AND and OR in cases

involving Boolean logic, leaving the single-character versions exclusively for bitwise

operations. However, there are exceptions to this rule. For example, consider the

following statement:

if(c==1 & e++ < 100) d = 100;

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 34

Here, using a single &ensures that the increment operation will be applied to e

whether c is equal to 1 or not.

NOTE The formal specification for Java refers to the short-circuit operators as the

conditional-and and the conditional-or.

The Assignment Operator

The assignment operator is the single equal sign, =. The assignment operator

works in Java much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression. The

assignment operator does have one interesting attribute that you may not be familiar

with: it allows you to create a chain of assignments. For example, consider this

fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This

works because the = is an operator that yields the value of the right-hand expression.

Thus, the value of z = 100 is 100, which is then assigned to y, which in turn is assigned

to x. Using a ―chain of assignment‖ is an easy way to set a group of variables to a

common value.

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain

types of if-then-else statements. This operator is the ?. It can seem somewhat confusing

at first, but the ?can be used very effectively once mastered. The ? has this general

form: expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If

expression1 is true, then expression2 is evaluated; otherwise, expression3 is evaluated.

The result of the ?operation is that of the expression evaluated. Both expression2 and

expression3 are required to return the same (or compatible) type, which can’t be void.

Here is an example of the way that the ? is employed:

ratio = denom == 0 ? 0 : num / denom;

When Java evaluates this assignment expression, it first looks at the expression

to the left of the question mark. If denom equals zero, then the expression between the

question mark and the colon is evaluated and used as the value of the entire ?

expression.

If denom does not equal zero, then the expression after the colon is evaluated

and used for the value of the entire ? expression. The result produced by the ? operator

is then assigned to ratio. Here is a program that demonstrates the ? operator. It uses it

to obtain the absolute value of a variable.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 35

// Demonstrate ?.

class Ternary {

public static void main(String args[]) {

int i, k;

i = 10;

k = i < 0 ? -i : i; // get absolute value of i

System.out.print("Absolute value of ");

System.out.println(i + " is " + k);

i = -10;

k = i < 0 ? -i : i; // get absolute value of i

System.out.print("Absolute value of ");

System.out.println(i + " is " + k);

}

}

The output generated by the program is shown here:

Absolute value of 10 is 10

Absolute value of -10 is 10

Operator Precedence

Table below shows the order of precedence for Java operators, from highest to

lowest. Operators in the same row are equal in precedence. In binary operations, the

order of evaluation is left to right (except for assignment, which evaluates right to left).

Although they are technically separators, the [], (), and . can also act like

operators. In that capacity, they would have the highest precedence. Also, notice the

arrow operator (->). It was added by JDK 8 and is used in lambda expressions.

Table: The Precedence of the Java Operators

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 36

Using Parentheses:

Parentheses raise the precedence of the operations that are inside them. This is

often necessary to obtain the result you desire. For example, consider the following

expression: a >> b + 3

This expression first adds 3 to b and then shifts a right by that result. That is,

this expression can be rewritten using redundant parentheses like this: a >> (b + 3)

However, if you want to first shift a right by b positions and then add 3 to that

result, you will need to parenthesize the expression like this: (a >> b) + 3

In addition to altering the normal precedence of an operator, parentheses can

sometimes be used to help clarify the meaning of an expression. For anyone reading

your code, a complicated expression can be difficult to understand. Adding redundant

but clarifying parentheses to complex expressions can help prevent confusion later. For

example, which of the following expressions is easier to read?

a | 4 + c >> b & 7

(a | (((4 + c) >> b) & 7))

One other point: parentheses (redundant or not) do not degrade the performance

of your program. Therefore, adding parentheses to reduce ambiguity does not negatively

affect your program.

Decision Making Statements / Control Statements:

A programming language uses control statements to cause the flow of execution

to advance and branch based on changes to the state of a program. Java’s program

control statements can be put into the following categories: selection, iteration, and

jump.

Selection statements allow your program to choose different paths of execution

based upon the outcome of an expression or the state of a variable. Iteration statements

enable program execution to repeat one or more statements (that is, iteration

statements form loops). Jump statements allow your program to execute in a nonlinear

fashion.

Java’s Selection Statements

Java supports two selection statements: if and switch. These statements allow

you to control the flow of your program’s execution based upon conditions known only

during run time. You will be pleasantly surprised by the power and flexibility contained in

these two statements.

If:

The if statement was introduced in Chapter 2. It is examined in detail here. The if

statement is Java’s conditional branch statement. It can be used to route program

execution through two different paths. Here is the general form of the if statement:

if (condition) statement1;

else statement2;

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 37

Here, each statement may be a single statement or a compound statement

enclosed in curly braces (that is, a block). The condition is any expression that returns a

boolean value. The else clause is optional.

The if works like this: If the condition is true, then statement1 is executed.

Otherwise,statement2 (if it exists) is executed. In no case will both statements be

executed. For example, consider the following:

int a, b;

//...

if(a < b) a = 0;

else b = 0;

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no

case are they both set to zero. Most often, the expression used to control the if will

involve the relational operators. However, this is not technically necessary. It is possible

to control the if using a single boolean variable, as shown in this code fragment:

boolean dataAvailable;

//...

if (dataAvailable)

ProcessData();

else

waitForMoreData();

Remember, only one statement can appear directly after the if or the else. If you

want to include more statements, you’ll need to create a block, as in this fragment:

int bytesAvailable;

// ...

if (bytesAvailable > 0) {

ProcessData();

bytesAvailable -= n;

} else

waitForMoreData();

Here, both statements within the if block will execute if bytesAvailable is

greater than zero. Some programmers find it convenient to include the curly braces

when using the if, even when there is only one statement in each clause. This makes it

easy to add another statement at a later date, and you don’t have to worry about

forgetting the braces.

Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs

are very common in programming. When you nest ifs, the main thing to remember is

that an else statement always refers to the nearest if statement that is within the same

block as the else and that is not already associated with an else. Here is an example:

if(i == 10) {

if(j < 20) a = b;

if(k > 100) c = d; // this if is

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 38

else a = c; // associated with this else

}

else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j<20) because

it is not in the same block (even though it is the nearest if without an else). Rather, the

final else is associated with if(i==10). The inner else refers to if(k>100) because it is

the closest if within the same block.

The if-else-if Ladder:

A common programming construct that is based upon a sequence of nested ifs is

the if-else if ladder. It looks like this:

if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

.

.

.

else

statement;

The if statements are executed from the top down. As soon as one of the

conditions controlling the if is true, the statement associated with that if is executed,

and the rest of the ladder is bypassed. If none of the conditions is true, then the final

else statement will be executed.

The final else acts as a default condition; that is, if all other conditional tests fail,

then the last else statement is performed. If there is no final else and all other

conditions are false, then no action will take place.

Here is a program that uses an if-else-if ladder to determine which season a

particular month is in.

// Demonstrate if-else-if statements.

class IfElse {

public static void main(String args[]) {

int month = 4; // April

String season;

if(month == 12 || month == 1 || month == 2)

season = "Winter";

else if(month == 3 || month == 4 || month == 5)

season = "Spring";

else if(month == 6 || month == 7 || month == 8)

season = "Summer";

else if(month == 9 || month == 10 || month == 11)

season = "Autumn";

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 39

else

season = "Bogus Month";

System.out.println("April is in the " + season + ".");

}

}

Here is the output produced by the program:

April is in the Spring.

You might want to experiment with this program before moving on. As you will

find, no matter what value you give month, one and only one assignment statement

within the ladder will be executed.

Switch:

The switch statement is Java’s multiway branch statement. It provides an easy

way to dispatch execution to different parts of your code based on the value of an

expression. As such, it often provides a better alternative than a large series of if-else-if

statements. Here is the general form of a switch statement:

switch (expression) {

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

.

.

.

case valueN :

// statement sequence

break;

default:

// default statement sequence

}

For versions of Java prior to JDK 7, expression must be of type byte, short, int,

char, or an enumeration. Beginning with JDK 7, expression can also be of type String.

Each value specified in the case statements must be a unique constant expression (such

as a literal value).

Duplicate case values are not allowed. The type of each value must be

compatible with the type of expression. The switch statement works like this: The value

of the expression is compared with each of the values in the case statements.

If a match is found, the code sequence following that case statement is

executed. If none of the constants matches the value of the expression, then the

default statement is executed.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 40

However, the default statement is optional. If no case matches and no default

is present, then no further action is taken. The break statement is used inside the

switch to terminate a statement sequence.

When a break statement is encountered, execution branches to the first line of

code that follows the entire switch statement. This has the effect of ―jumping out‖ of

the switch. Here is a simple example that uses a switch statement:

// A simple example of the switch.

class SampleSwitch {

public static void main(String args[]) {

for(int i=0; i<6; i++)

switch(i) {

case 0:

System.out.println("i is zero.");

break;

case 1:

System.out.println("i is one.");

break;

case 2:

System.out.println("i is two.");

break;

case 3:

System.out.println("i is three.");

break;

default:

System.out.println("i is greater than 3.");

}

}

}

The output produced by this program is shown here:

i is zero.

i is one.

i is two.

i is three.

i is greater than 3.

i is greater than 3.

As you can see, each time through the loop, the statements associated with the

case constant that matches i are executed. All others are bypassed. After i is greater

than 3,no case statements match, so the default statement is executed.

The break statement is optional. If you omit the break, execution will continue

on into the next case. It is sometimes desirable to have multiple cases without break

statements between them. For example, consider the following program:

// In a switch, break statements are optional.

class MissingBreak {

public static void main(String args[]) {

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 41

for(int i=0; i<12; i++)

switch(i) {

case 0:

case 1:

case 2:

case 3:

case 4:

System.out.println("i is less than 5");

break;

case 5:

case 6:

case 7:

case 8:

case 9:

System.out.println("i is less than 10");

break;

default:

System.out.println("i is 10 or more");

}

}

}

This program generates the following output:

i is less than 5

i is less than 5

i is less than 5

i is less than 5

i is less than 5

i is less than 10

i is less than 10

i is less than 10

i is less than 10

i is less than 10

i is 10 or more

i is 10 or more

As you can see, execution falls through each case until a break statement (or

the end of the switch) is reached.

