
OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 1

Inheritance:

Inheritance is one of the cornerstones (meaning most important feature) of object-oriented

programming because it allows the creation of hierarchical classifications. Using

inheritance, you can create a general class that defines traits common to a set of related

items. This class can then be inherited by other, more specific classes, each adding those

things that are unique to it.

In the terminology of Java, a class that is inherited is called a superclass. The

class that does the inheriting is called a subclass. Therefore, a subclass is a specialized

version of a superclass. It inherits all of the members defined by the superclass and adds

its own, unique elements.

Classifications:

Inheritance Basics:

To inherit a class, you simply incorporate the definition of one class into another

by using the extends keyword. To see how, let’s begin with a short example. The

following program creates a superclass called A and a subclass called B. Notice how the

keyword extends is used to create a subclass of A.

// A simple example of inheritance.

// Create a superclass.

class A {

int i, j;

void showij() {

System.out.println("i and j: " + i + " " + j);

}

}

// Create a subclass by extending class A.

class B extends A {

int k;

void showk() {

System.out.println("k: " + k);

}

void sum() {

System.out.println("i+j+k: " + (i+j+k));

}

}

class SimpleInheritance {

public static void main(String args []) {

A superOb = new A();

B subOb = new B();

// The superclass may be used by itself.

superOb.i = 10;

superOb.j = 20;

System.out.println("Contents of superOb: ");

superOb.showij();

System.out.println();

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 2

/* The subclass has access to all public members of its superclass. */

subOb.i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.println("Contents of subOb: ");

subOb.showij();

subOb.showk();

System.out.println();

System.out.println("Sum of i, j and k in subOb:");

subOb.sum();

}

}

The output from this program is shown here:

Contents of superOb:

i and j: 10 20

Contents of subOb:

i and j: 7 8

k: 9

Sum of i, j and k in subOb:

i+j+k: 24

As you can see, the subclass B includes all of the members of its superclass, A.

This is why subOb can access i and j and call showij(). Also, inside sum(), i and j

can be referred to directly, as if they were part of B.

Even though A is a superclass for B, it is also a completely independent, stand-

alone class. Being a superclass for a subclass does not mean that the superclass cannot

be used by itself. Further, a subclass can be a superclass for another subclass. The

general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name {

// body of class

}

You can only specify one superclass for any subclass that you create. Java does

not support the inheritance of multiple super classes into a single subclass. You can, as

stated, create a hierarchy of inheritance in which a subclass becomes a superclass of

another subclass. However, no class can be a superclass of itself.

Member Access and Inheritance:

Although a subclass includes all of the members of its superclass, it cannot access

those members of the superclass that have been declared as private. For example,

consider the following simple class hierarchy:

/* In a class hierarchy, private members remain private to their class. This

program contains an error and will not compile. */

// Create a superclass.

class A {

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 3

int i; // public by default

private int j; // private to A

void setij(int x, int y) {

i = x;

j = y;

}

}

// A's j is not accessible here.

class B extends A {

int total;

void sum() {

total = i + j; // ERROR, j is not accessible here

}

}

class Access {

public static void main(String args[]) {

B subOb = new B();

subOb.setij(10, 12);

subOb.sum();

System.out.println("Total is " + subOb.total);

}

}

This program will not compile because the use of j inside the sum() method of B

causes an access violation. Since j is declared as private, it is only accessible by other

members of its own class. Subclasses have no access to it.

REMEMBER A class member that has been declared as private will remain private to its class. It is not

accessible by any code outside its class, including subclasses.

A More Practical Example:

Let’s look at a more practical example that will help illustrate the power of

inheritance. Here, the final version of the Box class developed which will be extended to

include a fourth component called weight. Thus, the new class will contain a box’s

width, height, depth, and weight.

// This program uses inheritance to extend Box.

class Box {

double width;

double height;

double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 4

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// Here, Box is extended to include weight.

class BoxWeight extends Box {

double weight; // weight of box

// constructor for BoxWeight

BoxWeight(double w, double h, double d, double m) {

width = w;

height = h;

depth = d;

weight = m;

} }

class DemoBoxWeight {

public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);

System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " + mybox2.weight);

}

}

The output from this program is shown here:

Volume of mybox1 is 3000.0

Weight of mybox1 is 34.3

Volume of mybox2 is 24.0

Weight of mybox2 is 0.076

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 5

BoxWeight inherits all of the characteristics of Box and adds to them the

weight component. It is not necessary for BoxWeight to re-create all of the features

found in Box. It can simply extend Box to meet its own purposes.

A major advantage of inheritance is that once you have created a superclass that

defines the attributes common to a set of objects, it can be used to create any number

of more specific subclasses. Each subclass can precisely tailor its own classification.

For example, the following class inherits Box and adds a color attribute:

// Here, Box is extended to include color.

class ColorBox extends Box {

int color; // color of box

ColorBox(double w, double h, double d, int c) {

width = w;

height = h;

depth = d;

color = c;

}

}

Remember, once you have created a superclass that defines the general aspects of an object, that superclass

can be inherited to form specialized classes. Each subclass simply adds its own unique attributes. This is the

essence of inheritance.

A Superclass Variable Can Reference a Subclass Object:

A reference variable of a superclass can be assigned a reference to any subclass

derived from that superclass. You will find this aspect of inheritance quite useful in a

variety of situations. For example, consider the following:

class RefDemo {

public static void main(String args[]) {

BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);

Box plainbox = new Box();

double vol;

vol = weightbox.volume();

System.out.println("Volume of weightbox is " + vol);

System.out.println("Weight of weightbox is " +

weightbox.weight);

System.out.println();

// assign BoxWeight reference to Box reference

plainbox = weightbox;

vol = plainbox.volume(); // OK, volume() defined in Box

System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox

does not define a weight member. */

// System.out.println("Weight of plainbox is " + plainbox.weight);

}

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 6

Here, weightbox is a reference to BoxWeight objects, and plainbox is a

reference to Box objects. Since BoxWeight is a subclass of Box, it is permissible to

assign plainbox a reference to the weightbox object.

It is important to understand that it is the type of the reference variable—not the

type of the object that it refers to—that determines what members can be accessed.

That is, when a reference to a subclass object is assigned to a superclass reference

variable, you will have access only to those parts of the object defined by the superclass.

This is why plainbox can’t access weight even when it refers to a BoxWeight

object. If you think about it, this makes sense, because the superclass has no knowledge

of what a subclass adds to it. This is why the last line of code in the preceding fragment

is commented out. It is not possible for a Box reference to access the weight field,

because Box does not define one.

