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UNIT-II 

NONDETERMINISTIC FINITE AUTOMATA WITH ε TRANSITIONS: 

 In the automata theory, a nondeterministic finite automaton (NFA) or nondeterministic finite 

state machine is a finite state machine where from each state and a given input symbol the 

automaton may jump into several possible next states. 

 This distinguishes it from the deterministic finite automaton (DFA), where the next possible state 

is uniquely determined.  

 Although the DFA and NFA have distinct definitions, a NFA can be translated to equivalent DFA 

using power set construction, i.e., the constructed DFA and the NFA recognize the same formal 

language. 

 Both types of automata recognize only regular languages. NFAs are sometimes studied by the 

name subshifts of finite type. NFAs have been generalized multiple ways, e.g., nondeterministic 

finite automaton with ε-moves, pushdown automaton. 

 In the automata theory, a nondeterministic finite automaton with ε-moves (NFA-ε) is an 

extension of nondeterministic finite automaton (NFA), which allows a transformation to a new 

state without consuming or reading any input symbols. 

 The transitions without consuming an input symbol are called ε-transitions. In the state 

diagrams, they are usually labeled with the Greek letter ε. 

SIGNIFICANCE 

 ε-transitions provide a convenient way of modeling the systems whose current states are not 

precisely known.  

 ε-transitions do not add any extra capacity of recognizing formal languages. NFA-ε’s and NFA’s 

recognize same class of formal languages, namely regular languages. 

 NFA-ε’s are defined because certain properties can be more easily proved on them as compared 

to NFA. Since a NFA-ε can always be transformed into a NFA, the properties are also true for 

NFAs. 

Use of ε-transitions 

 To build an NFA that recognizes a set of keywords, the strategy can be simplified further if we 

allow the ε-transitions. 

 For example consider the NFA recognizing the keywords state and regular, which is 

implemented with ε-transitions as in the figure below: 
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Figure 1: using ε-transitions to help recognize keywords 



FORMAL LANGUAGES & AUTOMATA THEORY  Jaya Krishna, M.Tech, Asst. Prof. 

Jkdirectory Page | 2 JKD 

Syllabus  R09 Regulation 

 In general we construct a complete sequence of states for each keyword, as if it were the only 

word the automaton needed to recognize. 

 Then we add a new start state (state 15 in figure:1) with ε-transitions to the start-states of the 

automata for each of the keywords. 

Formal Notation for an ε-NFA 

 We may represent an ε-NFA exactly as we do an NFA, with one exception: the transition function 

must include information about transitions on ε. 

 Formally we represent an ε-NFA A by A = (Q, Σ, Δ, q0,F), where all components have their same 

interpretations as for an NFA, except that Δ is now a function that takes as arguments: 

1. A state in Q, and 

2. A number of Σ ∪ ,ε-, i.e. either an input or the symbol ε. We require that ε, the symbol 

for the empty string, cannot be a member of the alphabet Σ, so no confusion results. 

 In the above ε-NFA A 

1. Q  Finite set of states 

2. Σ  input Alphabet 

3. Δ  Transition function (Δ : Q × (Σ ∪,ε-) → P(Q)) 

4. q0  start state in Q 

5. F  a set of final states F ⊆ Q. 

 Consider the NFA as in the figure 1.1: 

 
Figure 1. 1: ε-NFA accepting decimal numbers 

 The ε-NFA in the above diagram is represented formally as 

E = ({q0, q1, . . . , q5}, {., +, -, 0, 1, . . . , 9}, Δ, q0, {q5}) 

 Where Δ is defined by the transition table given in Figure 1.2: given below. 

 ε +, - . 0, 1, . . . , 9 

q0 { q1} { q1} φ φ 

   q1 φ φ { q2} { q1, q4} 

   q2 φ φ φ { q3} 

   q3 { q5} φ φ { q3} 

   q4 φ φ { q3} φ 

  *q5 φ φ φ φ 
Figure 1. 2: Transition table for figure 1.1 
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 In the formal representation of NFA, P(Q) denotes the power set of Q and ε denotes empty 

string. 

Equivalence between NFA with and without ε transitions: 

 It can be shown that ordinary NFA and NFA-ε are equivalent, in that, given either one, one can 

construct the other, which recognizes the same language. 