While the preceding example is, of course, contrived for the sake of illustration,

omitting the break statement has many practical applications in real programs. To

sample its more realistic usage, consider the following rewrite of the season example

shown earlier. This version uses a switch to provide a more efficient implementation.

// An improved version of the season program.

class Switch {

public static void main(String args[]) {

int month = 4;

String season;

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 42

switch (month) {

case 12:

case 1:

case 2:

season = "Winter";

break;

case 3:

case 4:

case 5:

season = "Spring";

break;

case 6:

case 7:

case 8:

season = "Summer";

break;

case 9:

case 10:

case 11:

season = "Autumn";

break;

default:

season = "Bogus Month";

}

System.out.println("April is in the " + season + ".");

}

}

As mentioned, beginning with JDK 7, you can use a string to control a switch

statement. For example,

// Use a string to control a switch statement.

class StringSwitch {

public static void main(String args[]) {

String str = "two";

switch(str) {

case "one":

System.out.println("one");

break;

case "two":

System.out.println("two");

break;

case "three":

System.out.println("three");

break;

default:

System.out.println("no match");

break;

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 43

}

}

As you would expect, the output from the program is

two

The string contained in str (which is "two" in this program) is tested against the

case constants. When a match is found (as it is in the second case), the code sequence

associated with that sequence is executed.

Being able to use strings in a switch statement streamlines many situations. For

example, using a string-based switch is an improvement over using the equivalent

sequence of if/else statements. However, switching on strings can be more expensive

than switching on integers.

Therefore, it is best to switch on strings only in cases in which the controlling

data is already in string form. In other words, don’t use strings in a switch

unnecessarily.

Nested switch Statements:

You can use a switch as part of the statement sequence of an outer switch. This

is called a nested switch. Since a switch statement defines its own block, no conflicts

arise between the case constants in the inner switch and those in the outer switch. For

example, the following fragment is perfectly valid:

switch(count) {

case 1:

switch(target) { // nested switch

case 0:

System.out.println("target is zero");

break;

case 1: // no conflicts with outer switch

System.out.println("target is one");

break;

}

break;

case 2: // ...

Here, the case 1: statement in the inner switch does not conflict with the case 1:

statement in the outer switch. The count variable is compared only with the list of cases

at the outer level. If count is 1, then target is compared with the inner list cases.

In summary, there are three important features of the switch statement to note:

• The switch differs from the if in that switch can only test for equality,

whereas if can evaluate any type of Boolean expression. That is, the switch

looks only for a match between the value of the expression and one of its

case constants.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 44

• No two case constants in the same switch can have identical values. Of

course, a switch statement and an enclosing outer switch can have case

constants in common.

• A switch statement is usually more efficient than a set of nested ifs.

The last point is particularly interesting because it gives insight into how the Java

compiler works. When it compiles a switch statement, the Java compiler will inspect

each of the case constants and create a ―jump table‖ that it will use for selecting the

path of execution depending on the value of the expression.

Therefore, if you need to select among a large group of values, a switch

statement will run much faster than the equivalent logic coded using a sequence of if-

elses. The compiler can do this because it knows that the case constants are all the

same type and simply must be compared for equality with the switch expression. The

compiler has no such knowledge of a long list of if expressions.

Iteration Statements/Looping Statements:

Java’s iteration statements are for, while, and do-while. These statements

create what we commonly call loops. As you probably know, a loop repeatedly executes

the same set of instructions until a termination condition is met. As you will see, Java

has a loop to fit any programming need.

While:

The while loop is Java’s most fundamental loop statement. It repeats a

statement or block while its controlling expression is true. Here is its general form:

while(condition) {

// body of loop

}

The condition can be any Boolean expression. The body of the loop will be

executed as long as the conditional expression is true. When condition becomes false,

control passes to the next line of code immediately following the loop. The curly braces

are unnecessary if only a single statement is being repeated.

Here is a while loop that counts down from 10, printing exactly ten lines of

"tick":

// Demonstrate the while loop.

class While {

public static void main(String args[]) {

int n = 10;

while(n > 0) {

System.out.println("tick " + n);

n--;

}

}

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 45

When you run this program, it will ―tick‖ ten times:

tick 10

tick 9

tick 8

tick 7

tick 6

tick 5

tick 4

tick 3

tick 2

tick 1

Since the while loop evaluates its conditional expression at the top of the loop,

the body of the loop will not execute even once if the condition is false to begin with. For

example, in the following fragment, the call to println() is never executed:

int a = 10, b = 20;

while(a > b)

System.out.println("This will not be displayed");

The body of the while (or any other of Java’s loops) can be empty. This is

because a null statement (one that consists only of a semicolon) is syntactically valid in

Java. For example,

consider the following program:

// The target of a loop can be empty.

class NoBody {

public static void main(String args[]) {

int i, j;

i = 100;

j = 200;

// find midpoint between i and j

while(++i < --j); // no body in this loop

System.out.println("Midpoint is " + i);

}

}

This program finds the midpoint between i and j. It generates the following

output:

Midpoint is 150

Here is how this while loop works. The value of i is incremented, and the value of

j is decremented. These values are then compared with one another. If the new value of

i is still less than the new value of j, then the loop repeats. If i is equal to or greater

than j, the loop stops.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 46

Upon exit from the loop, i will hold a value that is midway between the original

values of i and j. (Of course, this procedure only works when i is less than j to begin

with.)

As you can see, there is no need for a loop body; all of the action occurs within

the conditional expression, itself. In professionally written Java code, short loops are

frequently coded without bodies when the controlling expression can handle all of the

details itself.

do-while:

As you just saw, if the conditional expression controlling a while loop is initially

false, then the body of the loop will not be executed at all. However, sometimes it is

desirable to execute the body of a loop at least once, even if the conditional expression

is false to begin with.

In other words, there are times when you would like to test the termination

expression at the end of the loop rather than at the beginning. Fortunately, Java supplies

a loop that does just that: the do-while. The do-while loop always executes its body at

least once, because its conditional expression is at the bottom of the loop. Its general

form is

do {

// body of loop

} while (condition);

Each iteration of the do-while loop – first executes the body of the loop and then

evaluates the conditional expression. If this expression is true, the loop will repeat.

Otherwise, the loop terminates. As with all of Java’s loops, condition must be a Boolean

expression.

Here is a reworked version of the ―tick‖ program that demonstrates the do-while

loop. It generates the same output as before.

// Demonstrate the do-while loop.

class DoWhile {

public static void main(String args[]) {

int n = 10;

do {

System.out.println("tick " + n);

n--;

} while(n > 0);

}

}

The loop in the preceding program, while technically correct, can be written more

efficiently as follows:

do {

System.out.println("tick " + n);

} while(--n > 0);

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 47

In this example, the expression (– –n > 0) combines the decrement of n and the

test for zero into one expression. Here is how it works. First, the – –n statement

executes, decrementing n and returning the new value of n. This value is then compared

with zero. If it is greater than zero, the loop continues; otherwise, it terminates.

The do-while loop is especially useful when you process a menu selection,

because you will usually want the body of a menu loop to execute at least once.

for:

Beginning with JDK 5, there are two forms of the for loop. The first is the

traditional form that has been in use since the original version of Java. The second is the

newer ―for-each‖ form.

Both types of for loops are discussed here, beginning with the traditional form.

Here is the general form of the traditional for statement:

for(initialization; condition; iteration) {

// body

}

If only one statement is being repeated, there is no need for the curly braces. The

for loop operates as follows. When the loop first starts, the initialization portion of the

loop is executed. Generally, this is an expression that sets the value of the loop control

variable, which acts as a counter that controls the loop. It is important to understand

that the initialization expression is executed only once. Next, condition is evaluated. This

must be a Boolean expression.

It usually tests the loop control variable against a target value. If this expression

is true, then the body of the loop is executed. If it is false, the loop terminates. Next, the

iteration portion of the loop is executed.

This is usually an expression that increments or decrements the loop control

variable. The loop then iterates, first evaluating the conditional expression, then

executing the body of the loop, and then executing the iteration expression with each

pass. This process repeats until the controlling expression is false. Here is a version of

the ―tick‖ program that uses a for loop:

// Demonstrate the for loop.

class ForTick {

public static void main(String args[]) {

int n;

for(n=10; n>0; n--)

System.out.println("tick " + n);

}

}

Declaring Loop Control Variables Inside the for Loop:

Often the variable that controls a for loop is needed only for the purposes of the

loop and is not used elsewhere. When this is the case, it is possible to declare the

variable inside the initialization portion of the for.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 48

For example, here is the preceding program recoded so that the loop control

variable n is declared as an int inside the for:

// Declare a loop control variable inside the for.

class ForTick {

public static void main(String args[]) {

// here, n is declared inside of the for loop

for(int n=10; n>0; n--)

System.out.println("tick " + n);

}

}

When you declare a variable inside a for loop, there is one important point to

remember: the scope of that variable ends when the for statement does. (That is, the

scope of the variable is limited to the for loop.) Outside the for loop, the variable will

cease to exist.

If you need to use the loop control variable elsewhere in your program, you will

not be able to declare it inside the for loop. When the loop control variable will not be

needed elsewhere, most Java programmers declare it inside the for. For example, here

is a simple program that tests for prime numbers.

Notice that the loop control variable, i, is declared inside the for since it is not

needed elsewhere.

// Test for primes.

class FindPrime {

public static void main(String args[]) {

int num;

boolean isPrime;

num = 14;

if(num < 2) isPrime = false;

else isPrime = true;

for(int i=2; i <= num/i; i++) {

if((num % i) == 0) {

isPrime = false;

break;

}

}

if(isPrime) System.out.println("Prime");

else System.out.println("Not Prime");

}

}

Using the Comma:

There will be times when you will want to include more than one statement in the

initialization and iteration portions of the for loop. For example, consider the loop in the

following program:

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 49

class Sample {

public static void main(String args[]) {

int a, b;

b = 4;

for(a=1; a<b; a++) {

System.out.println("a = " + a);

System.out.println("b = " + b);

b--;

}

}

}

As you can see, the loop is controlled by the interaction of two variables. Since

the loop is governed by two variables, it would be useful if both could be included in the

for statement, itself, instead of b being handled manually. Fortunately, Java provides a

way to accomplish this.