Using super:

In the preceding examples, classes derived from Box were not implemented as

efficiently or as robustly as they could have been. For example, the constructor for

BoxWeight explicitly initializes the width, height, and depth fields of Box. Not only

does this duplicate code found in its superclass, which is inefficient, but it implies that a

subclass must be granted access to these members.

However, there will be times when you will want to create a superclass that keeps

the details of its implementation to itself (that is, that keeps its data members private).

In this case, there would be no way for a subclass to directly access or initialize these

variables on its own. Since encapsulation is a primary attribute of OOP, it is not

surprising that Java provides a solution to this problem.

Whenever a subclass needs to refer to its immediate superclass, it can do so by

use of the keyword super. Super has two general forms. The first calls the superclass’

constructor. The second is used to access a member of the superclass that has been

hidden by a member of a subclass. Each use is examined here:

Using super to Call Superclass Constructors

A subclass can call a constructor defined by its superclass by use of the following

form of super:

super(arg-list);

Here, arg-list specifies any arguments needed by the constructor in the

superclass. super() must always be the first statement executed inside a subclass’

constructor. To see how super() is used, consider this improved version of the

BoxWeight class:

// BoxWeight now uses super to initialize its Box attributes.

class BoxWeight extends Box {

double weight; // weight of box

// initialize width, height, and depth using super()

BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 7

weight = m;

}

}

Here, BoxWeight() calls super() with the arguments w, h, and d. This causes

the Box constructor to be called, which initializes width, height, and depth using these

values. BoxWeight no longer initializes these values itself. It only needs to initialize the

value unique to it: weight. This leaves Box free to make these values private if

desired.

In the preceding example, super() was called with three arguments. Since

constructors can be overloaded, super() can be called using any form defined by the

superclass. The constructor executed will be the one that matches the arguments.

For example, here is a complete implementation of BoxWeight that provides

constructors for the various ways that a box can be constructed. In each case, super()

is called using the appropriate arguments. Notice that width, height, and depth have

been made private within Box.

// A complete implementation of BoxWeight.

class Box {

private double width;

private double height;

private double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 8

}

// BoxWeight now fully implements all constructors.

class BoxWeight extends Box {

double weight; // weight of box

// construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

weight = ob.weight;

}

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor

BoxWeight() {

super();

weight = -1;

}

// constructor used when cube is created

BoxWeight(double len, double m) {

super(len);

weight = m;

}

}

class DemoSuper {

public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

BoxWeight mybox3 = new BoxWeight(); // default

BoxWeight mycube = new BoxWeight(3, 2);

BoxWeight myclone = new BoxWeight(mybox1);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);

System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " + mybox2.weight);

System.out.println();

vol = mybox3.volume();

System.out.println("Volume of mybox3 is " + vol);

System.out.println("Weight of mybox3 is " + mybox3.weight);

System.out.println();

vol = myclone.volume();

System.out.println("Volume of myclone is " + vol);

System.out.println("Weight of myclone is " + myclone.weight);

System.out.println();

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 9

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

System.out.println("Weight of mycube is " + mycube.weight);

System.out.println();

}

}

This program generates the following output:

Volume of mybox1 is 3000.0

Weight of mybox1 is 34.3

Volume of mybox2 is 24.0

Weight of mybox2 is 0.076

Volume of mybox3 is -1.0

Weight of mybox3 is -1.0

Volume of myclone is 3000.0

Weight of myclone is 34.3

Volume of mycube is 27.0

Weight of mycube is 2.0

Pay special attention to this constructor in BoxWeight:

// construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

weight = ob.weight;

}

Notice that super() is passed an object of type BoxWeight—not of type Box.

This still invokes the constructor Box(Box ob). As mentioned earlier, a superclass

variable can be used to reference any object derived from that class. Thus, we are able

to pass a BoxWeight object to the Box constructor. Of course, Box only has knowledge

of its own members.

Let’s review the key concepts behind super(). When a subclass calls super(), it

is calling the constructor of its immediate superclass. Thus, super() always refers to

the superclass immediately above the calling class. This is true even in a multileveled

hierarchy. Also, super() must always be the first statement executed inside a subclass

constructor.

A Second Use for super

The second form of super acts somewhat like this, except that it always refers to

the superclass of the subclass in which it is used. This usage has the following general

form:

super.member

Here, member can be either a method or an instance variable.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 10

This second form of super is most applicable to situations in which member

names of a subclass hide members by the same name in the superclass. Consider this

simple class hierarchy:

// Using super to overcome name hiding.

class A {

int i;

}

// Create a subclass by extending class A.

class B extends A {

int i; // this i hides the i in A

B(int a, int b) {

super.i = a; // i in A

i = b; // i in B

}

void show() {

System.out.println("i in superclass: " + super.i);

System.out.println("i in subclass: " + i);

}

}

class UseSuper {

public static void main(String args[]) {

B subOb = new B(1, 2);

subOb.show();

}

}

This program displays the following:

i in superclass: 1

i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i

defined in the superclass. As you will see, super can also be used to call methods that

are hidden by a subclass.

Creating a Multilevel Hierarchy:

Up to this point, we have been using simple class hierarchies that consist of only

a superclass and a subclass. However, you can build hierarchies that contain as many

layers of inheritance as you like.

As mentioned, it is perfectly acceptable to use a subclass as a superclass of

another. For example, given three classes called A, B, and C, C can be a subclass of B,

which is a subclass of A. When this type of situation occurs, each subclass inherits all of

the traits found in all of its superclasses. In this case, C inherits all aspects of B and A.

To see how a multilevel hierarchy can be useful, consider the following program.

In it, the subclass BoxWeight is used as a superclass to create the subclass called

Shipment. Shipment inherits all of the traits of BoxWeight and Box, and adds a field

called cost, which holds the cost of shipping such a parcel.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 11

// Extend BoxWeight to include shipping costs.