Example: 

 Let M be a NFA-ε, with a binary alphabet, that determines if the input contains an even number of 0s or 

an even number of 1s.  

 Note that 0 occurrences is an even number of occurrences as well. In formal notation, let M = ({s0, s1, s2, 

s3, s4-, ,0, 1-, Δ, s0, {s1, s3}) where the transition relation Δ can be defined by the state transition table 

given below: 

 
                                 figure 1. 3 State Diagram M         Table 1: State Transition Table for M. 

 M can be viewed as the union of two DFAs: one with states {S1, S2} and the other with states 

{S3, S4}.  

 The language of M can be described by the regular language given by this regular expression 

(1*(01*01*)*) ∪ (0*(10*10*)*). We define M using ε-moves but M can be defined without using 

ε-moves. 

Epsilon – Closure 

 ε-closure of a state q is the set of states that can be reached from q along a path in which all arcs 

are labeled with ε. 

 If q is in ε-closure then it is denoted as ε-closure(q). If p is in ε-closure(q) and there is an ε 

transition from p to r, then r is in ε-closure(q). 

 NFA’s are said to be closed under the following operations:  

1. Union 

2. Intersection 

3. Concatenation 

4. Negation 

5. Kleene closure 

 0 1 ε 

S0 φ φ {S1,S3} 

S1 {S2} {S1} φ 

S2 {S1} {S2} φ 

S3 {S3} {S4} φ 

S4 {S4} {S3} φ 
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Kleene star or Kleene operator or Kleene closure is a unary operation, performed either 

on sets of strings or on sets of symbols or characters. The application of the Kleene star to a set 

V is written as V*.  

It is widely used for regular expressions to characterise certain automaton where it means zero 

or more. 

ACCEPTANCE OF LANGUAGES 

 Like DFA the transition function on an NFA (A) is uniquely determined by A. According to the 

formal definition of NFA, it is a 5-tuple consisting of A = (Q, Σ, Δ, q0, F). 

 Let us consider a string w over an Σ. 

 w is accepted by A if there is an accept state q Є F such that q is reachable from a start state 

under input string w i.e. q Є Δ(q0,w) 

 The language that is accepted by A is denoted by L(A), is the set of all the strings accepted by A. 

i.e. L(A) = {w | w Є Σ*}  

 Let M denotes DFA and N denotes NFA. Then Two finite automata M and N are said to be 

equivalent if L(M) = L(N). 

 Under such definition every DFA i.e. M =(Q, Σ, δ, q0, F) is equivalent to an NFA i.e. N = (Q, Σ, Δ, 

q0,F) where Δ (q, a) = ,δ(q, a)} for every state q and input a. 

CONVERSIONS AND EQUIVALENCES 

Equivalence of Deterministic and Nondeterministic Finite Automata 

 Deterministic and nondeterministic finite automata recognize the same class of languages.  Such 

equivalence is both surprising and useful. 

 It is surprising because NFAs appear to have more power than DFAs, so we might expect that 

NFAs recognize more languages. 

 It is useful because describing an NFA for a given language sometimes is much easier than 

describing a DFA for that language. 

 It is also a surprising fact that every language that can be described by NFA can also be described 

by some DFA. 

 Moreover the DFA in practice has about as many states as the NFA, although it often has more 

transitions. 

 In the worst case however the smallest DFA can have 2n states while the smallest NFA for the 

same language has only n states. 

 If a language is recognized by an NFA then we must show the existence of a DFA that also 

recognizes it i.e. every NFA has an equivalent DFA. 

 



FORMAL LANGUAGES & AUTOMATA THEORY  Jaya Krishna, M.Tech, Asst. Prof. 

Jkdirectory Page | 5 JKD 

Syllabus  R09 Regulation 

 NFA to DFA CONVERSIONS 

 Let N = (Q, Σ, δ, q0, F) be the NFA recognizing some language A. Now we construct DFA M = 

(Q’,Σ’, δ’, q0’,F’) recognizing A. 

 Before doing the full construction let’s first consider the easier case wherein N has no ε arrows. 

1. Q’ = P(Q).  

 Every state of M is a set of states of N.  

2.  For R Є Q’ and a Є Σ let δ’(R, a) = ,q Є Q| q Є δ(r, a) for some r Є R}. 

 If R is a state of M, it is also a set of states of N. when M reads a symbol a in state 

R, it shows where a takes each state in R. 