To allow two or more variables to control a for loop, Java permits you to include

multiple statements in both the initialization and iteration portions of the for. Each

statement is separated from the next by a comma. Using the comma, the preceding for

loop can be more efficiently coded, as shown here:

// Using the comma.

class Comma {

public static void main(String args[]) {

int a, b;

for(a=1, b=4; a<b; a++, b--) {

System.out.println("a = " + a);

System.out.println("b = " + b);

}

}

}

In this example, the initialization portion sets the values of both a and b. The two

comma separated statements in the iteration portion are executed each time the loop

repeats. The program generates the following output:

a = 1

b = 4

a = 2

b = 3

NOTE If you are familiar with C/C++, then you know that in those languages the

comma is an operator that can be used in any valid expression. However, this is not the

case with Java. In Java, the comma is a separator.

Some for Loop Variations:

The for loop supports a number of variations that increase its power and

applicability. The reason it is so flexible is that its three parts—the initialization, the

conditional test, and the iteration—do not need to be used for only those purposes.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 50

In fact, the three sections of the for can be used for any purpose you desire. One

of the most common variations involves the conditional expression. Specifically, this

expression does not need to test the loop control variable against some target value. In

fact, the condition controlling the for can be any Boolean expression. For example,

consider the following fragment:

boolean done = false;

for(int i=1; !done; i++) {

// ...

if(interrupted()) done = true;

}

In this example, the for loop continues to run until the boolean variable done is

set to true. It does not test the value of i. Here is another interesting for loop variation.

Either the initialization or the iteration expression or both may be absent, as in this next

program:

// Parts of the for loop can be empty.

class ForVar {

public static void main(String args[]) {

int i;

boolean done = false;

i = 0;

for(; !done;) {

System.out.println("i is " + i);

if(i == 10) done = true;

i++;

}

}

}

Here, the initialization and iteration expressions have been moved out of the for.

Thus, parts of the for are empty. While this is of no value in this simple example—

indeed, it would be considered quite poor style—there can be times when this type of

approach makes sense.

For example, if the initial condition is set through a complex expression elsewhere

in the program or if the loop control variable changes in a non sequential manner

determined by actions that occur within the body of the loop, it may be appropriate to

leave these parts of the for empty.

Here is one more for loop variation. You can intentionally create an infinite loop

(a loop that never terminates) if you leave all three parts of the for empty. For example:

for(; ;) {

// ...

}

This loop will run forever because there is no condition under which it will

terminate.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 51

Although there are some programs, such as operating system command

processors, that require an infinite loop, most ―infinite loops‖ are really just loops with

special termination requirements.

The For-Each Version of the for Loop

Beginning with JDK 5, a second form of for was defined that implements a ―for-

each‖ style loop. As you may know, contemporary language theory has embraced the

for-each concept, and it has become a standard feature that programmers have come to

expect.

A for-each style loop is designed to cycle through a collection of objects, such as

an array, in strictly sequential fashion, from start to finish. Unlike some languages, such

as C#, that implement a for-each loop by using the keyword foreach, Java adds the for-

each capability by enhancing the for statement.

The advantage of this approach is that no new keyword is required, and no

preexisting code is broken. The for-each style of for is also referred to as the enhanced

for loop. The general form of the for-each version of the for is shown here:

for(type itr-var : collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration

variable that will receive the elements from a collection, one at a time, from beginning to

end. The collection being cycled through is specified by collection. There are various

types of collections that can be used with the for, but the only type used in this chapter

is the array.

With each iteration of the loop, the next element in the collection is retrieved and

stored in itr-var. The loop repeats until all elements in the collection have been obtained.

Because the iteration variable receives values from the collection, type must be the

same as(or compatible with) the elements stored in the collection.

Thus, when iterating over arrays, type must be compatible with the element type

of the array. To understand the motivation behind a for-each style loop, consider the

type of for loop that it is designed to replace. The following fragment uses a traditional

for loop to compute the sum of the values in an array:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

for(int i=0; i < 10; i++) sum += nums[i];

To compute the sum, each element in nums is read, in order, from start to finish.

Thus, the entire array is read in strictly sequential order. This is accomplished by

manually indexing the nums array by i, the loop control variable.

The for-each style for automates the preceding loop. Specifically, it eliminates

the need to establish a loop counter, specify a starting and ending value, and manually

index the array. Instead, it automatically cycles through the entire array, obtaining one

element at a time, in sequence, from beginning to end. For example, here is the

preceding fragment rewritten using a for-each version of the for:

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 52

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

for(int x: nums) sum += x;

With each pass through the loop, x is automatically given a value equal to the

next element in nums. Thus, on the first iteration, x contains 1; on the second iteration,

x contains 2; and soon. Not only is the syntax streamlined, but it also prevents boundary

errors.

Here is an entire program that demonstrates the for-each version of the for just

described:

// Use a for-each style for loop.

class ForEach {

public static void main(String args[]) {

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

// use for-each style for to display and sum the values

for(int x : nums) {

System.out.println("Value is: " + x);

sum += x;

}

System.out.println("Summation: " + sum);

}

}

The output from the program is shown here:

Value is: 1

Value is: 2

Value is: 3

Value is: 4

Value is: 5

Value is: 6

Value is: 7

Value is: 8

Value is: 9

Value is: 10

Summation: 55

As this output shows, the for-each style for automatically cycles through an array

in sequence from the lowest index to the highest. Although the for-each for loop iterates

until all elements in an array have been examined, it is possible to terminate the loop

early by using a break statement. For example, this program sums only the first five

elements of nums:

// Use break with a for-each style for.

class ForEach2 {

public static void main(String args[]) {

int sum = 0;

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 53

// use for to display and sum the values

for(int x : nums) {

System.out.println("Value is: " + x);

sum += x;

if(x == 5) break; // stop the loop when 5 is obtained

}

System.out.println("Summation of first 5 elements: " + sum);

}

}

This is the output produced:

Value is: 1

Value is: 2

Value is: 3

Value is: 4

Value is: 5

Summation of first 5 elements: 15

As is evident, the for loop stops after the fifth element has been obtained. The

break statement can also be used with Java’s other loops. There is one important point

to understand about the for-each style loop. Its iteration variable is ―read-only‖ as it

relates to the underlying array. An assignment to the iteration variable has no effect on

the underlying array.

In other words, you can’t change the contents of the array by assigning the

iteration variable a new value. For example, consider this program:

// The for-each loop is essentially read-only.

class NoChange {

public static void main(String args[]) {

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

for(int x: nums) {

System.out.print(x + " ");

x = x * 10; // no effect on nums

}

System.out.println();

for(int x : nums)

System.out.print(x + " ");

System.out.println();

}

}

The first for loop increases the value of the iteration variable by a factor of 10.

However, this assignment has no effect on the underlying array nums, as the second

for loop illustrates. The output, shown here, proves this point:

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 54

Iterating Over Multidimensional Arrays:

The enhanced version of the for also works on multidimensional arrays.

Remember, however, that in Java, multidimensional arrays consist of arrays of arrays.

(For example, a two-dimensional array is an array of one-dimensional arrays.)

This is important when iterating over a multidimensional array, because each

iteration obtains the next array, not an individual element. Furthermore, the iteration

variable in the for loop must be compatible with the type of array being obtained.

For example, in the case of a two-dimensional array, the iteration variable must

be a reference to a one-dimensional array. In general, when using the for-each for to

iterate over an array of N dimensions, the objects obtained will be arrays of N–1

dimensions.

To understand the implications of this, consider the following program. It uses

nested for loops to obtain the elements of a two-dimensional array in row order, from

first to last.

// Use for-each style for on a two-dimensional array.

class ForEach3 {

public static void main(String args[]) {

int sum = 0;

int nums[][] = new int[3][5];

// give nums some values

for(int i = 0; i < 3; i++)

for(int j = 0; j < 5; j++)

nums[i][j] = (i+1)*(j+1);

// use for-each for to display and sum the values

for(int x[] : nums) {

for(int y : x) {

System.out.println("Value is: " + y);

sum += y;

}

}

System.out.println("Summation: " + sum);

}

}

The output from this program is shown here:

Value is: 1

Value is: 2

Value is: 3

Value is: 4

Value is: 5

Value is: 2

Value is: 4

Value is: 6

Value is: 8

Value is: 10

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 55

Value is: 3

Value is: 6

Value is: 9

Value is: 12

Value is: 15

Summation: 90

In the program, pay special attention to this line:

for(int x[]: nums) {

Notice how x is declared. It is a reference to a one-dimensional array of integers.

This is necessary because each iteration of the for obtains the next array in nums,

beginning with the array specified by nums[0]. The inner for loop then cycles through

each of these arrays, displaying the values of each element.

Applying the Enhanced for:

Since the for-each style for can only cycle through an array sequentially, from

start to finish, you might think that its use is limited, but this is not true. A large number

of algorithms require exactly this mechanism. One of the most common is searching. For

example, the following program uses a for loop to search an unsorted array for a value.

It stops if the value is found.

// Search an array using for-each style for.

class Search {

public static void main(String args[]) {

int nums[] = { 6, 8, 3, 7, 5, 6, 1, 4 };

int val = 5;

boolean found = false;

// use for-each style for to search nums for val

for(int x : nums) {

if(x == val) {

found = true;

break;

}

}

if(found)

System.out.println("Value found!");

}

}

The for-each style for is an excellent choice in this application because searching

an unsorted array involves examining each element in sequence. (Of course, if the array

we resorted, a binary search could be used, which would require a different style loop.)

Other types of applications that benefit from for-each style loops include

computing an average, finding the minimum or maximum of a set, looking for

duplicates, and so on.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 56

Nested Loops:

Like all other programming languages, Java allows loops to be nested. That is,

one loop may be inside another. For example, here is a program that nests for loops:

// Loops may be nested.

class Nested {

public static void main(String args[]) {

int i, j;

for(i=0; i<10; i++) {

for(j=i; j<10; j++)

System.out.print(".");

System.out.println();

}

}

}

The output produced by this program is shown here:

..........

.........

........

.......

......

.....

....

...

..

.