// Start with Box.

class Box {

private double width;

private double height;

private double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// Add weight.

class BoxWeight extends Box {

double weight; // weight of box

// construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

weight = ob.weight;

}

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor

BoxWeight() {

super();

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 12

weight = -1;

}

// constructor used when cube is created

BoxWeight(double len, double m) {

super(len);

weight = m;

}

}

// Add shipping costs.

class Shipment extends BoxWeight {

double cost;

// construct clone of an object

Shipment(Shipment ob) { // pass object to constructor

super(ob);

cost = ob.cost;

}

// constructor when all parameters are specified

Shipment(double w, double h, double d,

double m, double c) {

super(w, h, d, m); // call superclass constructor

cost = c;

}

// default constructor

Shipment() {

super();

cost = -1;

}

// constructor used when cube is created

Shipment(double len, double m, double c) {

super(len, m);

cost = c;

}

}

class DemoShipment {

public static void main(String args[]) {

Shipment shipment1 =

new Shipment(10, 20, 15, 10, 3.41);

Shipment shipment2 =

new Shipment(2, 3, 4, 0.76, 1.28);

double vol;

vol = shipment1.volume();

System.out.println("Volume of shipment1 is " + vol);

System.out.println("Weight of shipment1 is " + shipment1.weight);

System.out.println("Shipping cost: $" + shipment1.cost);

System.out.println();

vol = shipment2.volume();

System.out.println("Volume of shipment2 is " + vol);

System.out.println("Weight of shipment2 is " + shipment2.weight);

System.out.println("Shipping cost: $" + shipment2.cost);

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 13

}

}

The output of this program is shown here:

Volume of shipment1 is 3000.0

Weight of shipment1 is 10.0

Shipping cost: $3.41

Volume of shipment2 is 24.0

Weight of shipment2 is 0.76

Shipping cost: $1.28

Because of inheritance, Shipment can make use of the previously defined classes

of Box and BoxWeight, adding only the extra information it needs for its own, specific

application. This is part of the value of inheritance; it allows the reuse of code. This

example illustrates one other important point: super() always refers to the constructor

in the closest superclass.

The super() in Shipment calls the constructor in BoxWeight. The super() in

BoxWeight calls the constructor in Box. In a class hierarchy, if a superclass constructor

requires parameters, then all subclasses must pass those parameters ―up the line.‖ This

is true whether or not a subclass needs parameters of its own.

When Constructors Are Executed:

When a class hierarchy is created, in what order are the constructors for the

classes that make up the hierarchy executed? For example, given a subclass called B

and a superclass called A, is A’s constructor executed before B’s, or vice versa? The

answer is that in a class hierarchy, constructors complete their execution in order of

derivation, from superclass to subclass.

Further, since super() must be the first statement executed in a subclass’

constructor, this order is the same whether or not super() is used. If super() is not

used, then the default or parameterless constructor of each superclass will be executed.

The following program illustrates when constructors are executed:

// Demonstrate when constructors are executed.

// Create a super class.

class A {

A() {

System.out.println("Inside A's constructor.");

}

}

// Create a subclass by extending class A.

class B extends A {

B() {

System.out.println("Inside B's constructor.");

}

}

// Create another subclass by extending B.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 14

class C extends B {

C() {

System.out.println("Inside C's constructor.");

}

}

class CallingCons {

public static void main(String args[]) {

C c = new C();

}

}

The output from this program is shown here:

Inside A's constructor

Inside B's constructor

Inside C's constructor

As you can see, the constructors are executed in order of derivation. If you think

about it, it makes sense that constructors complete their execution in order of

derivation. Because a superclass has no knowledge of any subclass, any initialization it

needs to perform is separate from and possibly prerequisite to any initialization

performed by the subclass. Therefore, it must complete its execution first.

Method Overriding:

In a class hierarchy, when a method in a subclass has the same name and type

signature as a method in its superclass, then the method in the subclass is said to

override the method in the superclass. When an overridden method is called from within

its subclass, it will always refer to the version of that method defined by the subclass.

The version of the method defined by the superclass will be hidden. Consider the

following:

// Method overriding.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

// display i and j

void show() {

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

// display k – this overrides show() in A

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 15

void show() {

System.out.println("k: " + k);

}

}

class Override {

public static void main(String args[]) {

B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}

}

The output produced by this program is shown here:

k: 3

When show() is invoked on an object of type B, the version of show() defined

within B is used. That is, the version of show() inside B overrides the version declared

in A. If you wish to access the superclass version of an overridden method, you can do

so by using super. For example, in this version of B, the superclass version of show()

is invoked within the subclass’ version. This allows all instance variables to be displayed.

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

void show() {

super.show(); // this calls A's show()

System.out.println("k: " + k);

}

}

If you substitute this version of A into the previous program, you will see the

following output:

i and j: 1 2

k: 3

Here, super.show() calls the superclass version of show().

Method overriding occurs only when the names and the type signatures of the

two methods are identical. If they are not, then the two methods are simply overloaded.

For example, consider this modified version of the preceding example:

// Methods with differing type signatures are overloaded – not overridden.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 16

}

// display i and j

void show() {

System.out.println("i and j: " + i + " " + j);

}

}

// Create a subclass by extending class A.

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

// overload show()

void show(String msg) {

System.out.println(msg + k);

}

}

class Override {

public static void main(String args[]) {

B subOb = new B(1, 2, 3);

subOb.show("This is k: "); // this calls show() in B

subOb.show(); // this calls show() in A

}

}

The output produced by this program is shown here:

This is k: 3

i and j: 1 2

The version of show() in B takes a string parameter. This makes its type

signature different from the one in A, which takes no parameters. Therefore, no

overriding (or name hiding) takes place. Instead, the version of show() in B simply

overloads the version of show() in A.

Dynamic Method Dispatch:

While the examples in the preceding section demonstrate the mechanics of

method overriding, they do not show its power. Indeed, if there were nothing more to

method overriding than a name space convention, then it would be, at best, an

interesting curiosity, but of little real value. However, this is not the case.

Method overriding forms the basis for one of Java’s most powerful concepts:

dynamic method dispatch. Dynamic method dispatch is the mechanism by which a call to

an overridden method is resolved at run time, rather than compile time.

Dynamic method dispatch is important because this is how Java implements run-

time polymorphism. Let’s begin by restating an important principle: a superclass

reference variable can refer to a subclass object. Java uses this fact to resolve calls to

overridden methods at run time.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 17

Here is how. When an overridden method is called through a superclass

reference, Java determines which version of that method to execute based upon the type

of the object being referred to at the time the call occurs. Thus, this determination is

made at run time.

When different types of objects are referred to, different versions of an

overridden method will be called. In other words, it is the type of the object being

referred to (not the type of the reference variable) that determines which version of an

overridden method will be executed.

Therefore, if a superclass contains a method that is overridden by a subclass,

then when different types of objects are referred to through a superclass reference

variable, different versions of the method are executed.