 Because each state may go to a set of states, we take the union of all these sets. 

Another way to write this expression is : 

𝛿 ′ 𝑅 , 𝑎 =   𝛿 𝑟, 𝑎 .

𝑟  Є 𝑅

  

3. q0’ = ,q0} 

 M starts in the state corresponding to the collection containing just the start state 

of N. 

4. F’ = ,R Є Q’ | R contains an accept state of N-. 

 The machine M accepts if one of the possible states that N could be in at this 

point is an accept state. 

 Now we need to consider the ε arrows. To do so we set up an extra bit of notation. 

 For any state R of M we define E(R) to be the collection of states that can be reached from R by 

going only along ε arrows, including the members of R themselves.  

 Formally for R ⊆ Q let  

E(R) = ,q | q can be reached from R by travelling along 0 or more ε arrows-. 

 Now we modify the transition function of M to place additional fingers on all states that can be 

reached by going along ε arrows for every step. 

 Replacing δ(r, a) by E(δ(r, a)) achieves this effect. Thus 

δ'(R, a) = ,q Є Q | q Є E(δ(r, a)) for some r Є R-. 

  Additionally we need to modify the start state of M to move the fingers initially to all possible 

states that can be reached from the start state of N along the ε arrows. i.e. changing q0’ to be E( 

{q0}) achieves this effect. 

Example:  

 Let us consider the following NFA N4 as below: 

 

FIGURE 1. 4 NFA ACCEPTING STRINGS END WITH 01 
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 Given the NFA N4 = (Q, ,a, b-, δ, 1,,1-), the set of states Q is ,1, 2, 3- as shown in the figure 1.4. 

 To construct DFA D that is equivalent to N4, we first determine D’s states. 

 N4, has three states {1, 2, 3} so we construct D with eight states one for each subset, one for 

each subset of N4’s states. 

 We label each of D’s states with the corresponding subset. Thus D’s state set is  

{ɸ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} 

 Next determine the start and accept states of D. The start state is E({1}), the set of states that 

are reachable from 1 by travelling along ε arrow plus 1 itself.  

 An ε arrow goes from 1 to 3, so E({1}) = {1, 3}. 

 The new accept states are those containing N4’s accept state; thus ,*1-, *1, -, *1, 3-, ,1, 2, 3--. 

 Finally we determine D’s transition function where each of D’s states goes to one place on input 

a and one place on input b. 

 The transition table for the NFA N4 is as follows: 

 0 1 

q0 {q0, q1} q0 

q1 ɸ q2 

*q2 ɸ ɸ 

  

 Now change the transition table for NFA into DFA as given below: 

  0 1 

{q0} {q0, q1} {q0} 

{q0, q1} {q0, q1} {q0, q2} 

{q0, q2} {q0, q1} {q0} 

{q0, q1} : {q0, q1}  ∪ {ɸ} = {q0, q1} 

 Now draw the DFA for the above transition table. 

 

 

MINIMIZATION OF FINITE STATE MACHINE  

 In this section we construct an automaton with minimum number of states equivalent to a given 

automaton M. 

 As our interest lies only in strings accepted by M, what really matters is whether a state is a final 

state or not. We define some relations in Q. 
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 Two states q1 and q2 are equivalent (denoted by q1 ≡ q2) if both δ(q1, x) and δ(q2, x) are 

final states or both of them are non final states for all x Є Σ*.  

 Two states q1 and q2 are k-equivalent (k ≥ 0) if both δ(q1, x) and δ(q2, x) are final states or 

both non final states for all strings x of length k or less. 

 In particular any two final states are 0-equivalent and any two non final states are also 0-

equivalent. 

 

CONSTRUCTION OF MINIMUM AUTOMATON 

 Step -1: (Construction of ∏
0
). By definition of 0-equivalence, ∏

0
 = [Q1

0, Q2
0] where Q1

0 is the set 

of all final states and Q2
0 = Q - Q1

0. 

 Step -2: Construction of ∏
k+1

 from ∏
k
 . 

 Step -3: Construct ∏
n 

for n= 1, 2, … until ∏
n+1

 . 

 Step -4: Construction of minimum automaton. 