Jump Statements:

Java supports three jump statements: break, continue, and return. These

statements transfer control to another part of your program. Each is examined here.

Using break:

In Java, the break statement has three uses. First, as you have seen, it

terminates a statement sequence in a switch statement. Second, it can be used to exit

a loop. Third, it can be used as a ―civilized‖ form of goto. The last two uses are explained

here.

Using break to Exit a Loop:

By using break, you can force immediate termination of a loop, bypassing the

conditional expression and any remaining code in the body of the loop. When a break

statement is encountered inside a loop, the loop is terminated and program control

resumes at the next statement following the loop. Here is a simple example:

// Using break to exit a loop.

class BreakLoop {

public static void main(String args[]) {

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 57

for(int i=0; i<100; i++) {

if(i == 10) break; // terminate loop if i is 10

System.out.println("i: " + i);

}

System.out.println("Loop complete.");

}

}

This program generates the following output:

i: 0

i: 1

i: 2

i: 3

i: 4

i: 5

i: 6

i: 7

i: 8

i: 9

Loop complete.

As you can see, although the for loop is designed to run from 0 to 99, the break

statement causes it to terminate early, when i equals 10.

The break statement can be used with any of Java’s loops, including intentionally

infinite loops. For example, here is the preceding program coded by use of a while loop.

The output from this program is the same as just shown.

// Using break to exit a while loop.

class BreakLoop2 {

public static void main(String args[]) {

int i = 0;

while(i < 100) {

if(i == 10) break; // terminate loop if i is 10

System.out.println("i: " + i);

i++;

}

System.out.println("Loop complete.");

}

}

When used inside a set of nested loops, the break statement will only break out

of the innermost loop. For example:

// Using break with nested loops.

class BreakLoop3 {

public static void main(String args[]) {

for(int i=0; i<3; i++) {

System.out.print("Pass " + i + ": ");

for(int j=0; j<100; j++) {

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 58

if(j == 10) break; // terminate loop if j is 10

System.out.print(j + " ");

}

System.out.println();

}

System.out.println("Loops complete.");

} }

This program generates the following output:

Pass 0: 0 1 2 3 4 5 6 7 8 9

Pass 1: 0 1 2 3 4 5 6 7 8 9

Pass 2: 0 1 2 3 4 5 6 7 8 9

Loops complete.

As you can see, the break statement in the inner loop only causes termination of

that loop. The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break

statement may appear in a loop. However, be careful. Too many break statements have

the tendency to destructure your code. Second, the break that terminates a switch

statement affects only that switch statement and not any enclosing loops.

Using break as a Form of Goto:

In addition to its uses with the switch statement and loops, the break statement

can also be employed by itself to provide a ―civilized‖ form of the goto statement. Java

does not have a goto statement because it provides a way to branch in an arbitrary and

unstructured manner.

This usually makes goto-ridden code hard to understand and hard to maintain. It

also prohibits certain compiler optimizations. There are, however, a few places where the

goto is a valuable and legitimate construct for flow control. For example, the goto can be

useful when you are exiting from a deeply nested set of loops. To handle such situations,

Java defines an expanded form of the break statement.

By using this form of break, you can, for example, break out of one or more

blocks of code. These blocks need not be part of a loop or a switch. They can be any

block. Further, you can specify precisely where execution will resume, because this form

of break works with a label. As you will see, break gives you the benefits of a goto

without its problems. The general form of the labeled break statement is shown here:

break label;

Most often, label is the name of a label that identifies a block of code. This can be

a standalone block of code but it can also be a block that is the target of another

statement. When this form of break executes, control is transferred out of the named

block.

The labelled block must enclose the break statement, but it does not need to be

the immediately enclosing block. This means, for example, that you can use a labeled

break statement to exit from a set of nested blocks. But you cannot use break to

transfer control out of a block that does not enclose the break statement.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 59

To name a block, put a label at the start of it. A label is any valid Java identifier

followed by a colon. Once you have labeled a block, you can then use this label as the

target of a break statement. Doing so causes execution to resume at the end of the

labeled block.

For example, the following program shows three nested blocks, each with its own

label. The break statement causes execution to jump forward, past the end of the block

labeled second, skipping the two println() statements.

// Using break as a civilized form of goto.

class Break {

public static void main(String args[]) {

boolean t = true;

first: {

second: {

third: {

System.out.println("Before the break.");

if(t) break second; // break out of second block

System.out.println("This won't execute");

}

System.out.println("This won't execute");

}

System.out.println("This is after second block.");

}

}

}

Running this program generates the following output:

Before the break.

This is after second block.

One of the most common uses for a labeled break statement is to exit from

nested loops. For example, in the following program, the outer loop executes only once:

// Using break to exit from nested loops

class BreakLoop4 {

public static void main(String args[]) {

outer: for(int i=0; i<3; i++) {

System.out.print("Pass " + i + ": ");

for(int j=0; j<100; j++) {

if(j == 10) break outer; // exit both loops

System.out.print(j + " ");

}

System.out.println("This will not print");

}

System.out.println("Loops complete.");

}

}

This program generates the following output:

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 60

Pass 0: 0 1 2 3 4 5 6 7 8 9 Loops complete.

As you can see, when the inner loop breaks to the outer loop, both loops have

been terminated. Notice that this example labels the for statement, which has a block of

code as its target.

Keep in mind that you cannot break to any label which is not defined for an

enclosing block. For example, the following program is invalid and will not compile:

// This program contains an error.

class BreakErr {

public static void main(String args[]) {

one: for(int i=0; i<3; i++) {

System.out.print("Pass " + i + ": ");

}

for(int j=0; j<100; j++) {

if(j == 10) break one; // WRONG

System.out.print(j + " ");

}

}

}

Since the loop labeled one does not enclose the break statement, it is not

possible to transfer control out of that block.

Using continue:

Sometimes it is useful to force an early iteration of a loop. That is, you might

want to continue running the loop but stop processing the remainder of the code in its

body for this particular iteration. This is, in effect, a goto just past the body of the loop,

to the loop’s end.

The continue statement performs such an action. In while and do-while loops,

a continue statement causes control to be transferred directly to the conditional

expression that controls the loop. In a for loop, control goes first to the iteration portion

of the for statement and then to the conditional expression. For all three loops, any

intermediate code is bypassed.

Here is an example program that uses continue to cause two numbers to be

printed on each line:

// Demonstrate continue.

class Continue {

public static void main(String args[]) {

for(int i=0; i<10; i++) {

System.out.print(i + " ");

if (i%2 == 0) continue;

System.out.println("");

}

}

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 61

This code uses the % operator to check if i is even. If it is, the loop continues

without printing a newline. Here is the output from this program:

0 1

2 3

4 5

6 7

8 9

As with the break statement, continue may specify a label to describe which

enclosing loop to continue. Here is an example program that uses continue to print a

triangular multiplication table for 0 through 9:

// Using continue with a label.

class ContinueLabel {

public static void main(String args[]) {

outer: for (int i=0; i<10; i++) {

for(int j=0; j<10; j++) {

if(j > i) {

System.out.println();

continue outer;

}

System.out.print(" " + (i * j));

}

}

System.out.println();

}

}

The continue statement in this example terminates the loop counting j and

continues with the next iteration of the loop counting i. Here is the output of this

program:

0

0 1

0 2 4

0 3 6 9

0 4 8 12 16

0 5 10 15 20 25

0 6 12 18 24 30 36

0 7 14 21 28 35 42 49

0 8 16 24 32 40 48 56 64

0 9 18 27 36 45 54 63 72 81

Good uses of continue are rare. One reason is that Java provides a rich set of

loop statements which fit most applications. However, for those special circumstances in

which early iteration is needed, the continue statement provides a structured way to

accomplish it.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 62

return:

The last control statement is return. The return statement is used to explicitly

return from a method. That is, it causes program control to transfer back to the caller of

the method. As such, it is categorized as a jump statement. Although a full discussion of

return must wait until methods are discussed in Chapter 6, a brief look at return is

presented here.

At any time in a method, the return statement can be used to cause execution to

branch back to the caller of the method. Thus, the return statement immediately

terminates the method in which it is executed. The following example illustrates this

point. Here, return causes execution to return to the Java run-time system, since it is

the run-time system that calls main():

// Demonstrate return.

class Return {

public static void main(String args[]) {

boolean t = true;

System.out.println("Before the return.");

if(t) return; // return to caller

System.out.println("This won't execute.");

}

}

The output from this program is shown here:

Before the return.

Methods:

Classes usually consist of two things: instance variables and methods. The

general form of a method is:

type name(parameter-list) {

// body of method

}

Here, type specifies the type of data returned by the method. This can be any

valid type, including class types that you create. If the method does not return a value,

its return type must be void. The name of the method is specified by name. This can be

any legal identifier other than those already used by other items within the current

scope.

The parameter-list is a sequence of type and identifier pairs separated by

commas. Parameters are essentially variables that receive the value of the arguments

passed to the method when it is called.

If the method has no parameters, then the parameter list will be empty. Methods

that have a return type other than void return a value to the calling routine using the

following form of the return statement: return value;

Here, value is the value returned.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 63

In the next few sections, you will see how to create various types of methods,

including those that take parameters and those that return values.

Adding a Method to the Box Class:

Although it is perfectly fine to create a class that contains only data, it rarely

happens. Most of the time, you will use methods to access the instance variables defined

by the class. In fact, methods define the interface to most classes. This allows the class

implement or to hide the specific layout of internal data structures behind cleaner

method abstractions. In addition to defining methods that provide access to data, you

can also define methods that are used internally by the class itself.

Let’s begin by adding a method to the Box class. It may have occurred to you

while looking at the preceding programs that the computation of a box’s volume was

something that was best handled by the Box class rather than the BoxDemo class.

After all, since the volume of a box is dependent upon the size of the box, it makes

sense to have the Box class compute it. To do this, you must add a method to Box, as

shown here:

// This program includes a method inside the box class.

class Box {

double width;

double height;

double depth;

// display volume of a box

void volume() {

System.out.print("Volume is ");

System.out.println(width * height * depth);

}

}

class BoxDemo3 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// display volume of first box

mybox1.volume();

// display volume of second box

mybox2.volume();

}

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 64

This program generates the following output, which is the same as the previous

version.