Here is an example that illustrates dynamic method dispatch:

// Dynamic Method Dispatch

class A {

void callme() {

System.out.println("Inside A's callme method");

}

}

class B extends A {

// override callme()

void callme() {

System.out.println("Inside B's callme method");

}

}

class C extends A {

// override callme()

void callme() {

System.out.println("Inside C's callme method");

}

}

class Dispatch {

public static void main(String args[]) {

A a = new A(); // object of type A

B b = new B(); // object of type B

C c = new C(); // object of type C

A r; // obtain a reference of type A

r = a; // r refers to an A object

r.callme(); // calls A's version of callme

r = b; // r refers to a B object

r.callme(); // calls B's version of callme

r = c; // r refers to a C object

r.callme(); // calls C's version of callme

}

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 18

The output from the program is shown here:

Inside A's callme method

Inside B's callme method

Inside C's callme method

This program creates one superclass called A and two subclasses of it, called B

and C. Subclasses B and C override callme() declared in A. Inside the main()

method, objects of type A, B, and C are declared. Also, a reference of type A, called r, is

declared.

The program then in turn assigns a reference to each type of object to r and uses

that reference to invoke callme(). As the output shows, the version of callme()

executed is determined by the type of object being referred to at the time of the call.

Had it been determined by the type of the reference variable, r, you would see three

calls to A’s callme() method.

Why Overridden Methods?

As stated earlier, overridden methods allow Java to support run-time

polymorphism. Polymorphism is essential to object-oriented programming for one

reason: it allows a general class to specify methods that will be common to all of its

derivatives, while allowing subclasses to define the specific implementation of some or

all of those methods.

Overridden methods are another way that Java implements the ―one interface,

multiple methods‖ aspect of polymorphism. Part of the key to successfully applying

polymorphism is understanding that the superclasses and subclasses form a hierarchy

which moves from lesser to greater specialization. Used correctly, the superclass

provides all elements that a subclass can use directly.

It also defines those methods that the derived class must implement on its own.

This allows the subclass the flexibility to define its own methods, yet still enforces a

consistent interface. Thus, by combining inheritance with overridden methods, a

superclass can define the general form of the methods that will be used by all of its

subclasses.

Dynamic, run-time polymorphism is one of the most powerful mechanisms that

object-oriented design brings to bear on code reuse and robustness. The ability of

existing code libraries to call methods on instances of new classes without recompiling

while maintaining a clean abstract interface is a profoundly powerful tool.

Applying Method Overriding:

Let’s look at a more practical example that uses method overriding. The following

program creates a superclass called Figure that stores the dimensions of a two-

dimensional object. It also defines a method called area() that computes the area of an

object.

The program derives two subclasses from Figure. The first is Rectangle and the

second is Triangle. Each of these subclasses overrides area() so that it returns the

area of a rectangle and a triangle, respectively.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 19

// Using run-time polymorphism.

class Figure {

double dim1;

double dim2;

Figure(double a, double b) {

dim1 = a;

dim2 = b;

}

double area() {

System.out.println("Area for Figure is undefined.");

return 0;

}

}

class Rectangle extends Figure {

Rectangle(double a, double b) {

super(a, b);

}

// override area for rectangle

double area() {

System.out.println("Inside Area for Rectangle.");

return dim1 * dim2;

}

}

class Triangle extends Figure {

Triangle(double a, double b) {

super(a, b);

}

// override area for right triangle

double area() {

System.out.println("Inside Area for Triangle.");

return dim1 * dim2 / 2;

}

}

class FindAreas {

public static void main(String args[]) {

Figure f = new Figure(10, 10);

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

Figure figref;

figref = r;

System.out.println("Area is " + figref.area());

figref = t;

System.out.println("Area is " + figref.area());

figref = f;

System.out.println("Area is " + figref.area());

}

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 20

The output from the program is shown here:

Inside Area for Rectangle.

Area is 45

Inside Area for Triangle.

Area is 40

Area for Figure is undefined.

Area is 0

Through the dual mechanisms of inheritance and run-time polymorphism, it is

possible to define one consistent interface that is used by several different, yet related,

types of objects. In this case, if an object is derived from Figure, then its area can be

obtained by calling area(). The interface to this operation is the same no matter what

type of figure is being used.

Using Abstract Classes:

There are situations in which you will want to define a superclass that declares

the structure of a given abstraction without providing a complete implementation of

every method. That is, sometimes you will want to create a superclass that only defines

a generalized form that will be shared by all of its subclasses, leaving it to each subclass

to fill in the details.

Such a class determines the nature of the methods that the subclasses must

implement. One way this situation can occur is when a superclass is unable to create a

meaningful implementation for a method. This is the case with the class Figure used in

the preceding example.

The definition of area() is simply a placeholder. It will not compute and display

the area of any type of object. As you will see as you create your own class libraries, it is

not uncommon for a method to have no meaningful definition in the context of its

superclass. You can handle this situation two ways.

One way, as shown in the previous example, is to simply have it report a warning

message. While this approach can be useful in certain situations—such as debugging—it

is not usually appropriate. You may have methods that must be overridden by the

subclass in order for the subclass to have any meaning. Consider the class Triangle.

It has no meaning if area() is not defined. In this case, you want some way to

ensure that a subclass does, indeed, override all necessary methods. Java’s solution to

this problem is the abstract method.

You can require that certain methods be overridden by subclasses by specifying

the abstract type modifier. These methods are sometimes referred to as subclasser

responsibility because they have no implementation specified in the superclass. Thus, a

subclass must override them—it cannot simply use the version defined in the superclass.

To declare an abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 21

Any class that contains one or more abstract methods must also be declared

abstract. To declare a class abstract, you simply use the abstract keyword in front of

the class keyword at the beginning of the class declaration. There can be no objects of

an abstract class. That is, an abstract class cannot be directly instantiated with the new

operator.

Such objects would be useless, because an abstract class is not fully defined.

Also, you cannot declare abstract constructors, or abstract static methods. Any subclass

of an abstract class must either implement all of the abstract methods in the superclass,

or be declared abstract itself.

Here is a simple example of a class with an abstract method, followed by a class

which implements that method:

// A Simple demonstration of abstract.

abstract class A {

abstract void callme();

// concrete methods are still allowed in abstract classes

void callmetoo() {

System.out.println("This is a concrete method.");

}

}

class B extends A {

void callme() {

System.out.println("B's implementation of callme.");

}

}

class AbstractDemo {

public static void main(String args[]) {

B b = new B();

b.callme();

b.callmetoo();

}

}

Notice that no objects of class A are declared in the program. As mentioned, it is

not possible to instantiate an abstract class. One other point: class A implements a

concrete method called callmetoo(). This is perfectly acceptable. Abstract classes can

include as much implementation as they see fit.

Although abstract classes cannot be used to instantiate objects, they can be used

to create object references, because Java’s approach to run-time polymorphism is

implemented through the use of superclass references. Thus, it must be possible to

create a reference to an abstract class so that it can be used to point to a subclass

object. You will see this feature put to use in the next example.