Example: 

 Construct a minimum  state automaton equivalent to the finite automaton given in figure below: 

 

 

 

 

 

 

 

 

 

 

 

 

Solution: 

 It will be easier if we construct the transition table given in table below: 

 0 1 

q0 q1 q5 

q1 q6 q2 

*q2 q0 q2 

q3 q2 q6 

q4 q7 q5 

q5 q2 q6 

q6 q6 q4 

q7 q6 q2 

q0 

q1 
q2 

q3 

q4 

q5 q6 

q7 

0 

0 

1

0 

1

0 

1

0 
0 

1 

1 

0 0 

0 

1 

1 

1 

0 0 
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 By applying step -1, we get 

Q1
0 = F = {q2},   Q2

0 = Q – Q1
0 

 So,  

∏
0
 = {{q2}, {q0, q1, q3, q4, q5, q6, q7}} 

 {q2} in ∏
0 

cannot be further partitioned. So Q1’ = {q2}. Consider q0 and q1 Є Q2
0. 

 The entries under 0-column corresponding to q0 and q1 are q1 and q6, they lie in Q2
0. The entries 

under 1-column are q5 and q2.q2 Є Q1
0 and q5 Є Q2

0 . Therefore q0 and q1 are not 1-equivalent. 

 Similarly q0 is not 1-equivalent to q3, q5, q7. 

 Now consider q0 and q4. The entries under 0-column are q1 and q7. Both are in Q2
0. The entries 

under 1-column are q5, q5. So q4 and q0 are 1-equivalent. Similarly q0 is 1-equivalent to q6. 

 {q0, q4, q6} is a subset in ∏
1
 . So Q2’ = {q0, q4, q6}. 

 Repeat the construction by considering q1 and any one the states q3, q5, q7. q1 is not 1-equivalent 

to q3 or q5 but 1-equivalent to q7. Hence Q3’ = {q1, q7}. 

 The elements left over in Q2
0 are q3 and q5. By considering the entries under 0-column and 1-

column we see that q3 and q5 are 1-equivalent. 

 So Q4’ = ,q3,q5}. Therefore, 

∏
1
 = {{q2}, {q0, q4, q6}, {q1, q7}, {q3, q5}} 

 {q2} is also in ∏
2 

as it cannot be partitioned further. Now the entries under 0-column 

corresponding to q0 and q4 are q1 and q7, and these lie in the same equivalence class in ∏
1
. 

 The entries under 1-column are q5, q5. So q0 and q4 are 2-equivalent but q0 and q6 are not 2-

equivalent. Hence {q0, q4, q6} is partitioned into {q0, q4} and {q6}. 

 q1 and q7 are 2-equivalent. q3 and q5 are also 2-equivalent. Thus, ∏
2
 = {{q2}, {q0, q4}, {q6}, {q1, q7}, 

{q3, q5}}. And also q0 and q4 are 3-equivalent; q1 and q7 are 3-equivalent. Also q3 and q5 are 3-

equivalent. Therefore, 

∏
3
 = {{q2}, {q0, q4}, {q6}, {q1, q7}, {q3, q5}} 

 As ∏
2
 = ∏

3
 , ∏

2
 gives the equivalence classes, the minimum state automaton is  

M’ = (Q’, ,0, 1-, δ’, q0’, F’) 

 Where Q’ = ,*q2], [q0, q4], [q6], [q1, q7], [q3, q5]}, q0’(initial state) = *q0,q4+, F’ = *q2+ and δ’ is given 

by the table as below: (transition table of minimum state automaton) 

State / Σ 0 1 

[q0, q4] 
[q1, q7] 

[q2] 
[q3,q5] 

[q6] 

[q1, q7] 
[q6] 

[q0, q4] 
[q2] 
[q6] 

[q3,q5] 
[q2] 
[q2] 
[q6] 

[q0, q4] 
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 The transition diagram for the minimum state automaton is given in figure below. The states q0 

and q4 are identified and treated as one state. (So also are q1, q7 and q3, q5.) 

 

 

 

 

 

 

 

 

 

 

 If there is a transition from qi to qj with label a, then there is a transition from [qi] to [qj] with the 

same label in the diagram for minimum state automaton. 

 Symbolically, if δ(qi, a) = qj, then δ’(*qi], a) = [qj]. 

TESTING THE EQUIVALENCE OF STATES  

 When two distinct states p and q can be replaced by a single state that behaves like p and q, we 

say that states p and q are equivalent if: 

 For all input strings w, δ^(p, w) is an accepting state if and only if δ^(q, w) is an accepting 

state. 