Volume is 3000.0

Volume is 162.0

Look closely at the following two lines of code:

mybox1.volume();

mybox2.volume();

The first line here invokes the volume() method on mybox1. That is, it calls

volume()relative to the mybox1 object, using the object’s name followed by the dot

operator. Thus, the call to mybox1.volume() displays the volume of the box defined

by mybox1, and the call to mybox2.volume() displays the volume of the box defined

by mybox2. Each time volume() is invoked, it displays the volume for the specified

box.

If you are unfamiliar with the concept of calling a method, the following

discussion will help clear things up. When mybox1.volume() is executed, the Java

run-time system transfers control to the code defined inside volume().

After the statements inside volume() have executed, control is returned to the

calling routine, and execution resumes with the line of code following the call. In the

most general sense, a method is Java’s way of implementing subroutines.

There is something very important to notice inside the volume() method: the

instance variables width, height, and depth are referred to directly, without preceding

them with an object name or the dot operator.

When a method uses an instance variable that is defined by its class, it does so

directly, without explicit reference to an object and without use of the dot operator. This

is easy to understand if you think about it. A method is always invoked relative to some

object of its class. Once this invocation has occurred, the object is known.

Thus, within a method, there is no need to specify the object a second time. This

means that width, height, and depth inside volume() implicitly refer to the copies of

those variables found in the object that invokes volume().

Let’s review: When an instance variable is accessed by code that is not part of

the class in which that instance variable is defined, it must be done through an object,

by use of the dot operator. However, when an instance variable is accessed by code that

is part of the same class as the instance variable, that variable can be referred to

directly. The same thing applies to methods.

Returning a Value

While the implementation of volume() does move the computation of a box’s

volume inside the Box class where it belongs, it is not the best way to do it. For

example, what if another part of your program wanted to know the volume of a box, but

not display its value? A better way to implement volume() is to have it compute the

volume of the box and return the result to the caller.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 65

The following example, an improved version of the preceding program, does just

that:

// Now, volume() returns the volume of a box.

class Box {

double width;

double height;

double depth;

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo4 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

As you can see, when volume() is called, it is put on the right side of an

assignment statement. On the left is a variable, in this case vol, that will receive the

value returned by volume(). Thus, after

vol = mybox1.volume();

executes, the value of mybox1.volume() is 3,000 and this value then is stored

in vol. There are two important things to understand about returning values:

 The type of data returned by a method must be compatible with the return

type specified by the method. For example, if the return type of some method

is boolean, you could not return an integer.

 The variable receiving the value returned by a method (such as vol, in this

case) must also be compatible with the return type specified for the method.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 66

One more point: The preceding program can be written a bit more efficiently

because there is actually no need for the vol variable. The call to volume() could have

been used in the println() statement directly, as shown here:

System.out.println("Volume is" + mybox1.volume());

In this case, when println() is executed, mybox1.volume() will be called

automatically and its value will be passed to println().

Adding a Method That Takes Parameters

While some methods don’t need parameters, most do. Parameters allow a

method to be generalized. That is, a parameterized method can operate on a variety of

data and/or be used in a number of slightly different situations. To illustrate this point,

let’s use a very simple example. Here is a method that returns the square of the number

10:

int square()

{

return 10 * 10;

}

While this method does, indeed, return the value of 10 squared, its use is very

limited. However, if you modify the method so that it takes a parameter, as shown next,

then you can make square() much more useful.

int square(int i)

{

return i * i;

}

Now, square() will return the square of whatever value it is called with. That is,

square() is now a general-purpose method that can compute the square of any integer

value, rather than just 10.

Here is an example:

int x, y;

x = square(5); // x equals 25

x = square(9); // x equals 81

y = 2;

x = square(y); // x equals 4

In the first call to square(), the value 5 will be passed into parameter i. In the

second call, I will receive the value 9. The third invocation passes the value of y, which

is 2 in this example.

As these examples show, square() is able to return the square of whatever data

it is passed. It is important to keep the two terms parameter and argument straight. A

parameter is a variable defined by a method that receives a value when the method is

called.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 67

For example, in square(), i is a parameter. An argument is a value that is

passed to a method when it is invoked. For example, square(100) passes 100 as an

argument. Inside square(), the parameter i receives that value.

You can use a parameterized method to improve the Box class. In the preceding

examples, the dimensions of each box had to be set separately by use of a sequence of

statements, such as:

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

While this code works, it is troubling for two reasons. First, it is clumsy and error

prone. For example, it would be easy to forget to set a dimension. Second, in well-

designed Java programs, instance variables should be accessed only through methods

defined by their class. In the future, you can change the behavior of a method, but you

can’t change the behavior of an exposed instance variable.

Thus, a better approach to setting the dimensions of a box is to create a method

that takes the dimensions of a box in its parameters and sets each instance variable

appropriately. This concept is implemented by the following program:

// This program uses a parameterized method.

class Box {

double width;

double height;

double depth;

// compute and return volume

double volume() {

return width * height * depth;

}

// sets dimensions of box

void setDim(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

}

class BoxDemo5 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// initialize each box

mybox1.setDim(10, 20, 15);

mybox2.setDim(3, 6, 9);

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 68

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

As you can see, the setDim() method is used to set the dimensions of each box.

For example, when

mybox1.setDim(10, 20, 15);

is executed, 10 is copied into parameter w, 20 is copied into h, and 15 is copied

into d. Inside setDim() the values of w, h, and d are then assigned to width, height,

and depth, respectively.

Recursion:

Java supports recursion. Recursion is the process of defining something in terms

of itself.

As it relates to Java programming, recursion is the attribute that allows a method

to call itself. A method that calls itself is said to be recursive.

The classic example of recursion is the computation of the factorial of a number.

The factorial of a number N is the product of all the whole numbers between 1 and N.

For example, 3 factorial is 1 × 2 × 3 ×, or 6. Here is how a factorial can be computed by

use of a recursive method:

// A simple example of recursion.

class Factorial {

// this is a recursive method

int fact(int n) {

int result;

if(n==1) return 1;

result = fact(n-1) * n;

return result;

}

}

class Recursion {

public static void main(String args[]) {

Factorial f = new Factorial();

System.out.println("Factorial of 3 is " + f.fact(3));

System.out.println("Factorial of 4 is " + f.fact(4));

System.out.println("Factorial of 5 is " + f.fact(5));

}

}

The output from this program is shown here:

Factorial of 3 is 6

Factorial of 4 is 24

Factorial of 5 is 120

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 69

If you are unfamiliar with recursive methods, then the operation of fact() may

seem a bit confusing. Here is how it works. When fact() is called with an argument of

1, the function returns 1; otherwise, it returns the product of fact(n–1)*n. To evaluate

this expression, fact() is called with n–1. This process repeats until n equals 1 and the

calls to the method begin returning.

Method Overloading:

In Java, it is possible to define two or more methods within the same class that

share the same name, as long as their parameter declarations are different.

When this is the case, the methods are said to be overloaded, and the process is

referred to as method overloading. Method overloading is one of the ways that Java

supports polymorphism.

When an overloaded method is invoked, Java uses the type and/or number of

arguments as its guide to determine which version of the overloaded method to actually

call. Thus, overloaded methods must differ in the type and/or number of their

parameters.

While overloaded methods may have different return types, the return type alone

is insufficient to distinguish two versions of a method. When Java encounters a call to an

overloaded method, it simply executes the version of the method whose parameters

match the arguments used in the call. Here is a simple example that illustrates method

overloading:

// Demonstrate method overloading.

class OverloadDemo {

void test() {

System.out.println("No parameters");

}

// Overload test for one integer parameter.

void test(int a) {

System.out.println("a: " + a);

}

// Overload test for two integer parameters.

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

// Overload test for a double parameter

double test(double a) {

System.out.println("double a: " + a);

return a*a;

}

}

class Overload {

public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test()

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 70

ob.test();

ob.test(10);

ob.test(10, 20);

result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);

}

}

This program generates the following output:

No parameters

a: 10

a and b: 10 20

double a: 123.25

Result of ob.test(123.25): 15190.5625

As you can see, test() is overloaded four times. The first version takes no

parameters, the second takes one integer parameter, the third takes two integer

parameters, and the fourth takes one double parameter. The fact that the fourth

version of test() also returns a value is of no consequence relative to overloading, since

return types do not play a role in overload resolution.

When an overloaded method is called, Java looks for a match between the

arguments used to call the method and the method’s parameters. However, this match

need not always be exact. In some cases, Java’s automatic type conversions can play a

role in overload resolution. For example, consider the following program:

// Automatic type conversions apply to overloading.

class OverloadDemo {

void test() {

System.out.println("No parameters");

}

// Overload test for two integer parameters.

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

// Overload test for a double parameter

void test(double a) {

System.out.println("Inside test(double) a: " + a);

}

}

class Overload {

public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo();

int i = 88;

ob.test();

ob.test(10, 20);

ob.test(i); // this will invoke test(double)

ob.test(123.2); // this will invoke test(double)

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 71

}

This program generates the following output:

No parameters

a and b: 10 20

Inside test(double) a: 88

Inside test(double) a: 123.2

As you can see, this version of OverloadDemo does not define test(int).

Therefore, when test() is called with an integer argument inside Overload, no

matching method is found. However, Java can automatically convert an integer into a

double, and this conversion can be used to resolve the call. Therefore, after test(int) is

not found, Java elevates i to double and then calls test(double).

Of course, if test(int) had been defined, it would have been called instead. Java

will employ its automatic type conversions only if no exact match is found. Method

overloading supports polymorphism because it is one way that Java implements the ―one

interface, multiple methods‖ paradigm. To understand how, consider the following:

In languages that do not support method overloading, each method must be

given a unique name. However, frequently you will want to implement essentially the

same method for different types of data. Consider the absolute value function. In

languages that do not support overloading, there are usually three or more versions of

this function, each with a slightly different name.

For instance, in C, the function abs() returns the absolute value of an integer,

labs() returns the absolute value of a long integer, and fabs() returns the absolute

value of a floating-point value. Since C does not support overloading, each function has

its own name, even though all three functions do essentially the same thing.