Using an abstract class, you can improve the Figure class shown earlier. Since

there is no meaningful concept of area for an undefined two-dimensional figure, the

following version of the program declares area() as abstract inside Figure. This, of

course, means that all classes derived from Figure must override area().

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 22

// Using abstract methods and classes.

abstract class Figure {

double dim1;

double dim2;

Figure(double a, double b) {

dim1 = a;

dim2 = b;

}

// area is now an abstract method

abstract double area();

}

class Rectangle extends Figure {

Rectangle(double a, double b) {

super(a, b);

}

// override area for rectangle

double area() {

System.out.println("Inside Area for Rectangle.");

return dim1 * dim2;

}

}

class Triangle extends Figure {

Triangle(double a, double b) {

super(a, b);

}

// override area for right triangle

double area() {

System.out.println("Inside Area for Triangle.");

return dim1 * dim2 / 2;

}

}

class AbstractAreas {

public static void main(String args[]) {

// Figure f = new Figure(10, 10); // illegal now

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

Figure figref; // this is OK, no object is created

figref = r;

System.out.println("Area is " + figref.area());

figref = t;

System.out.println("Area is " + figref.area());

}

}

As the comment inside main() indicates, it is no longer possible to declare

objects of type Figure, since it is now abstract. And, all subclasses of Figure must

override area(). To prove this to yourself, try creating a subclass that does not override

area(). You will receive a compile-time error.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 23

Although it is not possible to create an object of type Figure, you can create a

reference variable of type Figure. The variable figref is declared as a reference to

Figure, which means that it can be used to refer to an object of any class derived from

Figure. As explained, it is through superclass reference variables that overridden

methods are resolved at run time.

Using final with Inheritance:

The keyword final has three uses. First, it can be used to create the equivalent of

a named constant. The other two uses of final apply to inheritance. Both are examined

here.

Using final to Prevent Overriding:

While method overriding is one of Java’s most powerful features, there will be

times when you will want to prevent it from occurring. To disallow a method from being

overridden, specify final as a modifier at the start of its declaration. Methods declared as

final cannot be overridden. The following fragment illustrates final:

class A {

final void meth() {

System.out.println("This is a final method.");

}

}

class B extends A {

void meth() { // ERROR! Can't override.

System.out.println("Illegal!");

}

}

Because meth() is declared as final, it cannot be overridden in B. If you

attempt to do so, a compile-time error will result. Methods declared as final can

sometimes provide a performance enhancement: The compiler is free to inline calls to

them because it ―knows‖ they will not be overridden by a subclass.

When a small final method is called, often the Java compiler can copy the byte

code for the subroutine directly inline with the compiled code of the calling method, thus

eliminating the costly overhead associated with a method call.

Inlining is an option only with final methods. Normally, Java resolves calls to

methods dynamically, at run time. This is called late binding. However, since final

methods cannot be overridden, a call to one can be resolved at compile time. This is

called early binding.

Using final to Prevent Inheritance:

Sometimes you will want to prevent a class from being inherited. To do this,

precede the class declaration with final. Declaring a class as final implicitly declares all

of its methods as final, too. As you might expect, it is illegal to declare a class as both

abstract and final since an abstract class is incomplete by itself and relies upon its

subclasses to provide complete implementations.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 24

Here is an example of a final class:

final class A {

//...

}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A

//...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

The Object Class (Topic Beyond Syllabus):

There is one special class, Object, defined by Java. All other classes are

subclasses of Object. That is, Object is a superclass of all other classes. This means

that a reference variable of type Object can refer to an object of any other class. Also,

since arrays are implemented as classes, a variable of type Object can also refer to any

array. Object defines the following methods, which means that they are available in

every object.

The methods getClass(), notify(), notifyAll(), and wait() are declared as

final. You may override the others. These methods are described elsewhere in this book.

However, notice two methods now: equals() and toString(). The equals() method

compares two objects. It returns true if the objects are equal, and false otherwise.

The precise definition of equality can vary, depending on the type of objects being

compared. The toString() method returns a string that contains a description of the

object on which it is called. Also, this method is automatically called when an object is

output using println().

Many classes override this method. Doing so allows them to tailor a description

specifically for the types of objects that they create.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 25

PACKAGES:

Basics:

In the preceding examples, the name of each example class was taken from the

same name space. This means that a unique name had to be used for each class to

avoid name collisions.

After a while, without some way to manage the name space, you could run out of

convenient, descriptive names for individual classes. You also need some way to be

assured that the name you choose for a class will be reasonably unique and not collide

with class names chosen by other programmers. (Imagine a small group of programmers fighting

over who gets to use the name “Foobar” as a class name. Or, imagine the entire Internet community arguing

over who first named a class “Espresso.”)

Thankfully, Java provides a mechanism for partitioning the class name space into

more manageable chunks. This mechanism is the package. The package is both a

naming and a visibility control mechanism. You can define classes inside a package that

are not accessible by code outside that package.

You can also define class members that are exposed only to other members of

the same package. This allows your classes to have intimate knowledge of each other,

but not expose that knowledge to the rest of the world.

Creating a Package / Defining a Package:

To create a package is quite easy: simply include a package command as the

first statement in a Java source file. Any classes declared within that file will belong to

the specified package.

The package statement defines a name space in which classes are stored. If you

omit the package statement, the class names are put into the default package, which

has no name. (This is why you haven’t had to worry about packages before now.)

While the default package is fine for short, sample programs, it is inadequate for

real applications. Most of the time, you will define a package for your code. This is the

general form of the package statement:

package pkg;

Here, pkg is the name of the package. For example, the following statement

creates a package called MyPackage:

package MyPackage;

Java uses file system directories to store packages. For example, the .class files

for any classes you declare to be part of MyPackage must be stored in a directory called

MyPackage.

Remember that case is significant, and the directory name must match the

package name exactly. More than one file can include the same package statement. The

package statement simply specifies to which package the classes defined in a file

belong.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 26

It does not exclude other classes in other files from being part of that same

package. Most real-world packages are spread across many files. You can create a

hierarchy of packages. To do so, simply separate each package name from the one

above it by use of a period. The general form of a multileveled package statement is

shown here:

package pkg1[.pkg2[.pkg3]];

A package hierarchy must be reflected in the file system of your Java

development system. For example, a package declared as

package java.awt.image;

needs to be stored in java\awt\image in a Windows environment. Be sure to

choose your package names carefully. You cannot rename a package without renaming

the directory in which the classes are stored.

Finding / Accessing Packages and CLASSPATH:

As just explained, packages are mirrored by directories. This raises an important

question: How does the Java run-time system know where to look for packages that you

create? The answer has three parts.

 First, by default, the Java run-time system uses the current working directory as

its starting point. Thus, if your package is in a subdirectory of the current

directory, it will be found.