 For example consider the DFA given below with equivalent states: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

0 

1 

[q0, q4] 

[q1, q7] 

[q3, q5] 

[q2] 

[q6] 

0 

1 

0 
0 

1 0 
1 

1 

F 

A 

B 

C 

D 

E 

G 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

Figure (a): an automaton with equivalent 

states 
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 Basis: if p is accepting state and q is nonaccepting state, then the pair {p, q} is distinguishable. 

 Induction: Let p and q be states such that for some input symbol a, r = δ(p, a) and s = δ(q, a) are 

a pair of states know to be distinguishable. Then {p, q} is a pair of distinguishable states. 

 Executing the table filling algorithm on the DFA given in Figure (a) we get the table in Table (a) 

as given below: 

B X  

C X X  

D X X X  

E X X  X  

F X X X  X  

G X X X X X X  

 A B C D E F  
Table (a): Table of state equivalences  

 Initially the entire table is blank. Now since states D, F and G are the only accepting states they 

cannot be equivalent to A, B, C and E. 

 Accordingly we fill the corresponding squares with x. now we can use these distinguishable pairs 

to find others. 

 For example since {E, G} is distinguishable and states B and E go to E and G on input 1 we find 

that {B, E} is also distinguishable.  

FINITE AUTOMATA WITH OUTPUTS 

 The finite automata which we considered earlier have binary output i.e. they accept the string or 

do not accept the string. 

 This acceptability was decided on the basis of reachability of the final state by the initial state. 

Now we remove this restriction and consider the model where the outputs can be chosen from 

some other alphabet. 

 The value of the output function Z{t} is : 

 In the most general case it is a function of the present state q(t) and the present input 

x(t) i.e.  

Z(t) = λ(q(t), x(t)) 

 Where λ is called the output function. This generalized model is called Mealy Machine. 

 If the output function Z(t) depends only on the present state and is independent of the 

current input, the output function may be written as: 

Z(t) = λ(q(t)) 

 This restricted model is called Moore Machine. It is more convenient to use Moore 

machine in automata theory. 
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 Definition:- 

 Moore Machine  

 It is a six tuple (Q, Σ, Δ, λ, δ, q0), where 

 Q is a finite set of states; 

 Σ is the input alphabet 

 Δ is the output alphabet 

 δ is the transition function Σ x Q  Q. 

 λ is the output function mapping Q  Δ and  

 q0 is the initial state 

Mealy Machine 

 A mealy machine is a six tuple (Q, Σ, Δ, λ, δ, q0), where all the symbols except λ have the same 

meaning as in the Moore machine. 

 λ is the output function mapping Σ x Q  Δ 

 For example table given below shows the Moore machine. The initial state is q0 marked with an 

arrow. 

Present State 
Next state δ 

Output 
a = 0 a = 1 

q0 q3 q1 0 

    q1 q1 q2 1 

    q2 q2 q3 0 

    q3 q3 q0 0 

 

 For the input string 0111, the transition of states is given by q0 q3  q0  q1 q2. The output 

string is 00010. 

 For the input string ε the output is λ(q0) = 0. 

 The following table describes the Mealy machine. 

Present State 

Next State 

a = 0 a = 1 

State Output State Output 

q1 q3 0 q2 0 

    q2 q1 1 q4 0 

    q3 q2 1 q1 1 

    q4 q4 1 q3 0 

 

 For the input string 0011, the transition of states is given by q1  q3  q2  q4  q3 and the 

output string is 0100.  
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 In the case of mealy machine we get an output only on the application of an input symbol. So for 

the input string ε, the output is only ε. 

 For Moore machine if the input string is of length n, the output string is of length n+1, because 

the first output is λ(q0) for all the output strings. 

 In the case of Mealy machine if the input string is of length n, the output string is also of the 

same length n. 

PROCEDURE FOR TRANSFORMING A MEALY MACHINE INTO A MOORE MACHINE 

 Consider the Mealy machine described by the transition table given the table below: 

Present State 

Next State 

input a = 0 input a = 1 

State Output State Output 

q1 q3 0 q2 0 

    q2 q1 1 q4 0 

    q3 q2 1 q1 1 

    q4 q4 1 q3 0 

 

Solution 

 At the first stage develop the procedure so that both the machines accept exactly the same set 

of input sequences. 