This situation does not occur in Java, because each absolute value method can

use the same name. Indeed, Java’s standard class library includes an absolute value

method, called abs().This method is overloaded by Java’s Math class to handle all

numeric types. Java determines which version of abs() to call based upon the type of

argument.

The value of overloading is that it allows related methods to be accessed by use

of a common name. Thus, the name abs represents the general action that is being

performed. It is left to the compiler to choose the right specific version for a particular

circumstance. You, the programmer, need only remember the general operation being

performed. Through the application of polymorphism, several names have been reduced

to one.

Constructor Overloading:

In addition to overloading normal methods, you can also overload constructor

methods. In fact, for most real-world classes that you create, overloaded constructors

will be the norm, not the exception. To understand why, let’s return to the Box class as

follows:

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 72

class Box {

double width;

double height;

double depth;

// This is the constructor for Box.

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

As you can see, the Box() constructor requires three parameters. This means

that all declarations of Box objects must pass three arguments to the Box()

constructor. For example, the following statement is currently invalid:

Box ob = new Box();

Since Box() requires three arguments, it’s an error to call it without them. This

raises some important questions. What if you simply wanted a box and did not care (or

know) what its initial dimensions were? Or, what if you want to be able to initialize a

cube by specifying only one value that would be used for all three dimensions? As the

Box class is currently written, these other options are not available to you.

Fortunately, the solution to these problems is quite easy: simply overload the

Box constructor so that it handles the situations just described. Here is a program that

contains an improved version of Box that does just that:

/* Here, Box defines three constructors to initialize the dimensions of a box

various ways.*/

class Box {

double width;

double height;

double depth;

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 73

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class OverloadCons {

public static void main(String args[]) {

// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

// get volume of cube

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

}

}

The output produced by this program is shown here:

Volume of mybox1 is 3000.0

Volume of mybox2 is -1.0

Volume of mycube is 343.0

Parameter Passing:

Using Objects as Parameters:

So far, we have only been using simple types as parameters to methods.

However, it is both correct and common to pass objects to methods. For example,

consider the following short program:

// Objects may be passed to methods.

class Test {

int a, b;

Test(int i, int j) {

a = i;

b = j;

}

// return true if o is equal to the invoking object

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 74

boolean equalTo(Test o) {

if(o.a == a && o.b == b) return true;

else return false;

}

}

class PassOb {

public static void main(String args[]) {

Test ob1 = new Test(100, 22);

Test ob2 = new Test(100, 22);

Test ob3 = new Test(-1, -1);

System.out.println("ob1 == ob2: " + ob1.equalTo(ob2));

System.out.println("ob1 == ob3: " + ob1.equalTo(ob3));

}

}

This program generates the following output:

ob1 == ob2: true

ob1 == ob3: false

As you can see, the equalTo() method inside Test compares two objects for

equality and returns the result. That is, it compares the invoking object with the one that

it is passed. If they contain the same values, then the method returns true. Otherwise,

it returns false.

Notice that the parameter o in equalTo() specifies Test as its type. Although

Test is a class type created by the program, it is used in just the same way as Java’s

built-in types. One of the most common uses of object parameters involves constructors.

Frequently, you will want to construct a new object so that it is initially the same

as some existing object. To do this, you must define a constructor that takes an object

of its class as a parameter. For example, the following version of Box allows one object

to initialize another:

// Here, Box allows one object to initialize another.

class Box {

double width;

double height;

double depth;

// Notice this constructor. It takes an object of type Box.

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 75

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class OverloadCons2 {

public static void main(String args[]) {

// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

Box myclone = new Box(mybox1); // create copy of mybox1

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

// get volume of cube

vol = mycube.volume();

System.out.println("Volume of cube is " + vol);

// get volume of clone

vol = myclone.volume();

System.out.println("Volume of clone is " + vol);

}

}

As you will see when you begin to create your own classes, providing many forms

of constructors is usually required to allow objects to be constructed in a convenient and

efficient manner.

A Closer Look at Argument Passing:

In general, there are two ways that a computer language can pass an argument

to a subroutine. The first way is call-by-value. This approach copies the value of an

argument into the formal parameter of the subroutine. Therefore, changes made to the

parameter of the subroutine have no effect on the argument.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 76

The second way an argument can be passed is call-by-reference. In this

approach, a reference to an argument (not the value of the argument) is passed to the

parameter. Inside the subroutine, this reference is used to access the actual argument

specified in the call.

This means that changes made to the parameter will affect the argument used to

call the subroutine. As you will see, although Java uses call-by-value to pass all

arguments, the precise effect differs between whether a primitive type or a reference

type is passed.

When you pass a primitive type to a method, it is passed by value. Thus, a copy

of the argument is made, and what occurs to the parameter that receives the argument

has no effect outside the method. For example, consider the following program:

// Primitive types are passed by value.

class Test {

void meth(int i, int j) {

i *= 2;

j /= 2;

}

}

class CallByValue {

public static void main(String args[]) {

Test ob = new Test();

int a = 15, b = 20;

System.out.println("a and b before call: " +

a + " " + b);

ob.meth(a, b);

System.out.println("a and b after call: " +

a + " " + b);

}

}

The output from this program is shown here:

a and b before call: 15 20

a and b after call: 15 20

As you can see, the operations that occur inside meth() have no effect on the

values of a and b used in the call; their values here did not change to 30 and 10.

When you pass an object to a method, the situation changes dramatically,

because objects are passed by what is effectively call-by-reference. Keep in mind that

when you create a variable of a class type, you are only creating a reference to an

object.

Thus, when you pass this reference to a method, the parameter that receives it

will refer to the same object as that referred to by the argument. This effectively means

that objects act as if they are passed to methods by use of call-by-reference. Changes to

the object inside the method do affect the object used as an argument. For example,

consider the following program:

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 77

// Objects are passed through their references.

class Test {

int a, b;

Test(int i, int j) {

a = i;

b = j;

}

// pass an object

void meth(Test o) {

o.a *= 2;

o.b /= 2;

}

}

class PassObjRef {

public static void main(String args[]) {

Test ob = new Test(15, 20);

System.out.println("ob.a and ob.b before call: " +

ob.a + " " + ob.b);

ob.meth(ob);

System.out.println("ob.a and ob.b after call: " +

ob.a + " " + ob.b);

}

}

This program generates the following output:

ob.a and ob.b before call: 15 20

ob.a and ob.b after call: 30 10

As you can see, in this case, the actions inside meth() have affected the object

used as an argument.

Returning Objects:

A method can return any type of data, including class types that you create. For

example, in the following program, the incrByTen() method returns an object in which

the value of a is ten greater than it is in the invoking object.

// Returning an object.

class Test {

int a;

Test(int i) {

a = i;

}

Test incrByTen() {

Test temp = new Test(a+10);

return temp;

}

}

class RetOb {

public static void main(String args[]) {

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 78

Test ob1 = new Test(2);

Test ob2;

ob2 = ob1.incrByTen();

System.out.println("ob1.a: " + ob1.a);

System.out.println("ob2.a: " + ob2.a);

ob2 = ob2.incrByTen();

System.out.println("ob2.a after second increase: "

+ ob2.a);

}

}

The output generated by this program is shown here:

ob1.a: 2

ob2.a: 12

ob2.a after second increase: 22

As you can see, each time incrByTen() is invoked, a new object is created, and

a reference to it is returned to the calling routine. The preceding program makes another

important point: Since all objects are dynamically allocated using new, you don’t need

to worry about an object going out-of scope because the method in which it was created

terminates.

The object will continue to exist as long as there is a reference to it somewhere in

your program. When there are no references to it, the object will be reclaimed the next

time garbage collection takes place.

String Class:

String is probably the most commonly used class in Java’s class library. The

obvious reason for this is that strings are a very important part of programming. The

first thing to understand about strings is that every string you create is actually an

object of type String. Even string constants are actually String objects.

For example, in the statement

System.out.println("This is a String, too");

the string "This is a String, too" is a String object. The second thing to

understand about strings is that objects of type String are immutable; once a String

object is created, its contents cannot be altered. While this may seem like a serious

restriction, it is not, for two reasons:

• If you need to change a string, you can always create a new one that contains

the modifications.

• Java defines peer classes of String, called StringBuffer and StringBuilder,

which allow strings to be altered, so all of the normal string manipulations are still

available in Java.

Strings can be constructed in a variety of ways. The easiest is to use a statement

like this:

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 79

String myString = "this is a test";

Once you have created a String object, you can use it anywhere that a string is

allowed. For example, this statement displays myString:

System.out.println(myString);

Java defines one operator for String objects: +. It is used to concatenate two

strings. For example, this statement

String myString = "I" + " like " + "Java.";

results in myString containing "I like Java."The following program demonstrates

the preceding concepts:

// Demonstrating Strings.

class StringDemo {

public static void main(String args[]) {

String strOb1 = "First String";

String strOb2 = "Second String";

String strOb3 = strOb1 + " and " + strOb2;

System.out.println(strOb1);

System.out.println(strOb2);

System.out.println(strOb3);

}

}

The output produced by this program is shown here:

First String

Second String

First String and Second String

The String class contains several methods that you can use. Here are a few. You

can test two strings for equality by using equals(). You can obtain the length of a

string by calling the length() method. You can obtain the character at a specified index

within a string by calling charAt(). The general forms of these three methods are

shown here:

boolean equals(secondStr)

int length()

char charAt(index)

Here is a program that demonstrates these methods:

// Demonstrating some String methods.

class StringDemo2 {

public static void main(String args[]) {

String strOb1 = "First String";

String strOb2 = "Second String";

String strOb3 = strOb1;

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 80

System.out.println("Length of strOb1: " +

strOb1.length());

System.out.println("Char at index 3 in strOb1: " +

strOb1.charAt(3));

if(strOb1.equals(strOb2))

System.out.println("strOb1 == strOb2");

else

System.out.println("strOb1 != strOb2");

if(strOb1.equals(strOb3))

System.out.println("strOb1 == strOb3");

else

System.out.println("strOb1 != strOb3");

}

}

This program generates the following output:

Length of strOb1: 12

Char at index 3 in strOb1: s

strOb1 != strOb2

strOb1 == strOb3

Of course, you can have arrays of strings, just like you can have arrays of any

other type of object. For example:

// Demonstrate String arrays.

class StringDemo3 {

public static void main(String args[]) {

String str[] = { "one", "two", "three" };

for(int i=0; i<str.length; i++)

System.out.println("str[" + i + "]: " +

str[i]);

}

}

Here is the output from this program:

str[0]: one

str[1]: two

str[2]: three

final Keyword:

A field can be declared as final. Doing so prevents its contents from being

modified, making it, essentially, a constant. This means that you must initialize a final

field when it is declared. You can do this in one of two ways: First, you can give it a

value when it is declared. Second, you can assign it a value within a constructor. The

first approach is the most common. Here is an example:

final int FILE_NEW = 1;

final int FILE_OPEN = 2;

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 81

final int FILE_SAVE = 3;

final int FILE_SAVEAS = 4;

final int FILE_QUIT = 5;

Subsequent parts of your program can now use FILE_OPEN, etc., as if they were

constants, without fear that a value has been changed. It is a common coding

convention to choose all uppercase identifiers for final fields, as this example shows.