 Second, you can specify a directory path or paths by setting the CLASSPATH

environmental variable.

 Third, you can use the -classpath option with java and javac to specify the path

to your classes.

For example, consider the following package specification:

package MyPack

In order for a program to find MyPack, one of three things must be true. Either

the program can be executed from a directory immediately above MyPack, or the

CLASSPATH must be set to include the path to MyPack, or the -classpath option must

specify the path to MyPack when the program is run via java.

When the second two options are used, the class path must not include MyPack,

itself. It must simply specify the path to MyPack. For example, in a Windows

environment, if the path to MyPack is

C:\MyPrograms\Java\MyPack

then the class path to MyPack is

C:\MyPrograms\Java

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 27

The easiest way to try the examples shown in this book is to simply create the

package directories below your current development directory, put the .class files into

the appropriate directories, and then execute the programs from the development

directory. This is the approach used in the following example.

A Short Package Example:

Keeping the preceding discussion in mind, you can try this simple package:

// A simple package

package MyPack;

class Balance {

String name;

double bal;

Balance(String n, double b) {

name = n;

bal = b;

}

void show() {

if(bal<0)

System.out.print("--> ");

System.out.println(name + ": $" + bal);

}

}

class AccountBalance {

public static void main(String args[]) {

Balance current[] = new Balance[3];

current[0] = new Balance("K. J. Fielding", 123.23);

current[1] = new Balance("Will Tell", 157.02);

current[2] = new Balance("Tom Jackson", -12.33);

for(int i=0; i<3; i++) current[i].show();

}

}

Call this file AccountBalance.java and put it in a directory called MyPack. Next,

compile the file. Make sure that the resulting .class file is also in the MyPack directory.

Then, try executing the AccountBalance class, using the following command line:

java MyPack.AccountBalance

Remember, you will need to be in the directory above MyPack when you execute

this command. (Alternatively, you can use one of the other two options described in the

preceding section to specify the path MyPack.)

As explained, AccountBalance is now part of the package MyPack. This means

that it cannot be executed by itself. That is, you cannot use this command line:

java AccountBalance

AccountBalance must be qualified with its package name.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 28

Importing Packages:

Given that packages exist and are a good mechanism for compartmentalizing

diverse classes from each other, it is easy to see why all of the built-in Java classes are

stored in packages.

There are no core Java classes in the unnamed default package; all of the

standard classes are stored in some named package. Since classes within packages must

be fully qualified with their package name or names, it could become tedious to type in

the long dot-separated package path name for every class you want to use.

For this reason, Java includes the import statement to bring certain classes, or

entire packages, into visibility. Once imported, a class can be referred to directly, using

only its name. The import statement is a convenience to the programmer and is not

technically needed to write a complete Java program.

If you are going to refer to a few dozen classes in your application, however, the

import statement will save a lot of typing. In a Java source file, import statements

occur immediately following the package statement (if it exists) and before any class

definitions. This is the general form of the import statement:

import pkg1 [.pkg2].(classname | *);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a

subordinate package inside the outer package separated by a dot (.). There is no

practical limit on the depth of a package hierarchy, except that imposed by the file

system.

Finally, you specify either an explicit classname or a star (*), which indicates that

the Java compiler should import the entire package. This code fragment shows both

forms in use:

import java.util.Date;

import java.io.*;

All of the standard Java classes included with Java are stored in a package called

java. The basic language functions are stored in a package inside of the java package

called java.lang.

Normally, you have to import every package or class that you want to use, but

since Java is useless without much of the functionality in java.lang, it is implicitly

imported by the compiler for all programs. This is equivalent to the following line being

at the top of all of your programs:

import java.lang.*;

If a class with the same name exists in two different packages that you import

using the star form, the compiler will remain silent, unless you try to use one of the

classes. In that case, you will get a compile-time error and have to explicitly name the

class specifying its package.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 29

It must be emphasized that the import statement is optional. Any place you use

a class name, you can use its fully qualified name, which includes its full package

hierarchy. For example, this fragment uses an import statement:

import java.util.*;

class MyDate extends Date {

}

The same example without the import statement looks like this:

class MyDate extends java.util.Date {

}

In this version, Date is fully-qualified.

Interfaces:

Using the keyword interface, you can fully abstract a class’ interface from its

implementation. That is, using interface, you can specify what a class must do, but not

how it does it. Interfaces are syntactically similar to classes, but they lack instance

variables, and, as a general rule, their methods are declared without any body.

In practice, this means that you can define interfaces that don’t make

assumptions about how they are implemented. Once it is defined, any number of classes

can implement an interface. Also, one class can implement any number of interfaces.

To implement an interface, a class must provide the complete set of methods

required by the interface. However, each class is free to determine the details of its own

implementation. By providing the interface keyword, Java allows you to fully utilize the

―one interface, multiple methods‖ aspect of polymorphism.

Interfaces are designed to support dynamic method resolution at run time.

Normally, in order for a method to be called from one class to another, both classes

need to be present at compile time so the Java compiler can check to ensure that the

method signatures are compatible.

This requirement by itself makes for a static and nonextensible classing

environment. Inevitably in a system like this, functionality gets pushed up higher and

higher in the class hierarchy so that the mechanisms will be available to more and more

subclasses. Interfaces are designed to avoid this problem.

They disconnect the definition of a method or set of methods from the inheritance

hierarchy. Since interfaces are in a different hierarchy from classes, it is possible for

classes that are unrelated in terms of the class hierarchy to implement the same

interface. This is where the real power of interfaces is realized.

Definition / Defining an Interface:

An interface is defined much like a class. This is a simplified general form of an

interface:

access interface name {

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 30

return-type method-name1(parameter-list);

return-type method-name2(parameter-list);

type final-varname1 = value;

type final-varname2 = value;

//...

return-type method-nameN(parameter-list);

type final-varnameN = value;

}

When no access modifier is included, then default access results, and the

interface is only available to other members of the package in which it is declared. When

it is declared as public, the interface can be used by any other code. In this case, the

interface must be the only public interface declared in the file, and the file must have the

same name as the interface. name is the name of the interface, and can be any valid

identifier.

Notice that the methods that are declared have no bodies. They end with a

semicolon after the parameter list. They are, essentially, abstract methods. Each class

that includes such an interface must implement all of the methods.

Before continuing an important point needs to be made. JDK 8 added a feature to

interface that makes a significant change to its capabilities. Prior to JDK 8, an interface

could not define any implementation whatsoever. This is the type of interface that the

preceding simplified form shows, in which no method declaration supplies a body.