 We look into next state column for any state (say qi) and determine the number of different 

outputs associated with qi in that column. 

 Now we split into several different states, the number of such states being equal to the number 

of different outputs associated with qi.  

 For example in this problem q1 is associated with one output 1 and q2 is associated with two 

outputs 0 and 1. Similarly q3 and q4 are associated with the outputs 1 and 0, 1. 

 Now we split q2 into q20 and q21. Similarly q4 is split into q40 and q41. Now the above table is 

reconstructed for the new states as given below: 

  

Present State 

Next State 

input a = 0 input a = 1 

State Output State Output 

q1 q3 0 q20 0 

    q20 q1 1 q40 0 

    q21 q1 1 q40 0 

    q3 q21 1 q1 1 

    q40 q41 1 q3 0 

    q41 q41 1 q3 0 
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 The pair of states and outputs in the next state column can be rearranged as given in the table 

below: 

Present State 
Next State 

Output 
a = 0 a = 1 

q1 q3 q20 1 

    q20 q1 q40 0 

    q21 q1 q40 1 

    q3 q21 q1 0 

    q40 q41 q3 0 

    q41 q41 q3 1 

 

 The above table gives the Moore machine. Here we observe that the initial sate q1 is associated 

with output 1. 

 This means that with input ε we get an output of 1, if the machine starts at state q1. 

 That this Moore machine accepts a zero-length sequence (null sequence) which is not accepted 

by the Mealy machine. 

 To overcome this situation, either we must neglect the response of a Moore machine to input ε 

or we must add a new starting state q0, whose state transitions are identical with those of q1 but 

whose output is 0. 

 So the above table is transformed in to : 

Present State 
Next State 

Output 
a = 0 a = 1 

q0 q3 q20 0 

   q1 q3 q20 1 

    q20 q1 q40 0 

    q21 q1 q40 1 

    q3 q21 q1 0 

    q40 q41 q3 0 

    q41 q41 q3 1 

 

PROCEDURE FOR TRANSFORMING A MOORE MACHINE INTO CORRESPONDING MEALY MACHINE 

 We modify the acceptability of input string by a Moore machine by neglecting the response of 

the Moore machine to input ε. 

 Construction of Moore to Mealy 

 We have to define the output function λ’ for Mealy machine as a function of present 

state and input symbol. We define λ’ by 

λ'(q, a) = λ(δ(q, a)) for all states q and input symbols a. 

 The transition function is the same as that of the given Moore machine. 
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 For example now consider the Moore machine described by the transition table given the table 

below: 

Present State 
Next state δ 

Output 
a = 0 a = 1 

q0 q3 q1 0 

    q1 q1 q2 1 

    q2 q2 q3 0 

    q3 q3 q0 0 

 

 We must follow the reverse procedure of converting Mealy machine into Moore machine. 

 In the case of Moore machine for every input symbol we form the pair consisting of the next 

state and the corresponding output and reconstruct the table for Mealy machine. 

 For example the states q3 and q1 in the next state column should be associated with outputs 0 

and 1 respectively. 

 The transition table for Mealy machine is given as below: 

Present State 

Next State 

input a = 0 input a = 1 

State Output State Output 

q0 q3 0 q1 1 

    q1 q1 1 q2 0 

    q2 q2 0 q3 0 

    q3 q3 0 q0 0 

 

Note: we can reduce the number of states in any model by considering states with identical 

transitions. If two states are identical (i.e. the rows corresponding to these two states are identical), 

then we can delete one of them. 
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Something Useful (for exam point of view) 

 Consider the transition table given below: 

States 

Inputs 

0 1 

 
q2 q1 

q1 q3 q0 

q2 q0 q3 

q3 q1 q2 

 

 Solution: (Acceptability of a given string) 

 

 

 

 

 

 

 

 

 

 

 

Hence,   

 

  

 The symbol down arrow indicates the current input symbol being processed by the machine. 

q0 

δ(q0, 110101) = δ(q1, 10101) 

= δ(q0, 0101) 

= δ(q2, 101) 

= δ(q3, 01) 

= δ(q1, 1) 

= δ(q0, ε) = q0 

q0 q1 q0 q2 q3 q1 q0 
1 1 0 1 0 1 