In addition to fields, both method parameters and local variables can be declared

final. Declaring a parameter final prevents it from being changed within the method.

Declaring a local variable final prevents it from being assigned a value more than once.

The keyword final can also be applied to methods, but its meaning is

substantially different than when it is applied to variables.

Utility Classes:

In java.util there are classes and interfaces that are not part of the Collections

Framework. These include classes that tokenize strings, work with dates, compute

random numbers, bundle resources, and observe events.

Also covered are the Formatter and Scanner classes which make it easy to

write and read formatted data, and the new Optional class, which makes it easier to

handle situations in which a value may be absent.

StringTokenizer:

The processing of text often consists of parsing a formatted input string. Parsing

is the division of text into a set of discrete parts, or tokens, which in a certain sequence

can convey a semantic meaning.

The StringTokenizer class provides the first step in this parsing process, often

called the lexer (lexical analyzer) or scanner. StringTokenizer implements the

Enumeration interface. Therefore, given an input string, you can enumerate the

individual tokens contained in it using StringTokenizer.

To use StringTokenizer, you specify an input string and a string that contains

delimiters. Delimiters are characters that separate tokens. Each character in the

delimiters string is considered a valid delimiter—for example, ",;:" sets the delimiters to

a comma, semicolon, and colon. The default set of delimiters consists of the whitespace

characters: space, tab, form feed, newline, and carriage return.

The StringTokenizer constructors are shown here:

StringTokenizer(String str)

StringTokenizer(String str, String delimiters)

StringTokenizer(String str, String delimiters, boolean delimAsToken)

In all versions, str is the string that will be tokenized. In the first version, the

default delimiters are used. In the second and third versions, delimiters is a string that

specifies the delimiters.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 82

In the third version, if delimAsToken is true, then the delimiters are also returned

as tokens when the string is parsed. Otherwise, the delimiters are not returned.

Delimiters are not returned as tokens by the first two forms.

Once you have created a StringTokenizer object, the nextToken() method is

used to extract consecutive tokens. The hasMoreTokens() method returns true while

there are more tokens to be extracted.

Since StringTokenizer implements Enumeration, the hasMoreElements()

and nextElement() methods are also implemented, and they act the same as

hasMoreTokens()and nextToken(), respectively.

The StringTokenizer methods are shown below:

Here is an example that creates a StringTokenizer to parse "key=value" pairs.

Consecutive sets of "key=value" pairs are separated by a semicolon.

// Demonstrate StringTokenizer.

import java.util.StringTokenizer;

class STDemo {

static String in = "title=Java: The Complete Reference;" +

"author=Schildt;" +

"publisher=McGraw-Hill;" +

"copyright=2014";

public static void main(String args[]) {

StringTokenizer st = new StringTokenizer(in, "=;");

while(st.hasMoreTokens()) {

String key = st.nextToken();

String val = st.nextToken();

System.out.println(key + "\t" + val);

}

}

}

Output:

C:\Users\Administrator\Desktop>javac STDemo.java

C:\Users\Administrator\Desktop>java STDemo

title Java: The Complete Reference

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 83

author Schildt

publisher McGraw-Hill

copyright 2014

BitSet:

A BitSet class creates a special type of array that holds bit values in the form of

boolean values. This array can increase in size as needed. This makes it similar to a

vector of bits. The BitSet constructors are shown here:

BitSet()

BitSet(int size)

The first version creates a default object. The second version allows you to

specify its initial size (that is, the number of bits that it can hold). All bits are initialized

to false. BitSet defines the methods listed as shown below:

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 84

Here is an example that demonstrates BitSet:

// BitSet Demonstration.

import java.util.BitSet;

class BitSetDemo {

public static void main(String args[]) {

BitSet bits1 = new BitSet(16);

BitSet bits2 = new BitSet(16);

// set some bits

for(int i=0; i<16; i++) {

if((i%2) == 0) bits1.set(i);

if((i%5) != 0) bits2.set(i);

}

System.out.println("Initial pattern in bits1: ");

System.out.println(bits1);

System.out.println("\nInitial pattern in bits2: ");

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 85

System.out.println(bits2);

// AND bits

bits2.and(bits1);

System.out.println("\nbits2 AND bits1: ");

System.out.println(bits2);

// OR bits

bits2.or(bits1);

System.out.println("\nbits2 OR bits1: ");

System.out.println(bits2);

// XOR bits

bits2.xor(bits1);

System.out.println("\nbits2 XOR bits1: ");

System.out.println(bits2);

}

}

The output from this program is shown here. When toString() converts a

BitSet object to its string equivalent, each set bit is represented by its bit position.

Cleared bits are not shown.

Initial pattern in bits1:

{0, 2, 4, 6, 8, 10, 12, 14}

Initial pattern in bits2:

{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14}

bits2 AND bits1:

{2, 4, 6, 8, 12, 14}

bits2 OR bits1:

{0, 2, 4, 6, 8, 10, 12, 14}

bits2 XOR bits1:

{}

Random:

The Random class is a generator of pseudorandom numbers. These are called

pseudorandom numbers because they are simply uniformly distributed sequences.

Random defines the following constructors:

Random()

Random(long seed)

The first version creates a number generator that uses a reasonably unique seed.

The second form allows you to specify a seed value manually.

If you initialize a Random object with a seed, you define the starting point for

the random sequence. If you use the same seed to initialize another Random object,

you will extract the same random sequence.

If you want to generate different sequences, specify different seed values. One

way to do this is to use the current time to seed a Random object. This approach

reduces the possibility of getting repeated sequences. The core public methods defined

by Random are shown in the table as follows:

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 86

These are the methods that have been available in Random for several years

(many since Java 1.0) and are widely used.

As you can see, there are seven types of random numbers that you can extract

from a Random object. Random Boolean values are available from nextBoolean().

Random bytes can be obtained by calling nextBytes(). Integers can be extracted via

the nextInt() method.

Long integers, uniformly distributed over their range, can be obtained with

nextLong().The nextFloat() and nextDouble() methods return a uniformly

distributed float and double, respectively, between 0.0 and 1.0. Finally,

nextGaussian() returns a double value entered at 0.0 with a standard deviation of

1.0. This is what is known as a bell curve.

Here is an example that demonstrates the sequence produced by nextGaussian(

). It obtains 100 random Gaussian values and averages these values. The program also

counts the number of values that fall within two standard deviations, plus or minus,

using increments of0.5 for each category. The result is graphically displayed sideways on

the screen.

// Demonstrate random Gaussian values.

import java.util.Random;

class RandDemo {

public static void main(String args[]) {

Random r = new Random();

double val;

double sum = 0;

int bell[] = new int[10];

for(int i=0; i<100; i++) {

val = r.nextGaussian();

sum += val;

double t = -2;

for(int x=0; x<10; x++, t += 0.5)

if(val < t) {

bell[x]++;

break;

}

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 87

System.out.println("Average of values: " +

(sum/100));

// display bell curve, sideways

for(int i=0; i<10; i++) {

for(int x=bell[i]; x>0; x--)

System.out.print("*");

System.out.println();

}

}

}

Here is a sample program run. As you can see, a bell-like distribution of numbers

is obtained.

Average of values: 0.0702235271133344

**

JDK 8 adds three new methods to Random that support the new stream API.

They are called doubles(), ints(), and longs(), and each returns a reference to a

stream that contains a sequence of pseudorandom values of the specified type. Each

method defines several overloads. Here are their simplest forms:

DoubleStream doubles()

IntStream ints()

LongStream longs()

 The doubles() method returns a stream that contains pseudorandom

double values. (The range of these values will be less than 1.0 but greater

than 0.0.)

 The ints() method returns a stream that contains pseudorandom int values.

 The longs() method returns a stream that contains pseudorandom long

values.

For these three methods, the stream returned is effectively infinite. Several

overloads of each method are provided that let you specify the size of the stream, an

origin, and an upper bound.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 88

Scanner:

Scanner is the complement of Formatter. It reads formatted input and converts

it into its binary form. Scanner can be used to read input from the console, a file, a

string, or any source that implements the Readable interface or

ReadableByteChannel. For example, you can use Scanner to read a number from the

keyboard and assign its value to a variable. As you will see, given its power, Scanner is

surprisingly easy to use.

The Scanner Constructors: Scanner defines the constructors shown in the

table as follows:

In general, a Scanner can be created for a String, an InputStream, a File, or

any object that implements the Readable or ReadableByteChannel interfaces. Here

are some examples. The following sequence creates a Scanner that reads the file

Test.txt:

FileReader fin = new FileReader("Test.txt");

Scanner src = new Scanner(fin);

This works because FileReader implements the Readable interface. Thus, the

call to the constructor resolves to Scanner(Readable). The next line creates a

Scanner that reads from standard input, which is the keyboard by default:

Scanner conin = new Scanner(System.in);

This works because System.in is an object of type InputStream. Thus, the call

to the constructor maps to Scanner(InputStream).

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 89

The next sequence creates a Scanner that reads from a string.

String instr = "10 99.88 scanning is easy.";

Scanner conin = new Scanner(instr);

Scanning Basics:

Once you have created a Scanner, it is a simple matter to use it to read

formatted input. In general, a Scanner reads tokens from the underlying source that

you specified when the Scanner was created. As it relates to Scanner, a token is a

portion of input that is delineated by a set of delimiters, which is whitespace by default.