Thus, prior to JDK 8, an interface could define only ―what,‖ but not ―how.‖ JDK 8

changes this. Beginning with JDK 8, it is possible to add a default implementation to an

interface method. Thus, it is now possible for interface to specify some behavior.

However, default methods constitute what is, in essence, a special-use feature,

and the original intent behind interface still remains. Therefore, as a general rule, you

will still often create and use interfaces in which no default methods exist. For this

reason, we will begin by discussing the interface in its traditional form. The default

method is described later.

As the general form shows, variables can be declared inside of interface

declarations. They are implicitly final and static, meaning they cannot be changed by

the implementing class.

They must also be initialized. All methods and variables are implicitly public.

Here is an example of an interface definition. It declares a simple interface that contains

one method called callback() that takes a single integer parameter.

interface Callback {

void callback(int param);

}

Implementing Interfaces:

Once an interface has been defined, one or more classes can implement that

interface.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 31

To implement an interface, include the implements clause in a class definition,

and then create the methods required by the interface. The general form of a class that

includes the implements clause looks like this:

class classname [extends superclass] [implements interface [,interface...]] {

// class-body

}

If a class implements more than one interface, the interfaces are separated with

a comma. If a class implements two interfaces that declare the same method, then the

same method will be used by clients of either interface.

The methods that implement an interface must be declared public. Also, the type

signature of the implementing method must match exactly the type signature specified

in the interface definition. Here is a small example class that implements the Callback

interface shown earlier:

class Client implements Callback {

// Implement Callback's interface

public void callback(int p) {

System.out.println("callback called with " + p);

}

}

Notice that callback() is declared using the public access modifier.

REMEMBER When you implement an interface method, it must be declared as public.

It is both permissible and common for classes that implement interfaces to define

additional members of their own. For example, the following version of Client

implements callback() and adds the method nonIfaceMeth():

class Client implements Callback {

// Implement Callback's interface

public void callback(int p) {

System.out.println("callback called with " + p);

}

void nonIfaceMeth() {

System.out.println("Classes that implement interfaces " +

"may also define other members, too.");

}

}

Accessing Implementations Through Interface References:

You can declare variables as object references that use an interface rather than a

class type. Any instance of any class that implements the declared interface can be

referred to by such a variable.

When you call a method through one of these references, the correct version will

be called based on the actual instance of the interface being referred to. This is one of

the key features of interfaces.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 32

The method to be executed is looked up dynamically at run time, allowing classes

to be created later than the code which calls methods on them. The calling code can

dispatch through an interface without having to know anything about the ―callee.‖ This

process is similar to using a superclass reference to access a subclass object.

The output of this program is shown here:

callback called with 42

Notice that variable c is declared to be of the interface type Callback, yet it was

assigned an instance of Client. Although c can be used to access the callback()

method, it cannot access any other members of the Client class. An interface reference

variable has knowledge only of the methods declared by its interface declaration. Thus,

c could not be used to access nonIfaceMeth() since it is defined by Client but not

Callback.

While the preceding example shows, mechanically, how an interface reference

variable can access an implementation object, it does not demonstrate the polymorphic

power of such a reference. To sample this usage, first create the second implementation

of Callback, shown here:

// Another implementation of Callback.

class AnotherClient implements Callback {

// Implement Callback's interface

public void callback(int p) {

System.out.println("Another version of callback");

System.out.println("p squared is " + (p*p));

}

}

Now, try the following class:

class TestIface2 {

public static void main(String args[]) {

Callback c = new Client();

AnotherClient ob = new AnotherClient();

c.callback(42);

c = ob; // c now refers to AnotherClient object

c.callback(42);

}

}

The output from this program is shown here:

callback called with 42

Another version of callback

p squared is 1764

As you can see, the version of callback() that is called is determined by the

type of object that c refers to at run time.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 33

Partial Implementations:

If a class includes an interface but does not fully implement the methods required

by that interface, then that class must be declared as abstract. For example:

abstract class Incomplete implements Callback {

int a, b;

void show() {

System.out.println(a + " " + b);

}

//...

}

Here, the class Incomplete does not implement callback() and must be

declared as abstract. Any class that inherits Incomplete must implement callback()

or be declared abstract itself.

Interfaces Can Be Extended / Extending Interfaces:

One interface can inherit another by use of the keyword extends. The syntax is

the same as for inheriting classes. When a class implements an interface that inherits

another interface, it must provide implementations for all methods required by the

interface inheritance chain. Following is an example:

// One interface can extend another.

interface A

{

void meth1();

void meth2();

}

// B now includes meth1() and meth2() -- it adds meth3().

interface B extends A

{

void meth3();

}

// This class must implement all of A and B

class MyClass implements B

{

public void meth1()

{

System.out.println("Implement meth1().");

}

public void meth2()

{

System.out.println("Implement meth2().");

}

public void meth3()

{

System.out.println("Implement meth3().");

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 34

}

class IFExtend

{

public static void main(String arg[])

{

MyClass ob = new MyClass();

ob.meth1();

ob.meth2();

ob.meth3();

}

}

As an experiment, you might want to try removing the implementation for

meth1() in MyClass. This will cause a compile-time error. As stated earlier, any class

that implements an interface must implement all methods required by that interface,

including any that are inherited from other interfaces.

Nested Interfaces:

An interface can be declared a member of a class or another interface. Such an

interface is called a member interface or a nested interface. A nested interface can be

declared as public, private, or protected. This differs from a top-level interface, which

must either be declared as public or use the default access level, as previously

described.

When a nested interface is used outside of its enclosing scope, it must be

qualified by the name of the class or interface of which it is a member. Thus, outside of

the class or interface in which a nested interface is declared, its name must be fully

qualified.

Here is an example that demonstrates a nested interface:

// A nested interface example.

// This class contains a member interface.

class A

{

// this is a nested interface

public interface NestedIF

{

boolean isNotNegative(int x);

}

}

// B implements the nested interface.

class B implements A.NestedIF

{

public boolean isNotNegative(int x)

{

return x < 0 ? false: true;

}

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 35

class NestedIFDemo

{

public static void main(String args[])

{

// use a nested interface reference

A.NestedIF nif = new B();

if(nif.isNotNegative(10))

System.out.println("10 is not negative");

if(nif.isNotNegative(-12))

System.out.println("this won't be displayed");

}

}

Notice that A defines a member interface called NestedIF and that it is declared

public. Next, B implements the nested interface by specifying

implements A.NestedIF

Notice that the name is fully qualified by the enclosing class’ name. Inside the

main() method, an A.NestedIF reference called nif is created, and it is assigned a

reference to a B object. Because B implements A.NestedIF, this is legal.

Applying Interfaces:

To understand the power of interfaces, let’s look at a more practical example. For

example, the stack can be of a fixed size or it can be ―growable.‖ The stack can also be

held in an array, a linked list, a binary tree, and so on.

No matter how the stack is implemented, the interface to the stack remains the

same. That is, the methods push() and pop() define the interface to the stack

independently of the details of the implementation.

Because the interface to a stack is separate from its implementation, it is easy to

define a stack interface, leaving it to each implementation to define the specifics. Let’s

look at two examples.

First, here is the interface that defines an integer stack. Put this in a file called

IntStack.java. This interface will be used by both stack implementations.

// Define an integer stack interface.

interface IntStack {

void push(int item); // store an item

int pop(); // retrieve an item

}

The following program creates a class called FixedStack that implements a fixed-

length version of an integer stack:

// An implementation of IntStack that uses fixed storage.

class FixedStack implements IntStack {

private int stck[];

private int tos;

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 36

// allocate and initialize stack

FixedStack(int size) {

stck = new int[size];

tos = -1;

}

// Push an item onto the stack

public void push(int item) {

if(tos==stck.length-1) // use length member

System.out.println("Stack is full.");

else

stck[++tos] = item;

}

// Pop an item from the stack

public int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class IFTest {

public static void main(String args[]) {

FixedStack mystack1 = new FixedStack(5);

FixedStack mystack2 = new FixedStack(8);

// push some numbers onto the stack

for(int i=0; i<5; i++) mystack1.push(i);

for(int i=0; i<8; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystack1:");

for(int i=0; i<5; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<8; i++)

System.out.println(mystack2.pop());

}

}

Following is another implementation of IntStack that creates a dynamic stack by

use of the same interface definition. In this implementation, each stack is constructed

with an initial length. If this initial length is exceeded, then the stack is increased in size.

Each time more room is needed, the size of the stack is doubled.

// Implement a "growable" stack.

class DynStack implements IntStack {

private int stck[];

private int tos;

// allocate and initialize stack

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 37

DynStack(int size) {

stck = new int[size];

tos = -1;

}

// Push an item onto the stack

public void push(int item) {

// if stack is full, allocate a larger stack

if(tos==stck.length-1) {

int temp[] = new int[stck.length * 2]; // double size

for(int i=0; i<stck.length; i++) temp[i] = stck[i];

stck = temp;

stck[++tos] = item;

}

else

stck[++tos] = item;

}

// Pop an item from the stack

public int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class IFTest2 {

public static void main(String args[]) {

DynStack mystack1 = new DynStack(5);

DynStack mystack2 = new DynStack(8);

// these loops cause each stack to grow

for(int i=0; i<12; i++) mystack1.push(i);

for(int i=0; i<20; i++) mystack2.push(i);

System.out.println("Stack in mystack1:");

for(int i=0; i<12; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<20; i++)

System.out.println(mystack2.pop());

}

}

The following class uses both the FixedStack and DynStack implementations. It

does so through an interface reference. This means that calls to push() and pop() are

resolved at run time rather than at compile time.

/* Create an interface variable and access stacks through it. */

class IFTest3 {

public static void main(String args[]) {

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 38

IntStack mystack; // create an interface reference variable

DynStack ds = new DynStack(5);

FixedStack fs = new FixedStack(8);

mystack = ds; // load dynamic stack

// push some numbers onto the stack

for(int i=0; i<12; i++) mystack.push(i);

mystack = fs; // load fixed stack

for(int i=0; i<8; i++) mystack.push(i);

mystack = ds;

System.out.println("Values in dynamic stack:");

for(int i=0; i<12; i++)

System.out.println(mystack.pop());

mystack = fs;

System.out.println("Values in fixed stack:");

for(int i=0; i<8; i++)

System.out.println(mystack.pop());

}

}

In this program, mystack is a reference to the IntStack interface. Thus, when it

refers to ds, it uses the versions of push() and pop() defined by the DynStack

implementation. When it refers to fs, it uses the versions of push() and pop() defined

by FixedStack.

As explained, these determinations are made at run time. Accessing multiple

implementations of an interface through an interface reference variable is the most

powerful way that Java achieves run-time polymorphism.

Variables in Interfaces:

You can use interfaces to import shared constants into multiple classes by simply

declaring an interface that contains variables that are initialized to the desired values.

When you include that interface in a class (that is, when you ―implement‖ the interface),

all of those variable names will be in scope as constants. (This is similar to using a

header file in C/C++ to create a large number of #defined constants or const

declarations.)

If an interface contains no methods, then any class that includes such an

interface doesn’t actually implement anything. It is as if that class were importing the

constant fields into the class name space as final variables. The next example uses this

technique to implement an automated ―decision maker‖:

import java.util.Random;

interface SharedConstants {

int NO = 0;

int YES = 1;

int MAYBE = 2;

int LATER = 3;

int SOON = 4;

int NEVER = 5;

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 39

}

class Question implements SharedConstants {

Random rand = new Random();

int ask() {

int prob = (int) (100 * rand.nextDouble());

if (prob < 30)

return NO; // 30%

else if (prob < 60)

return YES; // 30%

else if (prob < 75)

return LATER; // 15%

else if (prob < 98)

return SOON; // 13%

else

return NEVER; // 2%

}

}

class AskMe implements SharedConstants {

static void answer(int result) {

switch(result) {

case NO:

System.out.println("No");

break;

case YES:

System.out.println("Yes");

break;

case MAYBE:

System.out.println("Maybe");

break;

case LATER:

System.out.println("Later");

break;

case SOON:

System.out.println("Soon");

break;

case NEVER:

System.out.println("Never");

break;

}

}

public static void main(String args[]) {

Question q = new Question();

answer(q.ask());

answer(q.ask());

answer(q.ask());

answer(q.ask());

}

}

OBJECT ORIENTED PROGRAMMING THROUGH JAVA
UNIT III: INHERITANCE, PACKAGES, INTERFACES SVEC-19

Prepared by
T.M. Jaya Krishna M.Tech. Asst. Prof. Department of CSE 40

Notice that this program makes use of one of Java’s standard classes: Random.

This class provides pseudorandom numbers. It contains several methods that allow you

to obtain random numbers in the form required by your program. In this example, the

method nextDouble() is used. It returns random numbers in the range 0.0 to 1.0.

In this sample program, the two classes, Question and AskMe, both implement

the SharedConstants interface where NO, YES, MAYBE, SOON, LATER, and NEVER

are defined.

Inside each class, the code refers to these constants as if each class had defined

or inherited them directly. Here is the output of a sample run of this program. Note that

the results are different each time it is run.

Later

Soon

No

Yes