A token is read by matching it with a particular regular expression, which defines

the format of the data. Although Scanner allows you to define the specific type of

expression that its next input operation will match, it includes many predefined patterns,

which match the primitive types, such as int and double, and strings. Thus, often you

won’t need to specify a pattern to match. In general, to use Scanner, follow this

procedure:

1. Determine if a specific type of input is available by calling one of Scanner’s

hasNextX methods, where X is the type of data desired.

2. If input is available, read it by calling one of Scanner’s nextX methods.

3. Repeat the process until input is exhausted.

4. Close the Scanner by calling close().

As the preceding indicates, Scanner defines two sets of methods that enable you

to read input. The first are the hasNextX methods, which are shown in Table below:

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 90

These methods determine if the specified type of input is available. For example,

calling hasNextInt()returns true only if the next token to be read is an integer. If the

desired data is available, then you read it by calling one of Scanner’s nextX methods,

which are shown in Table below:

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 91

For example, to read the next integer, call nextInt(). The following sequence

shows how to read a list of integers from the keyboard.

Scanner conin = new Scanner(System.in);

int i;

// Read a list of integers.

while(conin.hasNextInt()) {

i = conin.nextInt();

// ...

}

The while loop stops as soon as the next token is not an integer. Thus, the loop

stops reading integers as soon as a non-integer is encountered in the input stream. If a

next method cannot find the type of data it is looking for, it throws an

InputMismatchException.

A NoSuchElementException is thrown if no more input is available. For this

reason, it is best to first confirm that the desired type of data is available by calling a

hasNext method before calling its corresponding next method.

Some Scanner Examples:

Scanner makes what could be a tedious task into an easy one. To understand

why, let’s look at some examples. The following program averages a list of numbers

entered at the keyboard:

// Use Scanner to compute an average of the values.

import java.util.*;

class AvgNums {

public static void main(String args[]) {

Scanner conin = new Scanner(System.in);

int count = 0;

double sum = 0.0;

System.out.println("Enter numbers to average.");

// Read and sum numbers.

while(conin.hasNext()) {

if(conin.hasNextDouble()) {

sum += conin.nextDouble();

count++;

}

else {

String str = conin.next();

if(str.equals("done")) break;

else {

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 92

System.out.println("Data format error.");

return;

}

}

}

conin.close();

System.out.println("Average is " + sum / count);

}

}

The program reads numbers from the keyboard, summing them in the process,

until the user enters the string "done". It then stops input and displays the average of

the numbers. Here is a sample run:

Enter numbers to average.

1.2

2

3.4

4

done

Average is 2.65

The program reads numbers until it encounters a token that does not represent a

valid double value. When this occurs, it confirms that the token is the string "done". If it

is, the program terminates normally. Otherwise, it displays an error.

Notice that the numbers are read by calling nextDouble(). This method reads

any number that can be converted into a double value, including an integer value, such

as 2,and a floating-point value like 3.4.

Thus, a number read by nextDouble() need not specify a decimal point. This

same general principle applies to all next methods. They will match and read any data

format that can represent the type of value being requested.

One thing that is especially nice about Scanner is that the same technique used

to read from one source can be used to read from another. For example, here is the

preceding program reworked to average a list of numbers contained in a text file:

// Use Scanner to compute an average of the values in a file.

import java.util.*;

import java.io.*;

class AvgFile {

public static void main(String args[])

throws IOException {

int count = 0;

double sum = 0.0;

// Write output to a file.

FileWriter fout = new FileWriter("test.txt");

fout.write("2 3.4 5 6 7.4 9.1 10.5 done");

fout.close();

FileReader fin = new FileReader("Test.txt");

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 93

Scanner src = new Scanner(fin);

// Read and sum numbers.

while(src.hasNext()) {

if(src.hasNextDouble()) {

sum += src.nextDouble();

count++;

}

else {

String str = src.next();

if(str.equals("done")) break;

else {

System.out.println("File format error.");

return;

}

}

}

src.close();

System.out.println("Average is " + sum / count);

}

}

Here is the output:

Average is 6.2

The preceding program illustrates another important feature of Scanner. Notice

that the file reader referred to by fin is not closed directly. Rather, it is closed

automatically when src calls close().

When you close a Scanner, the Readable associated with it is also closed (if that

Readable implements the Closeable interface). Therefore, in this case, the file referred

to by fin is automatically closed when src is closed.

Beginning with JDK 7, Scanner also implements the AutoCloseable interface.

This means that it can be managed by a try-with-resources block. When try-with-

resources is used, the scanner is automatically closed when the block ends. For example,

src in the preceding program could have been managed like this:

try (Scanner src = new Scanner(fin))

{

// Read and sum numbers.

while(src.hasNext()) {

if(src.hasNextDouble()) {

sum += src.nextDouble();

count++;

}

else {

String str = src.next();

if(str.equals("done")) break;

else {

System.out.println("File format error.");

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 94

return;

}

}

}

}

You can use Scanner to read input that contains several different types of data—

even if the order of that data is unknown in advance. You must simply check what type

of data is available before reading it. For example, consider this program:

// Use Scanner to read various types of data from a file.

import java.util.*;

import java.io.*;

class ScanMixed {

public static void main(String args[])

throws IOException {

int i;

double d;

boolean b;

String str;

// Write output to a file.

FileWriter fout = new FileWriter("test.txt");

fout.write("Testing Scanner 10 12.2 one true two false");

fout.close();

FileReader fin = new FileReader("Test.txt");

Scanner src = new Scanner(fin);

// Read to end.

while(src.hasNext()) {

if(src.hasNextInt()) {

i = src.nextInt();

System.out.println("int: " + i);

}

else if(src.hasNextDouble()) {

d = src.nextDouble();

System.out.println("double: " + d);

}

else if(src.hasNextBoolean()) {

b = src.nextBoolean();

System.out.println("boolean: " + b);

}

else {

str = src.next();

System.out.println("String: " + str);

}

}

src.close();

}

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 95

Here is the output:

String: Testing

String: Scanner

int: 10

double: 12.2

String: one

boolean: true

String: two

boolean: false

When reading mixed data types, as the preceding program does, you need to be

a bit careful about the order in which you call the next methods. For example, if the loop

reversed the order of the calls to nextInt() and nextDouble(), both numeric values

would have been read as doubles, because nextDouble() matches any numeric string

that can be represented as a double.

Setting Delimiters:

Scanner defines where a token starts and ends based on a set of delimiters. The

default delimiters are the whitespace characters, and this is the delimiter set that the

preceding examples have used. However, it is possible to change the delimiters by

calling the useDelimiter() method, shown here:

Scanner useDelimiter(String pattern)

Scanner useDelimiter(Pattern pattern)

Here, pattern is a regular expression that specifies the delimiter set. Here is the

program that reworks the average program shown earlier so that it reads a list of

numbers that are separated by commas, and any number of spaces:

// Use Scanner to compute an average a list of

// comma-separated values.

import java.util.*;

import java.io.*;

class SetDelimiters {

public static void main(String args[])

throws IOException {

int count = 0;

double sum = 0.0;

// Write output to a file.

FileWriter fout = new FileWriter("test.txt");

// Now, store values in comma-separated list.

fout.write("2, 3.4, 5,6, 7.4, 9.1, 10.5, done");

fout.close();

FileReader fin = new FileReader("Test.txt");

Scanner src = new Scanner(fin);

// Set delimiters to space and comma.

src.useDelimiter(", *");

// Read and sum numbers.

while(src.hasNext()) {

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 96

if(src.hasNextDouble()) {

sum += src.nextDouble();

count++;

}

else {

String str = src.next();

if(str.equals("done")) break;

else {

System.out.println("File format error.");

return;

}

}

}

src.close();

System.out.println("Average is " + sum / count);

}

}

In this version, the numbers written to test.txt are separated by commas and

spaces. The use of the delimiter pattern ", * " tells Scanner to match a comma and

zero or more spaces as delimiters.

Output:

C:\Users\Administrator\Desktop>javac SetDelimiters.java

C:\Users\Administrator\Desktop>java SetDelimiters

Average is 6.2

You can obtain the current delimiter pattern by calling delimiter(), shown here:

Pattern delimiter()

Other Scanner Features

Scanner defines several other methods in addition to those already discussed.

One that is particularly useful in some circumstances is findInLine(). Its general forms

are shown here:

String findInLine(Pattern pattern)

String findInLine(String pattern)

This method searches for the specified pattern within the next line of text. If the

pattern is found, the matching token is consumed and returned. Otherwise, null is

returned. It operates independently of any delimiter set. This method is useful if you

want to locate a specific pattern. For example, the following program locates the Age

field in the input string and then displays the age:

// Demonstrate findInLine().

import java.util.*;

class FindInLineDemo {

public static void main(String args[]) {

String instr = "Name: Tom Age: 28 ID: 77";

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT II: Data Types, Control Statements, Polymorphism SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 97

Scanner conin = new Scanner(instr);

// Find and display age.

conin.findInLine("Age:"); // find Age

if(conin.hasNext())

System.out.println(conin.next());

else

System.out.println("Error!");

conin.close();

}

}

The output is 28. In the program, findInLine() is used to find an occurrence of

the pattern "Age". Once found, the next token is read, which is the age. Related to

findInLine() is findWithinHorizon(). It is shown here:

String findWithinHorizon(Pattern pattern, int count)

String findWithinHorizon(String pattern, int count)

This method attempts to find an occurrence of the specified pattern within the

next count characters. If successful, it returns the matching pattern. Otherwise, it

returns null. If count is zero, then all input is searched until either a match is found or

the end of input is encountered.

You can bypass a pattern using skip(), shown here:

Scanner skip(Pattern pattern)

Scanner skip(String pattern)

If pattern is matched, skip() simply advances beyond it and returns a reference

to the invoking object. If pattern is not found, skip() throws

NoSuchElementException.

Other Scanner methods include radix(), which returns the default radix used by

the Scanner; useRadix(), which sets the radix; reset(), which resets the scanner;

and close(),which closes the scanner.

